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Charged particle motion near a magnetized black hole:
A near-horizon approximation
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In this paper, the orbits of a charged particle near the event horizon of a magnetized black hole are
investigated. For a static black hole of mass M immersed in a homogeneous magnetic field B, the
dimensionless parameter b = eBGM /(mc*) controls the radius of the circular orbits and determines
the position of the innermost stable circular orbit (ISCO), where m and e are the mass and charge of the
particle. For large values of the parameter b, the ISCO radius can be very close to the gravitational
radius. We demonstrate that the properties of such orbits can be effectively and easily found by using a
properly constructed “near-horizon approximation.” In particular, we show that the effective potential
(which determines the position of the orbit) can be written in a form which is invariant under rescaling
of the magnetic field and as a result is universal in this sense. We also demonstrate that in the near-
horizon approximation, the particle orbits are stationary worldlines in Minkowski spacetime. We use
this property to solve the equation describing slow changes in the distance of the particle orbit from
the horizon, which arise as a result of the electromagnetic field radiated by the particle itself. This
allows us to evaluate the lifetime of the particle before it reaches the ISCO and ultimately falls into

the black hole.
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I. INTRODUCTION

An isolated, nonrotating black hole does not have a
magnetic field [1]. This is a direct consequence of the
famous no-hair theorem [2]. However, when a black hole
is surrounded by an accretion disk, a magnetic field
generated by currents in the disk plasma may exist.
This field plays an important role in black hole astro-
physics. For example, the Blandford-Znajek mechanism,
which provides an explanation behind the formation of
astrophysical jets around spinning supermassive black
holes, requires an accretion disk with a strong magnetic
field around a rotating black hole [3] (see also [4] and
references therein).

In 2013, evidence of the existence of a magnetic field
in the vicinity of the black hole at the center of the
Milky way was obtained [5,6]. This was done by observing
the Faraday rotation of the linearly polarized radio waves
emitted by the magnetar PSR J1745-2900, which traveled
close to the black hole on their way to the Earth. The angle
of Faraday rotation of a linearly polarized radio wave beam
in magnetized plasma is proportional to the integral of the
product of the longitudinal magnetic field and the density
of free electrons over the ray’s path. It is also proportional
to the wavelength squared [7]. This makes it possible to
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obtain information about a regular magnetic field by
observing the Faraday rotation angle for different wave-
lengths. The radio waves emitted by the magnetar allow
one to measure the magnetic field at a distance from the
black hole about 10° of its gravitational radius. According
to adopted models, the magnetic field increases inwardly,
and the estimated regular magnetic field near the black hole
should be about 100 G [5,6].

More recently, in 2021, polarization measurements by
the Event Horizon Telescope of the light emitted by the
matter surrounding the black hole in the galaxy MS87
provided signatures of the magnetic field close to the edge
of the black hole [8]. Based on these observations, the
estimated magnetic field strength was shown to be in the
range B ~ 1-30 G. Estimations based on observations and
theoretical models indicate that the magnetic field near
stellar mass black holes can in fact be much larger (see,
e.g., [9,10]).

Let us emphasize that for realistic magnetic fields
expected near black holes, one can neglect their back-
reaction on the spacetime geometry. On the other hand, the
effect of these fields on the orbits of charged particles near
the horizon might be very large. This happens because, in
general, the dimensionless quantity e/(y/Gm) for a particle
of charge e and mass m is very large (e.g., for electrons it is
of order 10'%). This implies that even close to the horizon of
a magnetized black hole, the Lorentz force acting on a
charged particle can dramatically change its trajectory.

© 2023 American Physical Society


https://orcid.org/0009-0005-9906-696X
https://orcid.org/0000-0002-8414-5965
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.024045&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1103/PhysRevD.108.024045
https://doi.org/10.1103/PhysRevD.108.024045
https://doi.org/10.1103/PhysRevD.108.024045
https://doi.org/10.1103/PhysRevD.108.024045

NOAH P. BAKER and VALERI P. FROLOV

PHYS. REV. D 108, 024045 (2023)

We define a dimensionless parameter which characterizes
the strength of the magnetic field, given by

¢BGM
b= (1.1)

Here, M is the mass of the black hole and B is the
characteristic value of the magnetic field in its vicinity.
The meaning of this parameter is as follows. The surface
gravity of a nonrotating black hole of mass M is

K=—— (1.2)

which is a redshifted gravitational field strength calculated
at the horizon. Using k, one can write the parameter b in
the form,

_leB
 dmk’

b (1.3)
For a relativistic particle of charge e and mass m moving in
a magnetic field B, the quantity eB is the value of the
Lorentz force acting on the particle, while mx characterizes
the gravitational force. Relation (1.3) shows that the
dimensionless parameter b is proportional to the ratio of
the Lorentz force and the gravitational one.

There exists a variety of publications discussing different
aspects of magnetized black holes and charged particle
motion in their vicinity (see, e.g., [11-28], along with the
texts [29,30] and references therein).

One interesting observation is that the ISCO of a charged
particle near a magnetized black hole can be located much
closer to the horizon than ISCO of a neutral particle (see,
e.g., [16,19]). In such a case, black holes (under special
conditions) can “work” as a powerful cosmic particle
accelerators (see, e.g., [31]).

The present paper is devoted to a detailed investigation
of the near-horizon orbits of charged particles in the
vicinity of magnetized black holes. Our starting point is
a Schwarzschild black hole placed in a homogeneous
magnetic field. Such a magnetic field, deformed by the
black hole’s gravity, can be described by the electromag-
netic vector potential, which is directly proportional to the
Killing vector generating rotations [32]. We focus on
particle motion in the equatorial plane. Circular orbits of
such a charged particle are fixed points of the reduced
Hamiltonian. For a particular direction of motion, the
Lorentz force acting on the particle is repulsive, and the
particle trajectory may lie close to the horizon.

If the proper distance from the horizon / is much smaller
than the gravitational radius r,, the curvature effects and
the orbit’s trajectory bending may be neglected. Put
simply, the idea of this paper is that, in such a case, it
is sufficient to perform calculations in flat spacetime for
the study of near-horizon trajectories. Namely, consider a
near-horizon three-volume with proper length L < r, in

both the tangent and orthogonal to the horizon directions.
The metric in this domain can be approximated by the
Rindler metric. We demonstrate that, by a proper rescal-
ing, one may also define a magnetic field which is static in
the Rindler coordinates and which generates the required
near-horizon trajectories. In this near-horizon approxima-
tion, the Hamiltonian describing the charged particle
motion is greatly simplified.

Rindler spacetime is nothing but Minkowski spacetime
in specially chosen (Rindler) coordinates. We demonstrate
that in the near-horizon approximation, circular orbits near
magnetized black holes map onto so-called “‘stationary
orbits” in Minkowski spacetime.

Such stationary curves are well studied and classified
(see, e.g., [33]). The geometric properties of these lines are
independent of proper time. In particular, the interval
between any two points of such a curve depends only
on the proper time s between them calculated along the
curve. An interesting physical property of stationary world-
lines is the following. If an accelerated Unruh’s detector
moves along a stationary worldline in the Minkowski
vacuum the spectrum of its excitations is (proper) time
independent [33,34]. The stationary curves are integral lines
of the Killing vectors. Another characteristic property of
stationary curves is that their Frenet curvatures are constant.
As the result the four-velocity u, four-acceleration w and
the “jerk” k = dw/ds of an observer moving along a
stationary worldline have constant components in the
Rindler frame. As we shall show this implies that the
radiation force acting on a charged particle moving near
the horizon is also time independent in the Rindler frame.

It should be emphasized that the magnetic field which is
static in the Rindler frame is time dependent in the inertial
Minkowski frame. This field is invariant under Rindler
boosts and translations in the direction parallel to the
horizon. The charged particle’s four-velocity coincided
(up to a normalization constant) with a linear combination
of these two vectors.

It is of particular interest that in spite of the fact that we
began with the Killing magnetic field in the black hole
geometry, the obtained magnetic field close to the horizon and
near the equatorial plane is in fact quite general in the
following sense: if the magnetic field respects the imposed
symmetry and is regular at the Rindler horizon, it is either
constant (in Minkowski time) and homogeneous, or it has the
same leading asymptotic as the field obtained in our pro-
cedure. This means that one may reasonably expect that
our conclusions regarding the properties of close to the
horizon orbits may in fact be valid for a more complicated
and realistic structure of aregular near-horizon magnetic field.

The paper is organized as follows. In Secs. I and III, we
rederive the equations for circular orbits near static mag-
netized black holes and discuss their properties. In Sec. 1V,
we introduce the near-horizon approximation. In Sec. V,
we apply this approximation in the of study near-horizon
trajectories of charged particles. In Sec. VI, the dynamical
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evolution of these orbits induced by the emission of
electromagnetic radiation is studied. We also evaluate
the lifetime of such orbits. Section VII contains a brief
summary along with our discussion. In the Appendix, we
discuss the regular at the Rindler horizon magnetic fields
respecting the imposed symmetry properties.

In this paper, we use the sign conventions adopted in [2]
and the Gaussian system of units.

II. CHARGED PARTICLE MOTION NEAR
MAGNETIZED BLACK HOLES

A. Charged particle motion

We express the worldline of a particle in the form
x* = x*(A), where A is some parameter specifying the
position of the particle. To describe charged particle motion
in curved spacetime and in the presence of an electromag-
netic field, we begin with the following action':

S—/d/IL,

mc dx* dx? e dx!
L=—\n'g,——— -A,—. (2.1
2 [’7 g ar | T
We denote by m and e the mass and electric charge of the
particle, and by A, the 4D electromagnetic field potential.
The parameter 7 = 57(4) is a Lagrange multiplier which,
under a change in parametrization A — A(4), transforms as

ndA = ijdA. (2.2)
The above relation ensures that the action § is parametri-

zation invariant. A variation of the action with respect to 7
yields the following constraint equation:

(2.3)

After variations of the action (2.1), one can always set
n = 1. For this gauge,

_dx!

Gu'u’ = -1, ut = 7

(2.4)

The corresponding parameter A has dimensions of length,
and it coincides with the proper time multiplied by ¢. From
now on, we shall refer to it as the proper time parameter and
use this gauge.

'Let us note that in our notation, the Lagrangian L and
Hamiltonian H have dimensions [ML/T], which differs from
the standard dimension of the energy, [ML?/T?]. This is because
the action S is defined as the integral over the proper length dA
rather than the proper time dA/c. Since in what follows we shall
be working with dimensionless quantities, this difference in
definitions of L and H is not important.

Let us define the four-momentum,

e
= —-A,. 2.5
mcu, + A (2.5)

PM:a—x,;

Then the Hamiltonian H = p,u* — L may be written in the
form,

(m " + m?c?), (2.6)

- 2mc

where 7z, = p,—%A,. The constraint equation (2.4)
implies

mt = —m*c?, (2.7)
and the Hamiltonian equations of motion are

dx* _ OH

dx* _oH  dp, 9oH
di  dp,’

=——. 2.8
di ox+ (28)
One may check that these equations correctly reproduce the
standard equations for particle motion in curved spacetime
and in the presence of an electromagnetic field,

(2.9)

where F,, = 2A}, ;. We use the notation D/DA to denote a
covariant derivative along the particle worldline.

Let us note that the Eq. (2.8) are invariant under the
following scale transformations,

Xt — Cxt, A— CiA,

Pu = Copy, H — C,H, (2.10)

where C; and C, are constants.

B. Dimensionless form of the equations of motion

It is more convenient to deal with equations written in
dimensionless form. The interval ds®> has dimension of
[length]?. We choose dx* to have dimensions of length and
the metric g,, to be dimensionless. We will introduce a
constant scale factor with dimensions of length and use it to
obtain dimensionless quantities. In what follows, we shall
discuss particle motion in the gravitational field of a static,
spherically symmetric black hole. In this case, a natural
scale is its gravitational radius,

_2GM

g C2

(2.11)

r
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To distinguish the quantities before and after the rescaling,
we use a tilde. We thus have

dx = rydx*, I = Guw»
2 = gmugru 272
ds® = g, dx*dx* = ryds-,

ds* = g, dx"dx". (2.12)

We write the worldline of a particle in the form ¥ =
%#(2), where 1 is the “physical” (dimensional) proper-time
parameter. Its dimensionless form is given by A =1/ Iy
For the particle’s velocity u, acceleration w and “jerk” k,
one has

dx*  dx*
= —_— = u/"
di di
g DB _1Dw 1
DA ry DA 1,
1 Dw* 1

. Dw

K — = ———=—k", 2.13
DA ré DA rg ( )

and the equation of motion (2.9) may be written in the form,

€y =
who=fr = ey,

. (2.14)

C. Motion near magnetized black holes

We write the dimensionless Schwarzschild metric in the
form,

d 2
ds* = —fdr* +7r + rPde?,

dw? = d&* + sin’0d¢?,

f=1=1/r, (2.15)
where r = 7/r, is the dimensionless radius.
This metric has two commuting Killing vectors,
0 0
=—, =—, 2.16
=5 t=y 2.16)

which generate time translations and rotation about the
symmetry axis, respectively. The Killing equations,

Sy = Sy = 0. (2.17)
imply that

g, =, =0 (2.18)

Since the spacetime is Ricci flat, its Killing vectors obey the
equations,

g, =, = 0. (2.19)

Equations (2.18) and (2.19) reveal that the Killing vectors &
and ¢ may be viewed as vector potentials of an electro-
magnetic field A in the Lorentz gauge satisfying the source-
free Maxwell equations. For €, one has a weakly charged
static black hole, while ¢ is the potential for a weakly
magnetized black hole.

In what follows, we focus on the latter case and write the
corresponding vector potential A in the form,

1
Ato, = EBa(p. (2.20)
One may check that the corresponding magnetic field at a
distance far from the black hole is homogeneous and
directed along the axis of rotation & = 0, z. For this field,
the equation of motion (2.9) may be written in the
following dimensionless form:

wh = fP, (2.21)
where
) eBGM
fu=2bg), u", b=—27 (2.22)
We denote
a, =bf,, (2.23)

so that one has f, = 2ay, , u". Since the Killing vectors
commute, one has L.a* = L-a" = 0. This demonstrates
that the magnetic field associated with the Killing vector
respects the spacetime symmetry.

As mentioned earlier, the magnetic field for the potential
(2.20) is parallel to the axis of symmetry 8 = 0,z at far
distances, and its value is constant and equal to B. We note
that in a more realistic astrophysical setup, the structure of
the magnetic field interacting with the ionized plasma of the
accretion disk can be more complicated.2

To obtain the dimensionless Hamiltonian, we use the
scaling transformations (2.10) and set

Ci=r, C, = mec. (2.24)
After these transformations, the dimensionless Hamiltonian
for a charged particle moving in the equatorial plane
6 = n/2 in the magnetic field (2.20) takes the form,

171 1
H=3|=2pi+fpr+5(py—br)? +1].

3|7 (2.25)

’In the Appendix, it is shown that in the absence of a monopole
magnetic charge, a regular at the horizon magnetic field respect-
ing the spacetime symmetry near the horizon and close to the
equatorial plane has the same leading form as the potential (2.23).
In this sense, using such a “toy model” is sufficient for the study
of the motion of charged particles near the horizon.
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One may check that the equations of motion for this
Hamiltonian are identical to (2.9). We write here only
one of equations of motion, which we shall use later,

dp 1
o _ﬁ(l?(/; —br2)~

= (2.26)

The constraint equation (2.7) gives H = 0.

III. CIRCULAR ORBITS IN THE
EQUATORIAL PLANE

A. The reduced Hamiltonian

Since the Hamiltonian H does not depend on ¢ or ¢, the
momenta p, and p,, are integrals of motion. Thus, one has

dp, _ _oH _

oH dpy __OH _
d, ot

, P %—0. (3.1)
In other words, if a particle begins its motion with some
parameters p, and p, it will remain on the surface p, =
const and p, = const in the phase space. We denote these
integrals of motion by p, = £ and p, = ¢, and introduce a
reduced Hamiltonian,

1
H=2fp}+ V.
11 &
= |5 =-br*)?+1-—/. 2
V=5 |- 1= (3.2)
The equations of motion become
dr oH
= =P
di dp,
dp, oH L, , y
=——=—C -V, 33
0 =V (3.3)

where a prime denotes a derivative with respect to r.

In what follows, we focus solely on circular orbits. In the
reduced 2D phase space (r, p,), they are represented by
fixed points of the Hamiltonian flux,

oH OoH

or “op 0 (3.4)
The constraint equation H = 0 at the fixed point implies

V), = 0. This equation defines the energy £. The second

equation in (3.3) gives V, = 0, an equation which deter-

mines the radius r of a circular orbit for given values of the

integrals of motion.

B. Stable and innermost stable circular orbits

Calculations give the following expressions for the
second derivatives of the Hamiltonian with respect to the
canonical coordinates r and p, at the fixed point:

e, M PH
op; "

f orop, or?

(3.5)

The condition of stability for a circular orbit reads V! > 0.
For V! < 0, the orbits are unstable. The “critical radius”
where V! = 0 determines the position of the innermost
stable circular orbit (ISCO).

One may express the equation 1V, = 0 in the form,

£-u U :f[l +%(f—br2)2}, (3.6)

and the two equations V, = 0 and V) = 0 then imply

u =0, U =0. (3.7)
The equation /' = 0 defines the radius of the particle’s
orbit for given values of Z and b, and the equation U” = 0
determines the radius of the ISCO. These equations written
in explicit form are

20%r — b1t = 26br* + 1 = 2%r +3¢2 =0,  (3.8)

b*r — r? +26br? + 36%r — 6% = 0. (3.9)

Using these equations, it is possible to show that
for a large parameter b, the ISCO for particles moving
in the direction with positive ¢ (corresponding a repulsive
Lorentz force) are close to the horizon. In the leading order
of 1/b, one has [19]

1
risco = 1 +E, (310)
fISCO = b + \/§ (311)

C. Canonical transformation

The kinetic part of the Hamiltonian (3.2) depends on the
coordinate r. It has the form,
1 p;
2pu(r)’

(3.12)

where u(r) = f~! plays the role of mass and tends to
infinity at the horizon. It is possible to make a canonical
transformation which transforms the Hamiltonian to a more
familiar form. Such new canonical variables are

(3.13)

rd
P:\/J_Cpr’ p:[7r7-
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In these variables, the Hamiltonian takes the form,

1
H=3p"+V, V) =V(rlp). (3.14)
We note that the new canonical coordinate p is nothing but

the dimensionless proper distance to the horizon.

IV. NEAR-HORIZON APPROXIMATION

A. Near-horizon geometry

Let us consider the motion of a charged particle close to
the horizon of a magnetized black hole with a large
parameter b. The physical proper distance I of the ISCO
orbit (3.10) to the horizon is ~r,/ V/b. For sufficiently large
b, its dimensionless version [ = I/ 14, which characterizes
the bending of the orbit, is small. Near the horizon, the
curvature R is of the order of ;2. Also in the regime of
large b, the quantity R[> ~ 1/b characterizing the role of
the tidal forces is also small. This means that for our
problem, one may neglect the curvature and use a flat-
spacetime approximation. Let us discuss this in more detail.

We rewrite the metric (2.16) in the form,

dr? r?
ds* = —fdf* + —
g far+ f - cosh?z

(dy* +dz?), (4.1)

where we have made the following change of coordinates:

=y, inf = . 4.2
¢=y. sinf=—om (4.2)
The second relation implies that
d
d—; = —coshz. (4.3)

A point py where y = z = 0 corresponds to a point ¢ =0
in the equatorial plane. At this point, e, = 9, is a unit vector
in the direction of ¢, while e, = d, is a unit vector in the
direction of decreasing polar angle. The third unit three-
vector orthogonal to the vectors e, and e, is e, = f1/%9,.
Together, the vectors {e,,e.e,} form a right-handed
orthonormal tetrad at p,.

In the vicinity of p, and close to the horizon, one has

r=14+¢q, 0O<g<xl, |y<l1, |z7l]l. (44)
In this approximation, one has
2 ), dg? 2 2
ds® = —qdt* +——+dy” + dz". (4.5)
q

One may check that this is indeed a metric of flat spacetime,
where the Rindler horizon is defined by the equation ¢ = 0.

Let us now demonstrate how Egs. (3.10) and (3.11) may be
obtained in using this near-horizon approximation.

B. Near-horizon orbits in the equatorial plane

We again consider the motion of a particle in the
equatorial plane (where z =0) and use a reduced 3D
metric,

dq?

ds* = —qdi* + o + dy?. (4.6)

We also use the following near-horizon approximation for
the vector potential of the magnetic field (2.23),

a, = b(1+ 2q)5y. (4.7)
Let us note that we fix the values of the parameter b, which

describes the strength of the magnetic field.
It is convenient to introduce new variables,

g=bq. p=p,/b. E=VbE. I=¢-b (48)
in which the Hamiltonian (3.2) takes the form,
LTI
=—qgp +—=U-E,
H=5ap"+ 5, U=-E]
U=aq((#-2q) +1]. (4.9)

At the fixed point of the Hamiltonian, where p = 0, the
constraint equation takes the form,

A

& =1. (4.10)

A

For a given Z, the coordinate g is determined by the
equation,

— =0, 4.11
while for the innermost stable orbit, one has
U
=0. 4.12

Explicit forms of Eqs. (4.11) and (4.12) are given by

122 =842+ ¢*+1=0,
7 =34. (4.13)
Let us emphasize that both the potential U and the

Eq. (4.13) written in the variables (§,7) are invariant
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under the rescaling of the magnetic field b, and in this sense
they are universal.

The first of these equations determines a coordinate
distance ¢ = g/b of the trajectory of the charged particle
from the horizon. One may also solve this equation and find
the corresponding integral of motion Z for the trajectory
with a given value of §. One has

?=4g+\/45* - 1.

The two branches of this solution for both + signs are
plotted in Fig. 1, given by the curves ... These lines meet at
point “1,” where (§ =1/2,# =2). The line y, is the
separatice determined by the equation 7= 3g. It divides
the (g, 7 ) plane into two parts. In the upper part of the plane
(above yg), d2U /dg* < 0, while in the lower part of the
plane (below y,), d®i4/dg?* > 0. The critical point “0”
represents the innermost stable orbit. The separatice y,
intersects y_ at point “0,” where (§ = 1/+/3, ¢ = V/3). The
portion of y_ to the right of this point represents stable
orbits. At this point, the dimensionless radius r and the
integral of motion ¢ are given by

(4.14)

1
r=1l+—, £=b+V3.

NeT (4.15)

These relations correctly reproduce (3.10) in the regime of
large b.

7+

Y0

1.5 2.0

FIG. 1. The parameter ¢ as a function of g as defined by
Eq. (4.14). The lines y. represent the two solutions with the
corresponding =+ signs. These lines intersect at point “1.” The
straight line y, is the separatice ¢ = 3g. Above this line,
d?U/dg* < 0, while below it one has d*i{/dg* > 0. Point “0”
represents the innermost stable orbit. The part of y_ to the right of
point “0” represents stable orbits.

V. PARTICLE TRAJECTORIES
A. Magnetic field near the Rindler horizon

Let us make the following change of variables:

1

. 5.1
q=7,p (5.1)

In these coordinates, the metric (4.5) takes the form,

t =2z,

ds®> = —p?dc* + dp* + dy? + dz?, (5.2)
which is nothing but the standard Rindler form of a flat
metric. A schematic outlining the variables used in the near-
horizon approximation is shown in Fig. 2. If (T, X, Y, Z)
are Minkowski coordinates, then one has

T =psinh(z), X=pcosh(z), Z=z.

Y=y, (5.3)

The four-velocity of an observer at rest at p in the Rindler
frame is

1
o Lo
Uy = —0).

(5.4)
The parameter 7 is simply the dimensionless proper time as
measured by an observer at rest at p = 1.

The dimensionless vector potential associated with the
Killing vector ¢ written in (z, r,y,z) coordinates is

r2

—bh— (5.5)

“ 4 (coshz)?’

= a,0), a
Near the equatorial plane and close to horizon, where
p, y < 1, the leading term of the expansion of a, is of

the form,

b
ay=b+3 (p? —272). (5.6)

FIG.2. The near-horizon approximation. The 2D (y, z)-plane is
tangent to a unit sphere representing the event horizon of the
black hole. The p-axis is orthogonal to the (y,z)-coordinate
plane. In the adopted near-horizon approximation, the coordinate
p may be understood as the proper distance from the horizon.
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The nonvanishing components of the field strength F,, =
2ay,, for the potential (5.6) are
F,, = bp, F,, = =2bz. (5.7)

Let us note that these expressions were obtained in using
the Killing ansatz (2.20) for the magnetic field. In the
Appendix we demonstrate that, in the absence of a magnetic
monopole contribution, expressions (5.6) and (5.7) are
nothing but the leading asymptotics for any regular static
and y-independent magnetic field in the near-horizon
approximation.

On the plane at z = 0, one has F,, = 0. The magnetic
field vector in the frame of an observer at rest in the
Rindler frame is

1 P oy
Ba = —EeaﬂMUMOF s

(5.8)
where uj is the four-velocity of the observer (5.4) and Copuy
is the antisymmetric tensor, eyj3 = p. The only non-
vanishing component of B, is

B, = bp.

Z

(5.9)

B. Stationary worldlines

In Minkowski spacetime, there exists a special class of
worldlines which are called stationary [33]. Their charac-
teristic property is that the geodetic interval between any of
its two points depends only on the proper time interval. The
stationary curves in Minkowski spacetime were described
and classified by Letaw [33]. He demonstrated that the
stationary worldlines are solutions of the Frenet equations
when the curvature invariants are constant. In this sub-
section, we demonstrate that the worldline of a charged
particle moving in the magnetic field (5.9) is a station-
ary curve.

For this purpose, let us consider a particle moving in
z=0 plane and write its worldline X* = X*#(1) in
Minkowski coordinates,

X* = (pg sinh(c4), py cosh(cd), V4,0).  (5.10)
As earlier 4, is the dimensionless proper time parameter
along the trajectory. The particle’s four-velocity is then

ax+
w = = (poo cosh(od), pyo sinh(cd), V,0). (5.11)
The normalization condition u> = —1 implies
V14 V?
o= Y1V (5.12)
Po

The curve (5.10) is uniquely defined by two independent
parameters: p, and V. One may check that the curve in the
(X-Y)-plane representing the trajectory of this particle is a
catenary,

iiﬁﬂ. (5.13)

X=p cosh<
0 poV

One may also easily find the four-acceleration w* =
dut/dJ and the “jerk” k* = dw"/d2,

wH = poo?(sinh(a), cosh(c), 0, 0),

k' = pyo’(cosh(al), sinh(c4), 0, 0), (5.14)
which obey the relations,
1 VZ 2 1 V2 3
wiw, = LV g = VT s
Po Po

Let us note that both of these invariants are constant. This
implies that the Frenet coefficients calculated for these
curves are constant as well, as they should be in the
stationary case.

The Rindler coordinates (z,p,y,z) are related to the
Minkowski coordinates (7, X,Y, Z) as follows:

p=VXP-T2,  wmhr=L.  (5.16)
These relations give
g _X w1
or  p*’ ox  p¥’
2_;__; g—g’(—; (5.17)
Using the relations,
u’z%u", upz%u”, (5.18)
one may find #* in Rindler coordinates. One has
w = (0,0,V,0). (5.19)

This relation shows that dr/dl = o.

Let us summarize. The particle with the worldline (5.10)
in Minkowski coordinates remains at a constant distance
p = po to the Rindler horizon. For an observer at rest at this
distance, the proper time 7, is related to 7 via 7o = py7.
A velocity v = dy/dr, as measured by this observer is
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The inverse relation determines V as a function of the three-
velocity v

(5.21)

In a similar way, one finds the components of the vectors
w and k in the Rindler frame,

wt = (0, pyc?,0,0),
k= (6°,0,0,0). (5.22)
The dimensionless Lorentz force (2.22) acting on the
charged particle is
f*=DbVpé,. (5.23)
If the velocity V is directed along the y axis (such that V' is
positive), the Lorentz force is directed along the p axis, i.e.,
away from the horizon located at p = 0. For motion with a
fixed value p = p,, this repulsive force compensates the
“fictitious” attractive gravity force to the horizon in the
Rindler space. This condition reads
wh = fH, (5.24)

Substituting the expression for the four-acceleration w*
(5.22) into (5.24), one finds

o> =bV. (5.25)
Using the expression (5.12), one obtains
14 Vv?
bp} = J;/ (5.26)

For a given value of b, this is the relation between the
position of the trajectory p, and the velocity V of the
particle. We have thus shown that a stationary worldline
given by (5.10) obeying (5.25) does indeed coincide with
the trajectory of a charged particle. In the classification of
Letaw [33], such stationary curves belong to class (v).

Let us now show that (5.26) does in fact reproduce a
solution of the first equation in (4.13). Equation (2.26)
allows one to write

?=V+23, (5.27)

where g = bp% /4. Substituting this expression into (4.13)
and solving the obtained equation, one finds

14+ V2
4v

g = (5.28)

This equation is equivalent to (5.26). This means that the
orbits which were found by solving the dynamical equa-
tions of motion correctly reproduce the results obtained by
means of Eq. (4.13).

Relation (5.28) shows that dg/dV > 0 for V > 1, where
g > 1/2. This means that when § decreases (and a point
representing the state of the system moves to the left
along the lower branch of y_), the velocity V decreases
as well. This behavior continues until the critical point
§g=1/v3>1/2, at which point the system becomes
unstable. At the critical point corresponding to the inner-
most stable orbit, one has

V=V, = 5.29)

27 pcr_31/4\/l—7'

C. Metric in a comoving frame

The equation of motion of the particle in the Rindler
frame (5.2) frame is given by

P = Po- (5.30)

To obtain the metric in a frame comoving with the particle,
it is sufficient to make the following coordinate trans-
formation (shifting to a reference frame with velocity
V in the y-direction):

pPoV ,
=——7+9. 5.31
VA 530
In the coordinates (z,p,y, z), the metric is
V2 2p0V
ds* =—(p* = p3 >d12 + 2 dedy
(P Po 1L v2 Tov2 T2 y
+ dp? + dy* + dZ°. (5.32)

We again emphasize that the coordinate 7 in this expression
is the proper time for an observer at rest at p = 1 in the
Rindler frame.

For a charged particle moving in a magnetic field, the
parameters p, and V are not independent. Using the relation
(5.26), one can express (5.31) as follows:

_\ﬁ+_
y = b Y,

and the metric (5.32) in the comoving frame takes the form,

|4 \%
ds? = — <p2 - b> de® + 2\/;drdp

+ dp* + dy* + dz*.

(5.33)

(5.34)
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We note that this metric, associated with the moving
particle, is stationary and does not depend on z. This is
a direct consequence of the fact that its worldline is
stationary.

D. Orbital oscillations

So far, we have focused mainly on stationary orbits
with fixed values of p = p,. Let us briefly discuss small
perturbations of these orbits in the radial direction. For this
purpose, we use the Hamiltonian (3.14). In the near-horizon
approximation, it takes the form,

12

1{/~ 1 2 42

Denote by p, the proper distance of the unperturbed orbit.
Then expanding the potential VV, near this point, one has

(5.35)

1 5 ®? )
H—EP +7(,0—,00),

w? :b[%/bzpé—ét—bp%].

This expression demonstrates that a radial perturbation of
the orbit results in small oscillations around p = p,. For a
stable orbit, the frequency w is real, and it vanishes at the
critical innermost stable orbit. For p, < p..,, @ is imaginary,
as expected for unstable orbits.

(5.36)

VI. RADIATION FRICTION

A. Electromagnetic radiation of a charged particle

An accelerated charged particle radiates electromag-
netic waves, which reduces its total energy and momen-
tum. As a result, its motion is modified via an effect
called “radiation damping.” We assume that this effect
is small and evaluate how it affects the particle’s
motion near the horizon. For this purpose, we use the
approach developed in the previous sections. An
approximation of the radiation force when the effect
is small is given by [35]

207 -
7= %(kﬂ + k).

(6.1)
In the presence of radiation, the force § should be
added to the right-hand side of the equation of motion
of the charged particle (2.9). After making a trans-
formation to dimensionless quantities, this equation
takes the form,

W = fH 4 fh (6.2)

Here, f* is the dimensionless Lorentz force given by
(5.23) and f% is a radiation-friction force,

L R )
where € is a new dimensionless parameter,
B

In what follows, we assume that ¢ is small.

In order to study how the emitted radiation changes the
distance p of the charged particle from the Rindler horizon,
we consider the radiation force f% as a perturbation. As
such, we keep only terms up to first order in ¢ in the
equations of motion. Since this force is already of order ¢, it
is sufficient to substitute the unperturbed values of k* and
ut into the expression for g*. Using the expression (5.22)
for k* and (5.19) for w* in (z,p,y,z) coordinates, one
obtains the following expression for f%,

R

P (_ V2(V2 4 1)3/2 V(V2+41)?
p p

0, - ,@.(M)

One can see that the p and z components of this force
vanish, while the other components, ¢° and ¢”, are negative.
This implies that as a result of the action of this force,
the integrals of unperturbed motion—the energy and the
y-momentum—slowly decrease.

B. Evolution of the orbit

Let us now discuss how the electromagnetic radiation of
the charged particle affects the orbit of a charged particle
moving near the horizon. For a given magnetic field » and
in the absence of radiation, the distance p of the particle
from the horizon is a function of its velocity. If the radiation
is weak, the parameter p as well as the velocity V slowly
change in time. We choose the velocity V as a parameter
describing the state of the system and assume that p is
determined by it, i.e., that p = p(V). We also write

dv

—=cf(V), 6.6
= (V) (66)
where f(V) is a function which characterizes the rate of
change of the velocity due to the radiation. One has

dp  .dp

The four-velocity of the particle moving along a worldline
with a slowly changing velocity V is

d
W = <a,€f£,v, 0), (6.8)
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and the standard normalization condition u? = —1 deter-
mines the parameter a,

a:;)\/1+V2.

(6.9)

Here and later we neglect quantities of the second and
higher order in e.

Calculations give the four-acceleration of the particle w*
in Rindler coordinates,

wh = (W%, a?p, ef . 0),

dp
av)’

T

W Vp+ (1+ V?) (6.10)

__ ¢
One may check that u,w* = 0 as required. One also finds

the following expression for the dimensionless Lorentz
force f*:

f*=1(0,bpV,—ebpf(dp/dV),0), (6.11)
while the friction force f% is given by (6.5).
Let
J == fr (6.12)

then the equations of motion read J* = 0. The equation
J? =0 implies

,_1+V

b
P %

(6.13)

This relation is identical to the relation (5.26). This means
that, at least in the leading order, the relation between p and
V remains the same as in the absence of radiation. The
equation JY = 0 gives

V(1+V?)?
bp*[1 + bp(dp/dV)]’

f=- (6.14)

Substituting the expression for p which follows from
(6.13), one obtains

2V4(1 + V?)

= 6.15
! 3Vi-1 (6.15)
The equation J* =0 is trivially satisfied. One can also
check that the last equation, J* = 0, is valid as a result of
the relations (6.13) and (6.15).

A solution of Eq. (6.6) for V(1) can be written in the

following parametric form:

av

= (6.16)

0.5

0.4 1

0.3 1

0.2 A

0.1 1

0.0
0.0

FIG. 3.

The function T = T (V).

Performing the integration, one gets

av
—=T(V),
7 (V)
TV) = 2arctan(V) = ——+ 2. (6.17)
=2arctan(V) — — + —. )
6V 'V
We define
3v3
TC—T(VC—I/\/g)—g—kT\/—, (6.18)
and denote
T=T(\V)=T.-T(V). (6.19)

A plot of the function T(V) is shown in Fig. 3. The quantity
T /e is the dimensionless proper time parameter A required
for a particle with initial velocity V to reach the innermost
stable orbit.

Suppose a charged particle is initially in an orbit with a
given parameter p. Its velocity is then

1
V=2 {bp2 — /bt — 4} . (6.20)

If one substitutes this expression into (6.19), one obtains
the lifetime of the charged particle moving near the horizon
as a function of its initial position. This function is shown
in Fig. 4.

C. Motion at a fixed distance to the horizon

As we saw in the previous section, a change in the
velocity V leads to a change in the distance parameter p. Let
us now briefly consider a different problem. Namely, we
assume that instead of a magnetic field supporting the
particle, there exists some other force which is independent
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100 A

80

40

20 A

plper

FIG. 4. The lifetime T as a function of p/p., = 3/*\/bp/2.

of the particle velocity V yet fixes the distance of the
particle to the horizon, p = p,. One then has (cf. [36])

av - 22

— = V(1 + V)
dA 3mc*r,ph 1+

(6.21)
Using the physical proper time parameter 1 = ry/ and
dimensional proper distance to the horizon [ = rgp,, one
may write this relation in the form,

dVv 22
@ v+ VAR =
AL ' 3meP

(6.22)
This equation can be easily integrated and its solution may
be written in the following parametric form:

. 1
A=F. F=-InV+3In(1+V?)— (6.23)

(1+Vv2)
Using this relation, one can determine how the velocity V
changes with the proper time parameter. The curve in
Fig. 5 shows the dependence of the velocity V on the
parameter .

10!

> 100 4

107!

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

yA

FIG.5. The velocity V as a function of y/ for particle motion at
a fixed p = py.

The function F(S) is monotonically decreasing. Its
asymptotics, V =co at =0 and V =0 at 1 = co, can
be easily obtained from (6.23). For small V, one has

V = Vyexp(=yA). (6.24)
Thus for a small initial velocity V, the velocity V decays
exponentially with a characteristic time of decay given

by y .

VII. DISCUSSION

In this paper, we have discussed the motion of charged
particles near magnetized, nonrotating black holes. In
particular, we have studied particles moving in the equa-
torial plane orthogonal to the magnetic field. We have
focused on orbits with a direction of motion corresponding
to an outwardly directed Lorentz force from the black
hole horizon. When the magnetic field parameter b is large,
such circular orbits are located close to the gravitational
radius r, = 2GM/ c?. In this regime curvature and trajec-
tory bending effects can be neglected, and one can use the
near-horizon approximation.

We considered a near-horizon spatial domain which
extends from the horizon up to the proper distance
L < r,, and assumed that its length in the directions parallel
to the horizon also have size L. In this domain, it is shown
that one can approximate the exact Schwarzschild geometry
by the Rindler metric. This defines a map from the near-
horizon geometry to a corresponding Minkowski spacetime.
We demonstrated that it is possible to accompany this map
with a proper rescaling of the electromagnetic field, such that
the near-horizon trajectories of the charged particles map to
stationary curves. These timelike curves in Minkowski
spacetime have remarkable properties. The interval of a
straight line connecting any two points on such a worldline
depends only on the proper time interval between these
points. Stationary curves are integral lines for a linear
combination of the boost and rotation Killing vectors,
and their Frenet curvatures are constant [33]. In the near-
horizon approximation, the Hamiltonian of the charged
particle is greatly simplified.

As our model, we used a black hole immersed into a
homogeneous at infinity magnetic field. However, for the
description of the near-horizon motion of charged particles,
only its near-horizon asymptotic is important. In fact, as it
is shown in the Appendix, this near-horizon field is a
general asymptotic of any regular at the horizon magnetic
field respecting the imposed symmetries.

Using the adopted near-horizon approximation, we
solved the equations describing the slow evolution of a
circular orbit of the charged particle induced by its
electromagnetic radiation (see also [22]). As a result of
the radiation emitted by the particle, it loses both its angular
momentum and energy, and the radius of the orbit decreases
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until the particle reaches the innermost stable orbit and
falls into the horizon. We calculated the corresponding
lifetime for this process. Such a friction effect on a particle
moving near the horizon of a black hole and parallel to its
surface has a natural explanation in the framework of the
membrane paradigm [36,37]. The motion of the particle
creates an electric current on the stretched horizon, and its
Ohm’s power dissipation is responsible for the friction
force acting on the particle. It is quite interesting that a
similar effect is known to occur in “standard” electrody-
namics in flat spacetime. Namely, when a charged particle
moves parallel to the surface of a conducting material at
some given distance, there exists a force which decreases
its velocity [38].

The proper distance of the innermost stable orbit to the
horizon depends on the mass of the charged particle.
Denote by p, and p, the corresponding distances for the
electron and proton then

pp —Pe = (\/ mp/me - l)pe N42pe

This implies that for a two component neutral gas of
weakly interacting protons and electrons there may exist a
net electric charge associated with an excess of electrons
located in the ring of the equatorial plane between p, and
p.- If one ejects such a neutral gas at some distance from the
horizon, the times required for the protons and electrons
within it to reach the innermost stable orbit are different.
For steady accretion of the neutral plasma into the black
hole, this may result in the black hole becoming charged.

For a nonrotating black hole, close to the horizon orbits
for large values of the parameter b are “supported” by the
magnetic field. For rapidly rotating black holes, such orbits
also exist as a result of the interaction of black hole spin
with the particle angular momentum. It would be interest-
ing to extend the near-horizon approximation adopted in
this paper to the study the near-horizon circular orbits in
Kerr geometry.

(7.1)
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APPENDIX: ELECTROMAGNETIC FIELD NEAR
THE RINDLER HORIZON

In this appendix, we discuss properties of the electro-
magnetic field near the Rindler horizon. We write the
Rindler metric in the form,

ds* = —p?d7® + dp* + dy* + dz*. (A1)
The relations between the Rindler coordinates (z,p,y, z)
and the Minkowski coordinates (7,X,Y,Z) are given

in (5.16). Relations (5.17) give the partial derivatives of
the Rindler coordinates 7 and p with respect to 7 and X.
We define two Killing vectors,

&0, = a,, ¢ta, = a,, (A2)
and consider the electromagnetic field A, which respects
these symmetries,

LA, =LA, =0. (A3)
Here, L; is the Lie derivative along a vector field &.
Relations (A3) imply that

A, =A(p.2). (A4)

We impose the Lorenz gauge condition A*,, = 0, which for
the potential (A4) in Rindler coordinates takes the form,

%0,,(@4,,) +0,A, =0. (A5)
Let us denote
F,, =0d,A,-0,A,
- \/L__gay(\/——gFW). (A6)

Then the source-free Maxwell equations J” = J* = 0 for
the field (A4) are

0.F,. = d,(pF,;) = 0. (A7)
A solution of these equations is
C

F/)z = Z . (AS)

The other two Maxwell equations, J* = JY = 0, take the
following form:

1
po, <— apA,> + 024, =0,
P

1
0ZA, —l—;apAy + 02A, = 0. (A9)
Both of these equations allow a separation of variables and
their general solutions are

Alp.2) = / dwe' A (p|w),

[Se]

A, (plw) = p[CHw)J,(wp) + C2(w)K, (wp)],

Mip.2) = [ doei, plo).

[Se]

A,(plo) = C(@)Jol@p) + C(w)Ko(wp). (A10)
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Here, J,,(x) and K ,(x) are Bessel functions of the first and
second kind, respectively.
Near the Rindler horizon, i.e., for small p < 1, one has

1
Jo(wp) ~1 =~ a’p?,

Jo(ap) ~ 1
4 o\wp zwp,

1
Ky (wp) ~—.

p” (Al1)

Ko(wp) ~ —In(wp).

The electromagnetic field is regular at the Rindler
horizon if its components are finite and smooth functions
of (T,X,Y,Z) coordinates. For the field (A8), one has

T cT CcX CcX

FTZ:__sz:_p_Z’ FXZ:_sz:p_z'

(A12)
Hence for a regular at the Rindler horizon solution (A8),
one should put C = 0 (such that F,, = 0).

For regularity of the field at the Rindler horizon, it is
sufficient that the components of its vector potential Az,
Ay, Ay, and A, are finite and smooth functions of
(T,X,Y,Z). Using (A11), one can see that for the solution
A, given by (A10), one must put Cﬁ(a)) = 0. Using (5.17),
one can also find the component A, of the vector potential
in Cartesian (7', X) coordinates,

T
SA, (A13)
P

Ay = —
and for a regular field one should put C2(w) = 0 in (A10).

In the near-horizon approximation, we choose the
coordinate z such that z = 0 corresponds to the equatorial
plane. One may use relations (A10) to find the expression
for the regular electromagnetic field in the domain near the
horizon and close to the equatorial plane, where p < 1
and z < 1.

However, for A, this can be done directly. Let us denote

k n

P, = Pip,z) = Z Z Cipmip'z"™,

n=0 i=0

(A14)

and write the leading asymptotic of a regular near the
horizon function A, in the form A, = P,(p, z). Substituting
this expression in the Maxwell equation J* = 0, one finds

Cio=0Cy =0,

C02 - —2C20. (AlS)

Thus a regular at the horizon field A, has the form,

1 1
A, = Eb(p2 —22%) + bz :Eb(x2 —T?-27%) + b Z.

y

(A16)

Here, we have set C3, =1b and Cyy = b;. We have also
set Copp =0 since this constant does not enter the
expression for the field strength. The final expression
in (A16) clearly shows that A is regular at the Rindler
horizon. The field F,, for this potential has the following
components:

F,y, = bp,

F,=-2bz+b,.  (Al7)

The electric field in the Rindler frame for the potential A,

EV = F"u, = —p?F¥, (A18)
vanishes, while the magnetic field,
Bt = %e’”"‘ﬁuuFQﬁ, (A19)
has the following nonvanishing components:
B’ = -2bz + by, B* = bp. (A20)

For b =0, this magnetic field is orthogonal to the
horizon. Such a field in the near-horizon region of the
black hole exists if the black hole has a nonvanishing
magnetic monopole charge. In the absence of the monop-
ole charge, i.e., when b; = 0, the leading term of the near-
horizon magnetic field has a universal form which
contains only one constant, b. In the case of a black
hole immersed in a homogeneous at infinity magnetic
field, b coincides with its value at infinity.

A similar analysis can be done for the A, component
of the potential, which is responsible to the electric field.
We write it in the form,

A = p*Alp, 2). (A21)

The electromagnetic field for this potential is regular at the
horizon when A is regular function of the Minkowski
coordinates. The equation J* = 0 implies that this function
satisfies the equation,

3
02 A(p.z) + ;a,,A(p, 7) + 2 A(p,z) = 0. (A22)

We again use an asymptotic form of A, namely
A = P,(p, z), near the z =0 plane in the vicinity of the
horizon. Then Eq. (A22) imposes the following conditions
on the C;,_;:

Cio=Cn =0,

C02 - —4C20. (A23)
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Thus,

A; = p*[Cop + Corz + Cy(p* —42%)],  (A24)
which is clearly regular with respect to Cartesian
coordinates.

The resulting nonzero components of the field tensor
are

F e = 2p[Cop + Co12 + Cy0(2p* — 42%)],

Fo. = p*[Co = 8Cx2. (A25)

Using relations (5.17), one can show that

éfép_(%ap_l

—_————— =, A26
oToX 0XdT p ( )
Thus one has
1
FTX — ;FTP’ (A27)

and the leading term in the expression for F,; in (A25) with

coefficient Cyy = E/2 describes a constant electric field E
in flat spacetime directed along the X-axis.
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