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In this work, we investigated Bayesian methodologies for constraining in the Solar System a Yukawa
suppression of the Newtonian potential—which we interpret as the effect of a non-null graviton mass—by
considering its impact on planetary orbits. Complementary to the previous results obtained with INPOP
(Intégrateur Numérique Planétaire de l’Observatoire de Paris) planetary ephemerides, we consider here a
Markov chain Monte Carlo approach associated with a Gaussian process regression for improving the
resolution of the constraints driven by planetary ephemerides on the graviton mass in the Solar System. At
the end of the procedure, a posterior for the mass of the graviton is presented, providing an upper bound at
1.01 × 10−24 eV c−2 (respectively, λg ≥ 122.48 × 1013 km) with a 99.7% confidence level. The threshold
value represents an improvement of 1 order of magnitude relative to the previous estimations. This updated
determination of the upper bound is mainly due to the Bayesian methodology, although the use of new
planetary ephemerides (INPOP21a used here versus INPOP19a used previously) already induces a gain of
a factor of 3 with respect to the previous limit. The INPOP21a ephemerides are characterized by the
addition of new Juno and Mars orbiter data but also by a better Solar System modeling, with notably a more
realistic model of the Kuiper belt. Finally, by testing the sensitivity of our results to the choice of the
a priori distribution of the graviton mass, it turns out that the selection of a prior more favorable to zero-
mass graviton (that is, here, general relativity) seems to be more supported by the observations than
nonzero mass graviton, leading to a possible conclusion that planetary ephemerides are more likely to favor
general relativity.
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I. INTRODUCTION

Planetary ephemerides have evolved with the observa-
tional accuracy obtained for the astrometry of planets and
natural satellites thanks to the navigation tracking of

spacecraft orbiting these systems. Since the late 19th
century the astrometry of planets has known a significant
improvement leading to an increased accuracy of the
dynamical theories describing their motions. The motion
of the planets and asteroids in our Solar System can be
solved directly by the numerical integration of their
equations of motion. The improved (present and future)
accuracy in the measurements of observables from space
missions like Cassini-Huygens, Mars Express, Venus
Express, BepiColombo etc. makes the Solar System a
suitable arena to test general relativity theory (GRT) as well
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as alternative theories of gravity by mean of Solar System
ephemerides. INPOP (Intégrateur Numérique Planétaire de
l’Observatoire de Paris) planetary ephemerides are devel-
oped since 2003, integrating numerically the Einstein-
Infeld-Hoffmann equations of motion proposed by [1,2],
and fitting the parameters of the dynamical model to the
most accurate planetary observations following [3]. Testing
alternative theories of gravity with planetary ephemerides
consist in changing the metric of GRT into alternative
frameworks and consequently modifying the equations of
motion, the light time computation and the definition of
timescales used for the construction of planetary ephemeri-
des (see Ref. [4] for a review). In principle, such modifica-
tions of GRT can be summarized as considering additional
terms to GRT fundamental equations, such as a Yukawa
suppression of the Newtonian potential. At the phenomeno-
logical level, a mass of the gravitational interaction1 is often
assumed to either lead to a modification of the dispersion
relation of gravitational waves [5] or to lead to a Yukawa
suppression of theNewtonian potential2 [8]. Recently3 in [9],
Will argued that Solar System observations and planetary
dynamics could be used to improve the constraints on the
mass of the gravitonmg. HoweverWill used results based on
statistics of postfit residuals of the Solar System ephemerides
that are performed without including the effect of a massive
graviton inside the equations ofmotion. In order to overcome
the consistency issues that are raised by such type of analyses
—that is, which are based on postfit residuals—we inves-
tigate an original approach that is based on a statistical
inference of the mass of the graviton mg within the
framework of INPOP as presented in [10,11].
In this work, the approach we decided to use is partially

Bayesian and several tools like Markov chain Monte Carlo
(MCMC), Gaussian process and Bayes factor are
employed, in order to exploit at the best the values of
INPOP χ2. Contrarily to [11], a full posterior distribution of
the graviton mass mg is deduced, using a Metropolis-
Hastings algorithm which optimizes the information con-
tained in such a distribution, and a Gaussian process
regression which improves the resolution of the search
process. Moreover, by considering two different assump-
tions for the a priori distribution of the graviton mass mg,
we are able (i) with an uniform distribution, to give a new
upper limit for mg, improving the limit by a factor of 30
relative to [11] (see Secs. III B and III B 2) and (ii) with a
Laplace distribution, to demonstrate that, with the present
accuracy of the planetary ephemerides, GRT is sufficient
for explaining the observations (see Sec. III C). In other
words we can infer that the nowadays planetary ephemerides

tend to prefer a non-massive graviton. In the Appendix, we
give more details on the methods applied.

II. THEORETICAL FRAMEWORK

A. Massive graviton phenomenology

There is not an unique definition of what a massive
gravity may mean [7]. Massive interactions usually lead to
a Yukawa suppression of those interactions on the scale of
the Compton wavelength, λg. But gravity is different, and
therefore it may not be the case for a fully consistent theory
of massive gravity [7]. Nevertheless, from a phenomeno-
logical point of view [8], one can test whether or not there is
a Yukawa suppression of the gravitational potentials at the
level of the Solar System—see, e.g., [6,9] and references
therein. Let us note that, while one often talks about a
“graviton mass” in the literature [6,9], the word “graviton”
is mostly used for convenience since everything is consid-
ered at the classical level only. (The same way that some
may use the word “photon” for classical electrodynamics).
Formally, this would lead to the following modification of
the Newtonian potential wNewton [6,9]

w ¼ wNewton expð−r=λgÞ; ð1Þ
which can be developed as [10]

w ¼ wNewton

�
1þ 1

2

r2

λ2g

�
þOðλ−3g Þ; ð2Þ

after a convenient change of coordinate system that absorbs
the constant term in the gravitational potential, and which
has no impact on the observables. By analogy with standard
quantum physics, the Compton length can also be inter-
preted in terms of a mass of the graviton mg following the
relation

λg ¼
ℏ

cmg
; ð3Þ

with ℏ the Planck constant, and c the speed of light. (In
some sense this is also one of the reasons why, beyond
simple convenience, one often talks about a “graviton
mass” despite working at the classical level, since the
translation of the Yukawa suppression length in terms of a
mass involves the quantum of action ℏ.) In that situation,
the equation of motion has only one extra term with res-
pect to the usual Einstein-Infeld-Hoffmann-Droste-Lorentz
equations that reads

δai ¼ 1

2

X
P

μP
c2m2

g

ℏ2

xi − xiP
r

þOðm3
gÞ; ð4Þ

where μP is the gravitational parameter μP ¼ GMP. Further
assuming that light still propagates along null geodesics,
the Shapiro delay reads

1Reported as the mass of the graviton in the rest of the paper,
for convenience.

2For more information on the status of current theoretical
models of massive gravity, we refer the reader to [6,7].

3Following his more-than-20-years-old seminal work [8].
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cðtr − teÞ ¼ cðtr − teÞGRT
þ
X
A

μA
c2

c2m2
g

2ℏ2
ln

�
b2

n · rrA þ rrA
n · reA þ reA

þ n · ðrrArrA − reAreAÞ
�
þOðm3

gÞ: ð5Þ

The term cðtr − teÞGRT corresponds to the GRT light time,
b is the minimal distance between the light path and the
central body (here the Sun). This expression is an approxi-
mation at the c−2 level. Let us note, however, that the
correction to the Shapiro delay due to the graviton mass has
been found to be negligible in practice as it was discussed
in [10] using the Compton wavelength formalism.
In [10,11], planetary ephemerides have been fully

developed in the massive gravity framework of Eqs. (4)
and (5) using the equivalent Compton wavelength formal-
ism and fitted over the data sample for INPOP17a and
INPOP19a, respectively. The results of these investigations
are gathered in [4].
It is somewhat interesting to compare these constraints to

the ones deduced from the observation of gravitational
waves [8,9]. Indeed, one can assume that a massive
gravitational field that leads to Eq. (1) might also modify
the dispersion relation of gravitational waves as follows
[8,12]:

E2 ¼ p2c2 þmgc2; ð6Þ

where E and p are the energy and momentum of the wave.
Such a modified dispersion relation causes gravitational
wave frequency modes to propagate at different speeds,
leading to an overall modification of the phase morphology
of gravitational waves with respect to the GRT predictions.
Since the morphology of gravitational wave phase has
been consistent with general relativity so far, it led to
severe constraints on the value of the graviton mass: mg ≤
1.27 × 10−23 eV c−2 at 90% confidence level [5], where-
as previous results with ephemerides were at the few
10−23 eV c−2 level [11].
Each type of constraints is relevant in its own right given

that they test different phenomenologies, which may (or
may not) be related, depending on the underlying massive
gravity theory that one is considering. For instance, screen-
ing mechanisms may suppress one effect but not the
other [7].

B. Planetary ephemerides construction

INPOP is a planetary ephemerides that is built by
integrating numerically the equations of motion of the
Solar System objects following the formulation of Moyer
[2], and by adjusting to Solar System observations such as
space mission navigation and radio science data, ground-
based optical observations, or lunar laser ranging [13,14].

In addition to adjusting the astronomical intrinsic param-
eters, it can be used to constrain parameters that encode
deviations from GRT [15–18], such as the Compton
wavelength λg as defined in Eq. (3). As long as mg is
small enough, the gravitational phenomenology in the
Newtonian regime recovers the one of GRT.
But, as discussed in [9], a graviton mass would indeed

lead to a modification of the perihelion advance of Solar
System bodies. Based on published constraints on the
perihelion advance of Mars—or on the post-Newtonian
parameters γ and β—derived from Mars Reconnaissance
Orbiter data, Will had estimated that the graviton mass
should be smaller or equal to ð4 − 8Þ × 10−24 eV c−2

depending on the specific analysis. But, as an input for
his analysis, Will uses results based on interpreting sta-
tistics of postfit residuals of the Solar System ephemerides
obtained in various frameworks (post-Newtonian and GRT)
as a possible outcome of the graviton influence. However,
first of all—unlike the historical occurrence of the sub-
stantial error in the perihelion advance of Mercury com-
puted in Newton’s theory—a lot of different contributions
from the details of the Solar System model being used
could explain the rather small postfit differences between
computed and observed positions [4]. Furthermore various
parameters of the ephemerides (e.g., masses, semimajor
axes, etc.) are more or less correlated tomg as it is shown in
[10]. Therefore any kind of signal introduced by mg > 0

can, in part, be reabsorbed during the fit of other correlated
parameters. In order to overcome the correlation issues
described previously, we investigate a new approach based
on a statistical inference on the mass of the graviton mg

within the full framework of INPOP. Planetary ephemerides
are developed in the framework described in Sec. II A,
where planetary equations of motion but also Shapiro
delays are modified according to Eqs. (4) and (5).
In this work, we will use the INPOP21a planetary

ephemerides [14] that benefits from the latest Juno and
Mars orbiter tracking data up to 2020 as well as a fit of the
Moon-Earth system to LLR observations also up to 2020.
For a more detailed review about this specific version, the
reader can refer to [14] whereas [19] gives more descrip-
tions regarding recent GRT tests obtained with INPOP21a
and INPOP19a. INPOP21a is more accurate than
INPOP19a especially for Jupiter and Saturn orbits as
additional Juno observations of Jupiter were used covering
a 4-year period when only 2.5 years were considered in
INPOP19a. Consequently, a more realistic model of the
Kuiper belt was implemented in INPOP21a, leading to an
improvement of about 1.4 on the Jupiter orbit accuracy.
Additionally, two years of Mars Express navigation data
have been added to the 13 years already implemented in
INPOP19a. This increase of Mars orbiter data improves
mainly the stability of the ephemerides and its extrapolation
capabilities [20]. In terms of adjustment, in addition to the
initial conditions of the planetary orbit, the gravitational
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mass of the Sun, its oblateness and the ratio between the
mass of the Earth and the one of the Moon, 343 asteroid
masses are fitted in INPOP21a following the procedure
described, for example, in [20]. A mass representing the
average effect of 500 trans-neptunian objects has also been
added as described in [14]. A total of 401 parameters are
accounted for the INPOP21a construction. They constitute
the list of astronomical parameters we will refer to in the
following.

III. METHODOLOGY AND RESULTS

Starting from [17], as well in [21–23], several tools to
assess the goodness of the INPOP fit with respect to
modifications in the equations of motion or in the global
framework of the ephemeris or observations have been
used. In particular the computation of the INPOP χ2 plays
an essential role to determine which data or which model
improve significantly the ephemeris computation. In our
work, as in [11], the computation of χ2ðmgÞ is the output,
for a given value of mg, of the INPOP iterative fit, after
the adjustment of all its astronomical parameters (see
Sec. II B). The χ2ðmgÞ is computed following

χ2ðmg;kÞ≡ 1

Nobs

XNobs

i¼1

�
giðmg;kÞ − diobs

σi

�
2

; ð7Þ

where mg is a fixed value, k are the astronomical
parameters fitted with INPOP (see step 1 in Fig. 1 and
Secs. III A and II B), Nobs is the number of observations,
the function gi represents the computation of observables,
the vector dobs ¼ ðdiobsÞi is the vector of observations and σi
are the observational uncertainties.

A. Methodology in a nutshell

As said in Sec. I, we want to obtain a posterior for the
mass of the graviton mg. The general pipeline used to
obtain such posteriors is summarized in Fig. 1 and works as
follows. First (step 1 in Fig. 1), we compute the value of
χ2ðmgÞ [see Eq. (7)] for several different values of mg

spreading over the domain of our interest. For a given mg

the value χ2ðmgÞ is obtained as the outcome of the full
INPOP iterative adjustment letting fixed mg. In such a fit,
the astronomical parameters k of Eq. (7) are adjusted with
the least squares procedure, whereas mg is a fixed value.
This χ2 estimation is necessary since it ensures the mg

FIG. 1. General pipeline used to obtain the posterior of mg. The first step is the computation of χ2ðmgÞ for mg spread over the domain
of our interest. Whereupon a GPR is computed, obtaining the interpolation mg ⟼ χ̃2ðmgÞ with the corresponding uncertainty. The
outcome is the posterior for the mass of the graviton mg. The fully detailed description of method and pipeline can be found in [24].
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contribution to the dynamics considered, avoiding high
correlations between mg and the other astronomical param-
eters k (see Ref. [10]). The iterative fit can take up to eight
hours of computation for one given mg value. But, in order
to use the MCMC algorithm, it is necessary to evaluate
sequentially the likelihood, and so the χ2, for thousands of
different values of mg (see the Appendix). In this context,
the direct χ2 computation becomes difficult. In order to
overcome the problem of the computation time, the second
step of the method (step 2 in Fig. 1) is the use of a Gaussian
process regression (GPR) to interpolate among the values
ðmg; χ2ðmgÞÞ, already computed during step 1. Starting
from this set of points we obtain with the GPR a function
mg ↦ χ̃2ðmgÞ which is the interpolation of that set of
points, along with an uncertainty σ̃ðmgÞ relative to the
possible error of interpolation in χ̃2ðmgÞ. The interpolation
mg ↦ χ̃2ðmgÞ is necessary to run the Metropolis-Hasting
(MH) algorithm (step 3 in Fig. 1), which has, as an
outcome, the posterior density for mg in the form of a
MCMC. Step 3 of the method is then the MH algorithm for
selecting possible values of mg. The algorithm is described
in Appendix A 1 and more details can be found in [24]. In
the MH algorithm, a prior density distribution has to be
settled for the parameter to sample with the MCMC. For
this work, we used two different prior density distributions
of the graviton mass as inputs for the MH algorithm in
order to test the sensitivity of the posterior to the choice of
the prior and if there is any gain in considering a nonzero
mass graviton (with an uniform prior distribution, see
Secs. III B and III B 2) versus a massless graviton (with
a half-Laplace prior distribution, see Sec. III C).

B. Results with the uniform prior
distribution and upper bound

In terms of prior for the mass of the graviton, we firstly
chose an uniform distribution with large intervals of values
encompassing the latest results from [11] but without
giving preference to any possible values. Following the
step 2 of Fig. 1, for each value of the graviton mass
proposed by the MH algorithm, the value χ̃2ðmgÞ is
computed instead of χ2ðmgÞ. Based on a first grid of fully
converged runs, we use the Gaussian process regression as
a form of interpolation to increase the resolution of the MH
algorithm, along with GPR error estimations to assess the
uncertainties of such regression. Details about GPR and
GPR error estimations are given in [24].

1. MH algorithm and GPR

In Fig. 2 is plotted the posterior density of probabi-
lity obtained with MH algorithm associated with GPR,
supposing an uniform prior. Contrarily to a detection
curve—which in our case would look close to a
Gaussian-like posterior centered on a positive value (see
i.e. [24])—from Fig. 2, we do not have a single figure that

we could choose as value for the mass of the graviton.
Indeed the shape is not a bell, nor does it show an individual
peak. The quantile at 97% is 0.0985 × 10−23 eV c−2.
The posterior plotted in Fig. 2 also tends to concentrate

close to mg ¼ 0 with decreasing steps for larger mg up to
mg < 0.15 × 10−23 eV c−2. The conclusion drawn is that,
within the GPR approximation of χ2 we do not have any
detection for mg ≠ 0. Thus we cannot provide an estimated
value for the mass of the graviton, but we can give a 99.7%
upper limit as quantile of the deduced mass posterior, that
is mg ≤ 0.98 × 10−24 eV c−2.

2. Uncertainty assessment

In order to explore the uncertainties induced by the GPR
interpolation on χ̃2ðmgÞ values, we ran 300 MCMC
simulations using the MH algorithm. Each MH is per-
formed on a different Gaussian process uncertainty esti-
mation, GPUE (see the black line in Fig. 10). One GPUE is
a perturbation of the GPR within the uncertainty provided
by the GPR itself. The GPUE interpolates possible χ2

deviations from χ̃2 (see Ref. [24] for a detailed description
on how to encompass uncertainty) exploring the space of
uncertainties in the GP regression. Running the MCMC
simulation on the GPUE is a way to propagate the
uncertainty induced by the GPR in the posterior sampling.
We, therefore, built a posterior distribution presented in
blue in Fig. 3 accounting for the GPR uncertainty, and we
call such a posterior Gaussian process uncertainty realiza-
tion (GPUR).
The GPUR result presented in Fig. 3 is consistent with

the nominal case (see Sec. III B 1), and it shows the
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FIG. 2. Density for the posterior probability distribution used as
target probability. The prior was a uniform prior between 0
and 3.62 × 10−23 eV c−2.
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posterior with a slightly larger interval of masses. This is
actually what it is expected, since the uncertainty of GPR in
the present case is small, but not absent. In Fig. 3 it is easy
to see how much the maximum value of mg is shifted
towards larger mg, passing from the MCMC with GPR to
theMCMC on GPUEs. In particular the average going from
0.26 × 10−24 eV c−2 to 0.34 × 10−24 eV c−2 whereas the
maximum mass in the posterior going from 1.45 ×
10−24 eV c−2 to 2.53 × 10−24 eV c−2. The strategy we
propose in the Appendix relies on the assumption that if
we compute the real values of χ2ðmgÞ, then we can estimate
χ2 values in the zones of domain for which χ2ðmgÞ is
unknown, with an uncertainty based on χ2 values already
computed. In our specific case, the strategy looks consis-
tent. The outcome of the 300 MCMC runs on different
GPUEs is similar with respect to the nominal GPR case
with slight differences (see, e.g., Table I and Fig. 3). As
previously indicated (see Sec. III B 1), again the GPUR
posterior is not similar to the one obtained with a positive
detection. We are however able to provide limits for the
mass. The upper bound for GPUR we would provide at

99.7% C.L. is mg ≤ 1.01 × 10−24 eVc−2 (at 90% C.L. is
mg ≤ 0.59 × 10−24eVc−2). This represents an improvement
of about 1 order of magnitude from the previous estima-
tions in terms of upper limit provided for mg at 99.7% C.L.
Such a limit is taken from the GPUR posterior (see
Fig. 3) since it takes into consideration also the GPR
uncertainty.
Finally, as stressed in Table I, from a very large uniform

prior between 0 and 3.62 × 10−23 eV c−2, the MCMC
algorithm indicates a posterior between 0 and a maximum
of 2.53 × 10−24 eV c−2, inducing a significant improve-
ment also on the possible maximum value for the mass of
the graviton.

C. Results with the half-Laplace prior distribution

The absence of positive detection can be interpreted in
two ways: either because the data employed are not
sensitive enough, or because GRT is sufficient to explain
the data. The lack of detection could also depend on the
hypothesis made on our a priori knowledge of the mass of
the graviton. In order to discriminate between the former
and the latter and to test the sensitivity of our results to
the prior, we made an additional experiment, changing the
prior density for mg in the MH algorithm from an uniform
prior to a half-Laplace distribution, which gives a prior
preference to small graviton masses. We ran the MH
algorithm again, with the same GPR, by using a half-
Laplace prior (red line in Fig. 4). The half-Laplace prior is
chosen such that the zone of higher probability of the half-
Laplace density shares the same domain of the posterior
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FIG. 3. Posterior probability distributions obtained from GPR (in orange) and the posterior with GPR error assessment (GPUR left-
hand side and in blue). The dashed lines represent the averages of the posterior with GPR and GPUR (respectively, orange and blue). The
dot-and-dashed lines represent the 99.7% quantiles of the two densities. The solid lines are instead in place of the maximummg for each
one of the two densities. The brown area of the histogram represents the overlaid zone between the two posteriors presented.

TABLE I. Summary of the outcome for MCMC run based on
GPR and the posterior GPUR. These values are plotted as vertical
lines in Fig. 3. The unit is 10−24 eV c−2. The prior was a uniform
prior between 0 and 3.62 × 10−23 eV c−2.

hmgi 99.7% quantile maxfmgg
GPR 0.26 0.98 1.45
GPUR 0.34 1.01 2.53
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obtained with the uniform prior. The underlying idea of
half-Laplace prior is to give preference to the mass value
mg ¼ 0, being in our case representative of GRT. Doing so
we can discern whether the data have enough information
to flatten this new prior or not. As one can see in Fig. 4, the
MH algorithm does not provide the same outcome with the
two different priors, and in particular the new posterior
(green in Fig. 4) turns out to be piled up aroundmg ¼ 0. For
a validation of the MCMC convergence in the case of half-
Laplace prior we refer to [24].

IV. DISCUSSION

A. Towards nondetection

1. Nondetection with half-Laplace prior

Comparing the outcome obtained with the two different
priors (uniform and half-Laplace), we may see whether the
new posterior (green in Fig. 4) resembles the old one
(orange in Fig. 4) or not: we found that it is not the case. In
particular, in Fig. 4, we can see that the peak of the Laplace
posterior is almost at 50 (in terms of value assumed by the
density), whereas the maximum value of the half-Laplace
prior is 40. So 25% smaller than the posterior. Moreover,
even if the green posterior is close to a half-Laplace density,
its tail is shorter. We can thus conclude that the information
contained in the dataset (and by using this methodology)

slightly prefers GRT since the posterior is even more
peaked toward mg ¼ 0.

2. The Bayes factor

In Secs. III A and III B and Appendix A 1 we explain
that, because of the time of computation, it has been chosen
to not use the direct evaluation of the χ2 function but an
approximation based on the Gaussian process. We also
used the Gaussian process as a way to assess the uncer-
tainties of this interpolation and show in Sec. III C that the
results were only marginally impacted by the interpolation
uncertainties. However, we will see that the result of the
nondetection presented in Sec. III C can also be sustained
by fully integrated and adjusted ephemerides without any
interpolation. In order to assess this point, we computed an
estimation of the Bayes factor using the same set of masses
that have been used for the GPR interpolation and for
which fully integrated and adjusted INPOP ephemerides
have been built, and a χ2 computed (see Appendix A 1).
The Bayes factor is a tool used in the context of model
selection (see, e.g., [25]). The central notion is that prior
and posterior information should be combined in a ratio
that provides evidence of one model specification M1 over
an other M2. The Bayes factor can be interpreted as a
quantity saying which model between M1 and M2 repre-
sents at the best the observed data set dobs. In our case
selecting a specific model means to select a specific value
of mg. The Bayesian setup requires a prior distribution for
the parametermg we are dealing with, that, for us, is ρðmgÞ.
The quantity of interest is then the ratio:

BF ¼ πðM1jdobsÞ
πðM2jdobsÞ

×
ρðM2Þ
ρðM1Þ

: ð8Þ

In the case of equal priors for M1 and M2 the Bayes factor
equals to the ratio of the likelihoods. For major details
about the Bayes factor and a more extensive explanation the
reader is addressed to [25]. The interpretation of the Bayes
factor (BF) is not always easy. We will take as reference the
so-called Jeffreys’ scale which is a qualitative judgment on
the evidence. Generally speaking, if BF ≫ 1, then it
indicates that the weight of model 1 is greater than model
2, and on the other hand if BF ≪ 1 then model 2 has more
weight. In the zones of the domain for which BF ≃ 1
neither model 1 nor 2 is predominant. The Bayes factor is
computed with real unapproximated χ2 and not with inter-
polated values. Asmodel 1, we use an extremely small value
for the mass of graviton i.e. mg ≃ 10−40 × 10−23 eV c−2

mimicking GRT; whereas with model 2, we employ a
massive graviton.
In Fig. 5 the Bayes factor is presented relative to the

log10 of the graviton mass. The BF values tend to be above
1 for almost all the values of mg, and it is close to 1 for
values of mg roughly smaller than 10−25 eV c−2.
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FIG. 4. Densities for the posterior probability distributions
obtained from GPR with an uniform (flat) prior (in orange)
and with a half-Laplace prior (dark green). In red, the shape of the
half-Laplace prior used. The brown area is the overlaid zone of
the two posteriors.
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The conclusion is also that GRT remains the most likely
model (BF > 10) up to mg ¼ 0.06 × 10−23 eV c−2. For
mg ≤ 0.06 × 10−23 eV c−2, BF > 1 almost everywhere,
except in some points for which we have BF ≃ 1. Below
0.06 × 10−23 eV c−2 the general trend is in any case with
anecdotal or moderate evidence towards GRT. In Fig. 5 one
can see that we do not obtain any evidence for a massive
graviton favored over GRT, for any possible ephemerides
with mg ≠ 0. This conclusion is consistent with what has
been discussed in Secs. III C and IVA 1 with less resolution
as with the GPR and MH algorithms but in using full
estimated χ2 function without approximations.

B. Comparisons with previous estimates

1. Comparison with previous INPOP estimations

References [10,11] have given upper bounds for the mass
of the graviton obtained with INPOP17b and INPOP19a. In
our work are presented a generalization and an improvement
of the results given in [10,11], using INPOP21a. By using a
more general semi-Bayesian approach, we are showing that
GRT is enough for explaining the data, and the massive
graviton is not inducing any improvement in the planetary
model. In order to comparewith previousworks, we can give
an upper limit of the posterior. In particular in [10,11] the
upper bound for the mass with a 99.7% confidence level is
mg ≤ 3.62 × 10−23 eV c−2. In order to proceed with a

comparison, we take the 99.7% confidence level on
GPUR (see Sec. III B 2 and Table I) which corresponds to
a mass of mg ≤ 1.01 × 10−24 eV c−2. The result is an
improvement by 1 order of magnitude in comparison with
Bernus et al. [11]. It is however interesting to understand if
this result is due to the INPOP improvement, or due to the
change of methodology. Hence, we used the formalism
proposed in [11] with INPOP19a, but using INPOP21a χ2

values instead. Reference [11] computed a “likelihood”
interpreted as the probability of a tested theory to be likely.
We refer to such a likelihood as LB. The results obtained
using INPOP21a are shown in Fig. 6. In this figure, one can
see that the INPOP21aLB value is improved by a factor of 3,
going from 3.62 × 10−23 to 1.18 × 10−23 eV c−2 for a
C.L. at 99.7% (and going from 3.16 × 10−23 to 1.03 ×
10−23eVc−2 for aC.L. at 90%).A spike is present in Fig. 6 for
mg ¼ 1.03 × 10−23 eV c−2: this is due to a local minimum in
the χ2 function. But let us stress that, even at this
local minimum one has the likelihood LB (at mg ¼
1.03 × 10−23 eV c−2) that is still smaller than the likelihood
LB obtained in GRT. Thus, GRT is still the most favourite
guess between the two possibilities. The local minimum is
also present in the function mg ⟼ χ̃2ðmgÞ used in the MH
algorithm: the MCMC process takes into account this local
minimum and overcomes it going towards the global mini-
mum at aboutmg ≃ 0. For further details on the computation
of LB, see Ref. [11]. We can conclude that both the new
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model and the new observations introduced with INPOP21a
induce a factor of 3 improvement relative to [11] determi-
nation on mg. The MH algorithm implemented here goes
even further and explores a zone close to mg ¼ 0.

2. Comparison with LIGO-Virgo-KAGRA estimations

The LIGO-Virgo-KAGRA collaboration presents an
updated bound of the mass of the graviton mg at 90% con-
fidence level, that is mg ≤ 1.27 × 10−23 eV c−2 in [5]. The
posterior then obtained from the MCMC in our work seems
to give more than 1 order of magnitude better constraint.
However, it is important to stress that the two studies are
perfectly complementary because they focus on different
aspects of the massive gravity phenomenology (radiative
versus orbital), and also use totally different observations
(gravitational waves versus astrometry in the Solar
System). In particular, decoupling mechanisms (in some
specific theories of massive gravity) could in principle
suppress one aspect of the massive gravity phenomenology
and not the other, such that, from a phenomenological point
of view, it will always be important to probe both aspect of
the massive gravity phenomenology.

C. Improvement with the BepiColombo mission

The BepiColombo mission will arrive at Mercury in
2026 for at least two years of close circular orbit about the
planet. Thanks to the MORE radio science experiment,

measurements of the Mercury to Earth distances will be
obtained with an accuracy of about 1 cm in KaKa band
[26]. Based on such an accuracy, we suppose for our
simulations a daily acquisition of range tracking data
during a period of 2.5 years, from 2026 to 2028.5 [27]
and in using INPOP21a as reference solution in the GRT
framework. In order to assess if the MORE range data will
be sensitive to the mass of the graviton and up to which
level these measurements can help to improve the results of
this work, we computed the differences for the Earth-
Mercury distances during the two years of the MORE
observation period between INPOP21a and ephemerides
built and fitted with different values of the graviton mass
mg. As it has been already discussed, a givenmg value fixed
in the computation of the ephemerides yields to a pertur-
bation of the orbits, and then on the residuals, with respect
to ephemerides in which GRT is assumed. Quantifying
such a perturbation provides a way to see if data from future
interplanetary missions may play a role in the mg limit
determination, keeping in mind that after fit of the
perturbed ephemeris, most of the perturbation will be
absorbed by other parameters (see discussion about corre-
lations in i.e. [10] or [4]). As the expected BepiColombo
accuracy for the range is at 1 cm level, one can expect that
for perturbations below this threshold of 10−2 m would not
be detectable by the MORE measurements. In Fig. 7, the
standard deviations Δσ of the Earth-Mercury distance
perturbations are presented as function of the massive
graviton mg considered. We can see that the smallest mg

that might produce a significant perturbation is roughly
mg ¼ 0.087 × 10−23 eV c−2, which is only 13.8% below

FIG. 6. Values of the likelihood LB as computed in [11]. The
orange dots represent the log10ðLBÞ values computed with IN-
POP21a. The green horizontal line is a threshold value for LB at
99.7%with the same criteria used in [11]. Thevertical red line is the
mg limit at 99.7% C.L. with the same criteria adopted in [11] but
using INPOP21a. The violet vertical line is the mg limit at
99.7% C.L. proposed in [11] using INPOP19a. The shaded red
zone is the zone of rejected valuewewould obtain with INPOP21a
at 99.7%C.L. The horizontal dashed line represent theLB value for
GRT, whereas the horizontal dotted line represents theLB value for
the spike around mg ¼ 1.03 × 10−23 eV c−2.

FIG. 7. Standard deviations of the differences on Earth-
Mercury distances (Δσ) between INPOP21a and massive grav-
iton ephemerides as function of the massive graviton mg. The red
dashed horizontal line represents the BepiColombo measurement
uncertainty whereas the yellow area represents the zone below the
1 cm accuracy. The black dotted vertical line gives the smallest
detectable mg value.
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the bound provided in Sec. III B 2. Because of correlations
between parameters, we are not considering this limit as the
one that would minimize the future INPOP χ2 including the
MORE data, but more as a minimum threshold below
which the mass of the graviton will not be detectable by the
BepiColombo radio science experiment. As a consequence,
we expect a marginal improvement on the graviton mass
from the BepiColombo mission as the threshold of detec-
tion with MORE will be only 13.8% smaller than the limit
given in Sec. III B 2

V. CONCLUSION

We have presented our work on the use of MCMC
algorithm and INPOP in order to get an improvement of
the detection limit of the mass of the graviton mg using the
Solar System dynamics as arena. A key strength of the
present study is to include the mg contribution in terms of
accelerations and light times computation within the full
dynamics of the Solar System. Moreover, by considering a
semi-Bayesian approach, and using MCMC and MH algo-
rithms, we avoid correlations betweenmg and other INPOP
astronomical parameters. We used the GPR to obtain an
approximation of the χ2 ready to use within the MH algo-
rithm and to asses the uncertainty of approximation after-
wards. From the posterior obtained, we can give an upper
bound ofmg ≤ 1.01 × 10−24 eV c−2 at 99.7% C.L. (respec-
tively, λg≥122.48×1013 km) and mg ≤ 0.59 × 10−24eVc−2

at 90% C.L. (respectively, λg ≥ 209.67 × 1013 km), includ-
ing approximation uncertainty, and we had shown with a
change of the prior (from flat to half-Laplace) that no
significant information is detectable in planetary ephemeri-
des for masses smaller than this limit. Observations from the
BepiColombomissionwill provide new data that, according
to our analysis, should not lead to a major improvement on
the mass of the graviton.
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APPENDIX: METHOD

In this section are given the most important aspects of the
method for the MH algorithm associated with an inter-
polation of the χ2 function and the uncertainty assessments
based on the Gaussian process (GP). Complementary

information and fully detailed implementation, as well as
validation tests, can be found in [24].

1. Metropolis-Hastings algorithm
and Gaussian process regression

In the past years there have been already some attempts
to deal with the problem of high correlations among
parameters inside the INPOP planetary ephemerides fit,
as in the case of the determination of asteroid masses (see
Ref. [20]). For testing alternative theories and thus assess-
ing threshold values for the violation of GRT, [17] had
tested genetic algorithm approaches for identifying inter-
vals of values for parameters such as parameterized post-
Newtonian, β, γ, the Sun oblateness J2 and secular
variations of the gravitationnal mass of the Sun _μ

μ, with
which planetary ephemerides can be computed and fitted to
the observations with a comparable accuracy than the
ephemerides built in GRT.
Keeping in mind the problem of correlation between

planetary ephemerides and GRT parameters, we propose a
new procedure with a semi-Bayesian approach to test a
possible deviation from GRT in a particular case: we
investigate the posterior probability distribution of a pos-
sible nonzero mass of the graviton mg employing MCMC
techniques.
Our approach is semi-Bayesian in the sense that only the

mass of the graviton is actually sampled with the MH
algorithm procedure, the INPOP astronomical parameters
being fitted with a least square procedure. We follow here
the algorithm already used by [10,11,19]: for a fixed value
of mg, we integrate the motion of the planets with INPOP
and we fit to planetary observations, the astronomical
parameters listed in Sec. II B in using the least square
iterative procedure described in [20]. We then obtain a fully
fitted ephemeris built for a fixed value of mg. The fitted
ephemerides are necessary in order to compute the like-
lihood, essential part of any MCMC procedure. Generally
speaking, the Metropolis-Hastings algorithm is one of the
first Markov chain Monte Carlo methods developed,
providing a sequence of random samples drawing them
from a given probability distribution. The probability
distribution from which we draw our samples is the
posterior, taking into account the Solar System dynamics
and all the observations used in INPOP. The MH algorithm
is based on the idea that the drawings are done sequentially
and according to a random acceptance process. The out-
come of the algorithm is a sequence of random samples
from the posterior. Indeed, this sequence is a Markov chain,
and its equilibrium distribution is the posterior itself. At
each step of the algorithm, one new element of the
sequence is computed and proposed, being accepted or
rejected. The acceptance/rejection is random, according to
a certain probability (changing at each step) based on the
last accepted element of the sequence and the likelihood of
the last element and of the new candidate element. We will
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not provide a proof of convergence of the method since it is
out of the goal of our work and it can be found easily in
[28,29]. For a detailed overview on the MCMCmethod, see
Refs. [28,29]. The details about the specific MH imple-
mentation adopted for this work can be found in [24]. The
MH algorithm will play a role only on the selection of the
parameter of interest (i.e. the mass of the graviton mg)
whereas the 402 other INPOP parameters are obtained by
regular least squares. This hybrid approach has been chosen
because, from one side, it would be very costly in term of
time of computation to explore the full parameter space
with a MH algorithm, and, on the other side, this is a way to
avoid correlation of mg with the other INPOP parameters.
Similarly to [11], the χ2ðmgÞ computed will be estimated
setting fixed the value of mg and fitting the remaining k
parameters [see Eq. (7)] with the full INPOP adjustment.
Differently from [11], we provide a posterior probability
distribution for mg, and it is done with the MH algorithm.
Finally, we approximate the χ2 function with mg ⟼
χ̃2ðmgÞ considering a set of values S ¼ fðm⃗g; χ2ðm⃗gÞÞg
and interpolating among the points of the set S. m⃗g gathers
values of the masses for which we are going to compute the
actual corresponding χ2 unapproximated. The interpolation
mg ⟼ χ̃2ðmgÞ has been built in exploiting a GP among the
points of the set S. The GPR is a method to predict a
continuous variable as a function of one or more dependent
variables, where the prediction takes the form of a
probability distribution (see, e.g., [30,31]). A full descrip-
tion of the method can be found in [24] and the reader is
referred to [31] for a more detailed discussion on the GPs
and to [32] for the documentation of the package GPfit that
we used to produce our GPR. The notation used for the
general GPR description is similar to what is found in
[30,31]. To compute a Gaussian process regression among
a given set of points, an function m (in GPR jargon the
mean function) and a function K (in GPR jargon the kernel
function) are necessary. In our case the m function is the
best linear unbiased predictor (BLUP), as described in
[32,33]. As kernel we used a standard exponential kernel
such as Eq. (A1)

Kðx; x0Þ ¼ exp

�
−
jx − x0jα

l2

�
ðA1Þ

for suitable l and α parameters to tune. The points we are
interpolating with the GPR (in GPR jargon the observa-
tions, see Ref. [31]) are considered as noise-free since they
are computer simulations. We refer the reader to [34] for
further details about this assumption. However, as we are
using the GPR for interpolating χ2 values that will be seen
as forward model outcome by the MCMC runs, it is
interesting to consider the uncertainty of this interpolation
(see Refs. [34,35]) for the interpretation of the MCMC
results, propagating this uncertainty in the posterior
sampled by the MH algorithm.

In Fig. 8 we see the evolution of the χ2 as a function of
mg as well as the GPR outcome. The black dots indicated
the χ2 obtained with fully integrated and converged
ephemerides when the blue line represents the mean value
obtained from GPR (see details in [24]). Moreover the red
lines indicate the estimates of uncertainty provided by the
GPR at 2σ level. In particular the graphs of the two red lines
aremg ⟼ χ̃2ðmgÞ � 2σ̃ðmgÞ. We see thatmg ⟼ σ̃ðmgÞ is
zero or close to zero when mg is used to compute χ2ðmgÞ
from INPOP. This is due to the assumption that the χ2ðm⃗gÞ
are computed with zero noise as these values are directly
obtained from INPOP construction. In Fig. 9 an enlarge-
ment of Fig. 8 is provided on the final interval of interest of
the MH algorithm.
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2. Gaussian process and uncertainty assessments

One of the advantages about GPR, is that, in principle,
we can consider the value of χ̃2ðmgÞ as a normal random
variable with given average and standard deviation pro-
vided as outcome of the GPR. As we said previously
the estimator in our case is the BLUP, and we call it
mg ⟼ χ̃2ðmgÞ.
We would like also to exploit these confidence intervals

and the fact that, due to the hypothesis of Gaussian process
and the assumptions we did, Eq. (A2) holds

∀mg; χ2ðmgÞ ∼N ðχ̃2ðmgÞ; σ̃2ðmgÞÞ: ðA2Þ
Based on Eq. (A2), we can produce a perturbation of the

interpolation mg ↦ χ̃2ðmgÞ, that, for sake of clarity, we are
going to call GPUE. The underlying idea of GPUE being
that, for each mg of the domain, you can consider the
corresponding χ2ðmgÞ as outcome of a random draw of a
normal random variable according to the uncertainty of the
GPR, i.e. following Eq. (A2).
In Eq. (A2) σ̃ðmgÞ is the value provided by the GPR to

use as standard deviation when we consider χ2ðmgÞ as a
normal random variable. We indicate as

mg ⟼ χ̆2ðmgÞ; ðA3Þ
one estimation of the GPR with its own uncertainty. In
Fig. 10 the black line represents one GPUE. For a detailed
description of how to build such a GPUE, the reader is
addressed to [24].
By definition mg ⟼ χ̆2ðmgÞ is locally defined as a

realization of a normal randomvariable. In order to propagate
the GPR uncertainty in theMCMC runs, we are going to use
the GPUE. We compute several GPUEs, all different,

whereupon for each of the maps mg ⟼ χ̆2ðmgÞ produced,
we run separately a Markov chain using the MH algorithm.
Doing sowe are runningMHalgorithm to produce aMarkov
chain on a noisy version of the nominal interpolation
obtained with GPR. All the Markov chains obtained are
joined together, producing the (blue) posterior presented in
Fig. 3. This method is an attempt to assess the uncertainty of
interpolation that we have. We call such a final posterior
a GPUR.
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at each point of the domain). The plot is enlarged on a portion of
the domain.
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