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Epicyclic frequencies are usually observed in x-ray binaries and constitute a powerful astrophysical
mean to probe the strong gravitational field around a compact object. We consider them in the equatorial
plane around a general stationary and axially symmetric wormhole. We first search for the wormholes’
existence, distinguishing them from a Kerr black hole. Once there will be available observational data on
wormholes, we present a strategy to reconstruct the related metrics. Finally, we discuss the implications of
our approach and outline possible future perspectives.
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I. INTRODUCTION

A wormhole (WH) is an exotic compact object, charac-
terized by a nontrivial topology featuring no horizons
and physical singularities. Furthermore, it presents a
traversable bridge, dubbed the WH neck, connecting two
distinct universes or two different regions of the same
spacetime [1]. This topic is frequently studied both in
General Relativity (GR) and in alternative/extended theo-
ries of gravity, where the related works can be classified in
two macroresearch areas: (1) proposing new WH solutions
in different gravity frameworks by employing disparate
mathematical methods (see e.g., Refs. [2–5]); (2) providing
original astrophysical strategies based on the current or
near-future observational data to look for the detection of
WH existence (see e.g., Refs. [6–11]).
Since these exotic objects have never been observed so

far, it could be related to the fact that probably there exist
particular WHs, which perfectly reproduce all observational
properties of a black hole (BH) with arbitrary high accuracy,
known also in the literature as black hole mimickers [12]. In
order to reveal their existence, it would be very useful to
provide tests of gravity in the strong-field regime.
To this purpose, a helpful astrophysical tool of inves-

tigation is represented by the epicyclic frequencies. The
term “epicyclic” is derived from Greek and it means beyond
the circle. Indeed, such frequencies fνr; νφ; νθg are physi-
cally obtained by linearly perturbing the motion of a test
particle in a circular orbit along the radial, azimuthal, and
polar directions, respectively. The epicyclic frequencies
entail several advantages, because they closely depend on
the underlying geometrical background, are produced in

strong field regime, and are frequently found in BH
systems [13,14].
In the literature, it is possible to find already some works

on epicyclic frequencies applied to WHs, whose objectives
are: (1) understanding the behaviour of a test gyroscope
moving towards a Teo-rotating traversable WH [15];
(2) analysis of quasiperiodic oscillations (QPOs) from an
accretion disk around Teo-rotating traversable WHs [16];
(3) testing observationally for the presence of BHmimicker
solutions via QPOs [17]; (4) investigations of the epicyclic
frequencies around Simpson-Visser regular BHs and
WHs [18]; (5) application of epicyclic orbits in the field
of Einstein-Dirac-Maxwell traversable WHs to the QPOs
observed in microquasars and active galactic nuclei [19];
(6) studies on the epicyclic frequencies around traversable
phantom WHs in Rastall gravity [20].
In a previous work, we studied the epicyclic frequencies in

general static and spherically symmetric WH spacetimes,
where we showed the strategy to disentangle between a BH
and a WH, and how to reconstruct a WH solution once they
will be detected [21]. In this work, we aim at extending the
aforementioned approach to general stationary and axially
symmetricWH geometries. Therefore, the paper is structured
as follows: in Sec. II we describe the epicyclic frequencies
around stationary and axially symmetric WHs; in Sec. III we
first describe the procedure to detect possible metric devia-
tions from a Kerr BH and then explain how it is possible to
reconstruct the WH solution from the observational data;
finally in Sec. III C we draw the conclusions.

II. EPICYCLIC FREQUENCIES IN STATIONARY
AND AXIALLY SYMMETRIC WORMHOLES

In this section, we first introduce general stationary,
axially symmetric, and traversable WH geometries*v.defalco@ssmeridionale.it
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described by the Teo-like metric (see Sec. II A) and then we
present the formulas of the epicyclic frequencies in the
equatorial plane of such spacetimes (see Sec. II B).
From this section onward, we use geometrical units

G ¼ c ¼ 1 and the distances will be measured in units of
M, being the total mass energy of the considered compact
object generating the underlying gravitational field.

A. Teo-like wormholes

General stationary, axially symmetric, and traversable
WHs can be described in spherical-like coordinates
ðt; r; θ;φÞ employing the following Teo-like metric [22]

ds2 ¼ −N2ðr; θÞdt2 þ dr2

1 − bðr;θÞ
r

þ r2K2ðr; θÞ½dθ2 þ sin2θðdφ − ωðr; θÞdtÞ2�; ð1Þ

where Nðr; θÞ; bðr; θÞ; Kðr; θÞ;ωðr; θÞ are four unknown
functions which determine theWH spacetime. In particular,
we have that Nðr; θÞ is the redshift function and describes
the time properties of the WH; bðr; θÞ is the shape function,
delineating the WH form when it is embedded in an
Euclidean space1; Kðr; θÞ is the proper radial-distance
factor, which permits us to define the proper radial distance
R ¼ rKðr; θÞ from the origin of the coordinate system,
endowed with the property to have ∂R=∂r > 0; ωðr; θÞ is
the rotational function devoted to characterizing the frame-
dragging effect around the WH. Equation (1) reduces to the
Morris-Thorne metric [23] in the limit of zero rotation (i.e.,
ωðr; θÞ → 0) and spherical symmetry, which in formulas
translates in requiring

Nðr;θÞ→eΦðrÞ; bðr;θÞ→bðrÞ; Kðr;θÞ→1: ð2Þ

Such WHs must fulfill the following properties [22]:
(1) To have no horizons, the θ-derivatives of Nðr; θÞ;

bðr; θÞ, and Kðr; θÞ evaluated in θ ¼ 0; π have to
vanish on the rotation axis;

(2) If r0 > 0 is defined as the WH throat, no essential
singularities occur if Nðr; θÞ; bðr; θÞ; Kðr; θÞ, and
ωðr; θÞ are smooth functions everywhere finite
for r ≥ r0;

(3) The shape function fulfills: b ≤ r, ∂θbðr0; θÞ ¼ 0 for
all θ ∈ ½0; π�, b > r∂rb (flaring-out condition);

(4) Asymptotical flatness—i.e., for r → ∞, we have
N → 1; br → 0; K → 1, ω → 0;

(5) The metric (1) is valid both in GR and extended/
alternative theories of gravity. It generally depends
on the Arnowitt-Deser-Misner (ADM) mass (or total
mass-energy of the system contained in the whole
spacetime [1]) M, the (dimensionless Kerr spinlike)
total angular momentum a, and sometimes from
other parameters, which come from the gravity
theory to which it belongs and also the employed
stress-energy tensor to construct it;

(6) The traversability is achieved by either resorting to
quantum mechanical effects, produced by ad hoc
exotic stress-energy tensors (see e.g., Refs. [24–26]),
or topological arguments, based on standard and
(gravitational) curvature fluid stress-energy tensors
(see e.g., Refs. [27–29]). The former approach is
generally employed in GR, whereas the latter is
employed in modified gravity frameworks, present-
ing more degrees of freedom with respect to GR.

B. Epicyclic frequencies in the equatorial plane

The epicyclic frequencies fνr; νφ; νθg are normally
calculated in terms of the epicyclic angular velocities
fΩr ¼ 2πνr;Ωφ ¼ 2πνφ;Ωθ ¼ 2πνθg, whose explicit for-
mulas can be obtained in the equatorial plane θ ¼ π=2 by
exploiting one of the following equivalent strategies:

(i) employing the conserved specific energy E and
angular momentum l along the test particle trajec-
tory, it is possible to write the following expressions

_t ¼ _tðE;lÞ; _φ ¼ _φðE;lÞ; ð3Þ

where dot represents the derivative with respect to an
affine parameter along the test-particle trajectory.
Using the normalization condition for timelike four-
velocities gμν _xμ _xν ¼ −1, we have

grr _r2 þ gθθ _θ
2 ¼ Veffðr; θ; E;lÞ: ð4Þ

For stable circular orbits in the equatorial plane we
have _r ¼ _θ ¼ 0, which implies Veff ¼ 0, whereas
̈r ¼ 0 and θ̈ ¼ 0 entails

∂rVeff ¼ 0; ∂θVeff ¼ 0: ð5Þ

We then have (see Sec. 10.3.2 in Ref. [30])

�
dr
dt

�
2

¼ 1

grr _t2
Veff ; ð6aÞ

�
dθ
dt

�
2

¼ 1

gθθ _t2
Veff : ð6bÞ

We derive Eqs. (6) with respect to the coordinate
time t and then consider r ¼ r0 þ δr and

1In the case of Morris-Thorne (static and spherically sym-
metric) WHs [23], these solutions are embedded in a three-
dimensional Euclidean space, since the metric is invariant with
respect to the θ coordinate. Instead, Teo-like WHs should be
embedded in a four-dimensional Euclidean space, after having
fixed a time instant, which does not spoil the final WH shapes due
to their stationary and axial symmetry properties.
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θ ¼ π=2þ δθ, where δr and δθ are small perturba-
tions. We linearize the system and obtain harmonic
oscillator equations, which provides the expressions
of Ωr;Ωθ;Ωφ in terms of the metric [30,31];

(ii) Starting from the timelike geodesic equations, we
can employ the relativity of observer splitting
formalism [32–35]2 and the zero angular-momentum
observers (ZAMOs). Therefore, the test particle’s
position ðr;φÞ is expressed in spherical-like coor-
dinates, whereas its spatial velocity vector ν is split
in the ZAMO frame fet̂; er̂; eθ̂; eφ̂g through ðν; αÞ,
where ν ¼ jjνjj is the magnitude of the spatial
velocity and α is the azimuthal angle of the vector
ν in the er̂ − eφ̂ plane measured clockwise from the
positive eφ̂ direction. We finally obtain

dν
dt

¼ f1ðν; α; rÞ; ð7aÞ

dα
dt

¼ f2ðν; α; rÞ; ð7bÞ

dr
dt

¼ f3ðν; α; rÞ: ð7cÞ

We perturb the above dynamical system around a
stable circular orbit of radius r0 endowed with
Keplerian velocity (i.e., α0 ¼ 0 and ν0 ¼ νKðrÞ3)
via a small parameter ε ≪ 1, namely

ν¼νKþεν1; α¼ εα1; r¼ r0þεr1; ð8Þ

Linearizing the dynamical system (7), we have

dν1
dt

¼ f̃1ðα1; r0Þ; ð9aÞ

dα1
dt

¼ f̃2ðν1; r1; r0Þ; ð9bÞ

dr1
dt

¼ f̃3ðα1; r0Þ: ð9cÞ

Now, we consider

d2α1
dt2

¼ ∂f̃2
∂ν1

dν1
dt

þ ∂f̃2
∂r1

dr1
dt

; ð10Þ

and substituting Eqs. (9a) and (9c), it leads to the
harmonic oscillator equation

d2α1
dt2

þΩ2
rα1 ¼ 0; ð11Þ

where we obtain the explicit expression of Ωr.
The azimuthal epicyclic frequency is calculated

through the Keplerian angular velocity ΩK, i.e.,

Ωφ ≡ΩK ¼ dφ
dt

: ð12Þ

For determining Ωθ, we should first introduce the
polar angle ψ in the ZAMO frame, measured from the
eθ̂ direction, and then following a similar procedure
outlined above for determining Ωr [36,37].

The epicyclic angular velocities’ formulas, evaluated at the
angle θ ¼ π=2 and radius r ¼ r0, are [38]

Ωφ ¼
−∂rgtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtφÞ2 − ð∂rgttÞð∂rgφφÞ

q
∂rgφφ

; ð13aÞ

Ω2
r ¼

ðgtt þΩφgtφÞ2
2grr

�
∂
2
rr

�
gφφ
Y

�
þ 2l∂2rr

�
gtφ
Y

�

þ l2
∂
2
rr

�
gtt
Y

��
; ð13bÞ

Ω2
θ ¼

ðgtt þΩφgtφÞ2
2gθθ

�
∂
2
θθ

�
gφφ
Y

�
þ 2l∂2θθ

�
gtφ
Y

�

þ l2
∂
2
θθ

�
gtt
Y

��
; ð13cÞ

where

Y ¼ gttgφφ − g2tφ; ð14aÞ

l ¼ −
gtφ þ Ωφgφφ
gtt þ Ωφgtφ

: ð14bÞ

III. SEARCHING FORWORMHOLE’S EXISTENCE
AND METRIC RECONSTRUCTION

The epicyclic frequencies can be normally found in
several x-ray binaries, composed of a BH (or a neutron star)
and a companion donor star. These systems are charac-
terized by the presence of an accretion disk, strongly
emitting in the x-ray energy band, and by frequently flux
variabilities on short timescales [39]. The latter effects are
studied within the Fourier analysis via power-density
spectra, which features very fast aperiodic and quasiperi-
odic variabilities showing (generally) the existence of
narrow peaks with a distinct centroid frequencies, also
known as QPOs (see Refs. [13,14], for reviews). Although
their origin is still not clear, the cause of their production is
associated with the strong gravity’s interaction with the

2This technique permits to clearly distinguish between gravi-
tational and inertial contributions. It encompasses a direct
connection with the classical description and allows us to reveal
the physics behind the symbols we algebraically manipulate.

3To calculate νK , we can employ νK ¼ rΩKðr; θÞ, with
Ωkðr; θÞ being the Keplerian angular velocity [cf. Eq. (13a)].
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motion of the matter around massive compact objects. QPO
models share an extensive use of the epicyclic frequencies
framed within different theoretical patterns [14]. Therefore,
once we detect them, we should choose the appropriate
theoretical model in order to infer the right values of the
epicyclic frequencies. This represents the main criticality of
this procedure, because sometimes it could be difficult to
pinpoint the right QPO model, or more than one model
could be employed (producing a model-degeneracy), or in
the worst case no model could be exploited for the available
data [13,14].
We stress that this is a promising approach for the

availability of actual and also near-future more accurate
observational data (see e.g., Refs. [40–43]). In this section,
we first describe how to distinguish between a BH and the
presence of a WH (see Sec. III A). If a WH is detected, we
propose a methodology to reconstruct the related solution
from the observations (see Sec. III B).

A. Method to distinguish between a Teo-like wormhole
and a Kerr black hole

The technique to distinguish between a Kerr BH and a
Teo-like WH consists in detecting metric departures from

the BH geometries in GR. Therefore, if we are able to fit the
data on epicyclic frequencies via the Kerr model, then no
WH is present; otherwise, a WH may exist.
Since there are no epicyclic frequencies’ data associated

to WHs, we select some WH solutions from the literature.
We would like to clarify that differently from the static and
spherically symmetric case, where a WH solution can be
found relatively easy, since only two unknown functions
[i.e., gttðrÞ and grrðrÞ] must be determined, in the stationary
and axially symmetric situation more functions and a
dependence also from the polar angle θ are involved
[i.e., gttðr; θÞ, grrðr; θÞ, gφφðr; θÞ, gθθðr; θÞ, and gtφðt; θÞ].
Therefore, some Ansätze are generally invoked in order to
restrict the functional space of the solutions. The proposed
WH geometries, reported in Table I, are all exact solutions
of the field equations in GR, obtained by resorting to
different models of exotic fluids.
Once we have fixed all free parameters of each WH

solution (see Sec. III A 1, where we provide more details on
the employed methodology and the displayed simulations),
in Table II we calculate the related WH throat r0, innermost
stable circular orbit (ISCO) radius rISCO, and epicyclic
frequencies (in the equatorial plane) Ωφ and Ωr. Regarding

TABLE I. Some examples of WH solutions in GR (obtained by resorting to different exotic stress-energy tensors) are displayed. We
show the general expression of each metric component in the equatorial plane θ ¼ π=2. For all WH solutions, we set a ¼ 0.3, r0 ¼ M,
and in the column “PARAM.”, we assign numerical values to the free parameters. In the first row (#0), we report the Kerr BH solution for
comparing it with the other WH solutions (from #1 to #10).

# gtt grr gφφ gtφ PARAM. Reference

0 −ð1 − 2M
r Þ r2

r2−2Mrþa2 r2 þ a2 þ 2Ma2
r

− 2Ma
r

� � � [44]

1a −1 ðr−l1Þ2
Δ1

Δ1 − Δ2
2

−Δ2 l0 ¼ 1.1M; l1 ¼ M [45]

2b −
�
1 − rh

r

�
1þδ

n
1 − rh

r

h
1þ

�
1 − rh

r

�
1−δ

io
−1 r2 − 2Ma

r
rh ¼ 0.4r0 [46]

3 −1þ 4M2a2

r4

�
1 − r2

0

r2

�
−1 r2 − 2Ma

r
� � � [47]

4 −e−
r0
r þ 4M2a2

r4

�
1 − r0

r

�
−1 r2 − 2Ma

r
� � � [48]

5 −e−
r0
r þ 4M2a2

r4

�
1 − r2

0

r2

�
−1 r2 − 2Ma

r
� � � [48]

6 −e−
r0
r þ 4M2a2

r4

�
1 −

ffiffiffiffiffi
r0r

p
r

�
−1 r2 − 2Ma

r
� � � [48]

7c −e−
r0
r þ 4M2a2

r4

h
1 − r0þγr0ð1−r0

r Þ
r

i−1 r2 − 2Ma
r

γ ¼ 0.5 [48]

8d −
�
1 − 2Mffiffiffi

Σ
p

� Σ
Δ

C
Σ − 2Maffiffiffi

Σ
p h ¼ 2 [49]

9e −
�
1 − f

r2

�
r2A
Ψ

�
1 − B

r

�
−1 ρ

r2 −a f
r2

� � � [50]

10 −1þ 4M2a2

r4

�
1 − r0

r

�
−1 r2 − 2Ma

r
� � � [22]

aΔ1 ¼ ðr − l1Þ2 þ ðl20 − l21Þ, Δ2 ¼ a
2ðr−l1Þ with l20 > l21 > 0.

bδ ¼ lg β
lgð1−βÞ with β ¼ rh=r0 > 1.

c
0 < γ < 1.
dΣ ¼ r2 þ h2, Δ ¼ Σþ a2 − 2M

ffiffiffi
Σ

p
, C ¼ ðΣþ a2Þ2 − a2Δ.

eA ¼ 1 − 2M
rþ1.5r0

, B ¼ 2M − 1.5r0ðr−1.5r0Þ
r , f ¼ r2ð1 − AÞ, Φ ¼ r2Aþ a2, Ψ ¼ r2Aþ a2, ρ ¼ ðr2 þ a2Þ2 − a2Φ with r0 > M.

VITTORIO DE FALCO PHYS. REV. D 108, 024051 (2023)

024051-4



TA
B
L
E
II
.

E
ac
h
ro
w

co
rr
es
po
nd
s
to

th
e
B
H
/W

H
so
lu
tio

n
of

Ta
bl
e
I.
In

th
e
fi
rs
t
ro
w
,
r 0

is
th
e
K
er
r
ev
en
t
ho
ri
zo
n
ra
di
us
.

#
r 0

r I
SC

O
Ω

φ
Ω

r

0
1
.9
5
M

4
.9
8
M

r3
=2
−
0
.3

r3
−
0
.1

−
0
.0
8
r3

=2
þ0

.8
7
r5

=2
−
1
.5
r7

=2
þ1

4
:r
9
=2
−
6
.7
r1

1
=2
−
3
.6
r1

3
=2
þ1

.8
r1

5
=2

r2
ððr

−
2
Þrþ

0
.1
Þ2 ð

r3
−
0
.1
Þ2

þr
9
−
1
0
r8
þ2

7
.9
r7
−
2
5
.7
r6
þ5

.9
r5
−
3
.5
r4
−
1
.6
8
r3
þ0

.0
8
r2

r2
ððr

−
2
Þrþ

0
.1
Þ2 ð

r3
−
0
.1
Þ2

1
M

M
0
.5

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffi
2
.2
4
r1

.2
1
ðr−

0
.4
Þ1.

7
9
þ0

.3
6

p
−
0
.3

r3
rðr

ðrð
rðr

ðrð
rðr

ðrð
rðr

ðrð
rðr

ðrð
rðð

0
.0
2
r−

0
.4
Þrþ

3
.5
Þ−

1
8
.5
Þþ

7
0
Þ−

1
9
8
Þþ

4
3
5
Þ

ðr−
1
Þ20

ððr
−
2
Þrþ

1
.2
Þ2

−
7
5
8
Þþ

1
0
6
2
Þ−

1
2
0
6
Þþ

1
1
1
2
Þ−

8
3
1
Þþ

5
0
0
Þ−

2
3
8
Þþ

8
8
.3
Þ−

2
4
.5
Þþ

4
.8
Þ−

0
.6
Þ

ðr−
1
Þ20

ððr
−
2
Þrþ

1
.2
Þ2

2a
M

N
o

0
0
.3
ðk

1
.8

2
−
0
.4
r0

.8
Þ½r

1
.2
ð2
.2

ffiffiffiffi k 2p
k2

.8
3
þ

ffiffiffiffi k 4p
k1

.8
2
−
k2

.8
2
−
k1

.8
2
þ0

.1
k0

.8
2
Þ

k0
.8

2
r7
:ðr

1
.2
k2

.8
2
þ0

.4
Þ3

þr
3
.6
ð7
.3

ffiffiffiffi k 3p
k7

.4
2
þð

3
.3

ffiffiffiffi k 4p
−
0
.7
Þk

8
.4

2
−
6
k7

.4
2
−
1
.7
k6

.4
2
Þ

k0
.8

2
r7
ðr1

.2
k2

.8
2
þ0

.4
Þ3

þr
2
.4
ð4
.7

ffiffiffiffi k 3p
k5

.6
2
þ5

.3
ffiffiffiffi k 4p
k4

.6
2
−
2
k5

.6
2
−
5
:k

4
.6

2
Þ

k0
.8

2
r7
ðr1

.2
k2

.8
2
þ0

.4
Þ3

þð
2
:k

1
0
.2

2
−
3
k9

.2
2
Þr4

.8
þ0

.3
ffiffiffiffi k 4p
−
0
.2
�

k0
.8

2
r7
ðr1

.2
k2

.8
2
þ0

.4
Þ3

3
M

N
o

0
.6 r3

0
4b

M
N
o

0
.5

ffiffiffiffi k 5p
−
0
.3

r3
0
.0
5
e−

2
=r
ðr−

1
Þð2

2
ðr−

2
Þr1

0
þe

2
=r
ð8
0

ffiffiffiffi k 5p
þr

ð2
0

ffiffiffiffi k 5p
−
3
6
Þ−

2
1
6
Þr7

þe
4
=r
ð6
5

ffiffiffiffi k 5p
−
1
1
7
Þr4

Þ
r1

5

5
M

N
o

0
.5

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

4
e−

2
=r
r3
þ3

p
−
0
.3

r3
e−

2
=r
ðr2

−
1
Þðð

r−
2
Þr1

0
þe

2
=r
ðrð

0
.9

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

4
e−

2
=r
r3
þ3

p
−
1
.6
Þþ

3
.6

ffiffiffiffi k 5p
−
9
.7
Þr7

þe
4
=r
ð2
.9
1
6

ffiffiffiffi k 5p
−
5
.2
Þr4

Þ
r1

6

6
M

N
o

0
.5

ffiffiffiffi k 5p
−
0
.3

r3
−

e−
2
=r
ð1
ffiffi rp
−
1
:Þð

ðr−
2
Þr1

0
þe

2
=r
ðrð

0
.9

ffiffiffiffi k 5p
−
1
.6
2
Þþ

3
.6

ffiffiffiffi k 5p
−
9
.7
2
Þr7

þe
4
=r
ð2
.9
1
6

ffiffiffiffi k 5p
−
5
.2
Þr4

Þ
r1

4

7
M

N
o

0
.5

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffi
4
e−

2
=r
r3
þ3

.2
4

p
−
0
.3

r3
0
.0
5
e−

2
=r
ððr

−
1
.5
Þrþ

0
.5
Þð2

2
ðr−

2
Þr1

0
þe

2
=r
ð8
0

ffiffiffiffi k 5p
þr

ð2
0

ffiffiffiffi k 5p
−
3
6
Þ−

2
1
6
Þr7

þe
4
=r
ð6
5

ffiffiffiffi k 5p
−
1
1
7
Þr4

Þ
r1

6

8c
0

4
.5
6
M

k2 1
ð
ffiffi 4p
k 1

ffiffiffiffi k 1p
−
0
.3
Þ

ð4
8

ffiffiffiffi k 1p
−
0
.7
2
Þr2

þ
ffiffiffiffi k 1p
ð6
4
þr

6
Þþ

ð1
2

ffiffiffiffi k 1p
−
0
.0
9
Þr4

−
1
.4
4

r2
½k3

=4
1

k 7
þk

5
=4

1
k 8
þ

ffiffiffiffi k 1p
k 9
−
1
0
1
3
r2
þr

4
k 1

0
−
5
×
1
0
1
1
�

k 6

9d
1
.5
M

1
.7
7
M

ffiffi rp ð−
0
.3
r3

=2
þr

3
þ4

.5
r2
þ6

.7
5
r−

0
.9

ffiffi rp þ3
.3
7
5
Þ−

0
.6
8

ðrð
rþ

3
:Þþ

2
.2
5
Þðr

ðrð
rþ

3
Þþ

2
.2
5
Þ−

0
.0
9
Þ

k 1
2
þk

1
3

k 1
1

10
M

M
0
.6 r3

0

a k
2
¼

r
−
0
.4
,
k 3

¼
0
.4
þ
2
.2
k1 2
:8
r1

.2
,
k 4

¼
2
.2
r1

.2
k1

.8
2

þ
0
.4
.

b k
5
¼

4
e−

2
=r
r3

þ
3
.

c k
1
¼

r2
þ
4
,

k 6
¼

k4
9
=4

1
ð

ffiffiffi kp
k2 1

−
0
.1
r2
Þ2 ð

ffiffiffiffiffi k 1p
k2 1

−
2
k2 1
Þ3 ,

k 7
¼
−
1
2
r4

2
−
1
0
9
0
r4

0
−
4
6
9
3
2
r3

8
−
1
0
6
r3

6
−
2
×
1
0
7
r3

4
−
4
×
1
0
8
r3

2
−
4
×
1
0
9
r3

0
−
4
×
1
0
1
0
r2

8
−
3
×
1
0
1
1
r2

6
−

2
×
1
0
1
2
r2

4
−
8
×
1
0
1
2
r2

2
−
3
×
1
0
1
3
r2

0
−
1
0
1
4
r1

8
−
3
×
1
0
1
4
r1

6
−
8
×
1
0
1
4
r1

4
−
2
×
1
0
1
5
r1

2
−
3
×
1
0
1
5
r1

0
−
3
×
1
0
1
5
r8

−
3
×
1
0
1
5
r6

−
2
×
1
0
1
5
r4

−
8
×
1
0
1
4
r2

−
2
×
1
0
1
4
,

k 8
¼

r4
2
þ
1
3
2
r4

0
þ
7
2
6
0
r3

8
þ
2
3
5
5
9
3
r3

6
þ
5
×
1
0
6
r3

4
þ
8
×
1
0
7
r3

2
þ
1
0
9
r3

0
þ
1
0
1
0
r2

8
þ
8
×
1
0
1
0
r2

6
þ
5
×
1
0
1
1
r2

4
þ
3
×
1
0
1
2
r2

2
þ
1
0
1
3
r2

0
þ
5
×
1
0
1
3
r1

8
þ
1
0
1
4
r1

6
þ
3
×
1
0
1
4
r1

4
þ

7
×
1
0
1
4
r1

2
þ
1
0
1
5
r1

0
þ
1
0
1
5
r8

þ
1
0
1
5
r6

þ
9
×
1
0
1
4
r4

þ
4
×
1
0
1
4
r2

þ
7
×
1
0
1
3
,k

9
¼
2
r4

2
þ
1
5
2
r4

0
þ
6
0
7
0
r3

8
þ
1
5
2
9
0
3
r3

6
þ
3
×
1
0
6
r3

4
þ
4
×
1
0
7
r3

2
þ
4
×
1
0
8
r3

0
þ
3
×
1
0
9
r2

8
þ

2
×
1
0
1
0
r2

6
þ
1
0
1
1
r2

4
þ
6
×
1
0
1
1
r2

2
þ
2
×
1
0
1
2
r2

0
þ
6
×
1
0
1
2
r1

8
þ
2
×
1
0
1
3
r1

6
þ
3
×
1
0
1
3
r1

4
þ
6
×
1
0
1
3
r1

2
þ

7
×
1
0
1
3
r1

0
þ

7
×
1
0
1
3
r8
þ
5
×
1
0
1
3
r6

þ
2
×
1
0
1
3
r4

þ
5
×
1
0
1
2
r2
þ

3
×
1
0
1
1
,
k 1

0
¼

−
7
r3

8
−
5
7
8
r3

6
−
2
2
0
2
1
r3

4
−
5
3
0
1
8
0
r3

2
−
9
×
1
0
6
r3

0
−
1
0
8
r2

8
−
1
0
9
r2

6
−
9
×
1
0
9
r2

4
−
6
×
1
0
1
0
r2

2
−
3
×
1
0
1
1
r2

0
−
2
×
1
0
1
2
r1

8
−
5
×
1
0
1
2
r1

6
−
2
×
1
0
1
3
r1

4
−

4
×
1
0
1
3
r1

2
−
8
×
1
0
1
3
r1

0
−
1
0
1
4
r8

−
2
×
1
0
1
4
r6

−
2
×
1
0
1
4
r4

−
1
0
1
4
r2

−
5
×
1
0
1
3
.

d k
1
1
¼

r2
7
=2
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
ðrð

rðr
þ
2
1
Þþ

2
0
0
Þþ

1
1
0
0
Þþ

4
4
0
0
Þþ

1
2
0
0
0
Þþ

2
4
0
0
0
Þþ

3
3
0
0
0
Þþ

3
3
0
0
0
Þþ

2
3
0
0
0
Þþ

1
4
0
0
0
Þþ

1
1
0
0
0
Þþ

1
2
0
0
0
Þþ

7
7
0
0
Þþ

1
9
0
0
Þþ

1
3
0
Þþ

1
1
0
0
Þþ

9
2
0
Þ−

4
5
Þ−

2
6
0
Þ−

1
8
Þþ

3
4
Þ−

1
6
Þ−

1
9
Þ−

5
Þ−

0
.2
Þþ

0
.0
4
Þ−

0
.0
0
1
Þ,

k 1
2
¼

−
2
×
1
0
−
5
3
r3

=2
−
6
×
1
0
−
3
7
r5

=2
−
5
×
1
0
−
3
6
r7

=2
−

2
×
1
0
−
2
0
r1

1
=2
−
5
0
r1

3
−
8
:r

1
2
−
r1

1
−
0
.1
r1

0
−
2
×
1
0
−
1
7
r9

þ
4
×
1
0
−
1
8
r8
,
k 1

3
¼

þ2
×
1
0
−
1
8
r7

þ
2
×
1
0
−
1
9
r6

−
3
×
1
0
−
3
5
r5

−
2
×
1
0
−
3
6
r4

þ
7
×
1
0
−
5
2
r3

−
5
4

ffiffiffi rp −
4
×
1
0
1
0
.

EPICYCLIC FREQUENCIES IN THE EQUATORIAL PLANE … PHYS. REV. D 108, 024051 (2023)

024051-5



the ISCO radius, it can be computed via the radial geodesic
equation [51], which could be very demanding for our WH
solutions (similarly as it is done in the Kerr metric). An
alternative and simpler manner to calculate rISCO can be
achieved by determining the minimum value for which the
radial epicyclic angular velocity Ωr is defined. The knowl-
edge of the ISCO radius is very important, because it allows
us to preliminarily understand the geometrical properties of
a WH spacetime.
To distinguish between a Kerr BH and Teo-like WH,

we plot in Fig. 1 the epicyclic angular velocities of the WH
solutions reported in Table II. The following comments are
in order. For Ωr, we see that all the WH solutions exhibit
the same trend for r≳ 10M, due to the asymptotically flat
condition; whereas for r≲ 10M, it is evident the presence
of large deflection from the GR case, with particular
relevance around the Kerr ISCO radius. We note that the
WH solutions #1 and #10 do not behave adequately for
all the r-range, while the WH geometry #8 is an example of
a BH mimicker solution. We can eventually claim that
measurements around the ISCO radius are fundamental to
identify possible metric departures and thus hints for the
possible existence of WHs.
Instead, looking at the Ωφ profiles, we immediately

recognize that all WH solutions, except #1 and #10, behave
similarly. Also in this case, the only way to catch a WH
solution can be performed via analyses carried out around
the Kerr ISCO radius. Although this astrophysical method
is very efficient, there could be the unfortunate case, where

slight deviations from BH solutions in GR may occur, but
the described procedure may fail in its objective. In this
situation, alternative astrophysical methods must be
employed. However, the last eventuality should be always
taken into account in order to robustly cross check the
achieved results.

1. Digression on our methodology and simulations

This section is devoted to better illustrate the method-
ology we have pursued in the previous section in order to
distinguish between a Kerr BH and a Teo-like WH, as well
as to clarify some aspects of the simulations showed in
Fig. 1, based on the values reported in Table I.
It is important to note that we have chosen the free

parameters of each WH solution in a way they could mimic
as much as possible the Kerr BH geometry. However, they
have been calibrated and displayed only for the case of spin
a ¼ 0.3. Therefore, it is spontaneous to question whether
such a choice is valid also for other spin values.
To this end, in Fig. 2 we have produced two plots for

both Ωr and Ωφ. The procedure to realize them can be
divided into three steps performed for each spin value a and
for each WH solution: (1) we calculate the WH ISCO
radius, which is compared with that of the Kerr BH to
finally select the minimum between them; (2) computation
of the absolute discrepancy between the angular epicyclic
frequencies of the WH solution and the Kerr BH, evaluated
in 100 equally spaced points in the interval going from the

FIG. 1. Plots of the angular epicyclic frequencies Ωr (left panel) and Ωφ (right panel) taken from Table II. The “distance”
in the lower panels of each figure represents the relative difference in absolute value between the angular epicyclic frequency
of the WH solution (i.e., ΩWH

r ;ΩWH
φ ) and the Kerr BH (i.e., ΩBH

r ;ΩBH
φ ) expressed in normalized units. In other words,

we have jΩWH
r − ΩBH

r j (left panel) and jΩWH
φ − ΩBH

φ j (right panel). The dashed black lines in all figures are related to the Kerr
BH case.
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appropriate ISCO radius [as explained in point (1)] to 20M;
(3) mean of the values collected in (2).
Figure 2 is useful, because it constitutes a summary of

the behaviour of the selected WH solutions in terms of the
spin. However, if we generate plots similar to Fig. 1 for
some spin values covering the range [0, 1], we see that
those WH solutions able to mimic the Kerr BH for a ¼ 0.3
fulfill the same job also for a generic value of a. We would
like to underline that this situation is just a particular event.
In the most general case, we would have changed the set of
parameters for the selected WH solutions in order to mimic
the Kerr BH solution for each fixed value of the spin.
However, we underline that also in the worst case, our
methodology does not fail in its objective. Indeed, from an
astrophysical perspective when we focus on a gravitational
system, this is determined by a precise value of the spin a.
The present broad discussion, which contemplates dispa-
rate configurations, is finalized more on theoretically
exploring how the selected WH solutions change in terms
of their parameters.

B. Reconstruction of wormhole solutions
from the observational data

Once a WH will be detected, it is fundamental to have a
strategy, which permits to reconstruct the WH solution
from the observational data. We have seen that in the static
and spherically symmetric case, there is a balance between
available equations (i.e., Ωr and Ωφ) and unknown
functions [i.e., gttðrÞ and grrðrÞ] [21]. Instead, in our case
we have more unknown functions than available equa-
tions. In order to simplify the problem, we have already
settled the metric in the equatorial plane θ ¼ π=2, entail-
ing thus that the independent metric components are four,
which depend only on r. Therefore, we need to comple-
ment the two constraints on epicyclic frequencies with
two extra conditions.

Before to start, we adopt the following definitions:

gtφ ¼ −r2ωðrÞ; ð15aÞ

gtt ¼ −N2ðrÞ − gtφωðrÞ; ð15bÞ

grr ¼
�
1 −

bðrÞ
r

�
−1
; ð15cÞ

gφφ ¼ r2K2ðrÞ: ð15dÞ

We first present a procedure to reconstruct ωðrÞ (see
Sec. III B 1) and KðrÞ (see Sec. III B 2) via some
astrophysical techniques. Then, we are also able to deter-
mine NðrÞ and bðrÞ by exploiting the functions ωðrÞ
and KðrÞ and the data on the epicyclic frequencies (see
Sec. III B 3).

1. Reconstruction of ωðrÞ
Astrophysically, the data points on the ωðrÞ function can

be acquired by measuring the frame-dragging effect at
different radii. The sampled nodes could be gathered by
adopting, for example, these strategies: line emission from
an accretion disk [52,53], QPOs [54], and comparison
between the numerical simulations of an accretion disk
and the image provided by the Event Horizon Telescope
(EHT) [55]. Once, we collect them, we need to postulate a
fitting function for reconstructing ωðrÞ. To this end, it is
useful to list some acceptable requirements: (1) ωðrÞ > 0
(ωðrÞ < 0) for positive (negative) values of a; (2) in
modulus, it is a monotone decreasing function; (3) in the
weak field limit, it behaves like ωðrÞ ≈ 2Ma=r (as it also
occurs in the Kerr metric).

FIG. 2. Plots of the mean absolute discrepancy between the WH angular epicyclic frequenciesΩr (left panel) and Ωφ (right panel) and
the related functionsΩKerr

r andΩKerr
φ for the Kerr BH, respectively (see Sec. III A 1, for details). The considered WH solutions are always

those reported in Table I, where all parameters have been fixed except for the spin value a.
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A reasonable and handy functional form of ωðrÞ, meet-
ing the aforementioned conditions, could be

ωðrÞ ¼ 2Ma

"
rα þP

α−1
j¼0 ajr

j−1

rαþ1 þP
α
k¼0 bkr

k

#
; ð16Þ

where the coefficients aj and bk are real numbers (encoding
the dependence from the WH mass, WH spin, and possibly
other parameters). We could assume that α ∈ ½1; 3� ⊂ N,
taking inspiration from the WH solutions provided in
Table I. Let us choose as general form that for α ¼ 3,
which contains seven free parameters. A simpler way to
reduce the complexity of the problem could be to Taylor-
expand Eq. (16) for r → ∞, having thus

ωðrÞ ¼ 2Ma

�
1

r
þ c0

r2
þ c2

r3

�
; ð17Þ

which involves only two free parameters (i.e., c0, c1).
A strategy could be to first fit the data with Eq. (17) in order
to have a first rough estimation. Then, the analysis could be
refined by employing Eq. (16).
We clarify that for the lack of observational data, we are

just assuming a functional form of ω. Equation (17)
contains six parameters, which can be further reduced
depending on the available data and how they distribute.
For example, one can truncate the series to lower orders or
fixing some coefficients to certain numerical values.
However, in this theoretical speculation we prefer to keep
the general form, which could be further handled.

2. Reconstruction of KðrÞ
The scheme to reconstruct KðrÞ is more complicate,

because this function does not have a direct physical effect
as ωðrÞ. In this case, it is not straightforward to determine
the data points to be fitted. However, they could be
constructed as follows: (1) measuring some proper radial
distances fRigMi¼1 with M > 1, like for example the
photonsphere, the ISCO radius, and other regions obtained
via the techniques already outlined forωðrÞ [52–55]; (2) we
can associate to each distance Ri from point (1) the related
radius ri, obtained by considering that the compact object is
described by the Schwarzschild metric, whose mass can be
estimated already at point (1); (3) we gather together the
steps carried out in (1) and (2) to eventually build up the
nodes fri; Ki ≡ Ri=rigMi¼1.
For wisely restricting the functional space to search for

KðrÞ, we remind that it is related to the proper radial
distance Rðr; θÞ ¼ rKðr; θÞ and must fulfill the following
properties: (1) since RðrÞ > 0 and r > 0, we have K > 0;
(2) KðrÞ → 1 for r → þ∞; (3) KðrÞ must be finite,
positive, and monotone decreasing everywhere outside
the WH throat; (4) ∂RðrÞ=∂r > 0 implies 0 > K0ðrÞ >
−KðrÞ=r, where from now on the prime will stay for the

derivative with respect to radial coordinate r. We emulate
the functional form of the KðrÞ function from the Kerr
metric, which reads as

KKerrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 þ a2ðrþ 2MÞ

r3

r
: ð18Þ

Indeed, we hypothesize that a possible general form of
KðrÞ for Teo-like WHs could be

KðrÞ ¼
�
rβ þ d0
rβ þ d1

þ
XN
i¼0

ei
rβþ1þi

�1=ð2γÞ
: ð19Þ

This expression has N þ 5 free parameters, namely
fβ; d0; d1; γ; e0;…; eN g with d0 > d1, β > 1, and γ ≥ 1.
Equation (19) can be further simplified by setting γ ¼ 1 to
reduce the complexity of the ensuing fitting function and
also the number of free parametersN ¼ 2, because higher-
order terms strongly decrease, giving just tiny contribu-
tions. These further assumptions entail

KðrÞ ¼
�
rβ þ d0
rβ þ d1

þ e0
rβþ1

þ e1
rβþ2

þ e2
rβþ3

�
1=2

: ð20Þ

In this way, we are left with only six free parameters.
A further helpful simplification could be in considering an
asymptotic expansion of Eq. (20), namely

KðrÞ ¼ 1þ A
r
þ B
r2

þ C
r3
; ð21Þ

where we reduce to four free parameters. We use the same
approach devised for ωðrÞ, namely we first fit the data via
the function (21). Then, we ameliorate our analysis by
exploiting Eq. (20) to obtain more precise results.
As discussed at the end of Sec. III B 1, also in this case,

we prefer to keep the general form of Eq. (20), which could
be useful for eventual further manipulations.

3. Reconstruction of NðrÞ and bðrÞ
Once we know ωðrÞ and KðrÞ, we are able to reconstruct

NðrÞ and bðrÞ via the epicyclic angular velocities fΩφ;Ωrg.
We assume they are sampled in n values fx̄igni¼1 contained
in the interval ½r1; r2�, which we split in nþ 1 equally
spaced points (i.e., r1 ≡ x0 < … < xn−1 < xn ≡ r2) such
that x̄i ∈ ½xi−1; xi� for every i ¼ 1;…; n.
Therefore, from Eq. (13) we obtain

�
N2

2

�0
¼ ðg0φφÞ2Ω2

φ þ 2g0tφg0φφΩφ

2g0φφ

−
�
g0tφωþ gtφω0

2

�
: ð22Þ
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Discretizing this equation, we have

N2ðx̄iÞ
2

¼ N2ðr1Þ
2

þ
XN
i¼1

"
ðg0φφðx̄iÞÞ2Ω2

φðx̄iÞ
2g0φφðx̄iÞ

þ 2g0tφðx̄iÞg0φφðx̄iÞΩφðx̄iÞ
2g0φφðx̄iÞ

−
g0tφðx̄iÞωðx̄iÞ

2

−
gtφðx̄iÞω0ðx̄iÞ

2

#
ðxi − xi−1Þ: ð23Þ

The above expression can be entirely calculated, since we
know the functional form of ωðrÞ and KðrÞ. The only
unknown value is Nðr1Þ, which can be estimated by
following the same scheme devised in Ref. [21]. From
this first step, we have the following points fx̄i; Nðx̄iÞgni¼1

to be fitted in order to reconstruct NðrÞ.
From Eq. (13b), we have

Z ¼ ðgtt þ ΩφgtφÞ2
2

�
∂
2
rr

�
gφφ
Y

�
þ 2l∂2rr

�
gtφ
Y

�

þ l2
∂
2
rr

�
gtt
Y

��
; ð24aÞ

bðx̄iÞ ¼
XN
i¼1

x̄i

�
1 −

Ωrðx̄iÞ
Zðx̄iÞ

�
: ð24bÞ

By fitting the points fx̄i; bðx̄iÞgNi¼1, we reconstruct bðrÞ.
In this case, we do not provide some general expressions

for both the fitting functions, since they can be, in general,
of any form. In addition, they are important for character-
izing the WH solution and the gravity theory from which
they come. Therefore, we list only some general con-
straints, which these functions must fulfill:
(1) NðrÞ must be a positive monotone decreasing func-

tion, which asymptotically tends to 1. For recovering
the Newtonian theory in the weak field limit, we have
that for large radii NðrÞ → ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p

;
(2) bðrÞ must be a positive monotone increasing func-

tion such that bðrÞ < r and asymptotically it should
behave like bðrÞ=r → 0. Finally, the flaring-out
condition imposes that the derivative must satisfy
b0ðrÞ < bðrÞ=r < 1. For recovering the Newtonian
theory in the weak-field limit, we have that for large
radii bðrÞ → 2M.

C. Conclusions

In this paper, we have considered the epicyclic frequen-
cies in the equatorial plane around general stationary,
axially symmetric, and traversable WHs, modeled by the
Teo-like metric. We have first described the general
properties of this class of WHs and then we have written
the formulas of the epicyclic frequencies in terms of the

metric components (see Sec. II). Subsequently, we have
used the formulas of the epicyclic frequencies for detecting
the eventual presence of a WH (see Sec. III A). Since we do
not have yet data on WHs, we have considered some WH
solutions proposed in the literature, see Table I. For each
WH, we have also calculated the WH throat r0 and the
ISCO radius rISCO, as well as the explicit expressions (in
the equatorial plane) of Ωφ and Ωr (once the free param-
eters have been fixed), see Table II. In Fig. 1 we have
shown the profiles of the epicyclic frequencies compared to
those obtained in the Kerr metric. From these plots we
deduce that analyses carried out around the Kerr ISCO
radius are fundamental to highlight possible metric depar-
tures from GR. Our study has been carried out for a fixed
value of the spin. However, we have verified also that by
changing the spin values, the selected WH solutions behave
similarly to the displayed case (see Fig. 2 and Sec. III A 1,
for details).
Finally, in Sec. III B we present a strategy to reconstruct

the WH solution once the observational data on WHs will
be available. Since there are four unknowns fNðrÞ; bðrÞ;
ωðrÞ; KðrÞg and only two equations fΩφ;Ωrg, we need
two extra constraints. We propose some procedure to
reconstruct ωðrÞ and KðrÞ. Regarding the function ωðrÞ,
we first construct the observational data via the measure-
ment of the frame-dragging effect in some radii and then we
fit them via some selected functions (see Sec. III B 1).
Instead, for the function KðrÞ the reconstruction process is
more complex, especially for the assembly of the obser-
vational data. Also in this case, we are able to select some
general functional forms of KðrÞ for fitting the data (see
Sec. III B 2). In the last part, we use the data on epicyclic
frequencies and the explicit expressions of ΩφðrÞ and
ΩrðrÞ, together with the analytical expressions ωðrÞ and
KðrÞ, to reconstruct also NðrÞ and bðrÞ. We would like to
stress that we have proposed a general strategy, which
could be improved in terms not only of the construction of
the data, but also in terms of the fitting functions (depend-
ing on the given nodes).
This work can be applied not only to WHs, but also to

investigate other compact objects. Furthermore, the capac-
ity to detect metric-departures around the ISCO radius is
extremely important for providing tests of gravity within
GR or extended theories of gravity. In particular, the
epicyclic frequencies permits to easily reconstruct from
the data either a WH metric or also a BH solution framed in
another gravity theory different from GR. As remarked also
in this paper, sometimes it could be difficult to detect the
WH solution or to reconstruct its metric by only exploiting
the epicyclic frequencies. Therefore, it is always useful to
complement this approach with other astrophysical meth-
ods in order to have more solid results.
As future perspectives, we aim at extending this strategy

to the whole three-dimensional space around stationary and
axially symmetric WH geometries, where the role of the

EPICYCLIC FREQUENCIES IN THE EQUATORIAL PLANE … PHYS. REV. D 108, 024051 (2023)

024051-9



polar epicyclic angular velocity becomes extremely useful.
We envisage the following issues to be addressed: (1) the
Teo metric (1) must be modified, because there should be
five unknown functions (in correspondence with the five
metric components) in order to faithfully model WHs in the
three-dimensional space; (2) determining Ωθðr; θÞ outside
the equatorial plane [whose formula is not coincident with
Eq. (13c), valid only in the equatorial plane]; (3) all metric
components will be functions of ðr; θÞ, meaning that we
need to find samples along the r and θ directions; (4) the

fitting procedures will occur in the three-dimensional
space, where the nodes must be interpolated by two-
dimensional surfaces.
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