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Charged test particle scattering and effective one-body metrics with spin

Jitze Hoogeveen

Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, DK-2100 Copenhagen, Denmark

® (Received 18 March 2023; accepted 27 April 2023; published 20 July 2023)

Using recently developed techniques, we consider weak-field test particle scattering angle calculations
in two distinct settings: Charged test particles in spacetimes of charged sources and effective one-body
theory with spin. We present scattering angle calculations up to O(G*) of charged particles in the Kerr-
Newman metric, including electromagnetic interactions up to second order in charge. Coulomb scattering is
also discussed, and the well-known Darwin scattering formula is rederived by resummation. An effective
one-body metric for a Kerr-Schwarzschild binary is constructed in a post-Minkowskian framework up to

O(G?) and first order in spin. Facilitated by explicit scattering calculations, our approach is equivalent with
existing literature through gaugelike transformations. Finally, we investigate if the Newman-Janis
algorithm applied to an effective one-body metric of nonspinning binaries represents a binary system

with spin.
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I. INTRODUCTION

The breakthrough observation of gravitational waves [1]
opens a new window to the Universe, allowing for the first
time detailed testing of General Relativity. Among these
initial observations, signals from binary black holes intri-
cately encode both dynamics of the binary, and single black
hole properties. The prospect of gaining insight into these
previously unprobed areas has in recent years catalyzed a
great theoretical effort, developing new analytical and
numerical techniques solving the highly nonlinear dynam-
ics of General Relativity. One such area is the investigation
of test particle trajectories. This historically well-estab-
lished subject provides both insight to single black hole
properties, and facilitates a simple setting for developing
new calculational tools, some of which have proven useful
even to the full binary problem.

Analytical expressions for geodesics of test particles
have been found for (off-)equatorial trajectories, expressed
with elliptical functions (for a review, see Ref. [2]).
Calculations with a nonspinning Schwarzschild black hole
were carried out in [3-5] followed by a charged non-
spinning Reissner Nordstrom black hole [6,7]. Similar
geodesics for a spinning Kerr black hole [8—11] including
plunging orbits [12], notably introduced the Carter constant
[8], and Mino time which is essential for integration [9].
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A collection of results is presented e.g., in Refs. [13,14].
Kerr-Newman geodesics are similarly expressible in terms
of elliptical functions [15], considering even charge on the
test particle.

Recently, test particle scattering trajectories have seen
increased attention; the associated calculations of the
scattering angle are closely related to binary dynamics.
For the purposes of this article, we will restrict ourselves to
planar scattering. Examples of nonplanar paths are given in
e.g., Refs. [15,16]. Although planar scattering angles are
easily encapsulated within a Hamilton-Jacobi formalism,
difficulties dealing with integration limits make actual
calculations a nontrivial matter. Few closed form scattering
angle calculations are possible (see e.g., Ref. [17]).

In a weak-field limit, where the scattering angle y is
expanded in Newtons gravitational constant G, these
difficulties may be overcome. Hadamard regularization is
the traditional approach to scattering angle evaluations in
this limit [18,19]. It substitutes the difficult lower integra-
tion limit with something simple and manually removes
emergent divergencies. A different method was recently
developed in Ref. [20]. Building on work in isotropic
metrics [21,22], this technique provides a simple formula
applicable to very general situations. It considers the
scattering angle integral

o
dr—¢

dr’ (1)

y/2+ /2= /

rm

The lower integration limit, r,,, is the distance of minimum
approach, which may not always be explicitly obtained;
this complicates integration. Reference [20] showed, by
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writing the integral in a very general form and assuming a
weak-field limit, that one may explicitly render the scatter-
ing angle a sum of easily calculable integrals independent
of r,,. Notably, this applies to test particles in very general
metrics (not necessarily restricting to black holes), for both
scalar and spinning particles. In Ref. [20], the formalism
was specifically employed for scattering in the equatorial
plane of a Kerr metric for spinning test particles up to
second order in spin.

Test particle scattering in a weak-field regime is linked to
binary (black hole) dynamics in numerous ways. The
extreme mass ratio limit of a two-body calculation naturally
retrieves the test particle regime. As such test particle
scattering in itself provides a useful tool for cross checking
two-body calculations. However, beyond this connection,
dynamics of test particles may encode dynamics of a two-
body system through effective one-body (EOB) theory.
Crucial for the EOB approach, to be introduced shortly, are
the calculations of full binary Hamiltonians and scattering
angles.

Outside the test particle limit, the work on binary
dynamics in GR is rapidly evolving, due to its connection
with Gravitational Wave observations. Precise knowledge
of binary trajectories is crucial for constructing the wave-
form. Both numerical and analytical approaches have
proven fruitful. On the analytical side, various classical
methods yield the two-body Hamiltonian in an expanded
form; a post-Newtonian (PN) approach expands around
weak-field Newtonian gravity in velocities v*/c* < 1 and
Newton’s gravitational constant GM /c?r < 1, whereas a
post-Minkowskian (PM) expansion considers weak-field
interactions with arbitrary velocity as perturbations of
Minkowski space in GM/c*r < 1. This latter regime is
equivalent to the weak-field approach discussed above in
the test particle limit. Partial expressions for the non-
spinning binary black hole Hamiltonian are available up
to 6PN, i.e., O[(v/c)'?], in the post-Newtonian expansion
[23-28] and 4PM, i.e., O(G*), in the post-Minkowskian
expansion [29-31]. For spinning binaries, results up to SPN
including both spin-orbit [32-34] and spin-spin couplings
[35-43] have been found. For the post-Minkowskian
expansion all-order in spin expressions are available at
1PM [44], whereas second order in spin results are
available at 2PM and 3PM [45-48]. Starting at O(G*),
radiative processes contribute to conservative dynamics.
Dealing with these subtleties is still an open problem [49].

The post-Minkowskian (PM) expansion naturally lends
itself to scattering trajectories. For reviews see e.g.,
Refs. [49-51]. Importantly, the two-body Hamiltonian
may be recovered from this regime [18,48,52,53].
Binary scattering angles, computed order by order in G,
encode information about the Hamiltonian. These may be
found by a plethora of methods. Early landmark calcu-
lations were performed by Westpfahl [54]. A linearized
form of Einstein’s equations have yielded exact results for

aligned spinning binaries at first order in G [44]. Other
manifestly classical approaches such as the worldline
formalism [48,55-62] and effective field theory
[29-31,63-70] employ techniques lent from quantum field
theory. Using these, scattering angles with both nonspin-
ning and spinning binaries are available up to O(G?) and
second order in spin. Quantum calculations, e.g., ampli-
tudes of massive particle scattering mediated by gravitons,
provide further results up to O(G’) [71-86] and various
orders in spin [47,52,87-121]. Remarkably, the classical
limit of such amplitude calculations is in correspondence
with macroscopic black hole scattering [89,90,122], repro-
ducing classical results at least up to 3PM and second order
in spin [48,89,90]. Especially relevant in our current
treatment is the scattering angle of aligned spinning
particles from amplitudes, up to 2PM and fourth order
in spin [89],

_ 2GE(-2(a; +ay)v+bv>+b)
- v} (0* = (a; +ay)?)
—RGE A maf (a1,0) +m (. )] +O(G),
(2a)

Z(“l ,3)

1 j+x—2a)?
o) =33+ g e =) + O

j:yb—|—a—|—a, z:\/j2—4va(b—vd),

evaluated in center-of-mass coordinates. This matches
classical computations of aligned Kerr black holes at all
orders in spin for O(G), up to linear order in spin at O(G?),
and conjecturally up to O(spin*). Parameters (a;, a,) are
the binary spins with m; and m, their masses, E is the total
(center-of-mass) energy of the system, v is the relative
asymptotical (center of mass) velocity between objects, b is
their impact parameter and y = 1/V'1 — v

As suggested in Refs. [18,65,66,68,123—-125], post-
Minkowskian angles encode binary dynamics even for
bound orbits. This is crucial for the study of gravitational
waves, typically emitted by inspiraling bound systems. One
way to recover bound orbit dynamics from scattering data
is with effective one-body theory. Originally formulated in
a post-Newtonian expansion of velocities [126—129], in
2016 it was naturally adopted to a post-Minkowskian,
scattering-based approach [18,72]. The EOB formalism
translates full binary motion (outside the scattering regime),
to an effective test particle moving in an EOB metric. This
metric may be constructed by matching scattering angles of
the full binary with those of the effective test particle. This
formalism is thus heavily reliant on scattering angle
calculations of test particles in complicated EOB metrics.
The construction of such a metric has three major benefits,

(2b)
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(i) calculations of test particle motion are much easier than
directly solving Einstein’s equations, (ii) geodesics of the
metric readily include bound orbits, and (iii) the metric in
effect resums post-Minkowskian data, widening the regime
of applicability.

EOB formalisms have been constructed up to O(G?)
without spin in Refs. [18,19,53]; including spin, current
literature goes up to O(G?) and O(spin') [45,46]. EOB
mappings at higher orders in spin have been considered in
Ref. [52] at O(G?), and an all order in spin result at O(G)
was published by Justin Vines [44]. For recent develop-
ments in the post-Newtonian approach, see Refs. [24,25].
Reference [130] includes a discussion on nonconservative
contributions. For older results see Refs. [126-129] of
which a review is given in [131]. Notably, Ref. [128]
presents a postgeodesic Q term to the Hamiltonian which is
reintroduced in post-Minkowskian theory in [53]. See also
Ref. [19] for discussions hereof, especially the rewriting to
an effective potential W.

Test particle scattering calculations provide a way to
both probe single black hole properties, and encode full
black hole binary dynamics. The method of Ref. [20]
provides a novel tool for evaluating angles, enabling new
streamlined analysis of these areas. In this paper, demon-
strating the versatility of the method, we consider scattering
in two distinct settings. First, the formalism of Ref. [20] is
applied to scattering of charged test particles in the Kerr-
Newman metric. Applications to other spacetimes and
electric potentials is discussed. Among these is the treat-
ment of relativistic Coulomb scattering.

Second, the method of Ref. [20], given its broad
applicability, is considered with the EOB approach.
A post-Minkowskian framework, such as that from
Refs. [18,132] is used. Particularly, an EOB metric for a
Kerr-Schwarzschild black hole binary is constructed, up to
second order in G and fourth order in spin. Comparisons
with earlier approaches [19,44,132] are made. The formal-
ism is restricted to orbits in the equatorial plane. As an
accompanying study, the Newman-Janis algorithm (NJA) is
explored in context of the EOB formalism. Does the
application of the NJA algorithm to nonspinning EOB
metrics produce an EOB metric with spin? The success of
this approach, based on a Schwarzschild-Schwarzschild
binary EOB metric from Ref. [132], will be explicitly
checked by comparing post-Minkowskian scattering angles
of the NJA-transformed metric with those of aligned Kerr
black holes from amplitude methods [89].

Section II introduces the general formalism of Ref. [20]
with a view towards Kerr-Newman, but emphasizes its
general applicability. Sections III and IV then compute
Kerr-Newman scattering angles of scalar and charged
test particles respectively. Sections V and VI turn to the
EOB formalism based on a post-Minkowskian approach. In
Sec. V, a 2PM EOB metric describing Kerr-Schwarzschild
binaries is constructed based on a deformed Kerr metric.

Section VI treats the application of the NJA to the EOB
metric from Ref. [132].

Throughout we adopt natural units for the speed of light
¢ = 1 and the Coulomb constant 1/(4zey) = 1. Newtons
gravitational constant is denoted G, and the mostly plus
sign convention (— + ++) is used.

II. SCATTERING ANGLES IN
POST-MINKOWSKIAN EXPANSION

We introduce test particle scattering in this section. Let
us first consider a scalar (uncharged, nonspinning) test
particle. Adding electrodynamic behavior is covered in
Sec. IV. We start by reviewing the work of Ref. [20],
establishing a general method of evaluating test particle
scattering angles. The assumptions listed below are used
implicitly throughout the article.

We concern ourselves only with planar scattering in
asymptotically flat metrics g,, = g,,(r) parametrized by
polar coordinates {z, r, ¢p}. The test particle, given mass m,
follows a geodesic scattering trajectory r={c0 —r,, —> oo}
with angular deflection ¢ = {0 — z/2+y/2 - n+ x}.
The incident direction is chosen as ¢ = 0 without loss
of generality and r,, denotes the distance of minimum
approach. The test particle impact parameter is denoted b,
asymptotical velocity », asymptotical momentum p,
energy E, and orbital angular momentum L. Energy and
momenta E, L and p, may be expressed in terms of b
and v as

E=ym, Peo = YMu,

L =bp,, wherey=1/\1-1% (3)

Hamilton-Jacobi theory readily determines the test particle
trajectory, and therefore also the scattering angle. For a
scalar test particle, the Hamiltonian and associated
Hamilton-Jacobi equations which normalize canonical
momentum are

1 dx"
H= Egﬂvpﬂpw Pu = glwd_ﬂ’
oH
—m2 = g = 3 =—, 4
m* = g p,p, = ¥ o, (4)

with affine parameter dA = ds/m, given in terms of line
element ds, parametrizing the particle path such that
canonical momentum p, matches test particle four-
momentum. Dots denote differentiation with respect to 4.
The equations of motion for ¥ may be readily found from
the Hamiltonian. Translational symmetry of H in ¢ and ¢
yields conservation of energy and orbital-angular momen-
tum, p, = —F and p, = L. The radial component p, may
be determined from the Hamilton-Jacobi equation as a
function only of coordinate r.
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The scattering angle may readily be found from the
Hamiltonian. It may generically be written as

_ [~ dp_ [ h(r) __dy
)(/2+7t/2—/rm drE— /rm dr P h(r)= p,dr,
(5)

simply by integrating angular deflection over half a
scattering trajectory. A conventional z/2 has been added
to yield y = O for straight-line motion. The lower-integra-
tion limit r,, may be found for Hamiltonians quadratic in p,
by the requirement

r =0}, = p;(rm) =0. (6)

Following Ref. [20], we have rewritten the scattering angle

integral simply by defining the function A(r) in terms of %
and p,. However this form is suggestive; note that the
integral is naturally divergent in the lower integration limit
p,(r,) = 0. Factoring out this divergence, &(r) often takes

very simple nondivergent forms. In fact from Eq. (4) one
identifies

Lg?? — Eg?
h(r) = T (7)

for a scalar test particle in the general metric discussed
above. This identification of h(r) is useful beyond scalar
particles, and was also shown applicable to spinning test
particles in Ref. [20]. Below, the same will be shown true
also for charged test particles.

Exact calculation of the scattering angle, often does not
yield a closed expression, instead returning an elliptical
integral. However, in a weak-field expansion in G closed
expressions may be found order by order in G. In Ref. [20]
a general calculation of the scattering angle in the weak-
field regime was provided. It considers a scattering angle
written in the form of Eq. (5) with h(r) obeying the
requirements

h(r)is analytical onr € [r,,, co[and falls off at least like 1/r? as r — co. (8)

One may readily confirm that Eq. (7) indeed obeys these
requirements. Furthermore, the metric is assumed written in
what Ref. [20] defines as a normal form. A metric is of
normal form when it has the property

-100
9 (r) = (Minkowski)=1 0 1 0
0 0 2

asG—0, (9)

in the scattering plane. Metrics may readily be written in
normal form by setting G — 0, and performing a coor-
dinate transformation to recover the above structure. For
asymptotically flat metrics, p, then takes the form

J2

szpgo—p—U(r) (10)

with some function U specified by the metric reminiscent
of potentials in classical and isotropic amplitude calcula-
tions (see e.g., [22]). This potential may safely be assumed
to drop off to zero as r — oo, and may depend on any
metric and test particle quantities, e.g., angular momentum,
energy, etc.

The above requirements are satisfied throughout this
article. Under such requirements, Ref. [20] provides the
scattering angle in a summed form which readily yields

|
arbitrary high orders in the weak-field expansion in G,

2 [ d\" r?"U(r,b)"
)(—I—n':—Zz;A du<ﬁ> h(r)—an%g”fl 5

r? = u®+ b (11)
A very similar formula for isotropic metrics was previously
obtained in Ref. [22], and may readily be recovered by
restricting  U(r,b) — Vi(r) independent of b and
h(r) = —bp/r*. In this special case V. is independent
of impact parameter b or, equivalently, angular momen-
tum L.

Restricting to scalar test particles, Eq. (11) obtains
another useful form. Inspired by a derivative form of

Eq. (5),

d o
;(/2+7z/2:—dL/ drp,, (scalartestparticle)  (12)

m

the h(r) dependence may be converted to a derivative of the
impact parameter,

O, [ d\"d [ rU(r,b)"!
o
nz::o 0 du?) db |(n 4 1)1p%")

r> =u*+b* (scalar test particle),

(13)

removing the need to specify h(r) for each individual
metric.
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In the next section, we demonstrate the use of Eqgs. (11) and (13) by explicitly calculating the scattering angle in the
Kerr-Newman metric of a scalar test particle, up to O(G*).

III. NONCHARGED TEST PARTICLES IN KERR-NEWMAN SPACETIME

The Kerr-Newman metric describes a charged, spinning black hole, its mass denoted by M, charge O, and spin a. The
Q — 0and a — 0 limits are Kerr and Reissner-Nordstrom black holes respectively. Written in Boyer-Lindquist coordinates,
it is rotationally symmetric only in the § = z/2 plane. In this plane the metric reads

r2 r2
~(1-26M/r+%) 0 ~a(26m/r %)
r2
G = 0 T 0 : (14)
r2 r2
—a<2GM/r—r—§) 0 a2<1+2GM/r—r—§>—|—r2

which is effectively a Kerr metric with 2GM /r replaced by 2GM /r — rj/r?. Parameter ry = GQ? encodes the black hole

electric charge.
Notice that Eq. (14) is not in normal form, which setting G — 0 confirms. One recovers a result identical to that of Kerr,

-1 0 <= 0 as G = 0, 15
Guw r+a

which may be brought to normal form by a coordinate transformation 7> — p? = r> + a”. In these coordinates, the potential
U may readily be found from Egs. (4) and (10),

G(Q* = 2M/p* = a*)(2a°b* pg, — a*p* pg — 2abEp® py, — b*p* pg + 2p* G + m*p?)

Vie.2)= pH(p* —a?)

+O(G*), (16)

given here up to O(G) for brevity. Of course, Eq. (4) readily yields U to all orders in G. With this information, Eq. (13)
straight forwardly gives the scalar test particle scattering angle in such a spacetime. No explicit computation of A(r) is
needed. Take the O(G') calculation as an example. The results at higher orders are listed in Table I.

Extracting only G' terms from Eq. (13), one finds

0 d |U(p,b
Ve :/ du—[ <I;02 )} pr=u*+b?
0

db | p4
L[ d [GQ*=2M/p? = a®)(2a’h g, — a*p* PG = 2abEp pes = bp P + 29" P + m*p*)
L e
N db p4(p2 —a’)
72GM(—2av+bvz+b)+ﬂGQ2(2a v — a*(—v*Vb* — a* +2bv* + b) + b*v* (b — Vb* —a )) (17)
- v?(b* — a?) 2a0? (b — a?)3?

The Q — 0 limit is just the Kerr result. At any order O(G"), Q only appears in even orders no greater than Q*". The
scattering angle y may thus be decomposed into orders of G and Q,

o n 2k npgn—k
_ (k) (k) n-+k+1)mod 2 o7 G"M
X = Eﬁl k§_0)(n ) An ~ kD) 20 (b2 )(3”+k l/zfnk( ) (18)

These expressions are structurally similar to those found in Ref. [20] for Schwarzschild and Kerr metrics. A prefactor z

appears in )(S,m only when n + k is even, much like the factors of z appearing at even order in Ref. [20] for Kerr and
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TABLE L.

(k)

Scattering angle of a scalar test particle in the Kerr-Newman metric, orbiting in the equatorial plane. y,~ is the O(G")

contribution to the full scattering angle, of which the Q% -proportional part is taken. k ranges from O to n owing to the GQ? charge
dependence of the metric, Eq. (14).

(n, k) Xn %

(1, 0) 2(=2av + bv? + b)

1, D 7/(2a®)(2a*v — a*(=v*Vb* — a® + 2bv? + b) + b*v* (b — Vb* — a?))

2,0 7/ (2a®)[-4a’v — 4a3b?v (30 + 2) + 2a*b*v* (b(20 + 3) — v*Vb? — d?)
+b* v (Vb? — a® = b) + a*(v*Vb? — a® + 3b(4v? + 1))]

2, 1 (8a® +24ab?)(1 + v*)v + (—=6a*b — 2b%)(1 + 60% + v*)

2.2 —(37)/(16a*)[4a’ (20 + v) 4+ 4a°b*v (302 + 4) + 2b%0* (b — Vb? — @) + a?b*v*(6Vb? — a® — Tb)
—a®(b(8(v? + 3)0? + 3) = 20*Vb? — a®) + 2a*b? (b(4v* — 3v? — 1) = 3v*Vb? — a?)]

(3,0 4@ v(3v* — 1002 = 9) + 6a*b(—15 + 15v* + 4507 + 5) — 8a*b*v(15v* + T00* + 27)
+4a?b* (11200 + 1350* + 10502 + 5) — 36ab*v(5(v? + 2)0* + 1) + 26 (5% (v* + 9% + 3) — 1)]

3, D (37)/(8a*)[2a°v(200? + 9) + 1247 b>v(10v* + 350% + 12) + 6a°b*v(150* + 4002 + 8)
+2b800(b — Vb? — a?) + a®borv°(8Vh? — a® — 9b) — a®(20°Vb? — a® + 15b(8v* + 1207 + 1))
—a®b?(5b(81° + 72v* + 630 + 4) — 815V b? — a?) + 3a*b*v? (b(4v* — 1507 — 10) — 4v*Vb? — a?)]

(3.2 (—4a® — 40a*b? — 20ab*)(3 + 100* + 3v*)v + (10a*b + 20a*b> + 2b%) (1 + 150% + 150* + v9)

@3, 3) (57)/(128a%)[2a' v(24v* + 4002 + 9) + 4a°b*v(60v* + 20507 + 54) + 18a’b*v(5v* + 2002 + 8)
+851905(b — VB — @) + 4a2b3 05 (10VB? — a® — 11b) — a'*(3b(1605 + 1200* + 900> + 5)
—8v0Vb? — a?) + 5a8h?(b(8v° — 108v* — 1230% — 8) — 800V b? — a?) — a®b*(b(1182° + 45v* + 600% + 8)
—800v9Vb? — a?) + a*b®1°(99b — 80V b? — a?)]

4, 0) (37)/(16a*)[—8a' v(141? + 5) — 8a°h*v(140v* + 2730% + 60) — 8a” b*v(700° + 455v* + 39202 + 40)
—56a°b%v3 (5(v? + 4)v* + 8) + 2b'°03 (VD% — a® — b) + a®b¥ v (11b — 10V b? — a?)
+a'(35b(16(v* + v?) + 1) = 208V b? — a?) + 10a8b* (¥ Vbh? — a* + Th(160° + 56v* + 2622 + 1))
+2a8B* 0% (Th(805 + 1200* + 19502 + 40) — 100°VB? — a2) + 4a*bov* (5v*VB? — @ + b(=4v* + 350% + 35)))

“, D $18a’ (=0 + Tv* 4+ 2102 +5) + 5a%b(v® — 280° — 2100* — 1400% — 7) + 24a°b*v(7(v* + 1307 + 19)v? 4 25)
=5a*b3 (1308 + 4200° + 1190v* + 53207 + 21) + 40a*b*v(7(3v* + 190 + 17)0% + 15)
=3a?b3 (3108 + 7000° + 13300* + 36402 + 7) + 40abSv(7(v* + 50 + 3)v> + 1)
+b7(1 = 702 (05 + 200* 4 300? + 4))]

“4, 2) (157)/(128a%)[—8a'3v(56v* + 8402 + 15) — 8a''b?v(7(24v* + 20002 + 237)v? + 270)
—8a%b*v(7(60v* + 395v% + 372)v? + 360) — 24a’bov(7(5(v* + 6)v? + 24)v* + 16)
+8b"208(Vb? — a® — b) + 4a>b'v8(13b — 12V b? — a?) + a'?(8v3Vb? — a® + 215(8(8v* + 3002 + 15)0% +5))
+4a'0B2 (Th(160° + 36005 + 9300 + 39502 + 15) — 1203VB? — a?)
+2a8b* (6008 V' b* — a® + Th(8v® + 5400° + 1185v* + 4000 + 12)) + 4abSv? (b(58v° + 1050* 4 2100% + 56)
—401°Vb? — a?) + a*b318(120Vh? — a® — 143b))

“, 3) (16a’ + 336a°b* + 560a>b* 4+ 112ab%)(1 + Tv> + Tv* + 10w
1 (~14a5b — 70a*b® — 4225 — 267)(1 + 2802 + 700 + 2845 + 1%)

“, 4) (357)/(2048a®)[-8a'Sv(2v* + 5)(8(v* + v?) + 1) — 24a3b?v(7(8v* + 5202 + 45)v? + 40)

—120a''b*v(7(20* + 1502 + 16)v? + 16) — 8a°bSv(7(5(v? + 8)v? + 48)v* + 64)

+16b'408 (Vb2 — a® — b) + 8a>h208(15b — 14V b? — a?) + a'*(b(32(40° + 560* + 10502 + 35)v* + 35)
—1608Vb? — a?) + 14a"?b* (818 V'b? — a® + 15b(320° + 80v* + 3002 + 1))

+42a'%p*(b(160% + 800° + 225v* + 10402 + 4) — 818V b* — a?)

+4a8b°(14008Vb? — a® + b(=20008 + 350° + 1050* + 5602 + 4)) + 5a%b308(143b — 112Vb* — a?)
+6a*b1%08(56V/B? — a® — 65b)]
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Schwarzschild. Indeed, the Kerr-Newman potential U ~
1/r"* at order O(G") and O(Q*) resembles in its r
dependence a Kerr potential at order n + k in G; additional
similarities may be found. Polynomials f, ;(v) of velocity
v depend on fractional powers of b and a for even n + k,
and integer powers of b and a for odd n + k. This mimics
the identical behavior in Kerr, for n respectively even and
odd. Interestingly, the v and (a, b) dependence of f,; is
partially factorized at orders (n,k)=(1,0),(2,1),(3,2),
(4,3), i.e., when n — k = 1. Here we observe

fn,k = [fib)f(—a-t) + fE:)fE:f)]nk’ (19)

where f(*) and f(*?) are polynomials exclusively dependent
on either v or (a,b) respectively. Subscript +,— signs
indicate whether v, a, and b appear in even or odd powers,

Le., fgf) is even in v and fgff) is even in a but odd in b. All
polynomials differ in structure with varying n, k. We expect
the structure of Eq. (19) to continue to higher orders.

IV. CHARGED TEST PARTICLES IN
KERR-NEWMAN SPACETIME

Continuing our treatment of the Kerr-Newman metric,
we next consider test particles with charge e and mass m in
a spacetime of a charged source. For completeness, as
before, our initial analysis pertains to a general metric g, as
defined in the previous section. Hereafter, the specific case
of the Kerr-Newman metric is treated. A short study of
Coulomb scattering will also be discussed, as results are
easily compared to the all-order exact Coulomb scattering
angle [17] obtained by direct integration of Eq. (5).

Apart from gravitational effects, electromagnetic inter-
actions with coupling constant e (charge of test particle)
and electromagnetic 4-potential A, need to be accounted
for. Charged bodies in curved spacetime may be treated
with FEinstein-Maxwell theory (for a review, see e.g.,
Ref. [133], including [54] for early scattering calculations).
Charged test particle orbits around black holes are covered
in Ref. [13,15,134,135] and fully characterized for Kerr-
Newman in Ref. [15]. The treatment presented in this
article is restricted to test particle limits of e and m,
neglecting self-force effects [54,133,136]. Aﬂ is then
entirely produced by the gravitational source.

Subjected to an external potential A,, the Hamiltonian
and associated equations of motion of a test particle with
charge e and mass m in metric g, are

1
H= Egﬂy(py - eA/l)(pU - eAv),

dx” . oH
pﬂ:gﬂl/ﬁ—i_eAﬂ:}xﬂ:a—m? (20)
where p, denotes canonical momentum. Affine parameter
dA = ds/m is defined in terms of the line element ds as in

Eq. (4), and we continue to denote x* = %. For generality,

the discussion below will not assume any specific form of
A, save require

A, =0 asr—oco, A,=(A,(r),0,0,A4(r))g—rp (21)
with 6 = 7/2 the equatorial plane of orbit. The scattering
angle may still be calculated from Eq. (5). Equation (24)
yields

dp (L= eAy)d" + (=E — eA,)g"

, 22
o o (22)
and per identification
L —eAy)g? + (—E — eA,)g""
nr) = - Lm AT CEZ AN oy

9

Asymptotically, h(r)~1/r* as required, provided A,
obeys Eq. (21). The Hamilton-Jacobi equation from which
p, may be determined, is found by normalizing x> = —m?
with Eq. (20)

—-m* = glw(pu - eAﬂ)(pv - eAz/)' (24)
Having found the radial momentum with g,, implicitly in

normal form, the corresponding potential U is identified
from Eq. (10)

p:=T-U. (25)
Crucially, T is now taken independent of both G and e,

Tr= p%'G:e:O (26)

as we are dealing with two interactions.

We now treat the Kerr-Newman metric, and sub-
sequently relativistic Coulomb scattering in flat space.
Both conform to the requirements set by Eq. (11). The
respective electrodynamic potentials read

A, = <—g,0,0,£> (Kerr-Newman),
r r

A, = (—%,0,0,0) (Coulomb), (27)

where the Kerr-Newman potential, see Ref. [137], has been
evaluated at € = /2 in Boyer-Lindquist coordinates.
The Coulomb potential may simply be considered the
G = a = 0 limit of the Kerr-Newman solution.

Let us therefore focus on Kerr-Newman. The normal
form of the metric is recovered by the coordinate trans-
formation of Eq. (15), p> = r*> + a® where r is the Boyer-
Lindquist radial coordinate appearing in Eq. (14).
Equations (10) and (24) then yield
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Qe(=2aby\/p* — a’po, + p*(2Er\/p* — a®> — Qe) + a*Qe)

Ulp) =
o —d2p?
2 _ oM DE — 2
+G (© c 2p4 @) [poo (pc,o(—pz(a2 + b?) + 2a’b* + 2p*) + dabQer/ p* — a* - 2(1bEp2)
p—ap
+20p7e( Qe — p-—a” ) —2a e“+mp*| + ,
2Q 2 Q 2FE 2 2 2 2Q2 2 2.4 OGZ 28
[
here truncated at O(G) for simplicity. The scattering angle K) _(ntjrkt Dmod 2 G"el Qi Mk
is now found readily from Eq. (I11). It may be expanded Anj~ o miyl 1,2(./'+n)(b2 — a2)<3(n+j)+k—l)/2
simultaneously in G and e, i.e., as a collective expansion in Ayl
gravitational and electromagnetic interactions, « d, ;a? p2(nti)=p Fuia(0), (31)
p=0

1= g

n=0 j=0

Inj~ Gl (29)

As before, owing to the Q° dependence of the Kerr-
Newman metric, y, ; may be decomposed as

Zni= D A0~ O, (30)
k=0

where k denotes the order of Q? coming from the metric.
;(,Skj) are tabulated in Table II and in the Supplemental
Material [138] up to O(G®) and O(e®). We again find

definite structure

TABLE II.

Weak-field scattering angle of a charged test particle. y

involving only whole powers of a and b, contrary to
fractional powers encountered with noncharged test par-
ticles (Table I). This behavior is structurally equivalent to
odd powers of n+ k for noncharged test particles. Q
appears exclusively as a prefactor Q?**/, containing a
contribution from the metric (Q%*) and a contribution from
the electromagnetic potential (Q). f,;x(v) are polyno-
mials in v and d,, ;; are numerical constants. As observed
with scalar test particles in Eq. (19), some angles factorize v
and (a,b) dependence. Specifically, for (n,j, k)=
(0,1,0),(1,1,1),(2,1,2), and (3,1,3), i.e., when j =1,
the sum in Eq. (31) may be written as two terms

2(n+j)-1

z dn,j,kap bz(nJrj)_pfn,j,k(v)
p=0

v) plab v) plab
= [POF 4 f O, e (32)

(k)

»; is the scattering angle at O(G") and O(e/). Results are

decomposed into Q**-proportional pieces with 0 < k < n. Purely gravitational contributions to the scattering angle, ;(%, may be found

in Table I and are not displayed here.

Kerr-Newman equatorial scattering of charged test particle

k n o O2k+J pgn—k
(n’j’k) )(1(1,;' mjl;z(j+?)(izgazjm}v{ymwkfl)/z
0, 1,0 2V1 —v*(av —b)
©, 2,0 1a(v* = 1)(a — bv)(2d*v — 3ab + b*v)
(0, 3,0 2(1=0?)32[av(v* +9) = 3a*b(90* + 5) + 2a°b?>v(Tv* + 27) = 2a*b* (2107 + 5) + 9ab*v(v? + 1) + b3 (1 — 31?)]

1, 1,0 3zV1 —v*(av — b)(a — bv)?

(1, 1, 1) 2(v? + 3)(=a*v — 3ab*v) +2(2v* + 1)(3a®b + b?)
1, 2,0 2(v% = D[4’ v(v? + 3) = 3a*b(v* + 1802 + 5) + 8a>b?>v(Tv? +9) — 2ab3 (9v* + 420% + 5)
+12ab*v(30% + 1) + b (1 = 30*(v? + 2))]
(1,2, 1) —37(v? = 1)(a - bv)[4a*v(20® + 3) — 15a*(4bv? + b) + 3a*b*v(8v* + 27) — 5ab’ (9v* + 4) + 3b*v(v* + 4)]

(Table continued)
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k n i 2K+ pgn—k
(n’j’k) }(1(1,3'/ mjl;Z(jJr?)(2]2Q_a2;(1§4(n+1)+k—l)/2
(1, 3,0 Ba(1 = v?)32(a - bv)*[a®v(4v* 4+ 5) — a*b(300* + 7) + a*b*v(130? + 46) — a’b*(310? + 14)
+dab*v(v? + 3) — 2b17]
1,3, 1) =3 (1= 0?2)¥2[a"v(v* + 300 +25) — 5a%b(15v* + 5002 + 7) + 3a’b*v(13v* + 1900 + 125)
—5a*b(850* + 19002 + 21) + 5a3b*v(190* + 17002 + 75) — 3a2b5(950* + 13002 + 7)
+25abSv(v* + 602 + 1) + b7 (1 — 50*(31? + 2))]
2, 1,0 —2V1 = 2@ v(v* — 1002 — 15) + 15a*b(v* + 602 + 1) — 10a>b20(v* + 140? +9)
+10a2b3 (9v* + 140% + 1) — 15ab*v(v* + 60% + 1) + > (150* + 100? = 1)]
2 LD =B av1—v*(av - b)(a — bv)*(a*(4v® + 3) — 14abv + b* (317 + 4))
2, 1,2) 20(v* + 1002 + 5)V1 — 0?(a® + 10a*h? + Sab*) + 2(50* + 100> + 1)V'1 — v*(=5a*b — 10a*h> — b%)
(2,2,0) La(v* = 1)(a - bv)*[a*(8v* + 6v) — Ta*(6bv? + b) + 3a*b*v(4v* + 17) — Tab’ (3v* + 2) + b*v(v* + 6)]
(2,2, 1 4(v = 1) (v + 1)[-6a’v(v* 4 100* + 5) 4 5a°b(v® + 45v* + 7507 + 7) — 6a°b*v(390v* + 1900* + 75)
+15a*b3(51° + 85v* 4 9502 + 7) — 10a>b*v(57v* + 1700% + 45) + 3a?b>(5(5v* + 570 + 39)v? + 7)
=30ab®v(5(v? 4 2)v + 1) + b7 (5v*(v* + 9v* +3) — 1)]
(2,2,2) He(vr = 1)(a — bv)[2a%v(8(v* + 5)v* 4 15) = 35a°b(8v* + 1207 + 1) + 5a*b*v(24v* + 23207 + 101)
—70a3b3 (v* + 2)(1002 + 1) + 10a2b*v(9v* + 1012% + 58) — Tab’ (25v* + 600% + 8) + 5h%v(v* + 120% + 8)]
G, 1,0 193 7v1 = v*(av = b)(a — bv)*[a® (20 + 1) — 6abv + b*(v* + 2)]
G LD 41 = 12[a"v(v0 = 210* — 10502 = 35) + 35a0h (12 + 1)(v* + 1402 + 1) — 21a5b*0(v° 4 39v* + 9502 + 25)
+35a*b3 (150 + 85v* + 570 + 3) — 354> b*v(30° + 57v* + 8502 4 15) + 21a?b>(25v° + 95v* +39v% + 1)
=35ab%v(v? 4+ 1)(v* + 1402 + 1) + b7 (70> (5(v* + 3)v? + 3) = 1)]
G, 1.2 I V1 = v*(av — b)(a — bv)*[a*(8v* + 200* + 5) — 12a*bv(6v + 5) + 2a*b*(10v* + 790* + 10)
—12ab3v(50% + 6) + b*(5(v? + 4)v> + 8)]
G, 1,3) 20(v5 4+ 210* + 3502 + )1 = v2(—=d” = 21a°b* — 35a°b* — Tab®)

+2(7(v* 4+ 5v% + 3)v® + 1)V1 = v*(7a%b + 35a*b> + 21a>b° + b7)

where, again, f(*) and f(@) are polynomials exclusively
dependent on v or (a, b), respectively. Subscript +, — signs
indicate whether v, a, and b appear as even or odd powers,
ie., f Sf@ is even in a but odd in b. The exact structure of
polynomials f depends on n, j, and k. Furthermore, f(*)
and f(@) share numerical coefficients of v and (a, b) terms.
For instance, with (n,j, k) = (2,1,2), the coefficients
{1,5,10} appear both in f(*) and f(®). We expect this
behavior to continue to higher orders in n and k.

It is similarly a straight forward matter to consider
relativistic  Coulomb  scattering. The corresponding

TABLE III.
up to third order in test particle charge.

potential U is given by the G = a = 0 limit of Eq. (28).
It only involves one coupling constant, e, in terms of which
the scattering angle is expanded and presented in Table III.
Order by order comparisons match the small Qe/J expan-
sion of the well-known Coulomb scattering angle presented
e.g., in Ref. [17],

J Qe
y+r= 7# o <7t — 2 arctan (U o Q2€2)>

(Coulomb scattering). (33)

Weak-field coulomb scattering angle of a test particle with charge e off another stationary charge Q. Results are presented

Coulomb scattering

_ZQ\/T—?L) 70*(v*—1)e?

203 (1=12)32(30°=1)¢3

X = bmv? 2(b>m?v?) 3b3m0®

4+ .. :\/ﬁ(ﬂ—zamtaﬂ(ﬁ))_ﬂ
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V. EFFECTIVE ONE-BODY METRIC FOR
KERR-SCHWARZSCHILD BLACK
HOLE BINARIES

A. The EOB formalism and construction
of the EOB metric

We now apply the method of Ref. [20] to the full binary
problem by means of effective one-body theory. Dynamics
of aligned, spinning binary black holes are mapped to an
effective system consisting of a test particle in an
EOB metric gfff). This is achieved by directly relating
equatorial scattering angles of the binary to those of the
effective test particle. We stress that our approach is not
unique—different EOB metrics may be constructed by
similar methods.

The EOB formalism is first presented in the post-
Minkowskian regime by reviewing Ref. [132]. Consider
equatorial scattering of binary Kerr-Schwarzschild black
holes with masses m; and m,, and spins a; = a and
a, = 0. Center of mass coordinates may be used, in which
E denotes the total energy of the system, v is the relative
asymptotical velocity of the binary objects, p. is the
asymptotical momentum of a single body, L is the orbital
angular momentum of the system, and b denotes the impact
parameter. These quantities are related by

v =[vi =V,

(E? = (my +my)*)(E? = (m; —m;,)?) _ mimy
4E? E

L=>bpg, (34)

P = Yy,

where v; and v, are velocities of the individual black holes.
For convenience we have defined the reduced mass p, total
mass M, and asymptotical Lorentz contraction factor y as

mm; H 1
= M= =— = .
m1+m2, my+my, v M’ 4 T2
(35)

This binary is now described by an effective system
consisting of a test particle of mass u scattering on a metric
|

(@) _ 2GE(=2av + bv* + b)

g,(,?,ff>. Two-body quantities are related to effective ones by

an EOB map, which we now present. Label with subscript
“eff” quantities of the effective system. From kinematic
considerations of the effective test particle, one may
establish the following EOB map

Veff = U,
E
E=M 1+2y<if—1>,
U
E
Peff = HYV = Mpoov

E
betr = b = Legr = begrpetr = LM’ (36)

where E.; = uy is the test particle energy, and vgg, Pers
L.y, and b are the asymptotical test particle velocity,
asymptotical momentum, angular momentum, and impact
parameter, respectively. Furthermore, the effective formal-
ism should have some notion of spin, call it a.;;. EOB maps
between spin have been discussed in detail in e.g.,
Refs. [44-46,129]. We shall here use a simple map, namely

Ao = A. (37)
Last, a map between scattering angles is required. Denote
by y and y.q the full two-body and effective test particle

scattering angles. The most natural mapping between these,
as discussed in Ref. [18], is simply

Keft = X+ (38)
Both angles are treated perturbatively in G,

X =>.2,x,G". The calculation of y. depends on

g,(,iff). With the full two-body system amplitude calculations

give the individual components y,. As stated before,
Ref. [89] provides the scattering angle of a Kerr-
Schwarzschild binary with spin parameter a and respective
masses m; and m,,

20— &)
—HEGQ 4 4 2 2 3 2 2
Faophys 04 (1 (350" + 18007 +24) + 24(4myv” + my)) — 96a°bv(m (507 +4) + my (207 + 3))

+ 6a*b*(m; (150* + 720% + 8) + 4m, (2v* 4 110* + 2)) — 16ab*v(30v* + 2)(4m; + 3m,)

+ 24b*0* (v* + 4)(my + my)] + O(a®) + O(G?).

(39)

The spin configuration is indicated by (a, 0). As mentioned, the connection between Eq. (39) and Kerr black hole scattering
has only been confirmed at O(G) for all orders in a, and at O(G?) only up to O(a) [89]. We restrict to these orders in the
text, and provide a conjectural Kerr binary EOB metric matching the full O(a*) result in Table IV.
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TABLE IV. Parameter k, from the EOB metric of Eq. (42) computed up to O(a*) by matching the scattering angle of the amplitude
calculations from [89], provided in Eq. (39) above. Equation (39) only matches black hole scattering at O(G?) for O(a), with higher
orders in a matched only by conjecture. Each row, labeled by n contains the O(a") contribution to «,. Expressions are given in terms of
full two-body quantities. These solutions follow from equating Eq. (43) with Eq. (39) and inserting the 1PM result x; = 2E from
Eq. (70). The arbitrary b-independent integration constant C associated with these solutions is set to C = 0.

(k2 at O(a")]/

a'E
byt (1/,2+2)n+l

3(v® +4)(my +m, — E)
—2(m; — E)(3v* + 40?4 8) — 3m, (v* + 4)

A W O~ O3

+864v* + 83202 + 512)

$(my — E)(61® + 180° + 1480* + 9602 + 32) + Lmy(—0v® — 1405 + 720* + 1607 + 32)
— 2 (m; — E)(120° + 14405 4+ 1760* + 35202 + 192) + % my (v® — 3405 + 600" — 184> — 128)
2 (m; — E)(220'% + 2300'° + 5760° + 32400° + 34560* + 198402 + 512) + L2 m, (—270'? — 1560'° — 4844° + 12641°

The EOB metric gffyff) is constructed in such a way that

Eq. (38) is satisfied. An ansatz is provided, the parameters
of which are constrained by Eq. (38). As scattering is planar
by construction, a rotationally symmetric, asymptotically
flat ansatz is natural. We further demand that the metric
reduces to Kerr in the test particle limit m, — 0.

One may thus naturally search for EOB metrics among
generalizations of Kerr. It is instructive to review in short
the results obtained by Ref. [132]. Here binary
Schwarzschild black holes were considered. The EOB
metric had a generalized Schwarzschild form

ds? — — <1——a(r)> 2dt2 + (1 +a(r)*(dr? + r?dQ?),

1+ a(r)
_ S 40
)= (40)
which simply replaces GM/(2r) - a(r) in the

Schwarzschild spacetime written in isotropic coordinates.
Adopting an isotropic calculation renders the scattering
|

—(1=«(r)) 0
(eff) _ N
= 0 meim
—ax(r) 0

parametrized with coordinates {z,r,¢}. This choice of
EOB metric is entirely arbitrary. A different ansatz could be
equally viable, producing a different final result. The metric
above resums orders in a, in a structure similar to Kerr(-
Newman) metrics. Note however that k may also depend on
a. Below we present x to O(a*) as Eq. (39) naturally
restricts hereto.

Equation (13) readily yields the test particle scattering
angle. However, one should be careful about the

angle integrand, d¢p/dr in a form comparable directly to
amplitude calculations of Refs. [22,132]. This allows
specification of «a, directly from comparing scattering
angle integrands, as opposed to merely the scattering
angles. One finds, comparing up to 2PM,

1 3(5/2 -1 M
a; = - E, %:—llr—zl——E? (41)
2 8(2/2-1) E

The Schwarzschild metric in isotropic coordinates, mean-
ing a —» GM/(2r), is recovered in the test particle limit.

Now turn to Kerr-Schwarzschild binaries. We provide an
EOB metric ansatz written in nonisotropic coordinates,
meaning g,, # r2g¢¢. Our method differs from that of
Ref. [132] by explicitly computing the effective scattering
angle, instead of comparing integrands. Comparing our
result with Eq. (39) determines the EOB metric parameters.
We choose an ansatz constructed from equatorial Kerr in
Boyer-Lindquist coordinates by replacing GM /r — k(r),

n

0 , k(r) = iK,,G—n (42)

n=1 r

parameter-dependence of x, which may possibly
depend on all test particle quantities, namely energy
E., impact parameter by, and angular momentum
L., including also asymptotical velocity » and asymp-
totical momentum p,. As an example, Eq. (40) is
dependent on E. However impact parameter, or equiv-
alently, angular momentum dependence influences the
application of d—‘é in Eq. (13). The result of calculating
the post-Minkowskian scattering angle by Eq. (13)
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(see footnote [139]), with arbitrary b-dependent «, is
therefore an expression with first-order derivatives of «,
in b. In our case, it is sufficient to assume k; is
independent of b, which will yield consistent solutions.
|

Gk (—2av + bv* + b)
2 — &)
7G?
128b50*

Xeff =

+

— b(a*(5v> 4+ 6) — 12a’bv + 2a*b*(3v* + 4) — 16ab3v + 8b*(v* +2))

Other «, — «k,(b) will remain unspecified functions of
b. Imposing the EOB map of Eqgs. (36)-(38), the
effective test particle scattering angle of the EOB metric
from Eq. (42) becomes

(41)2 [Kz(b)(5a4(51)2 +6) —48a’bv + 6a*b*(3v* + 4) — 32ab’v + 8b* (v +2))

dry(b)
db

+ &2[5a*(35v* + 1800 + 24) — 96a*bv (50 + 4) + 6a*b*(15v* + 720? + 8) — 64ab’v(3v* +2)

+ 24b*0* (1 + 4)]> +0(a@’) + O(G),

presented here up to O(G?) and truncated to O(a*) to
facilitate direct comparison with Eq. (39). Of course, the
angle could be evaluated to any order in G and a. At the
current precision, equating Eq. (39) with Eq. (43), x,, may
be determined up to O(a*). This produces a first-order
differential equation. The solutions will therefore naturally
involve a b-independent integration constant C. For brevity
we will only present the O(a) result in the text, leaving the
complete O(a*) result to Table IV. One finds

K| = 2E,
<3(v2—|—4)E(m1 +m2—E) bC >
K= 2 2
ve+2 v-+2
E[-2(m; — E)(3v* + 40% + 8) = 3m,(v* + 4)]
+a
bv(v? +2)?
2Cv 5
—_— . 44
+(U2+2)2)+(’)(a) (44)

The integration constant C may be set to 0 by requiring

gﬁff) — Kerr in the test particle limit of m,. Contrary, the

limit m; — 0 describes a spinning test particle in
Schwarzschild. Here the EOB metric does not reduce to
Schwarzschild, as it also encodes spin of the probe.

We stress the simplicity of the EOB construction
presented here. An EOB metric is readily found from an
ansatz and EOB map, by directly matching scattering
angles of the full two-body system with those of the
effective test particle. Nonmetric, postgeodesic Finsler-type
contributions of e.g., Refs. [19,45] are not needed. Similar
observations were made without spin in Ref. [132]. We
leave to future work the extension to higher post-
Minkowskian orders, by the inclusion of «,., terms. We
emphasize that the EOB metric found above is by no means

(43)

unique. Other solutions, based on a different ansatz,
may exist.

B. Comparison with earlier approaches without spin

Our EOB metric is first compared to previous approaches
without spin. Letting @ =0 in the previous section,
below our treatment is shown equivalent with that of
Refs. [19,132]. Particularly, the above results are related
to Ref. [19] by a gauge transformation of the postgeodesic Q
term and a coordinate shift of the scattering angle integral to
incorporate differing EOB maps. Reference [19] presents
both Schwarzschild-like and isotropic EOB metrics. We will
compare exclusively with the Schwarzschild type.

Reference [19] uses an EOB map differing from
Egs. (36) and (38) purely by equating angular momenta
and not impact parameters

L= Leff = b= beffg, (EOB map OfRef[19D (45)
We have expressly indicated above that these are relations
used in Ref. [19] and continue to denote L, L.y, and b as
defined by Eq. (36) in everything following below. This
EOB map can readily be converted to Eq. (36) as both maps
employ ¥ = y.i- Equation (13) therefore implies

d [ d [ Md [
= arp, = drp, ——— | drp,. (46
i ). PR dLeff/r,,, rp, EdL/m rp,.  (46)

where the integral in R is that of Ref. [19], and the integral
in r that of the current paper. pr and p, are the corre-
sponding canonical radial momenta. This equality allows
the natural identification, applicable when both formalisms
use the same ansatz (Schwarzschild-like) metric,

M

R=—r,
E

PrR = Pr» (47)

024049-12



CHARGED TEST PARTICLE SCATTERING AND EFFECTIVE ...

PHYS. REV. D 108, 024049 (2023)

amounting to a coordinate shift of the scattering angle
integral. This is exactly the identification made by
Ref. [132], there interpreted as a canonical transformation
between effective test particle momentum of Ref. [19] and
center-of-mass momentum of the full two-body system.
Particularly, Eqs. (54) and (51) in Ref. [132] is exactly
Eq. (47) above.

We show below that the coordinate transformation of
Eq. (47) yields a transformed momentum pj related to that
|

U(r)

_GM (1, +/12R2(112 +1)
R3 v -1

N G*M?*(L*(v* = 1)(3M(v? +4) + (v? —=4)E) + p2R*(BM (v* + 50% +4) + (v* + 2 + 4)E))

found in Ref. [19] by a gauge transformation in Q. The
formalisms are thus equivalent. To see this, consider the
specific forms of p, and pg. One finds

2 L 2
€
DPr = Pegr — 2 —U(r) =pir— 75—

with

R*(v? = 1)(v? +2)E

by inserting Eq. (42) in Eq. (4), subsequently rewriting in
terms of R =% r and Loy = £ L.

Canonical momentum py, is calculated very similarly in
Ref. [19], from a modified Hamilton-Jacobi equation,

dg/pﬂpv = _Mz -9, (49)

with postgeodesic correction Q. Subscript D indicates
quantities from Ref. [19]. It was shown in Refs. [18,53]
that, (i) the EOB metric g,’i’y can be chosen to be a
Schwarzschild metric with mass M = m; + m,, (ii) Q
starts at G2, and (iii) the scattering angle is invariant under
certain gaugelike transformations of Q. Furthermore, it was
shown a suitable gauge could be chosen, such that Q only
depends on R and quantities relating to energy. We there-
fore write

0-3 0,®)G" (50)

n=2

without loss of generality. Truncating at O(G?), one finds

L2
Pr = ngf_ﬁ— U(R), (51a)
2 2R%(v241)
26M (12 + )
U(R) = 7 +G°Q
G2M2 <4L2 + R2 (4ﬂ2(202+2)))
+ =L 4 0(G%), (51b)

R4

where U(R) denotes the corresponding potential, suitably
identified as gf,, is already in normal form. Note in
particular that, in the potential, Q, term appears isolated
from other metric-dependent terms. This becomes impor-
tant in a moment.

+O(G?), (48b)

Q may be found from our EOB formalism by imposing
Eq. (47) and inserting Eqgs. (48) and (51). One finds

U(r) = U(R) (52)

to all orders in G. This equality is trivial up to 1PM as both
EOB metrics are Schwarzschild-like. O therefore starts at
O(G?) as expected. At 2PM the equality determines the
lowest-order coefficient of Q

Q=0)YG*+0O(G?)
3(v2+4)(M - E)(L*(v* = 1) + 4> R*(v* + 1)) G*M?
R*(v? = 1)(v® +2)E R?
+0(G%), (53)

corresponding to translating the EOB metric of Eq. (70) to a
Finsler-type postgeodesic form directly comparable with
Ref. [18,19,53]. The obtained value of Q, is dependent on
angular momentum, and thus definitely not in the gauge
used in Ref. [19]. Results for @ from Refs. [18,19,53]
instead yield,

p (v +4)(M—E)
2 20 -1)E

(54)

which is different from Eq. (53) by

AQ=0QP - ¥
_ 3MP(v +4)(M - E)(2L* (v - 1) + p*R*0?)
T 2RY (12 = 1)(1? +2)E ‘

(55)

However, QY may be related to QP by a gauge trans-
formation. After all, the scattering angle calculated with
each is the same. Gauge transformations may be introduced
by considering, as in Ref. [53], the scattering angle integral
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Eq. (13). Plug in Eq. (51) with unspecified Q,. Denoting by
X o contributions to the scattering angle that come from Q,
one finds up to O(G?)

1 d [«
=— = [ du0,(R)G? + O(G),
re=—ar | 2(R) (G%)
M2
R = u? + L/ gy = u? + b7 5 (56)

rewriting Eq. (13) in terms of R, imposing in effect the EOB
map of Ref. [18]. Consider how the full scattering angle
integral changes with Q) compared to QF, keeping the
Schwarzschild metric gffy. By construction, the scattering
angles calculated in either case are equal. One therefore
concludes

d [ d [« M?
— | duQPR)=— [ duQ¥(R), R*=u’>+b*—.
i [T aworm = [Tanyr). R =0
(57)

Subtracting the lhs from the rhs yields
A" guno=o (58)

ar J, “eETH

as confirmed by an explicit calculation. One may thus
interpret QY as being related to QF by a gaugelike
transformation which keeps the scattering angle invariant,

QP =i L G(R R? =u? szz 59

2*2‘*’%(% =u" + 7' (59)
with contributions from G(R) vanishing in the integration
limits of Eq. (56). A very similar result was found in
ref. [53], based on analogous considerations. Incidentally,
an identical relation holds when imposing the EOB map of
Eq. (36), with the replacements b — b%, R — r and u
continuing to denote the integration parameter in Eq. (13).
For reference, G(R) inferred from Eq. (55) is

G(R) 3G MPuv*(v* +4)(M-E) R b2M2
= 5 s u- = - — .
202 = 1) (V* +2)E(b* 2+ u?) E?

(60)

The gauge-transformation presented above is explicitly
restricted to O(G). Similar arguments may be made at
higher orders in G from a more complicated gauge relation
derived from multiple terms of Eq. (13).

Concluding, we may interpret our EOB metric without
spin as a gauge-specific embedding of a Schwarzschild
metric with postgeodesic Q contribution.

We next compare our results with Ref. [132], which is
related to Ref. [19] simply by the coordinate shift of
Eq. (47). By means of the previous analysis, our result is

therefore related to Ref. [132] purely by the gauge-
transformation in Q. Apparent from isotropic and
Schwarzschild EOB constructions of Ref. [19], this trans-
formation cannot be interpreted as a simple coordinate shift
between Schwarzschild and isotropic metrics, Eqs. (42) and
(40). Such behavior is to be expected since the EOB metric
is by no means unique—multiple distinct metrics, i.e., not
related by coordinate transformations, may encode full
binary dynamics. To see this, try bringing the isotropic
EOB metric of Ref. [132] to a Schwarzschild form which
satisfies gy = p? and g, = -1/ 9gpp- Denoting the trans-
formed coordinates {t,p,¢}, and the transformed metric
Ju» one does not recover Eq. (42) with a = 0, nor even
Schwarzschild structure. Instead

—(1-4) 0 0
gﬂl/_ O ﬁ 0 ’ (618.)
0 p?
with
40,G  4a,G
A="0ZLT0T L 0GR,
p
- 4a,G  8a,G
A= “pl LT Lo (61b)

A and A are unequal starting at O(G?), breaking the
Schwarzschild-like characteristics. a; and a, are given in
Eq. (41). We have used

r=p=2a,G - (ai +2a,)G?/p + O(G?) (61c)
and neglected O(G?) terms in the metric. This is warranted
as a(r) is only specified up to O(G?) anyway. A resum-
mation in G is presented merely to highlight deviations
from the Schwarzschild form. As a consequence, the

gauge-transformation in Q of Eq. (59), does not correspond
to a coordinate-transformation of the EOB metric.

C. Comparison with earlier approaches with spin

We now turn to consistency checks with earlier
approaches including spin. Observations are similar to
those without spin. At 1PM, our EOB metric is compared
with that of Justin Vines Ref. [44], Sec. Il b. In Ref. [44]
the EOB map of Ref. [19] is used, introducing a Kerr-like
EOB metric with mass M = m; + m, and spin @ = % a.By
an analysis identical to that without spin, one may propose
the connection of Eq. (46) yielding Eq. (47)

M
R=—r,
E

This identification is indeed correct, as an explicit calcu-
lations of p, and py shows. We remind the reader that L

Pr(R.a,L) = p,(r.a,Lg). (62)
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and L.y are defined in Eq. (36). The simplicity of this
coordinate connection is purely due to the Kerr-like
structure of both metrics. Our result is thus consistent with
Ref. [44].

VI. SPINNING BINARY EOB METRICS AND
NEWMAN-JANIS ALGORITHM

Finally, we consider the Newman-Janis algorithm, a
remarkable procedure for introducing spin to a nonspin-
ning, so-called seed metric. Although presented first as an
ad hoc observation by Newman and Janis in 1965 [140], its
uniqueness has subsequently been investigated [141].
Beyond useful only for its original application in obtaining
the Kerr metric from a Schwarzschild spacetime, it success-
fully produces also the Kerr-Newman metric from a
Reissner Nordstrom seed.

As such it is interesting to explore the application of the
NJA to EOB metrics. Namely, does one recover an EOB
metric for aligned spinning Kerr black holes by applying
the NJA to the EOB metric of two Schwarzschild black
holes? We consider only equatorial, aligned spin scattering
throughout. Adopting the EOB formalism above with a
scalar effective test particle of mass

myny

and EOB maps given by Eqgs. (36) and (38), the require-
ment for such a metric is that it reproduces the aligned
spinning binary scattering angles, Eq. (2), order by order in
G. We will concern ourselves with 1PM and 2PM scattering
angles below.

We choose to construct our NJA metric from the non-
spinning binary Schwarzschild EOB metric of Eqgs. (40)
and (41). We employ the NJA in the form discussed by
Refs. [140,141], and restrict ourselves purely to the
equatorial plane (@ = z/2). Only the final result is pre-
sented in the main text, and specifics of the procedure are
included in Appendix. A few remarks are worth noting.
First, notice that Eq. (40) is symmetric in binary masses m;
and m,. The NJA-transformed metric will naturally pre-
serve this symmetry, and we therefore expect the metric to
describe some equal-in-spin binary, for which the scattering
angle of Eq. (2) is symmetric in masses. Furthermore, note
we are only interested in scattering angles up to O(G?), and
therefore we take as the seed metric the O(G?) accurate
Schwarzschild-form of Eq. (40) presented in Eq. (61a). In
the application of the NJA, the transformed tetrads defining
the transformed metric are similarly truncated to O(G?)
(see step 4 in Appendix).

The NJA transformed metric of Eq. (61a), following the

U= (63) original procedure of Refs. [140,141], becomes
M b
|
r?(r(r—4a,G)—8a,G?) ar*(4a,Gr+6a,G?)
G T (PG
NJA
o = 0 o P e 0 : (64)

ar*(4a,Gr+6a,G?)
(r*—2a,G?)?

which has Boyer-Lidquist structure reminiscent of a Kerr-
Newman metric. Specifically, Eq. (64) recovers the equa-
torial Kerr-Newman metric by setting «; :%—% and
a, =0, for which Eq. (6la) becomes the Reissner-
Nordstrom metric.

We now discuss EOB interpretation of such a metric,
based on scattering data. The equatorial scattering angle of
a scalar (effective) test particle in g,(,I,\,UA) is readily calculated

by Eq. (13),

nia _ 2GE(=2av +bv* +b)  372G*M(v* +4)E
XEOB = 202 _ 2 2,2
v*(b* — a*) 4b*v
_a(zG*E(OM (v +4)v* + (150* + 40> + 16)E))
433 (v* + 1))
+0(a®) + O(G?), (65)

2 (@ (r(4a,G+r)+4a,G*)
P (RS + 1)

after coordinate transformation > — p?> = 1> + a? retriev-
ing the normal form. M = m; + m, denotes the total mass
of the binary. To obtain EOB interpretation, this should
reproduce a full binary scattering angle. We compare
explicitly with the aligned Kerr binary from Ref. [89],
adopting the EOB map of Egs. (36) and (38). The 2PM angle
above has been truncated at O(a) to make such compar-
isons. Further analysis could equally be carried out at higher
orders in a, however Eq. (2) is not yet confirmed to represent
scattering of black holes at these orders. Consider all
configurations (ai,a,) of Eq. (2) conceivably described
by the NJA. The 1PM scattering angle matches exactly that
of Eq. (2) with configuration a; + a, = a. Spins a; and a,
are further restricted by going to 2PM. Equation (65) is
symmetric in masses m; and m,. This symmetry is only
recovered in Eq. (2) if a; = a, = a/2. The corresponding
full binary scattering angle from Eq. (2) is
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2GE(=2av + bv> + b) 32G*M(v? + 4)E

)((a/2,a/2) _
v?(b* — a?) 4p29?
7 G*M(3v* +2)E
JTAEGHE DD L o) +0(6Y).

(66)

which is the only binary Kerr scattering angle conceivably
matched by Eq. (65). However comparing Eq. (65) and
Eq. (66), they do not match up. In the present setting, based
on the nonspinning EOB metric of Eq. (40) and Eq. (41), the
NJA thus fails to produce an EOB metric for aligned
spinning binaries.

Although the present NJA interpretation fails, we have
only considered scalar test particles. One could equally
consider scattering of a spinning test particle on the metric
of Eq. (64). Whether this combination has EOB interpre-
tation, and produces correct two-body scattering angles, is
not pursued here.

VII. CONCLUSION

Using the method of Ref. [20], Eq. (11), scattering angles
of systems involving both electromagnetic and gravita-
tional interactions have been calculated. As a specific case
study, post-Minkowskian scattering angles in the Kerr-
Newman metric have been computed for charged test
particles (Tables I and II). Purely electromagnetic situations
are also treatable—the well-known Coulomb scattering
angle is readily obtained in resummed form in the weak-
field limit (Table III). Charged test particle scattering angles
in Kerr-Newman show definite structure. At order O(G")
and O(e/),

Gnej Q2k+jMn—k

2~ gln+jiet mod 2
" miyd 20 (2 — g2) B T1)/2

X fn,j,k(v)’ (67)
|
K| = 2E,
3(v? +4)E(m; +m, — E)
2= v 4+2

where f, ;(v) is a polynomial in ». For j =0 and odd
(even) n, f,;(v) contains integer (fractional) orders of
a and b. When j # 0 only integer orders of a and b are
present, with the structure

2(n+j)

Faju()~ Y arbPmrf (), (68)

p=0

where JN‘,,, jk 1s some polynomial in v, independent of a
and b.

The flexibility of the scattering angle formula of
Ref. [20] is aptly suited for EOB formalisms with planar
orbits. An EOB metric describing full binary motion may
be constructed by explicitly matching scattering angles and
adopting the EOB map of Ref. [132] [Eq. (36) of the
present paper]. An ansatz,

—(1=x(r)) 0 —ak(r)
(eff) _ r2
Guv = = 0 232 (1=x(") 0 ,
—ax(r) 0 a*(1+x(r)) +r?
00 G"
= —_, 69
(=3 r" (69)

n=1

for the EOB metric may be constructed from the Kerr
metric in Boyer-Lindquist coordinates by replacing
2GM/r — k(r). The result is a resummed metric in spin
parameter a and Newtons gravitational constant G. k,, may
be determined by matching the resulting test particle
scattering angle with that of a Kerr-Schwarzschild binary
[89], order by order in G and a. Our current treatment
extends to 2PM and O(a), yielding

N E(6mv* + 8m v* + 16m; + 3myv* + 12m, — 60*E — 80°E — 16E)
al -
bo(v? + 2)?

by requiring that the metric reduces to Kerr in the m, — 0
limit. By identical comparisons with higher orders of a in
ref. [89], k, is presented up to O(a*) in Table IV. We see no
obstruction in continuing the treatment to further orders in
G and a. In the nonspinning limit, our EOB formalism is

) + O(a?), (70)

|

related to previous approaches of Refs. [19,53,132] through
a gauge transformation of the postgeodesic Finsler-type Q
term. Including spin, at 1PM, our formalism is equivalent to
that of Ref. [44] after a coordinate reparametrization
identical to the connection of Ref. [132] with Ref. [19].
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Furthermore, for spinning binaries, a subtlety with b
dependence of the metric was noted. Corresponding to
angular momentum dependence, the EOB metric may
readily depend on it, however requires extra care when
evaluating test particle scattering angles. In particular with
the current ansatz metric, the scattering angle becomes a
function of linear derivatives of k, with respect to b.

_ r(r(r-4a,G)—8a,G?)
(r*—2a,G?)?
(NJA) 0
uw
ar*(4a;Gr+6a,G?)
(r*—2a,G?)?

derived with O(G?)-accurate manipulations. Scalar test
particle scattering angles in this metric are computed, and
compared to different combinations of aligned spin (a;, a,)
of the full binary result [89]. No spin map is a priori
assumed. At 1PM we find that angles indeed match, due to
natural Kerr-like structure in both cases. At 2PM, however,
no spin configurations are possible for which the angles are
equal. It is therefore, within the confines of the current
construction, not possible to interpret the NJA transformed
metric above as an EOB metric of aligned binary Kerr black
holes. This analysis is based on a scalar effective test
particle. Alternatively, the same analysis including spin on
the test particle might conceivably have EOB interpreta-
tion. This is left to future work.
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APPENDIX: THE NEWMAN-JANIS ALGORITHM
AND ITS APPLICATION TO EQ. (61a)

For completeness, we first present the Newman-Janis
algorithm with a review of Ref. [141], before discussing its
specific application to Eq. (6la). The Newman-Janis
algorithm is a five-step procedure, proceeding as follows:

(1) Consider a given spherically symmetric seed metric

to which spin should be endowed. Write it in

advanced null coordinates, generically

ds?* =—e*®*) du? = 2N dudr + r2dQ?,  (Al)
specifying functions ®(r) and A(r) on a case-to-
case basis.
Invert the metric and express it in terms of a null
tetrad of vectors {#, n#, m"},

(@)

0

2

0

Supplementary to our EOB analysis, the Newman-Janis
algorithm was explored in its application to the nonspin-
ning EOB metric of Ref. [132], see Eq. (40). The complex-
ification technique and coordinate transformations involved
are those originally introduced by Newman and Janis [140],
and the EOB map of Egs. (36) and (38) is assumed.
Applying the NJA to Eq. (40), the result is

__ar’(4a,Gr+6a,G?)
(r*=2a,G?)?

0 , (71)

2 <a2(r(4a] G+r)+4a,G?) + 1)

(r*—2a,G?)?
g = =l'n* — n*l¥ + mtm* + m*m",

(A2)

where m* can be complex valued, and m" is its
complex conjugate, such that the metric is real
valued. Furthermore [, m, n, obey

H— Ho— Ho—
L =mm' =n,n' =0,

L =—m,m" =1,
L,m' = n,m" = 0. (A3)
One may abbreviate notation by introducing

Zh = (I*,n*,m*,m"). The metric of Eq. (A1) has

r =4, (Ada)
1
p = R0 — 2 OS], (Adb)
mh — b 5+ LS/‘ . (Adc)
V2r\ 2 " sing 3

(3) Complexify coordinates by letting x* — x» = x* +
iy’ € C and Zi — Z'%;. The transformation only
requires ¢, € R and Z’' = Z when x' = X, a bar
denoting complex conjugation. Multiple complex-
ification transformations obey this requirement, and
as such the Newman-Janis algorithm is ambiguous.
The transformation adopted here is that originally

introduced by Newman and Janis,

I 1/1 . 1 1 1

B g

roo 2\« 7)) rror
Note in particular that 1/7? terms transform differ-
ently from 1/r terms. Justification of this fact was
given in Ref. [141]. However, as will be demon-

strated, this ambiguity vanishes in the equatorial
plane.

(AS)
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(4) Perform a complex coordinate transformation x’# = x* + iy#(x) whereby Z'% transforms as

oxH
ZI:; - WZ/Z (A6)
The new coordinates x* € {u, r,0, ¢} are real valued. To avoid clutter, names of coordinates have been reused from
step 1. The particular transformation used by Newman and Janis is

x# = x" —iacosO(5y — &), (A7)

which introduces the spin parameter a. This transformation will be adopted here as well. In the equatorial plane
x* = x', and step 3 becomes unambiguous with 1/r and 1/7? transforming in the same way.
(5) Finally, it is assumed that one can convert the metric to a Kerr-like structure by a coordinate transformation in # and ¢
of the form u = ¢ + F(r), ¢ = w + G(r). The purpose is to remove all off-diagonal terms except g,,.
We now apply the NJA to the seed metric of Egs. (40) and (41). a; and a, are kept symbolic, their values only reinstated
when analysis is complete.
Null coordinates may readily be identified from Eq. (61a), yielding the line element (step 1 of the NJA)

1 -
ds? = —(1 — A)du® -2 1 :;tdud/)—f—/)zdﬁz, (Aa)
where
4a,G  4a,G?
A="0T a22 + O(G*) and
p p
-~ 4a,G  8a,G?

As mentioned in Ref. [141], the same analysis with a Reissner-Nordstrom metric yields instead

A=A=2GM/p-GQ?/p%, (Reissner Nordstrom metric) (A9)

simplifying the dudp component. This difference follows from the observation of Eq. (61a); Eq. (40) cannot be brought to
exact Schwarzschild form, meaning g,, # —1/g,,. Were this the case, the NJA-transformed metric would simply have Kerr-
Newman structure.

The line element of Eq. (A8a) is written in terms of null-tetrads (step 2 of the NJA), which may easily by identified by
comparing Eq. (A8a) with Eq. (A1)

OV = (1= A2, M) = (1= )2 (A10a)
r=4g
1-A, 1 -

1 i
mH :\/_—2‘0(5[; +m5§>, (AlOb)

and coordinates are complexified (step 3 of the NJA) by replacing
1
1/p—>§(1/r’+1/?’) and 1/p* = 1/(F'¥). (A11)

A coordinate transformation x* = x* — iacos (&, — &/) is now performed (step 4 of the NJA). Reuse notation by
denoting x* = {u, r, 0, ¢}. The tetrads transform according to Eq. (A6). In particular, expressions are reduced by expanding
7! to O(G?). The transformed metric in the equatorial (9 = 7/2) plane reads
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g = =L i, — i, + i i, + i,
—(1-A) —-v1=A —a< oA +A—1>
1-A 1-A
o 1-A 0 avi-A
o 1-A 1-A
1-A aV1-A 2 2 2V1-A
a| ==+ A-1 = S - A+1
(Framr) o= ~-o(2E
2 (r(r—4a,G)—8a,G?) r aGr’ (4ay r+6a,G)
- (r*—2a,G?)? T P22a,G? T (P2a,GR)?
— r2 0 — ar2
= r2—2a262 2a2G2—r2 ) (AIZ)
_aGrdar+6mG)  __ a? _2 [ —@0laGrn+amG®)
(r*=2a,G?)? 20,G*—r? r (r*—2a,G?)?
where the first expression uses all-order expressions of Z% and the second uses their expansion to 2PM.
Last (step 5 of the NJA), g, terms may be removed by the coordinate transformation u — ¢ and ¢ — y
dt = du + Dy, (r)dr, dy = d¢ + D3 (r)dr,
2 2 2
a®—20,G"+r a
Doy =— 2 2 D3 =— 2 2 (A13)
a” —4a,Gr —8a,G* +r a- —4a,Gr —8a,G~ + r
producing the final result
2 (r(r—4a,G)—8a,G?) 0 ar*(4a;Gr+6a,G*)
- (r*—2a,G?)? - (r*=2a,G?)?
r2
g’(EJA) = 0 a’*+r(r—4a,G)—8a,G? 0 R (A14)
ar2(4r1 Gr+-6a Gz) 2 az(r(4a G+r)+da GZ)
- (}"ZLZ(MZGZ)Z2 0 r < (r2]—2(12G2)2 - +1
which is the NJA metric from the seed of Eq. (61a), presented in Eq. (64) of the main text.
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