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Tidal Love numbers describe the linear response of a compact object under the presence of external tidal
perturbations, and they are found to vanish exactly for black holes within General Relativity. In this paper
we investigate the tidal deformability of neutral black holes when nonlinearities in the theory are taken into
account. As a case in point, we consider scalar tidal perturbations on the black hole background, and find
that the tidal Love numbers may be nonvanishing depending on the scalar interactions in the bulk theory.
Remarkably, for nonlinear sigma models, we find that the tidal Love numbers vanish to all orders in
perturbation theory.
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I. INTRODUCTION

Black holes and gravitational waves represent two of the
most striking predictions of General Relativity, and they
come along when one considers a binary system of black
holes orbiting around each other and emitting gravity
waves as the coalescence proceeds. The measurement of
this gravitational radiation therefore provides a powerful
tool to shed light on the nature of gravity in its most
extreme regime and on the search for signatures of new
physics [1].
Within this theory, the black hole mass, angular momen-

tum, and electric charge uniquely define their multipolar
structure. The latter is not relevant during the early stages of
the inspiral phase of a compact binary, since the two bodies
behave as point masses [2]. However, as the orbital
separation sufficiently decreases due to gravitational wave
emission, the tidal interactions between the two bodies
become important, and higher-order post-Newtonian cor-
rections come into action. These tidal effects are usually
described in terms of the tidal Love numbers [3]. The tidal
Love numbers depend on the internal properties and
structure of the deformed compact object, and are found
to impact gravitational wave emission at fifth post-
Newtonian order [4].
Assuming General Relativity, the tidal Love numbers of

nonrotating and spinning black holes are found to be
exactly zero [5–14]. This result has generated a problem
of “naturalness” in the gravitational theory [11] and reveals
underlying hidden symmetries of General Relativity
[15–26]. This property is, however, fragile, since it is

broken in higher dimensions [15,27–31], in the context of
modified gravity [32–35], or due to environmental effects
around the black holes [36–40].
Known results on tidal Love numbers usually assume

linear response theory, based on a weak external tidal field,
and consider free massless perturbations on the black hole
background. General Relativity, on the other hand, is a
nonlinear theory. The issue of nonlinearities has been
deeply investigated in the context of black hole perturba-
tion theory and quasinormal modes [41–49]. It has recently
received further interest since black hole merger simula-
tions have shown that not only first-order but also second-
order effects are relevant to describe ringdowns [50–56].
In this paper we investigate the role of nonlinearities in

the context of tidal deformations. For simplicity, we focus
on self-interacting scalar fields on a fixed Schwarzschild
background, treating interactions perturbatively. Scalars are
simpler to deal with, since they avoid the issue of parity-
even and -odd perturbation mixing that would arise for
spin-1 (electromagnetic) and spin-2 (gravitational) non-
linearities, as well as issues of gauge invariance.
In a linear theory, a basis of two linearly independent

solutions can be chosen to have the correct growing/
decaying behavior at spatial infinity and regularity/diver-
gence behavior at some finite distance. They correspond to
the usual “external source” and “response” components.
The Love number is easily defined as the relative coef-
ficients of these two independent solutions. However, one
can no longer separate them in a nonlinear theory, such that
defining the Love number becomes subtle. Despite this
difficulty, the presence of fall-off tails may still signal a
tidal response in a nonlinear way. Therefore, for different
self-interactions, we compute the solution of the scalar
perturbations on the black hole background and determine
their asymptotic behavior to look for tails at each multipole.
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We consider three families of interacting scalar theories:
(i) Potential interactions. Specifically, we consider

power-law operators ϕn. In this case, we find that
a tail is generated at second order in perturbation
theory.

(ii) Derivative interactions. Specifically, we consider
ð∂ϕÞ4 as the simplest shift-symmetric interaction. In
this case, we find that a tail is generated at first order in
perturbation theory. This is an immediate conse-
quence of the higher-derivative nature of the operator.

(iii) Non-linear sigma model, GIJðϕÞ∂ϕI
∂ϕJ. We place

no restriction on the target space metric GIJðϕÞ,
other than it is nonsingular in the field region of
interest, such that we can adopt Riemann normal
coordinates. In particular, GIJðϕÞ need not be flat.
Remarkably, in this case we will prove the absence
of a tail to all orders in perturbation theory.

The nonlinear sigma model is the closest scalar analog to
General Relativity, in the sense that, exactly like the
Einstein-Hilbert term, GIJðϕÞ∂ϕI

∂ϕJ includes exactly
two derivatives and possibly all powers of the field. The
fact that we find no tail in this case is striking and
suggestive of an underlying symmetry.
The paper is organized as follows. In Sec. II we briefly

review the notion of Love numbers, both in Newtonian
gravity and in General Relativity. In Sec. III we provide
details about the nonlinearities involved in the computation
of the Love numbers for a scalar tidal perturbation. We
study a few illustrative examples of nonlinear scalar
theories in Sec. IV, while dedicating Sec. V to the study
of the nonlinear sigma model. Finally, we conclude in
Sec. VI. Three appendixes are devoted to technical details.

II. BRIEF REVIEW OF TIDAL LOVE NUMBERS

In this section we review the formalism to compute the
tidal Love numbers for a black hole. We start by discussing
their analog with the electric polarizability of a material,
and then define the Love numbers both in the Newtonian
and full relativistic regime. For the latter, we focus on
massless spin-0 tidal perturbations, assuming for simplicity
a Schwarzschild black hole background. The interested
reader can find a more comprehensive discussion in
Refs. [15,16,20].

A. Electromagnetic response

Computing Love numbers is in fact closely similar to the
calculation of the electric polarizability of a material, such as
a dielectric material under a static external electric field. The
static problem outside the material (in vacuum) is simply
given by Laplace’s equation for the electric potential Φ,

∇2Φ ¼ 0: ð1Þ

The general solution is given by

Φ ¼
X
l;m

clm

�
rl þ λlm

rlþ1

�
Ylmðθ;φÞ; ð2Þ

where Ylm’s are the real spherical harmonics. The first term
clmrlYlm is simply the potential for the external electric
field. The second term clm

λlm
rlþ1 Ylm characterizes the induced

multiple of the material, with λlm identified as the electric
polarizability of the object.
In practice, in order to calculate λlm, one must specify

the properties of the material. For instance, given a relation
between the polarization vector and the electric field inside
the material,

Pi ¼ χð1ÞijEj þ χð2ÞijkEjEk þ…; ð3Þ

with χðnÞ being the nth order susceptibility tensor, one can
solve the electrostatic problem inside the material, and then
match the solution with Eq. (2) at the surface of the object
to satisfy the boundary condition of regularity. A well
known example is a linear dielectric (P⃗ ¼ χE⃗) solid sphere
of radius R in an arbitrary external electric field. In this
case, Φ is solved by

Φoutside ¼
X
l;m

Vlm

�
rl −

χlRl

2lþ 1þ lχ

�
R
r

�
lþ1

�
Ylmðθ;φÞ;

Φinside ¼
X
l;m

Vlm
2lþ 1

2lþ 1þ lχ
rlYlmðθ;φÞ; ð4Þ

where Vlm quantifies the potential for the external electric
field. It is clear that the induced multiple moment is
proportional to the susceptibility χ. The strength of the
induced multiple moment can be thought of as the electric
counterpart of the gravitational Love number.
In the following we solve the analogous problem of a

gravitational perturbation deforming a compact object,
which we will assume to be a Schwarzschild black hole,
both in Newtonian and Einstein gravity.

B. Gravitational response: Newtonian limit

The gravitational response of a spherically-symmetric
body to external tidal perturbations is captured by the tidal
Love numbers. Consider a spherical body of mass M,
possibly spinning, and assumed to be at the origin of a
Cartesian coordinate frame. The body is subjected to an
external gravitational field Uext applied adiabatically.
Assuming spherical symmetry, the field can be expanded

in multipole moments as

Uext ¼ −
X∞
l¼2

ðl − 2Þ!
l!

ELrL; ð5Þ

in terms of its distance r from the body, the multi-index
L≡ i1 � � � il, and the symmetric trace-free multipole
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moments EL. This external gravitational perturbation indu-
ces a deformation in the body, which develops internal
multipole moments given by

GIL ¼
Z

d3x δρðx⃗ÞxhLi; ð6Þ

where δρ is the body’s mass density perturbation, and
xhLi ≡ xi1 � � � xil .
Expanding the external source and induced response in

spherical harmonics Ylm,

Elm ≡ EL

Z
S2

dΩnLY�
lm; Ilm ≡ IL

Z
S2

dΩnLY�
lm; ð7Þ

where dΩ≡ sin θdθdϕ, and ni ≡ xi=jx⃗j, the total potential
of the system can be written as

Utot ¼ −
GM
r

−
X∞
l¼2

Xl
m¼−l

Ylm

×

�ðl − 2Þ!
l!

Elmrl −
ð2l − 1Þ!!

l!
GIlm
rlþ1

�
: ð8Þ

Assuming that the external tidal perturbation is adiabatic
and weak, linear response theory dictates that the response
multipoles are proportional to the perturbing multipole
moments as

GIlmðωÞ ¼ −
ðl − 2Þ!
ð2l − 1Þ!! λlmðωÞr

2lþ1
h ElmðωÞ; ð9Þ

where ω is the perturbation frequency. The size of the
object, rh, will later be identified with the Schwarzschild
radius in the black hole case, rh ¼ 2GM. The dimension-
less coefficients λlm describe the tidal response and can be
expressed in terms of ω as

λlm ≃ klm þ iνlmðω −mΩÞ þ…; ð10Þ

where m is the azimuthal harmonic number, and Ω the
body’s angular velocity. The real term in Eq. (10) encodes
the static response, and the corresponding coefficients klm
are called tidal Love numbers. The imaginary contribution
iνlm describes dissipation effects. For the sake of our
discussion we will assume static perturbations (ω ¼ 0) and
therefore neglect dissipative effects.
The Newtonian regime considered so far represents the

long-distance approximation to full General Relativity. In
the following we will therefore discuss tidal Love numbers
for a Schwarzschild black hole assuming a massless spin-0
perturbation in a full relativistic theory.

C. Gravitational response: General relativity

We now turn to the gravitational response of a black hole
in General Relativity, which for concreteness we assume to
be Schwarzschild:

ds2¼−fðrÞdt2þ 1

fðrÞdr
2þr2dΩ2; fðrÞ¼1−

rh
r
: ð11Þ

Using black hole perturbation theory, one can consider
massless fields perturbing the black hole geometry. The
simplest example is a tidal spin-2 perturbation, which
describes the presence of a companion in a binary system.
For the sake of our discussion we will focus on a scalar

tidal field ϕ, which is responsible for the generation of a
scalar Love number. The dynamics of a free real scalar field
is governed by the action

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂ϕÞ2: ð12Þ

Since the background is invariant under rotations, we can
decompose ϕ into spherical harmonics,

ϕðxÞ ¼
X
l;m

Ψðt; rÞr−1Ylmðθ;φÞ: ð13Þ

The action can then be simplified by integrating over the
angular variables. Introducing the tortoise coordinate r⋆,
with dr⋆ ¼ dr=f, we obtain

S¼
X
l;m

Z
dtdr⋆

�
1

2
j _Ψj2− 1

2

���� ∂Ψ
∂r⋆

����
2

−
1

2
V0ðrÞjΨj2

�
; ð14Þ

in terms of the scalar potential

V0ðrÞ≡ f
lðlþ 1Þ

r2
þ ff0

r
; ð15Þ

where primes denote radial derivatives (f0 ¼ df=dr). The
resulting equation of motion takes the form of a
Schrödinger equation

d2Ψðr⋆Þ
dr2⋆

þ ðω2 − V0ðrÞÞΨðr⋆Þ ¼ 0: ð16Þ

In the zero-frequency limit, imposing regularity of the
solution at the black hole horizon rh, and matching to the
external source at spatial infinity r → ∞, one finds that Ψ
can be expanded asymptotically as

ΨðrÞ ≃ c1rlþ1

�
1þ � � � þ kðlÞS

�
r
rh

�
−2l−1

þ � � �
�
: ð17Þ

The first term ∼rlþ1 denotes the external tidal field applied
at spatial infinity, while the second term ∼r−l encodes the

response. The coefficient kðlÞS denotes the scalar Love
number. Its value depends on the assumed background
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geometry. For a Schwarzschild black hole kðlÞS is found to
vanish identically.
The procedure outlined above is called Newtonian match-

ing, since the extraction of the Love numbers for the full
relativistic case is based on the comparison between this
series expansion and the nonrelativistic gravitational poten-
tial. There is, however, an intrinsic ambiguity in this
procedure, due to the overlap between the source series
and the response contribution [12,16,27], where subleading
corrections to the source appear to have the same power in r
as the response in the physical case l ∈ N. In order to
properly define the Love numbers through a matching
procedure, an interesting approach consists of performing
an analytic continuation to the unphysical regionl ∈ R [12],
where the source and response series do not overlap.
Obtaining such a solution can, however, be challenging,
and depends on the theory at hand. Furthermore, this
definition of tidal Love numbers may also be problematic
due to gauge invariance.
In order to get around these issues and provide a gauge

invariant definition, one can instead identify the relevant
operators describing tidal effects in the point-particle
effective field theory approach. This approach is based
on the realization that, at very large distance, a black hole
behaves as a point particle, and corrections due to its finite
size and internal structure are encoded in higher-derivative
operators in the effective theory.
The most general action describing the interactions

between an external scalar field and the point particle
worldline, up to field redefinitions and down to second
order in the bulk scalar field, is given by [15]

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂ϕÞ2

þ
Z

dτe

�
1

2
e−2 _xμ _xμ −

m2

2
þ gϕþ

X∞
l¼1

λl
2l!

× ð∂ða1 � � � ∂alÞTϕÞ2
�
; ð18Þ

where e denotes the vielbein, and ð� � �ÞT the symmetrized
traceless component of the enclosed indices. The bulk
action is just that of the free scalar field, Eq. (12). The first
two terms in the worldline action describe the worldline
trajectory; the term gϕ encodes the scalar hair carried by the
point particle which, in the black hole context, is absent due
to the no-hair theorems [57–59]; and the last term is the
leading-order finite-size effective operator, where the
Wilson coefficients λl indicate the worldline definitions
of black hole static response coefficients. From a Feynman
diagrammatic level, one can interpret this quadratic oper-
ator as a vertex, with one of the external fields behaving as a
background and the other as a response at infinity.
Solving the corresponding equation of motion in the

zero-frequency limit one obtains the full field solution ϕ as

ϕðx⃗Þ¼ ca1���alx
a1 � � �xal

×

�
1þλlð−1Þl

2l−2Γ
�
1
2

	
2

π3=2Γ
�
1
2
−l

	 jx⃗j−2l−1
�
; x¼ r=rh;

ð19Þ

where ca1���al is a symmetric traceless tensor. This can be
matched to the full relativistic solution obtained in Eq. (17)
to extract the gauge-invariant scalar Love numbers as [15]

λl ¼ kðlÞS ð−1Þl π
3=2

2l−2

Γ
�
1
2
− l

	

Γ
�
1
2

	
2

r2lþ1
h : ð20Þ

This result holds at the linear level. In principle, by adding
terms with more powers of the fields to the effective action,
one can study the nonlinear response of the system. This is
the approach we will pursue in the next section.

III. NONLINEARITIES IN THE TIDAL LOVE
NUMBERS: FORMALISM

In this section we describe two different kinds of
nonlinearities that may affect the computation of the tidal
Love numbers. The first kind of nonlinearity is related to
the assumption of linear response, and arises when one
goes to the next-to-leading order in the applied external
field. The second kind is instead based on a theory which is
inherently nonlinear, such as General Relativity, but keep-
ing the assumption of linear response theory.
These nonlinearities are described by two different

expansion parameters: for the first kind,we are perturbatively
expanding in the tidal response, which is proportional to the
size or compactness of the tidally deformed object; for the
second kind, we are expanding in the strength of the external
applied field, which is parametrized by the coupling constant
of the theory at hand, e.g., the Planck mass for General
Relativity. This emphasizes the different nature of the non-
linearities we will describe in this section.

A. Beyond linear response theory

One of the main assumptions in the computation of the
Love numbers relies on linear response theory, according to
which the amount of deformation captured in the mass
quadrupole is proportional to the strength of the external
applied field.
The same assumption is usually performed also in

electromagnetism, where the electric dipole at leading
order is proportional to the external electric field.
However, one can generalize the response by including
higher-order corrections in the electric field. Indeed, the
nonlinear response of a conducting body to an external
electric field is described by the electric dipole, with a
power expansion in the electric field as [60]
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Dμ ¼ λð1Þμν ðt; x⃗ÞEνðt; x⃗Þ þ λð2Þμνρðt; x⃗ÞEνðt; x⃗ÞEρðt; x⃗Þ
þ λð3Þμνρσðt; x⃗ÞEνðt; x⃗ÞEρðt; x⃗ÞEσðt; x⃗Þ þ…; ð21Þ

where Eμ ¼ Fμνuν covariantly defines the electric field in
the body’s rest frame, and λðnÞ are the susceptibility tensors,
which are symmetric in their indices. We shall refer to

Dð2Þ
μ ¼ λð2Þμνρðt; x⃗ÞEνðt; x⃗ÞEρðt; x⃗Þ as the second-order non-

linear dipole moment, to Dð3Þ
μ ¼ λð3Þμνρσðt; x⃗ÞEνðt; x⃗ÞEρðt;

x⃗ÞEσðt; x⃗Þ as the third-order nonlinear dipole moment,
and so on for higher-order terms.
Assuming Lorentz invariance and parity conservation,

the index structure of the tensor susceptibilities is con-
strained, such that they can be decomposed in a set of scalar
susceptibilities as [61]

λð1Þμν ¼ λð1Þ0 gμν þ λð1Þ1 q1;μq2;ν;

λð2Þμνρ ¼ λð2Þ0 ðgμνq3;ρ þ gνρq1;μ þ gμρq2;νÞ;
λð3Þμνρσ ¼ λð3Þ0 gðμνgρσÞ þ λð3Þ1 ðgμνq3;ρq4;σ þ permsÞ

þ λð3Þ2 q1;μq2;νq3;ρq4;σ; ð22Þ

in terms of the background metric gμν and body’s momen-
tum qμ.
The analogy of the electric dipole in the context of

gravity is provided by the quadrupole moment, which can
be as well expanded in a power series

Iμνðt; x⃗Þ ¼ λð1Þμνρσðt; x⃗ÞEρσðt; x⃗Þ
þ λð2Þμνρσκδðt; x⃗ÞEρσðt; x⃗ÞEκδðt; x⃗Þ þ…; ð23Þ

in terms of the electric and magnetic fields, built from
the Weyl tensor Cμρνσ as Eμν ¼ Cμρνσuρuσ and Bμν ¼
ð�CÞμρνσuρuσ ¼ 1

2
ϵαβρμC

αβ
σνuρuσ , where uμ denotes the body

four-velocity.
From this analogy one can appreciate the role of higher

operators in determining the nonlinear response of the
object to the external perturbation. Such operators also arise
in an effective field theory approach, as higher-derivative
operators in the Lagrangian. Considering a scalar field ϕ,
the worldline action would receive next-to-leading terms
built out of the derivative of the scalar field as

S ⊃
Z

dτ e

�X
l

λð1Þl

2l!
ð∂ða1…∂alÞT

ϕÞ2

þ
X

l1;l2;l3

λð2Þl1l2l3

2l1!2l2!2l3!
ð∂ða1…∂al1Þ

ϕÞð∂ðb1…∂bl2Þ
ϕÞð∂ðc1…∂cl3Þ

ϕÞ

þ
X

l1;l2;l3;l4

λð3Þl1l2l3l4

2l1!2l2!2l3!2l4!
ð∂ða1…∂al1Þ

ϕÞð∂ðb1…∂bl2Þ
ϕÞð∂ðc1…∂cl3Þ

ϕÞð∂ðd1…∂dl4Þ
ϕÞ þ…

�
; ð24Þ

where the lower indices ai, bi, ci and di are properly
contracted in a Lorentz invariant and traceless way, such
that l3 ¼ jl1 − l2j;…;l1 þ l2 for the second line, and
similarly for the third line. The list of coefficients

λð2Þl1l2l3
; λð3Þl1l2l3l4

;… capture the nonlinear tidal Love num-
bers. From a Feynman diagrammatic level, wewould expect
in this case diagrams with more lines either as a background,
i.e., a nonlinear source, or as a nonlinear response.
In the following we will not consider this kind of

nonlinearity, which we expect to be subdominant compared
to the one at the linear level, due to the higher number of
derivatives involved. We leave their study to future work.

B. Nonlinear bulk theory

The second kind of nonlinearities may arise from the
theory one considers. For example, when studying a black

hole perturbed by an external spin-2 tidal field, such as its
companion in a binary system, the theory at hand, i.e.,
Einstein gravity, is inherently nonlinear. This nonlinearity
has been investigated extensively in the literature in the
context of black hole perturbation theory and quasinormal
modes, e.g., [41–49]. Although the dimensionless ampli-
tude of the metric perturbations are negligibly small when
we observe them at detectors, they are relatively large near
the black hole, so nonlinearities may play an important
role at gravitational wave detectors, see in particular
Refs. [50–56] for recent developments in the context of
black hole ringdown.
To illustrate this, let us focus on parity-odd perturbations.

At the linear level the metric perturbation Ψð1Þ
RW around a

Schwarzschild black hole satisfies the familiar Regge-
Wheeler equation [62],
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�
∂
2

∂r2⋆
− VRWðrÞ

�
Ψð1Þ

RW ¼ 0: ð25Þ

The Regge-Wheeler potential VRW takes a form similar to
the one obtained above for a scalar field. One can go
beyond linear level, and focus on “higher-order” terms in
the metric perturbations,

ΨRW ¼ Ψð1Þ
RW þ ϵΨð2Þ

RW: ð26Þ

From a perturbative expansion it was shown that the
second-order perturbations satisfy the same linear set of
equations as the first-order perturbations, but with addi-
tional terms quadratic in the first-order perturbations, that
may be thought of as “sources” for these equations.

Explicitly, Ψð2Þ
RW satisfies a Regge-Wheeler equation,

�
∂
2

∂r2⋆
− VRWðrÞ

�
Ψð2Þ

RW ¼ SðΨð1Þ2
RW Þ; ð27Þ

which now includes a nonlinear source in the first-order

perturbations SðΨð1Þ2
RW Þ.1

In the rest of our paper we focus on this second kind of
nonlinearity in the context of interacting scalar tidal
perturbations around a Schwarzschild black hole. The
corresponding procedure for tensor perturbations is left
to future work.
Allowing for bulk self-interactions characterized by an

operator OðϕÞ, the worldline effective field theory action
(18) generalizes to

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð∂ϕÞ2 þ αOðϕÞ

�

þ
Z

dτe

�
1

2
e−2 _xμ _xμ −

m2

2
þ gϕ

þ
X∞
l¼1

λl
2l!

ð∂ða1 � � � ∂alÞTϕÞ2
�
: ð28Þ

The dimensionless coefficient α will act as a bookkeeping
device to do perturbation theory in OðϕÞ. Let us stress that
we work at the same order in the tidal response, i.e., we
neglect nonlinear terms arising when one goes beyond
linear response theory, as discussed in the previous section.
The addition of the operator OðϕÞ in the action modifies

the scalar equation of motion, which now schematically
reads

□ϕ ¼ r−2h SðϕÞ; ð29Þ

where the source term SðϕÞ is derived from OðϕÞ, and the
overall factor of r−2h is included for convenience. Notice
that we are treating the scalar field as a test perturbation on
a fixed black hole background. This implies that we are
neglecting the role of the scalar field in the energy
momentum tensor when solving for the background
Einstein’s equations. Our main focus is to investigate the
role of interactions in the theory governing the external
tidal perturbation on a fixed black hole background.
We will solve the equation of motion in the static limit

_ϕ ¼ 0 with a decomposition into spherical harmonics,

ϕðx⃗Þ ¼
X
l;m

ϕlmðrÞYlmðθ;φÞ: ð30Þ

In the background of a Schwarzschild black hole, the
differential equation is of the form

LlϕlmðxÞ ¼ SðϕlmðxÞÞ; ð31Þ

where, as before, x ¼ r=rh, and we have introduced the
differential operator

Ll ≡ xðx − 1Þ
x2

d2

dx2
þ 2x − 1

x2
d
dx

−
lðlþ 1Þ

x2
: ð32Þ

As the source term SðϕÞ contains the coupling α, we solve
the above equation perturbatively:

ϕlmðxÞ ¼ ϕð0Þ
lm þ αϕð1Þ

lm þ α2ϕð2Þ
lm þ…: ð33Þ

At any order in perturbation theory, the solution to Eq. (31)
reads (omitting the angular multipole indices)

ϕðxÞ ¼ bϕþðxÞ þ cϕ−ðxÞ

þ
Z

x
dy

ϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞ
yðy − 1ÞW½ϕþðyÞ;ϕ−ðyÞ� y2SðϕðyÞÞ;

ð34Þ

where b and c are constants, and the integral is indefinite.
Notice that SðϕðyÞÞ is the source term evaluated at the
lower-order solutions. The mode functions ϕ�ðxÞ are
solutions to the homogeneous equation, and are explicitly
given by

ϕþðxÞ ¼ Plð2x − 1Þ;
ϕ−ðxÞ ¼ Qlð2x − 1Þ: ð35Þ

Here Pl is the usual Legendre polynomial at integer l, and
QlðxÞ is the Legendre Q with the choice of branch cut at
x ∈ ð−1; 1Þ. Explicitly,

1In contrast with first-order perturbations, at second-order
tensor modes are not gauge invariant. This requires the definition
of gauge-invariant quantities in order to make gravitational wave
predictions [43–46,48,56].
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QlðxÞ ¼
1

2
PlðxÞ log

�
xþ 1

x − 1

�
−
Xl
k¼1

1

k
PkðxÞPl−kðxÞ: ð36Þ

Furthermore, we have defined the Wronskian

W½ϕþðxÞ;ϕ−ðxÞ�≡ ϕþðxÞ∂xϕ−ðxÞ − ϕ−ðxÞ∂xϕþðxÞ ¼ −
1

2xðx − 1Þ ; ð37Þ

where in the last step we have used Eq. (35). Thus the general perturbative solution simplifies to

ϕðxÞ ¼ bϕþðxÞ þ cϕ−ðxÞ − 2

Z
x
dy

�
ϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞÞy2SðϕðyÞ

�
: ð38Þ

At the zeroth order in α, the solution is of course just the homogeneous one,

ϕð0ÞðxÞ ¼ bð0ÞϕþðxÞ þ cð0Þϕ−ðxÞ: ð39Þ

Imposing regularity at the horizon selects ϕþ as the only solution, since ϕ− → logðr − rhÞ as r → rh. In other words, we set
cð0Þ ¼ 0 to obtain

ϕð0ÞðxÞ ¼ bð0ÞϕþðxÞ ¼ bð0ÞPlð2x − 1Þ: ð40Þ

Asymptotically, the mode functions behave as ϕþðrÞ ∼ rl and ϕ−ðrÞ ∼ r−l−1 for r → ∞. Since only ϕþ is allowed, and
grows asymptotically, this proves the vanishing of the scalar Love number in the free theory.
At first order in α, the general solution (38) gives

ϕð1ÞðxÞ ¼ cð1Þϕ−ðxÞ − 2

Z
x
dyðϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞÞy2Sðϕð0ÞðyÞÞ: ð41Þ

We have set bð1Þ ¼ 0 without loss of generality, since a ϕþ
contribution would only renormalize the zeroth-order
solution. Correspondingly, to avoid unnecessary super-
scripts, we will simply make the replacement bð0Þ → b and
write the zeroth-order solution in Eq. (39) as ϕð0ÞðxÞ ¼
bϕþðxÞ. Both the particular solution and ϕ− in Eq. (41)
may contain divergent terms at the horizon. In order for
the full solution to be regular at the horizon, the divergent
terms must cancel each other. This give a condition on the
free coefficient cð1Þ. The presence of a tail after imposing
boundary conditions is then interpreted as a tidal Love
number. In the next section we will compute the Love
numbers for different interacting scalar field theories.

IV. NONLINEARITIES IN THE TIDAL LOVE
NUMBERS: EXAMPLES

Following the above discussion on non-linearities in the
computation of the tidal Love numbers, we now consider
interacting scalar theories on a fixed Schwarzschild black
hole background and extract the corresponding tidal
response.

In this section we consider two classes of scalar self-
interactions: i) potential interactions of the power-law form
ϕn; and ii) higher-derivative interactions, specifically ð∂ϕÞ4.
We will find that a tail is generated both in the ϕn and ð∂ϕÞ4
cases, arising respectively at second order and first order in
perturbation theory. In Sec. V we will consider a third class
of interacting theories, namely the general nonlinear sigma
modelGIJðϕÞ∂ϕI

∂ϕJ. We will find that the nonlinear sigma
model is tail-less to all orders in perturbation theory, for
arbitrary target-space metric GIJðϕÞ.

A. Potential power-law interactions (OðϕÞ ∼ ϕn)

Let us first consider the action of a scalar field with a
power-law interaction,

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ϕÞ2 þ α

ϕn

n

�
; ð42Þ

with corresponding equation of motion

□ϕ ¼ αϕn−1: ð43Þ
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As outlined in Sec. III B, we solve this equation perturbatively in α, in the static limit ( _ϕ ¼ 0) and working with a spherical
harmonics decomposition. The zeroth-order solution, which is regular at the horizon, is given by Eq. (40). The first-order
solution is given by Eq. (41), which in this case gives

ϕð1ÞðxÞ ¼ cð1Þϕ−ðxÞ − 2bn−1
Z

x
dy

�
ϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞ

�
y2ðϕþðyÞÞn−1; ð44Þ

where we have substituted ϕð0Þ ¼ bϕþ within the source term. Crucially, since ϕþðyÞ is a Legendre polynomial, the source
term ∼ϕn−1þ ðyÞ inside the integral is also a polynomial. In other words, the general solution (44) is just a suitable linear
combination of terms of the form

ϕð1Þ
k ðxÞ ¼ cð1Þk ϕ−ðxÞ − 2

Z
x
dy

�
ϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞ

�
y2þk; ð45Þ

for non-negative integers k. As shown in Appendix A,

imposing regularity at the horizon fixes the constant cð1Þk to

cð1Þk ¼ 2
ðkþ 3 − lÞl
ðkþ 2Þlþ1

; ð46Þ

where ðqÞl ¼ ΓðqþlÞ
ΓðmÞ is the rising Pochhammer symbol. It is

straightforward to deduce that there is no tail associated to
this solution for any multipole, that is, the nonlinear Love
numbers vanish at first order for power-law interactions.
The details are given in Appendix A.

Importantly, however, a tail does manifest itself at order
α2. The reason is simple. The first-order solution includes
log terms. When substituted into the source term at second
order, the source integral generates a dilogarithm,
Li2ð1 − xÞ, which has a tail asymptotically. We will show
this explicitly for the simplest cases of quadratic (n ¼ 2)
and cubic (n ¼ 3) terms.
Quadratic case (n ¼ 2): Although a mass term does not

technically qualify as an interaction, it nicely illustrates all
the relevant physics, and has the technical advantage that
the source term is linear. Indeed, resurrecting the multipole
indices, Eq. (44) gives

ϕð1Þ
lmðxÞ ¼ cð1Þϕ−

lmðxÞ − 2b
Z

x
dy

�
ϕþ
lmðyÞϕ−

lmðxÞ − ϕ−
lmðyÞϕþ

lmðxÞ
�
y2ϕþ

lmðyÞ: ð47Þ

As advocated, different ðl; mÞ modes do not mix.
Let us focus on ðl; mÞ ¼ ð2; 0Þ for concreteness. The first-order solution (47), which is regular at the horizon, is

explicitly given by

ϕð1Þ
20 ðxÞ ¼

b
105

�
45x4 þ 15x3 − 44x2 þ 8ð6x2 − 6xþ 1Þ log x − 40xþ 24

�
: ð48Þ

Since this only features positive powers of x, there is no tail asymptotically. Therefore, the first nonlinear tidal Love number
is zero. However, let us draw our attention to the presence of a logarithmic term in the solution, which may indicate a mixing
between source and response. As shown in Appendix A, this term arises when the coefficient cð1Þ is chosen to cancel the
nonregular term logðx − 1Þ in the inhomogeneous source with the one contained in ϕ−ðxÞ, leaving a log x contribution in the
solution. This logarithm is also responsible for generating a tail at next order in perturbation theory.
The solution at order α2 is

ϕð2Þ
lmðxÞ ¼ cð2Þϕ−

lmðxÞ − 2

Z
x
dy

�
ϕþ
lmðyÞϕ−

lmðxÞ − ϕ−
lmðyÞϕþ

lmðxÞ
�
y2ϕð1Þ

lmðyÞ: ð49Þ

Notice that ϕð1Þ, and its logarithmic contribution, now appears under the integral. Focusing again on ðl; mÞ ¼ ð2; 0Þ, we
obtain
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b−1ϕð2Þ
20 ðxÞ ¼ −

64

11025
ð6x2 − 6xþ 1ÞLi2ð1 − xÞ þ 1

84
ðx6 þ…Þ þ 8

245
ðx4 þ…Þ log x; ð50Þ

where the ellipses denote lower, positive powers of x, and Li2ð1 − xÞ is the dilogarithm. The latter is regular at the horizon,
but generates inverse powers of x asymptotically:

ϕð2Þ
20 ðxÞ ⊃

64b
11025

�
−

1

6x
þ 1

24x2
þ 43 − 60 log x

1800x3
þO

�
1

x4

��
: ð51Þ

The relevant term for l ¼ 2 is the 1=x3 contribution. The presence of this term shows that the second-order nonlinear Love
number may be nonzero.
However, a note of caution should be stressed at this point. At the nonlinear level, a mixing between the source and the

response is present in the full solution ϕð2Þ. It is therefore unclear whether this tail should be interpreted as a response or a
subleading correction to the source. The situation is cleaner at the first nonlinear level, where we can track the presence of a
tail from the particular solution or from the homogeneous ϕ− solution. A possible resolution to this problem would require
analytic continuation, which, however, is not doable for operators of this form.
Cubic case (n ¼ 3): In this case the source is quadratic in the lower-order solution. At first order, Eq. (44) gives

ϕð1Þ
lmðxÞ ¼ cð1Þϕ−

lmðxÞ − 2b2
Z

x
dy

�
ϕþ
lmðyÞϕ−

lmðxÞ − ϕ−
lmðyÞϕþ

lmðxÞ
�
y2Clml1m1l2m2

ϕþ
l1m1

ðyÞϕþ
l2m2

ðyÞ; ð52Þ

where the Clebsch-Gordan coefficients Clml1m1l2m2
enforce the angular momentum selection rule l ¼ l1 ⊗ l2, and a sum

over the relevant values of l1, m1, l2, m2 is understood.
To give an example, let us focus on the contribution from the zeroth-order modes ðli; miÞ ¼ ð2; 0Þ. According to the

selection rules, they generate a response in the sectors

ðl1; m1Þ ⊗ ðl2; m2Þ ¼ ð2; 0Þ ⊗ ð2; 0Þ ¼ ð0; 0Þ; ð2; 0Þ; and ð4; 0Þ: ð53Þ

The ð2; 0Þ ⊗ ð2; 0Þ contributions to these sectors, imposing regularity at the horizon, are given by

ϕð1Þ
00 ðxÞ ¼

b2

210
ffiffiffi
π

p
�
90x6 − 144x5 þ 72x4 − 9x3 þ 4x2 þ 8x − 21þ 8 log x

�
;

ϕð1Þ
20 ðxÞ ¼

b2

84
ffiffiffiffiffiffi
5π

p
�
60x6 − 90x5 þ 45x4 − 11x2 − 10xþ 6þ 2ð6x2 − 6xþ 1Þ log x

�
;

ϕð1Þ
40 ðxÞ ¼

b2

4620
ffiffiffi
π

p
�
3240x6 − 2592x5 þ 2117x4 − 10504x3 þ 11034x2 − 3572xþ 277

þ 48ð70x4 − 140x3 þ 90x2 − 20xþ 1Þ log x
�
: ð54Þ

These have no tail at spatial infinity, i.e., the first nonlinear tidal Love number is zero. As in the quadratic case, notice the
presence of logarithmic terms, which indicate a possible mixing between source and response, and are responsible for
generating a tail at next order.
The solution at order α2 is

ϕð2Þ
lmðxÞ ¼ cð2Þϕ−

lmðxÞ − 4b
Z

x
dy

�
ϕþ
lmðyÞϕ−

lmðxÞ − ϕ−
lmðyÞϕþ

lmðxÞ
�
y2Clml1m1l2m2

ϕþ
l1m1

ðyÞϕð1Þ
l2m2

ðyÞ: ð55Þ

Notice that the source term now features ϕþðyÞϕð1ÞðyÞ. Focusing once again on the zeroth-order modes ðli; miÞ ¼ ð2; 0Þ,
the second-order solution receives contribution from all the modes generated at first order, i.e.,
ðl2; m2Þ ¼ ð0; 0Þ; ð2; 0Þ; ð4; 0Þ. The resulting ðl; mÞ ¼ ð2; 0Þ mode function, obtained by summing these several
contributions and imposing regularity, is given by
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b−3ϕð2Þ
20 ðxÞ ¼ −

17

5082π
ð6x2 − 6xþ 1ÞLi2ð1 − xÞ

þ 285

4004π
ðx10 þ…Þ þ 48

847π
ðx8 þ…Þ log x;

ð56Þ

where the ellipses denote lower, positive powers of x. The
important piece, as in Eq. (50), is Li2ð1 − xÞ, which once
again generates a 1=x3 tail near spatial infinity:

ϕð2Þ
20 ðxÞ⊃

17b3

5082π

�
−

1

6x
þ 1

24x2
þ 43− 60 logx

1800x3
þO

�
1

x4

��
:

ð57Þ

Similarly to the quadratic case, the second-order nonlinear
Love number may be different from zero, even though this
interpretation lacks support due to the possible mixing
between source and response.

B. Derivative interactions [OðϕÞ ∼ ð∂ϕÞ4]
As our second class of examples, consider a theory with

higher-derivative interactions,

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ϕÞ2 þ α

4
ð∂ϕÞ4

�
; ð58Þ

with corresponding equation of motion given by

□ϕ ¼ −αð∂ϕÞ2□ϕ − 2α∂μϕ∂νϕ∇μ∇νϕ: ð59Þ

As before, we solve this equation perturbatively in α, in the
static limit ( _ϕ ¼ 0) and working with a spherical harmonics
decomposition. In this case we will find that a tail is
generated already at first order.
The zeroth-order solution, regular at the horizon, is

given by Eq. (40). Since □ϕð0Þ ¼ 0, Eq. (59) at first order
reduces to

□ϕð1Þ ¼ −2α∂μϕð0Þ
∂
νϕð0Þ∇μ∇νϕ

ð0Þ: ð60Þ

As shown in Appendix B, by expanding in spherical
harmonics and using the properties of the Schwarzschild
background, this equation can be simplified to

Llϕ
ð1Þ
lm ¼ −2αb3

�
f2Clml1m1l2m2l3m3

ϕþ0
l1m1

�
ϕþ00
l3m3

þ f0

2f
ϕþ0
l3m3

�
þ 2

f
r2
CV13lm
l1m1l2m2l3m3

ϕþ
l1m1

ϕþ0
l3m3

�
ϕþ0
l2m2

− 2αb3
�
f
r3
CV12lm
l1m1;l2m2;l3m3

ϕl1m1
ϕþ0
l3m3

þ 1

r4
CT13;23lm
l1m1l2m2l3m3

ϕþ
l1m1

ϕþ
l3m3

�
ϕþ
l2m2

; ð61Þ

whereLl is defined in Eq. (32), and the scalar, vector and tensor Clebsch-Gordan coefficients are defined in Appendix B [see
Eq. (B8)]. Thus the source term is characterized by different contributions, which are all responsible for generating a tail in the
solution.
To give an example, consider the contribution from the zeroth-order modes ðli; miÞ ¼ ð2; 0Þ. At first order in αwe expect

the generation of modes

ðl1; m1Þ ⊗ ðl2; m2Þ ⊗ ðl3; m3Þ ¼ ð2; 0Þ ⊗ ð2; 0Þ ⊗ ð2; 0Þ ¼ ð0; 0Þ; ð2; 0Þ; ð4; 0Þ; and ð6; 0Þ: ð62Þ

Focusing on the response in the mode ðl; mÞ ¼ ð2; 0Þ, the solution at order α, after imposing proper boundary conditions,
reads

b−3ϕð1Þ
20 ðxÞ ¼ −

540

7π
ð6x2 − 6xþ 1Þð2Li2ð1 − xÞ þ log2xÞ − 17820

49πx
ðx5 þ…Þ − 810

49π
ð30x2 − 86xþ 33Þ log x: ð63Þ

The dilogarithm Li2ð1 − xÞ is once again responsible for generating a 1=x3 tail near spatial infinity:

ϕð1Þ
20 ðxÞ ⊃

b3

7π

�
−
135

x
þ 45

2x2
þ 3ð43 − 60 log xÞ

5x3
þO

�
1

x4

��
: ð64Þ

Therefore the first nonlinear Love number does not vanish for higher-derivative interacting theories.
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Given the examples shown in this section, we conclude
that the number of derivatives present in the relevant
operator describing the scalar field interactions seems to
provide a good indication of the vanishing or presence of a
tail in the field solution. In particular, from the proof briefly
described above and shown in Appendix A, a number of
derivatives larger than two seems to generate a source term
in the equation of motion□ϕ ¼ r−2h SðϕÞ ∼ xk, with k < 2,
that gives rise to a nonvanishing tail already at first order.
For potential interactions, the equation of motion leads to
logarithmic terms at first order, which results in a tail at
second order.

V. NONLINEAR SIGMA MODEL

As our final example case, we consider nonlinear sigma
models:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
GIJðϕÞ∂μϕI

∂
μϕJ

�
: ð65Þ

From a quantum field theory perspective, this class of
theories represents the closest scalar analog to General
Relativity. Indeed, like the Einstein-Hilbert term,
GIJðϕÞ∂ϕI

∂ϕJ contains exactly two derivatives and, in
principle, all powers of the field. Like General Relativity,
the nonlinear sigma model admits a geometric interpreta-
tion. The connection can be made quite precise, since
Einstein’s equations contain a Oð2; 1Þ σ model, irrespective
of the symmetries of the background [63]. As we will show
in this section, this class of interacting theory has exactly
vanishing Love number to all orders in perturbation theory.
For the example to be nontrivial, it is of course essential

that the metric function GIJ in general describes a curved
target space, such that the theory is not reducible to
decoupled free fields. By choosing a Riemann normal
coordinate at ϕI ¼ 0, the target space metric can be
expanded as

GIJ ¼ δIJ −
1

3
RIKJLð0ÞϕKϕL þOðϕ3Þ: ð66Þ

We will focus on the perturbative regime in which the
Riemann tensor RIKJLð0Þ and its covariant derivatives
∇ � � �∇RIKJLð0Þ are small and can be treated perturba-
tively. As long as the field space is not Riemann flat, this is
an interacting theory.
The equation of motion for ϕI is simply

□ϕI þ ΓI
KLðϕÞ∂μϕK

∂
μϕL ¼ 0; ð67Þ

where ΓI
KL denotes the Christoffel symbols associated with

GIJ. Therefore, by expanding ΓI
KL around the origin using

the Riemann normal coordinate, the perturbative series
solution can be defined.

Remarkably, we will prove that this model has no tail at
all orders in perturbation theory. The detailed proof, given
in Sec. V B, can be understood intuitively as follows. If the
field space is Riemann flat, then the theory can be reduced
to a number of decoupled free scalars, which we already
know are tail-less. On the other hand, one can choose field-
space coordinates such that the flat metric is expressed in
some nontrivial function of ϕI. Since this is just a field
redefinition of the free scalars, the solution in this basis also
has no tail, as long as the field redefinition can be done
perturbatively. Now, consider the more general case of a
nonflat target space. The key observation is that, when
Eq. (67) is solved perturbatively, there is no distinction
between a curved field space and a flat field space with a
nontrivial metric. Therefore there is no tail in general.

A. Explicit example

Before giving the general proof, it is instructive to work
out an explicit example with two scalar fields ϕ and χ.
Consider the interacting theory

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð1þ 2βϕÞð∂ϕÞ2 þ 1

2
ð∂χÞ2

þ αϕχ∂μϕ∂
μχ

�
; ð68Þ

corresponding to the field space metric

Gϕϕ ¼ 1þ 2βϕ; Gϕχ ¼Gχϕ ¼ αϕχ; Gχχ ¼ 1: ð69Þ

It is easy to check that this metric is not Riemann flat, as
long as α ≠ 0. The coefficient β explicitly breaks the
exchange symmetry ϕ ↔ χ, and ensures that the absence
of tails demonstrated below is not an artefact of this
symmetry.
The equations of motion can be expressed as

□ϕ¼ α2χ2ϕ− β

1− α2χ2ϕ2 þ 2βϕ
ð∂ϕÞ2 þ αϕ

1− α2χ2ϕ2 þ 2βϕ
ð∂χÞ2

□χ ¼ αβχϕþ αχ

1− α2χ2ϕ2 þ 2βϕ
ð∂ϕÞ2 − α2χϕ2

1− α2χ2ϕ2 þ 2βϕ
ð∂χÞ2:

ð70Þ

As before, we work in the static limit ( _ϕ ¼ _χ ¼ 0) and
decompose the fields in spherical harmonics. Furthermore,
we solve the equations perturbatively in α and β, treating
these as the same order in the expansion. In other words, the
fields are expanded perturbatively as

ϕ ¼ ϕð0Þ þ ϕð1Þ þ ϕð2Þ þ…;

χ ¼ χð0Þ þ χð1Þ þ χð2Þ þ…; ð71Þ
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where ϕð1Þ ¼ αϕð1;0Þ þ βϕð0;1Þ, ϕð2Þ ¼ α2ϕð2;0Þ þ β2ϕð0;2Þ þ αβϕð1;1Þ, etc.
The zeroth-order equations are just □ϕð0Þ ¼ □χð0Þ ¼ 0, with regular solution given as before by

ϕð0ÞðxÞ ¼ χð0ÞðxÞ ¼ bϕþðxÞ: ð72Þ

At first order in α and β, the equations of motion simplify to

□ϕð1Þ ¼ −αϕþð∂χð0ÞÞ2 − βð∂ϕð0ÞÞ2;
□χð1Þ ¼ −αχð0Þð∂ϕð0ÞÞ2: ð73Þ

As shown in Appendix C, expanding in spherical harmonics and using the properties of the Schwarzschild background,
these equations can be simplified to

Llϕ
ð1Þ
lm ¼ −αb3

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�
ϕþ
l3m3

− βb2
�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2

�
;

Llχ
ð1Þ
lm ¼ −αb3

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�
ϕþ
l3m3

; ð74Þ

in terms of properly defined scalar, vector and tensor Clebsch-Gordan coefficients. Notice that, since ϕ and χ are identical at
zeroth order, the solutions will be symmetric at first order in α. However, the presence of the interaction term with coupling
β breaks this symmetry, leading to different solutions for the two fields.
Similarly to what was done in the previous examples, let us consider a zeroth-order mode ðli; miÞ ¼ ð2; 0Þ, which will

generate at first order the following modes due to selection rules ðl; mÞ ¼ ðl1; m1Þ ⊗ ðl2; m2Þ ⊗ ðl3; m3Þ ¼
ð0; 0Þ; ð2; 0Þ; ð4; 0Þ; ð6; 0Þ. The corresponding solutions for ϕð1Þ are

ϕð1Þ
00 ðxÞ ¼ −αb3

3
ffiffiffi
5

p

14π
ðx − 1Þxð12x4 − 24x3 þ 18x2 − 6xþ 1Þ − βb2

3ffiffiffi
π

p ðx − 1Þxð3x2 − 3xþ 1Þ;

ϕð1Þ
20 ðxÞ ¼ −αb3

15

14π
xð3x2 − 3xþ 1Þð6x3 − 12x2 þ 7x − 1Þ − βb2

3

7

ffiffiffi
5

π

r
xð6x3 − 12x2 þ 7x − 1Þ;

ϕð1Þ
40 ðxÞ ¼ αb3

3
ffiffiffi
5

p

77π
ðx − 1Þxð−108x4 þ 216x3 − 127x2 þ 19xþ 1Þ þ βb2

3

7
ffiffiffi
π

p ðx − 1Þxð17x2 − 17xþ 4Þ;

ϕð1Þ
60 ðxÞ ¼ αb3

45

154π

ffiffiffiffiffi
5

13

r
ðx − 1Þxð118x4 − 236x3 þ 163x2 − 45xþ 4Þ: ð75Þ

The solutions for χð1Þ are simply obtained by setting β ¼ 0 in the above, i.e., χð1Þlm ¼ ϕð1Þ
lmjβ¼0. Evidently, none of these

solutions have a tail at spatial infinity, hence the first-order nonlinear Love number vanishes for this multifield target space
theory. Furthermore, in contrast with the power-law examples [see Eqs. (47) and (52)], notice that the first-order solutions
do not have any log x term. This suggests that dilogarithms will not be generated at second order, and we will confirm that
this is indeed the case.
At the next-to-leading order, that is at order α2, β2 and αβ, the equations of motion become

□ϕð2Þ ¼ α2ϕð0Þχð0Þ2ð∂ϕð0ÞÞ2 − αϕð1Þð∂χð0ÞÞ2 − 2αϕð0Þ
∂
μχð0Þ∂μχð1Þ þ 2αβϕð0Þ2ð∂χð0ÞÞ2 þ 2β2ϕð0Þð∂ϕð0ÞÞ2 − 2β∂μϕð0Þ

∂μϕ
ð1Þ;

□χð2Þ ¼ α2χð0Þϕð0Þ2ð∂χð0ÞÞ2 − αχð1Þð∂ϕð0ÞÞ2 − 2αχð0Þ∂μϕð0Þ
∂μϕ

ð1Þ þ αβϕð0Þχð0Þð∂ϕð0ÞÞ2: ð76Þ

As shown in Appendix C, these can be rewritten as
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Llϕ
ð2Þ
lm ¼ α2b5ϕþ

l3m3
ϕþ
l4m4

ϕþ
l5m5

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;…;l5m5
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;…;l5m5

�

− αb2ϕð1Þ
l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�

− 2αb2ϕþ
l3m3

�
fχð1Þ0l1m1

ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
χð1Þl1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�

þ 2αβb4ϕþ
l3m3

ϕþ
l4m4

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;…;l4m4
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12;lm
l1m1;…;l4m4

�

þ 2β2b3ϕþ
l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12;lm
l1m1;l2m2;l3m3

�

− 2βb

�
fϕð1Þ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2
þ 1

r2
ϕð1Þ
l1m1

ϕþ
l2m2

CV12;lm
l1m1;l2m2

�
; ð77Þ

and

Llχ
ð2Þ
lm ¼ α2b5ϕþ

l3m3
ϕþ
l4m4

ϕþ
l5m5

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;…;l5m5
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;…;l5m5

�

− αb2χð1Þl3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�

− 2αb2ϕþ
l3m3

�
fϕð1Þ0

l1m1
ϕþ0
l2m2

Clml1m1;l2m2;l3m3
þ 1

r2
ϕð1Þ
l1m1

ϕþ
l2m2

CV12lm
l1m1;l2m2;l3m3

�

þ αβb4ϕþ
l3m3

ϕþ
l4m4

�
fϕþ0

l1m1
ϕþ0
l2m2

Clml1m1;…;l4m4
þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

CV12;lm
l1m1;…;l4m4

�
: ð78Þ

Following the example above, we can investigate the response in the mode ðl; mÞ ¼ ð2; 0Þ. Taking into account the
contributions coming from the various mixings due to the angular momentum selection rules, we get

ϕð2Þ
20 ðxÞ ¼ ðx − 1Þxð6x2 − 6xþ 1Þ



β2b3

60

7π
ð3x2 − 3xþ 1Þ þ αβb4

15
ffiffiffi
5

p

154π3=2
ð279x4 − 558x3 þ 411x2 − 132xþ 20Þ

þ α2b5
75

8008π2

�
13167x6 − 39501x5 þ 48171x4 − 30507x3 þ 10743x2 − 2073xþ 212

��
;

χð2Þ20 ðxÞ ¼ ðx − 1Þxð6x2 − 6xþ 1Þ


αβb4

15
ffiffiffi
5

p

154π3=2
ð132x4 − 264x3 þ 195x2 − 63xþ 10Þ

þ α2b5
75

8008π2

�
13167x6 − 39501x5 þ 48171x4 − 30507x3 þ 10743x2 − 2073xþ 212

��
: ð79Þ

These have no tail, hence the second-order nonlinear Love number vanishes. Furthermore, notice once again the absence of
any log x term, which suggests that dilogarithms will not be generated at the next order.

B. Proof: Nonlinear sigma models generate no tail to all orders in perturbation theory

Let us now prove that the nonlinear sigma model (65) generates no tail at all orders in perturbation theory, for arbitrary
target-space metric.
The starting point is to consider a single field model, with target space metric GðϕÞ. The equation of motion reads

□ϕ ¼ −
1

2
GðϕÞ−1∂ϕGðϕÞð∂ϕÞ2: ð80Þ
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Provided that the field space metric is nonsingular, one can
always find a field redefinition ϕðχÞ, such that χ solves
□χ ¼ 0. Since the solution for χ has no tail at any order, the
perturbative series of ϕ, assuming that GðϕÞ is sufficiently
regular for the series to exist, can be obtained readily and
will have no tail.
Let us take a simple example with one single expansion

parameter α, and rewrite the equation of motion as

□ϕ ¼
X∞
k¼0

ckαkþ1ϕkð∂ϕÞ2: ð81Þ

The perturbative series

ϕ ¼
X∞
i¼0

αiϕðiÞ ¼ ϕð0Þ þ αϕð1Þ þ α2ϕð2Þ þ… ð82Þ

solves the equation of motion order by order in α by

□ϕðnÞ ¼
X
k

ck
X

P
j
mjþpþqþkþ1¼n

Yk
j¼1

ϕðmjÞ∂μϕðpÞ
∂
μϕðqÞ:

ð83Þ

Since the coefficients ck are independent, each source term
labeled by k on the right-hand side,

X
P

j
mjþpþqþkþ1¼n

Yk
j¼1

ϕðmjÞ∂μϕðpÞ
∂
μϕðqÞ; ð84Þ

does not give rise to any tail in ϕðnÞ individually. One can
also observe that the solution for lower-order ϕðmiÞ will
depend on cmi−1, we can then further conclude that each
term of the form

X
σ

Yk
j¼1

ϕðσðjÞÞ
∂μϕ

ðσðjþ1ÞÞ
∂
μϕðσðjþ2ÞÞ; ð85Þ

with σ being the permutation set of fixed fm1;…; mk; p; qg,
does not give rise to any tail in ϕðnÞ. Furthermore, the ϕðnÞ
obtained from individual lower-level source terms will not
generate tails for ϕðn0Þjn0>n at higher orders subsequently.
With the above knowledge at hand, let us return to the

multifield case in Eq. (67). It can be written as

□ϕI ¼
X
i

cIKLjM1…Mi
ϕM1 � � �ϕMi∂μϕ

K
∂
μϕL; ð86Þ

as long as the metricGIJðϕÞ is regular for the series to exist.
When this equation is solved perturbatively at n th order,
every term on the right-hand side,

ϕM1 � � �ϕMi∂μϕ
K
∂
μϕL; ð87Þ

takes the explicit solutions of ϕJ from lower order and
therefore has exactly the same form as Eq. (83), with
explicit solutions of the field substituted in. From the
argument of a single field, we can conclude that ϕIðnÞ do not
have tails at all orders in perturbation theory.

VI. CONCLUSIONS

Tidal Love numbers describe the tidal response of
compact objects under the presence of external perturba-
tions and thus provide insightful information on their
structure and interior. Within Einstein gravity, the Love
numbers of black holes are found to be exactly zero for
scalar, vector and tensor perturbations. This result has been
obtained assuming linear order in perturbation theory.
However, gravity is by itself a nonlinear theory, so non-
linearities could be important in the estimate of the tidal
Love numbers.
In this work we investigated the role of nonlinearities in

the computation of the tidal Love numbers, focusing on
external scalar perturbations on the background of a
Schwarzschild black hole. We first studied which kind
of nonlinearities may be involved in the theory. The first
kind is based on going beyond linear response theory,
usually assumed when one considers Love numbers. The
second, which is the main focus of this work, is in the sector
of external perturbations.
In particular, we studied interacting scalar fields on a black

hole background and computed the Love numbers for
different types of scalar interactions, treating the interactions
in a perturbative expansion. For power-law interactions, we
found that the Love numbers are still zero at first order in
perturbation theory, butmaybedifferent fromzero at next-to-
next-to-leading order, even though a proper claim should be
made only once the issue of source-response mixing is
solved. For higher-derivative interactions, we found that the
Love numbers are nonvanishing already at first order. Our
most interesting class of interacting scalar theories is the
nonlinear sigma model. Here we found, remarkably, that the
Love numbers vanish to all orders in perturbation theory. It
would be very interesting to see whether this is the conse-
quence of a symmetry.
Our work is intended only as a first step in understanding

the role of nonlinearities in the tidal deformability of black
holes and, as such, it can be extended in several ways.
Firstly, understanding how to disentangle the source and
response at nonlinear level is crucial to properly extract
Love numbers from the full relativistic solution. Secondly,
it would be interesting to determine the size of the response
when going beyond the assumption of linear response
theory (the first kind of nonlinearity we mention) compared
to the ones arising from the theory. Finally, while we
focused on the interesting case of interacting scalar
perturbations around black holes, in principle external
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tensor perturbations are the relevant one for a binary black
hole system, which could be detected at present and future
gravitational wave experiments. In this case, Einstein
gravity already provides nonlinearities in the game, and
these have recently received attention in the context of
black hole quasinormal modes and ringdown [50–56]. We
plan to investigate these issues in future work.
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APPENDIX A: VANISHING TAIL FOR SOURCE OF THE FORM yk, k ≥ − 2, IN EQ. (45)

We give some analytic properties for the solution (45) with the source of the form S ∼ yk for integers k,

ϕð1Þ
k ðxÞ ¼ cð1Þk ϕ−ðxÞ − 2

Z
x
dy

�
ϕþðyÞϕ−ðxÞ − ϕ−ðyÞϕþðxÞ

�
y2þk; ðA1Þ

From the explicit expression of ϕ− in Eqs. (35) and (36),

ϕ−ðxÞ ¼ 1

2
ϕþðxÞ log

�
x

x − 1

�
þ
X
j

bjxj; ðA2Þ

we see that only the first term 1
2
ϕþðxÞ log

�
x

x−1

�
is relevant for any fall-off tail at large r. Therefore, in the inhomogeneous

part we can focus on

−
Z

x
dy

�
ϕþðyÞϕþðxÞ log

�
x

x − 1

�
− ϕþðyÞ log

�
y

y − 1

�
ϕþðxÞ

�
y2þk

¼ ϕþðxÞ
�
− log

�
x

x − 1

�Z
x
dyϕþðyÞy2þn þ

Z
x
dyϕþðyÞ log

�
y

y − 1

�
y2þk

�

¼ −ϕþðxÞ
Z

x
dy

�Z
y
dzϕþðzÞz2þk

�
d
dy

log

�
y

y − 1

�

¼ ϕþðxÞ
Z

x
dy

� X2þkþl

m¼2þk;m≠−1

amymþ1

mþ 1
þ a−1 log y

�
1

yðy − 1Þ

¼ ϕþðxÞ
� X−2
m¼2þk

am
mþ 1

�
log

�
x − 1

x

�
−
X−1
j¼m

xj

j

�
− a−1

�
Li2ð1 − xÞ þ 1

2
log2x

�

þ
X2þnþl

m¼maxf0;2þkg

am
mþ 1

�
logðx − 1Þ þ

Xm
j¼1

xj

j

��
; ðA3Þ

where in the third equality we have used the fact that ϕþðzÞz2þk can always be written in the form
P

m amzm. We therefore

find that only when k ≥ −2 there is no powers of 1x, and the coefficient c
ð1Þ
k is also fixed by the regular boundary condition at

the horizon,

cð1Þk ¼ 2
X2þkþl

m¼2þk

am
mþ 1

¼ 2
ðkþ 3 − lÞl
ðkþ 2Þlþ1

; ðA4Þ

where ðqÞl ¼ ΓðqþlÞ
ΓðqÞ is the rising factorial.
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APPENDIX B: SIMPLIFICATION OF THE SOURCE TERM FOR ð∂ϕÞ4
In this appendix we show how the source term for the ð∂ϕÞ4 interaction can be simplified. Equation (60) for the first-order

field is

□ϕð1Þ ¼ −2α∂μϕð0Þ
∂
νϕð0Þ∇μ∇νϕ

ð0Þ: ðB1Þ

By expanding the field in spherical harmonics, the derivative and two gradients terms become

∂
aϕ ¼ gac∂cϕ ¼ gacðYlm∂cϕlm þ ϕlmYlm;cÞ;

∇b∇aϕ ¼ Ylm∇b∇aϕlm þ Ylm;b∂aϕlm þ Ylm;a∂bϕlm þ ϕlmYlm;ba; ðB2Þ

where we have used the compact notation ∇aYlm ¼ ∂aYlm ≡ Ylm;a. Putting everything together, we get

�
Llϕ

ð1Þ
lm

�
Ylm ¼ −2αb3gacgbd

�
Yl1m1

Yl2m2
∂cϕ

þ
l1m1

∂dϕ
þ
l2m2

þ Yl2m2
Yl1m1;cϕ

þ
l1m1

∂dϕ
þ
l2m2

þ Yl1m1
Yl2m2;d∂cϕ

þ
l1m1

ϕþ
l2m2

þ Yl1m1;cYl2m2;dϕ
þ
l1m1

ϕþ
l2m2

�

×

�
Yl3m3

∇b∇aϕ
þ
l3m3

þ Yl3m3;b∂aϕ
þ
l3m3

þ Yl3m3;a∂bϕ
þ
l3m3

þ Yl3m3;baϕ
þ
l3m3

�
: ðB3Þ

For a Schwarzschild background, some of these terms are null. What is left is

ðLlϕ
ð1Þ
lmÞYlm ¼ −2αb3

�
Yl1m1

Yl2m2
Yl3m3

grrgrrϕþ0
l1m1

ϕ0
l2m2

∇r∇rϕ
þ
l3m3

þ 2gacYl2m2
Yl3m3;aYl1m1;cg

rrϕþ
l1m1

ϕþ0
l2m2

ϕþ0
l3m3

þ gacgbdYl1m1;cYl2m2;dYl3m3
ϕþ
l1m1

ϕþ
l2m2

∇b∇aϕ
þ
l3m3

þ gacgbdYl1m1;cYl2m2;dYl3m3;baϕ
þ
l1m1

ϕþ
l2m2

ϕþ
l3m3

�
;

ðB4Þ

Using grr ¼ f, together with

∇r∇rϕ
þ
l3m3

¼ ϕþ00
l3m3

− Γr
rrϕ

þ0
l3m3

¼ ϕþ00
l3m3

þ f0

2f
ϕþ0
l3m3

;

∇θ∇θϕ
þ
l3m3

¼ −Γr
θθϕ

þ0
l3m3

¼ rfϕþ0
l3m3

;

∇φ∇φϕ
þ
l3m3

¼ −Γr
φφϕ

þ0
l3m3

¼ rfsin2θϕþ0
l3m3

; ðB5Þ

Eq. (B4) simplifies to

ðLlϕ
ð1Þ
lmÞYlm ¼ −2αb3

�
f2Yl1m1

Yl2m2
Yl3m3

ϕþ0
l1m1

ϕþ0
l2m2

�
ϕþ00
l3m3

−
f0

2f
ϕþ0
l3m3

�
þ 2

f
r2
γacYl2m2

Yl3m3;aYl1m1;cϕ
þ
l1m1

ϕþ0
l2m2

ϕþ0
l3m3

þ f
r3

γbdYl1m1;cYl2m2;dYl3m3
ϕþ
l1m1

ϕþ
l2m2

ϕþ0
l3m3

þ 1

r4
γacγbdYl1m1;cYl2m2;dYl3m3;baϕ

þ
l1m1

ϕþ
l2m2

ϕþ
l3m3

�
; ðB6Þ

where γab now denotes the metric on the unit 2-sphere.
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Multiplying both sides with Y�
lm and integrating over the solid angle gives

Llϕ
ð1Þ
lm ¼ −2αb3



f2ϕþ0

l1m1
ϕþ0
l2m2

�
ϕþ00
l3m3

−
f0

2f
ϕþ0
l3m3

�Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lm

þ 2
f
r2

ϕþ
l1m1

ϕþ0
l2m2

ϕþ0
l3m3

Z
dΩγabYl1m1;aYl2m2

Yl3m3;bY
�
lm

þ f
r3
ϕþ
l1m1

ϕþ
l2m2

ϕþ0
l3m3

Z
dΩγcdYl1m1;cYl2m2;dYl3m3

Y�
lm

þ 1

r4
ϕþ
l1m1

ϕþ
l2m2

ϕþ
l3m3

Z
dΩγacγbdYl1m1;cYl2m2;dYl3m3;baY

�
lm

�
: ðB7Þ

The above integrals can be collected as scalar, vector and tensor Clebsch-Gordan coefficients, defined as

Clml1m1l2m2l3m3
≡

Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lm;

CV13lm
l1m1l2m2l3m3

≡
Z

dΩγabYl1m1;aYl2m2
Yl3m3;bY

�
lm;

CT13;23lm
l1m1l2m2l3m3

≡
Z

dΩγacγbdYl1m1;cYl2m2;dYl3m3;baY
�
lm: ðB8Þ

Thus, the equation of motion becomes

Llϕ
ð1Þ
lm ¼ −2αb3

�
f2Clml1m1l2m2l3m3

ϕþ0
l1m1

�
ϕþ00
l3m3

þ f0

2f
ϕþ0
l3m3

�
þ 2

f
r2
CV13lm
l1m1l2m2l3m3

ϕþ
l1m1

ϕþ0
l3m3

�
ϕþ0
l2m2

− 2αb3
�
f
r3
CV12lm
l1m1;l2m2;l3m3

ϕl1m1
ϕþ0
l3m3

þ 1

r4
CT13;23lm
l1m1l2m2l3m3

ϕþ
l1m1

ϕþ
l3m3

�
ϕþ
l2m2

: ðB9Þ

This matches Eq. (61) in the main text.

APPENDIX C: SIMPLIFICATION OF THE SOURCE TERM FOR THE NONLINEAR SIGMA MODEL

In this appendix we provide the computation for the source term in Eq. (74) at first order, and in Eqs. (77)–(78) at second
order, for the example case described for the nonlinear sigma model.

A. First-order equations

The equations of motion for the fields at first order in α and β are given in Eq. (73) as

□ϕð1Þ ¼ −αϕþð∂χð0ÞÞ2 − βð∂ϕð0ÞÞ2;
□χð1Þ ¼ −αχð0Þð∂ϕð0ÞÞ2: ðC1Þ

Expanding in spherical harmonics and specializing to the Schwarzschild background, the equations become

ðLlϕ
ð1Þ
lmÞYlm ¼ −αb3ϕþ

l3m3
Yl3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Yl1m1
Yl2m2

þ 1

r2
γabϕþ

l1m1
ϕþ
l2m2

Yl1m1;aYl2m2;b

�

− βb2
�
fϕþ0

l1m1
ϕþ0
l2m2

Yl1m1
Yl2m2

þ 1

r2
γabϕþ

l1m1
ϕþ
l2m2

Yl1m1;aYl2m2;b

�
;

ðLlχ
ð1Þ
lmÞYlm ¼ −αb3ϕþ

l3m3
Yl3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Yl1m1
Yl2m2

þ 1

r2
γabϕþ

l1m1
ϕþ
l2m2

Yl1m1;aYl2m2;b

�
: ðC2Þ

Multiplying both sides with Y�
lm and integrating over the solid angle gives
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Llϕ
ð1Þ
lm ¼ −αb3ϕþ

l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lm þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bYl3m3

Y�
lm

�

− βb2
�
fϕþ0

l1m1
ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Y�
lm þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bY

�
lm

�
;

Llχ
ð1Þ
lm ¼ −αb3ϕþ

l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lm þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bYl3m3

Y�
lm

�
: ðC3Þ

By introducing scalar and vector Clebsch-Gordan coefficients, the equations take the simplified form given by Eq. (74).

B. Second-order equations

The equations of motion at second order in perturbation theory, given by Eq. (76), are reproduced here for convenience:

□ϕð2Þ ¼ α2ϕð0Þχð0Þ2ð∂ϕð0ÞÞ2 − αϕð1Þð∂χð0ÞÞ2 − 2αϕð0Þ
∂
μχð0Þ∂μχð1Þ þ 2αβϕð0Þ2ð∂χð0ÞÞ2 þ 2β2ϕð0Þð∂ϕð0ÞÞ2 − 2β∂μϕð0Þ

∂μϕ
ð1Þ;

□χð2Þ ¼ α2χð0Þϕð0Þ2ð∂χð0ÞÞ2 − αχð1Þð∂ϕð0ÞÞ2 − 2αχð0Þ∂μϕð0Þ
∂μϕ

ð1Þ þ αβϕð0Þχð0Þð∂ϕð0ÞÞ2: ðC4Þ

Following similar steps as before, the ϕ equation of motion becomes

Llϕ
ð2Þ
lm ¼ α2b5ϕþ

l5m5
ϕþ
l4m4

ϕþ
l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Yl3m3

Yl4m4
Yl5m5

Y�
lm

þ 1

r2
ϕþ
l1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bYl3m3

Yl4m4
Yl5m5

Y�
lm

�

−αb3ϕð1Þ
l3m3

�
fϕþ0

l1m1
ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lmþ 1

r2
ϕþ
l1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bYl3m3

Y�
lm

�

− 2αb3ϕþ
l3m3

�
fχð1Þ0l1m1

ϕþ0
l2m2

Z
dΩYl1m1

Yl2m2
Yl3m3

Y�
lmþ 1

r2
χð1Þl1m1

ϕþ
l2m2

Z
dΩγabYl1m1;aYl2m2;bYl3m3

Y�
lm

�
: ðC5Þ

Expressing the angular integrals as scalar and vector Clebsch-Gordan coefficients, one obtains Eq. (77). The derivation of

Eq. (78) for χð2Þlm proceeds almost identically.
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