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The gravitational memory effect and its electromagnetic (EM) analog are potential probes in the strong
gravity regime. In the literature, this effect is derived for static observers at asymptotic infinity. While this is
a physically consistent approach, it restricts the spacetime geometries for which one can obtain the EM
memory effect. To circumvent this, we evaluate the EM memory effect for comoving observers (defined by
the 4-velocity uμ) in arbitrary curved spacetimes. Using the covariant approach, we split Maxwell’s
equations into two parts—projected parallel to the 4-velocity uμ and into the 3-space orthogonal to uμ.
Further splitting the equations into 1þ 1þ 2-form, we obtain the acceleration vector of the comoving
observer located in a two-dimensional (2D) surface orthogonal to the direction of propagation of the EM
waves. We refer to this expression as the master equation for the EM memory in an arbitrary curved
spacetime. The master equation corresponding to the acceleration of the comoving observer in the 2D
surface provides a physical understanding of the contribution to the EM memory. For instance, the leading
order contribution only requires information about the total energy density of the EM field, while the
subleading contributions contain information about the spacetime geometry and the other components of
the energy-momentum tensor of the EM field. To our knowledge, this is the first time a transparent and
easily applicable final expression for electromagnetic memory has been derived for a general curved
spacetime. We then obtain EM memory for specific spacetime geometries and demonstrate the advantages
of our approach.

DOI: 10.1103/PhysRevD.108.024044

I. INTRODUCTION

LIGO-VIRGO-KAGRA has detected close to 100 gravi-
tational wave (GW) sources. GW signals emanating from a
black hole or neutron star binaries have opened many new
research avenues in astronomy, cosmology, and fundamen-
tal physics [1–4]. GWs provide a unique way to test
gravity’s most extreme, nonlinear regime in novel ways.
The planned third-generation ground-based detector
(Cosmic Explorer and the Einstein Telescope) will allow
us to peer far deeper, and LISA will open a new observa-
tional window at low frequencies. With more sensitive
detectors shortly, the focus has been to understand the
physical effects of GWs.Gravitational wave memory is one
such effect [5–13].
GWmemory effects—physically observable phenomena

that modify the state of gravitational-wave detectors a little
bit from their original undisturbed state—are one of the key
predictions of general relativity [6,7,9,14]. GW memory
effects can be divided into two types [12,13]: null memory
that occurs when radiation or massless particles escape
from a system to null infinity, and ordinary memory that
occurs when the detector recoils relative to its initial center

of mass frame. The GW memory is characterized as a
gravitational wave signal approaching a nonzero finite
value. This aspect of the GW signal is yet to be observed,
although LISA is predicted to observe it [15].
Recently, it has been realized that the memory effect can

be thought of as a vacuum transition between two different
states related by an asymptotic transformation [16,17].
Since such asymptotic transformations also occur for other
gauge theories, there has been an intense activity to obtain
analogous memory effects in other gauge theories [18–22].
Since electromagnetic (EM) theory is the simplest of all
gauge theories and can be a potential probe, electromag-
netic memory has received much attention [23–36]. As in
GWmemory, an EMwave generates a permanent change in
the relative velocity of test-charged particles attached to a
detector in the two-dimensional (2D) surface perpendicular
to the direction of propagation of the wave while passing
through the detector (cf. Fig. 1). In other words, EM waves
directly displace test particles by giving them a momentum
(kick), resulting in a relative velocity change. This is
different from GW memory as the GW does not displace
test particles. Instead, GW distorts the spacetime geometry
itself, which causes a change in separation between two test
particles.
Bieri and Garfinkle were the first to propose the memory

effect due to electromagnetic waves [18]. As in GW
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memory, they showed that EM waves produce two types of
momentum kicks. In Ref. [19], Winicour showed the
absence of memory effect generated by the electromagnetic
field coming from distant sources for a bound charge
distribution and the nonexistence of memory effect due to
the magnetic field.
In the case of GW memory, gravitational radiation must

reach the detector. Likewise, EM radiation also has to reach
null infinity to generate null kick memory. Hence to
calculate EM memory, one needs to know the properties
of the electric field and radiation at null infinity [18]. More
specifically, the original approach by Bieri and Garfinkle
requires prior knowledge about the behavior of the fields in
asymptotic limits. It can be extended to conformally flat
spacetimes [35,37]. Also, the analysis does not provide any
physical understanding of why the EM memory has such a
form in flat and conformally flat spacetimes.
This leads us to the following questions: Can we derive a

master equation for EM memory in a generic curved space-
time? What role does curved geometry play in EMmemory?
Can we have a physical understanding of the various
contributions to EM memory? This work addresses these
three questions using 1þ 3 covariant formalism [38–43].
There are two reasons why covariant formalism is better

suited to studying EM memory. First, as mentioned earlier,
when the EM wave propagates in a given spatial direction,
the net momentum experienced by the particle lies in the
2D surface orthogonal to the direction of propagation of the
EMwave (for a pictorial representation, see Fig. 1). In other
words, the EM memory affects the test particle lying on the
2D surface. Hence, it is more natural to have a formalism
that identifies such a dynamical 2D surface and evaluates
EM memory. Second, as in fluid mechanics, we can
observe the flow of EM radiation in two ways. First, as
in Refs. [18,19], an asymptotic stationary observer mon-
itors changes in electric and magnetic fields of the incom-
ing EM radiation. Second, a comoving observer monitors

changes in electric and magnetic fields. In fluid mechanics,
these are referred to as the Lagrangian and Lagrangian
descriptions of flow, respectively. It is well-known that the
Lagrangian description is better suited for fluids and in
cosmology [40,41,43].
In this work, we evaluate the memory effect using the

1þ 1þ 2 covariant formalism [40,44–47]. The 1þ 1þ 2
decomposition of spacetime is a natural extension of the
1þ 3 formalism in which the 3-space is further decom-
posed to a given spatial direction. This approach is also
referred to as semitetrad formalism [48–52]. The principle
advantage is that we can evaluate the net momentum (kick)
vector on the 2D surface for arbitrary spacetime. Since this
affects all the test particles on the 2D surface, we refer to
this as the memory vector. This can also be understood
using the fact that the electric and magnetic fields are
transverse to the direction of propagation of the EM wave.
Further splitting the equations into 1þ 1þ 2-form, we
obtain the acceleration vector of the comoving observer
located in a 2D surface orthogonal to the direction of
propagation of the EMwaves. We refer to this expression as
the master equation for the EM memory in an arbitrary
curved spacetime. The master equation corresponding to
the acceleration of the comoving observer in the 2D surface
provides a physical understanding of the contribution to the
EM memory. For instance, the leading order contribution
only requires information about the total energy density of
the EM field, while the subleading contributions contain
information about the spacetime geometry and the other
components of the energy-momentum tensor of the EM
field. To our knowledge, this is the first time a transparent
and easily applicable final expression for electromagnetic
memory has been derived for a general curved spacetime.
We then obtain EM memory for specific spacetime geo-
metries and demonstrate the advantages of our approach.
The rest of this work is organized as follows: In Sec. II, we

provide an overview of the two—1þ 3 and 1þ 1þ 2—
covariant formalisms and obtain the key geometrical quan-
tities. Then, in Sec. III, we rewrite Maxwell’s equation in
1þ 3 and 1þ 1þ 2 covariant formalisms in arbitrary
spacetime. Next, in Sec. IV, we obtain the master equation
for the EM memory in arbitrary spacetime and discuss the
key features. In Sec. V, we then obtain EM memory for
specific spacetimes and compare them with the known
results in the literature. Finally, in Sec. VI, we summarize
our results and discuss possible future directions.
In this work, we use the ð−;þ;þ;þÞ metric signature

and set c ¼ 1=ð4πϵ0Þ ¼ 1. A dot denotes a derivative with
respect to the proper time τ. A prime denotes a derivative
with respect to the spacelike vector nμ. For easy compari-
son, we follow the notations of Ref. [43].

II. OVERVIEW OF COVARIANT FORMALISM

A covariant theory such as general relativity does not
favor any particular coordinates. However, splitting tensors

FIG. 1. Electromagnetic memory effect that lies in the 2D
surface orthogonal to the direction of the coming wave.
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into time and spatial parts is typically required for its
physical meaning. Thus, the splitting is achieved by
rewriting Einstein’s equations as a set of constraint and
evolution equations in a three-dimensional framework.
This allows for an intuitive evaluation of the relevant
physical system.
A choice of coordinates defines a threading of spacetime

into lines and slicing into hypersurfaces [53]. Thus, the
splitting procedure can be carried out in two distinct ways:
First, by employing the so-called (3þ 1) formalism or
slicing of spacetime [54]. Second, by employing (1þ 3)
formalism or threading of spacetime [40,41,43]. In the
(3þ 1) decomposition, the time is a label of spacelike
slices Σt with space coordinates xi. In contrast, in the
(1þ 3) splitting, the timelike world lines have coordinate τ
and are labeled by xμ. In the (3þ 1) formulation, the
construction only requires spacelike hypersurfaces and
does not demand causality of the time curves. However,
in the (1þ 3) approach, every tensor is split into the parallel
and orthogonal directions to a timelike vector (curves).
Furthermore, it does not provide any condition on the
causality of the spatial distances. Though the two
approaches provide different points of view, it has been
shown that they are equivalent for spacetimes with sym-
metries [53]. We use the covariant 1þ 3 formalism in
this work to obtain EM memory. As mentioned in the
Introduction, covariant formalism provides a physical
understanding of the origin of EM memory in arbitrary
spacetime.

A. Covariant 1 + 3 formalism

Heckmann, Schucking, and Raychaudhuri developed the
covariant approach to general relativity in the 1950s [38,39]
and was later used in different gravitational and
cosmological models [40–43]. To decompose the four-
dimensional (4D) spacetime in (1þ 3) formalism, we
introduce a family of observers with worldlines tangent
to a timelike 4-velocity vector uμ to satisfy the following:

uμ ¼ dxμ

dτ
; uμuμ ¼ −1; ð1Þ

where τ is the proper time measured along the fundamental
worldline. See Fig. 2. Using the 4-velocity (uμ) we can
define the following projection tensors [41,43]:

Uμ
ν ¼ −uμuν; Uμ

νUν
γ ¼ Uμ

γ; Uμ
μ ¼ 1; ð2aÞ

hμν¼ gμνþuμuν; hμνhνγ ¼hμγ; hμμ¼3; hμνuν¼0:

ð2bÞ

uμ, and hence Uμ
ν, projects physical quantities parallel to

the 4-velocity of the observer and hμν projects quantities
into the 3-space orthogonal to uμ. The tensor hμν provides

the metric properties of the instantaneous 3-space as well in
the absence of rotation or vorticity.
In this formalism, the projection of the vector (Vν)

orthogonal to uμ is defined as Vhμi. Similarly, the traceless
part of a rank-2 tensor (Sαβ) projected into space orthogonal
to uμ is defined as Shμνi. Mathematically, these are
given by

Vhμi ≔ hμνVν; Shμνi ≔
�
hμαhνβ −

1

3
hμνhαβ

�
Sαβ: ð3Þ

The projection of the time derivative and orthogonal spatial
derivative of any vector (Vν) and tensor (Sαβ) are defined as

_Vhμi ≔ hμαuν∇νVα; DαSβγ ≔ hμαhβνhγρ∇μSνρ: ð4Þ

The covariant derivative of uμ can be split into two parts:
(1) directional derivative along the tangent to the worldline,
and (2) spatial derivative in the 3-space orthogonal to uν.
This can further be split into trace, traceless symmetric, and
antisymmetric tensor:

∇νuμ ¼
Θ
3
hμν þ σμν þ ωμν − _uμuν: ð5Þ

FIG. 2. Visualization of 1þ 3 formalism.
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In the above equation, σμν is the symmetric expansion
tensor that describes the distortion in the matter flow, Θ
corresponds to the expansion rate of the matter with respect
to the observer, and ωμν is the antisymmetric vorticity
tensor describing the rotation of the matter with respect to a
nonrotating frame. The last term refers to the relativistic
acceleration vector (the directional derivative) _uμ ¼ uν∇ν

which corresponds to the degree to which the matter moves
under forces other than gravity plus inertia. Further, using
the vorticity tensor, we can define the following quantity
called the vorticity vector:

ων ¼ −
1

2
ϵμναβωαβuμ; ð6Þ

where ϵμναβ ¼ 1ffiffiffiffi−gp ημνρσ is a fully antisymmetric tensor,

ημνρσ is the Levi-Civita symbol whose values are �1, and
we set η0123 ¼ 1 ¼ −η0123 [55]. The Levi-Civita 3-tensor is
defined as

ϵμνα ≡ ϵμναβuβ; ð7Þ

and satisfies the following relations: ϵμνuν ¼ 0 and
ϵμναβ ¼ 2ðu½μϵν�αβ − ϵμν½αuβ�Þ. The square bracket with
respect to the indices refers to antisymmetrization.

B. 1 + 1 + 2 covariant formalism

The 1þ 3-covariant formalism is well-suited for relativ-
istic cosmology because, at the largest observable scales, the
universe is homogeneous and isotropic [41]. These sym-
metries allow the slicing or threading of the 4D spacetime
manifold into a one-parameter family of spacelike hyper-
surfaces corresponding to cosmic time. Interestingly, it is
easy to show that in the Friedmann-Lemaître-Robertson-
Walker (FLRW) background, all physical quantities except
for the volume expansion Θ and the energy density vanish.
Using the Stewart-Walker lemma, in this formalism, it was
possible to construct gauge invariant quantities up to second
order in cosmological perturbations [56,57]. However, the
1þ 3 formalism is not suited if the spacetime is inhomo-
geneous, such as spherical symmetry or spacetimes with
local rotational symmetry (LRS) [44]. In such cases, split-
ting the 3-space orthogonal to the timelike congruence into
one spacelike direction and a 2-space is apt [40]. Thus, the
1þ 1þ 2 decomposition of spacetime is a natural extension
of the 1þ 3 formalism in which the 3-space is further
decomposed to a given spatial direction. This approach is
called semitetrad formalism [48–52].
As mentioned in the Introduction, our interest is to

evaluate the net momentum experienced by a test particle
after the electromagnetic wave passes through the space-
time point. In the covariant 1þ 3 formalism, the test
particle is the fundamental timelike observer. As depicted
in Fig. 1, when the EM wave propagates in a given spatial

direction, the net momentum experienced by the particle
lies in the 2D surface orthogonal to the direction of
propagation of the EM wave. In other words, the net
momentum (kick) vector lies in the 2D surface. Thus, the
net memory effect of the test particle will lie on the 2D
surface; hence, we will refer to this as the memory vector.
This can also be understood using the fact that the electric
and magnetic fields are transverse to the direction of
propagation of the EM wave. Thus, it is cogent to further
split the 3-space to 1þ 2-space.
More specifically, choosing a generic spacelike vector

(nμ), we split the 3-space into 1þ 2-space [44–47]. The
spacelike vector (nμ) satisfies the following conditions:

nμnμ ¼ 1; nμuμ ¼ 0:

As in the 1þ 3 formalism, we project the vectors and
tensors defined in 3-space along the spacelike direction (nμ)
and into the 2-space that is orthogonal to nμ. Here again, the
projection tensor (h̃μν) need to be defined:

h̃μν ¼ hμν − nμnν; h̃μνh̃
ν
γ ¼ h̃μγ;

h̃μμ ¼ 2; h̃μνuν ¼ 0; h̃μνnν ¼ 0: ð8Þ

All the vectors and tensors defined in the 3-space in the
1þ 3 formalism can be split int the 1þ 2 form. For
instance, an arbitrary spacelike vector Vμ (defined in the
3-space) can be written as

Vμ ¼ Vnμ þ Vμ; ð9Þ

where V ¼ Vμnμ and Vμ ¼ h̃μνVν. Similarly an arbitrary
tensor vμν on the 3-space can be split as

vμν ¼ V
�
nμnν −

1

2
h̃μν

�
þ 2VðμnνÞ þ Vμν; ð10Þ

where VðμnνÞ ¼ ðVμnν þ nνVμÞ=2. Similarly, the relative
acceleration of the timelike observer and other geometrical
quantities defined in 3-space can be written in 1þ 2
space as

_uμ ¼ Anμ þAμ; ð11Þ

_nμ ¼ Auμ þ αμ; ð12Þ

ωμ ¼ Ωnμ þΩμ; ð13Þ

σμν ¼ Σ
�
nμnν −

1

2
h̃μν

�
þ 2ΣðμnνÞ þ Σμν; ð14Þ

where _nμ ≔ uν∇νnμ is the relative acceleration of the
spacelike vector along the timelike observer. Here,
Aμ; αμ;Σμν;Ωμ are orthogonal to nμ as well as uμ. Also,
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Aμ;ΩμðΣμνÞ are the vectors (tensor) projected on the
2-space. In this formalism, we define the alternating
Levi-Civita 2-tensor

ϵμν ≡ ϵμναnα; ð15Þ

which is orthogonal to nμ and has components only in the
2-space. Given an arbitrary vector Vμ in the 2-space, we can
construct another vector ϵμνVν that is orthogonal to Vμ

which is in the 2-space and has the same length.
The 1þ 2 splitting of the 3-space leads to a new

directional derivative along the spacelike vector nμ:

v0μν ≡ nαDαvμν; ð16Þ

D̃αvμν ≡ h̃α
βh̃μ

ρh̃ν
σDβvρσ: ð17Þ

The derivative in Eq. (16) physically corresponds to the
variation of the physical quantities on the 2-space along the
spacelike vector nμ. The derivative (D̃) in Eq. (17) corre-
sponds to the variation of the physical quantities that lie in
the 2-space. These will contribute to the memory vector.
As we split the covariant derivative of uμ in Eq. (5),

similarly we can split the covariant derivative of nμ as

Dνnμ ¼ D̃νnμþnμn0ν ¼ σ̃μνþ ω̃μνþ
1

2
Θ̃h̃μνþnμn0ν; ð18Þ

where σ̃μν ≡ D̃hνnμi, ω̃μν ≡ D̃ðνnμÞ, and Θ̃ ¼ D̃μnμ are
shear, vorticity, and the surface expansion-contraction
scalar, respectively, and n0μ is the spatial derivative along
nμ. Thus, D̃νnμ describes the kinematic properties or the
relative motion of the spacelike curves in the 2-surface
orthogonal to nμ. We can obtain the relation between the
kinematic quantities derived from the motion of timelike
vector uμ and kinematic quantities in 2-space derived from
the spacelike vector nμ. See, for instance, Ref. [47].

III. ELECTROMAGNETIC THEORY
IN COVARIANT FORMALISM

The covariant formalism has been extensively employed
in studying the evolution of electromagnetic fields in
curved spacetime [46]. In the covariant formulation, the
dynamics and kinematics are constricted by the Bianchi
and Ricci identities. The (1þ 3)-covariant formulation
permits the classification of cosmological models, a fluid
description of the matter field in FLRW universes.
However, as mentioned earlier, the 1þ 3-formalism is
not suited if the spacetime is inhomogeneous, such as
spherical symmetry or spacetimes with LRS [44]. In such
cases, the 1þ 1þ 2-covariant or semitriad formalism are
better suited.
Since we aim to derive EM memory for arbitrary

spacetimes, we use 1þ 1þ 2-covariant formalism.

We obtain a generic form of the EM memory effect by
evaluating the change in the velocity vector Δuμ that lies in
the 2-space. To do so, we fix the spacelike direction to be
the direction of the propagation of the wave. In the case of
spherically symmetric spacetime, this naturally translates to
the radial direction. One key advantage is that the electro-
magnetic theory in the 1þ 1þ 2 formalism helps to
understand the evolution and dynamics of the EM fields
along the spacelike direction and in the 2-space normal to
nμ and uμ. Our approach makes geometrical contributions
to the memory effect more transparent.
In the next subsection, we rewrite Maxwell’s equations

in 1þ 3 formalism in an arbitrary spacetime. Later, we
formulate the evolution equations of the EM fields in the
2-space and two constraint equations of the same along uμ

and nμ [47]. The key advantage is that we can obtain the
memory vector from the projected acceleration vector onto
the 2-space.

A. In 1 + 3 formalism

The fundamental objects are the Maxwell electro-
magnetic field tensor Fμν. The (1þ 3) covariant formalism
of Maxwell’s electromagnetic theory provides a way to
study the interaction of EM fields with different compo-
nents of general spacetime geometry [46]. With the (1þ 3)
decomposition, it is possible to split Fμν into the electric
and magnetic fields. Note that the local coordinates are
mathematical parameters that label the points of the
spacetime manifoldM; therefore, the electric and magnetic
fields may not have a direct physical meaning. To make
measurements, an observer brings in an additional structure
on M by introducing the orthonormal coframe field. This
gives rise to the split of Maxwell’s tensor F into the
physical electric and magnetic fields.
Specifically, formalism allows us to split the equations of

motion of the fields and currents into two parts:
(1) projected parallel to the 4-velocity uμ of the funda-

mental observer;
(2) projected into the 3-space orthogonal to uμ.

To keep the calculations tractable, we perform all the
calculations in source-free and lossless regions. However,
the EMmemory analysis can be straightforwardly extended
to these regions. In the source-free regions, Maxwell’s
equations are

∇νFμν ¼ 0; ð19Þ

∇½γFμν� ¼ 0; or ∇νF�μν ¼ 0; ð20Þ

where F�μν is the dual to Fμν and is defined as
F�μν ¼ ð1=2ÞϵμναβFαβ.
In the 1þ 3 formalism, by projecting Fμν and F�μν along

the timelike 4-velocity vector, we can decompose them into
electric and magnetic parts. The electric (Eμ) and magnetic
(Bμ) 4-vectors are defined as
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Eμ ≔ Fμνuν; ð21Þ

Bμ ≔ F�μνuν: ð22Þ

From the above definitions, we infer

Eμuμ ¼ 0; Bμuμ ¼ 0; ð23Þ

which implies Eμ and Bμ have only spatial components.
Given this, we can rewrite Fμν and F�μν as

Fμν ¼ uμEν − uνEμ þ ϵμναβBαuβ; ð24Þ

F̃αβ ¼ ϵαβμνuμEν þ ðuαBβ − uβBαÞ: ð25Þ

From the above expressions, we see that the simultaneous
transformations Eμ → −Bμ, Bμ → Eμ leads to F�μν → Fμν.
This implies that we can obtain the second Maxwell
equation (20) from the first Maxwell equation (19) or vice
versa. More specifically, if we obtain the timelike part and
spacelike part of the Maxwell equations (20), we can write
the timelike part and the spacelike part of the other Maxwell
equations (19) by substituting Eμ → −Bμ, Bμ → Eμ.
In the rest of this subsection, we obtain the Maxwell

equations by projecting along uμ (timelike part) and hμν
(spacelike part) [58]. We first obtain the timelike part of
Eq. (20) by multiplying it with uμ:

uαð∇βF̃αβÞ ¼ 0: ð26Þ

Using the decomposition in Eq. (25), the above expression
becomes

∇βBβ − Bβ _uβ þ ð∇βuαÞϵαβμνuμEν ¼ 0: ð27Þ

We simplify the above equation using the following steps:
First, we combine the first two terms in the left-hand
side (LHS). From Eq. (26), we have Bβ _uβ ¼ −uβ _Bβ ¼
−uβuα∇αBβ. Substituting in the second term of the above
expression, we have δαβ∇αBβ þ uβuα∇αBβ ¼ hαβð∇αBβÞ.
Substituting ∇βuα from Eq. (5) and using the definition
of vorticity vector in Eq. (6), the third term in the LHS of
the above expression simplifies to −2ωβEβ. Thus, the
timelike part of Eq. (20) reduces to

DβBβ ¼ 2ωβEβ: ð28Þ

The spacelike part of Eq. (20) can be obtained by
multiplying it with hμν,

hαρð∇βF̃αβÞ ¼ 0: ð29Þ

Using a series of steps, the above expression can be
rewritten as

_Bhρi ¼
�
σρβ þ ωρ

β −
2Θ
3

hρβ

�
Bβ − ϵρμν _uμEν − ϵρμν∇μEν;

ð30Þ

where ϵμνα is defined in Eq. (7). The above equation
provides the dynamical evolution of the magnetic field,
while Eq. (28) is the constraint equation.
As mentioned above, performing simultaneous trans-

formations Eμ → −Bμ and Bμ → Eμ in Eqs. (31) and (32),
we obtain the timelike and spacelike parts of the first
Maxwell equation (19):

DβEβ ¼ −2ωνBν; ð31Þ

_Ehρi ¼
�
σρβ þ ωρ

β −
2Θ
3

hρβ

�
Eβ þ ϵρμν _uμBν þ ϵρμνDμBν:

ð32Þ

Similarly, the above equation provides the dynamical
evolution of the electric field, while Eq. (31) is the
constraint equation.

B. In 1 + 1 + 2 formalism

We aim to calculate the memory effect of EM fields. As
the memory vector resides in the 2-surface orthogonal to
the direction of propagation of the incoming wave, we need
to decompose the 3-space to 1þ 2-space with respect to a
given spatial direction. In this subsection, we rewrite the
Maxwell equations (19) and (20) using the spacelike vector
nν and the projection tensor (8) in 1þ 1þ 2 formalism.
To do this, we first express the EM fields and currents in

3-space into 1þ 2 form:

Eμ ¼ Enμ þ Eμ; ð33Þ

Bμ ¼ Bnμ þ Bμ: ð34Þ

where E ≡ Eμnμ, Eμ ≡ h̃μνEν, B≡ Bμnμ, and Bμ ≡ h̃μνBν.
Following the discussion in Sec. II B, it follows that ϵμνEν is
orthogonal to Eμ and, similarly, ϵμνBν is orthogonal to Bμ. If
electric and magnetic fields are orthogonal to each other in
2-space, then we have

Eν ¼ ϵμνBν; Bν ¼ −ϵμνEν: ð35Þ

These relations will play an important role in Sec. IV to
derive the memory effect.
The second step is to split the evolution equations (30)

and (32) in terms of E; Eμ;B;Bμ. To do that, we project
Eq. (32) along spacelike direction nμ and multiply Eq. (32)
with projection tensor (8). After a long calculation, we
obtain the following evolution equations for E (along nμ)
and Eμ (in the orthogonal 2-space):
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_E þ ΘE ¼ αμEμ − 2ω̃B þ ϵμρD̃μBρ; ð36Þ

_Eμ̄ þ
Θ
2
Eμ ¼ −ðαμ þ 2ϵμρΩρÞE þ ðΣμρ þ ΩϵμρÞEρ

þ ϵμρðAρ − n0ρ þ D̃ρÞB
− ϵμρðABρ þ B0ρ − ðD̃ρBνÞnνÞ; ð37Þ

where ω̃ ¼ ω̃μνϵ
μν, Θ is the expansion factor defined in

Eq. (5), Aμ is the relative acceleration vector in 2-space
defined in Eq. (11), and ω̃ is the vorticity defined in
Eq. (18). Ωμ and Ω are defined in Eq. (13) and Σμν is in
Eq. (14). The 2-space component of _nμ is αμ, which is
defined in Eq. (12), whereas A ¼ nμ _uμ ¼ −uμ _nμ is men-
tioned in Eqs. (11) and (12).
We want to highlight the following points regarding the

above expressions: First, the above equations generalize
Ampere’s law for arbitrary spacetime. For example, in
Eq. (36), the first term in the LHS corresponds to the time
derivative of the electric field along spacelike direction nμ

and the last term in the right-hand side (RHS) is the curl of
the magnetic field in 2-space. Similarly, the LHS of
Eq. (37) is the time derivative of the electric field in
2-space, and in the last term in the RHS is the curl of Bρ.
Second, in the flat spacetime, the expansion factor (Θ), the
relative acceleration vector (αμ), and vorticity (ω̃) vanish,
and the above expression leads to Ampere’s law in flat
spacetime. Thus, background spacetime introduces new
couplings between the electric and the magnetic field
components. Last, we showed that the simultaneous trans-
formation Eμ → −Bμ, Bμ → Eμ leads to F�μν → Fμν.
Substituting E → B; Eμ → Bμ and B → −E; Bμ → −Eμ

in Eqs. (36) and (37), we have

_B þ ΘB ¼ Bμαμ þ 2ω̃E − ϵμρD̃μEρ; ð38Þ

_Bμ̄ þ
1

2
ΘBμ ¼ −ðαμ þ 2ϵμρΩρÞB þ ðΣμρ þ ΩϵμρÞBρ

− ϵμρðAρ þ D̃ρ − n0ρÞE
þ ϵμρðAEρ þ ϵμρE0ρ − ðD̃ρEνÞnνÞ: ð39Þ

Note that we obtain the above equations by
projecting Eq. (30) along spacelike direction nμ and
multiply Eq. (30) with projection tensor (8). Again, the
above equations generalize Faraday’s law for arbitrary
spacetime.
The last step is to split the constraint equations (31)

and (28) in terms of E; Eμ;B;Bμ. Substituting (33) and (34)
and the kinematic quantities (11)–(14), we get

D̃μEμ þ nμE0
μ þ E0 þ Θ̃E þ 2ðΩB þ ΩμBμÞ ¼ 0; ð40Þ

D̃μBμ − n0μBμ þ B0 þ Θ̃B − 2ðΩE þΩμEμÞ ¼ 0; ð41Þ

where Θ̃ is the expansion along the spacelike vector defined
in Eq. (18). The above equations are generalizations of the
Gauss law. Here again, in the flat spacetime, the expansion
factor (Θ̃), the relative acceleration vector (αμ), and
vorticity (Ω) vanish, and the above expressions lead to
the Gauss law in flat spacetime.

C. Energy-momentum tensor of the
electromagnetic field

As we will show in the next section, the electromagnetic
stress tensor plays a crucial role in understanding the
memory effect. This subsection evaluates the electromag-
netic stress tensor in 1þ 1þ 2 formalism for an arbitrary
spacetime. The EM action in an arbitrary background is

S ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFρσgμρgνσ: ð42Þ

Varying the above action with respect to the metric ðgμνÞ
leads to the following energy-momentum tensor:

Tμν ¼
1

2
gρσFμρFνσ −

1

8
gμνgρσgαβFραFσβ: ð43Þ

In 1þ 3-formalism, the stress tensor of thematter field (Tμν)
can written as

Tμν ¼ ρuμuν þ 2SðμuνÞ þWμν; ð44Þ

where the energy-density ρ, the energy flux Sα, and stress
tensorWαβ asmeasured in the observer’sworldline are given
by [59]

ρ ¼ Tμνuμuν; Sα ¼ −hαμTμνuν; Wαβ ¼ hαμTμνhβν :

ð45Þ

For the electromagnetic fields in 1þ 3-formalism, ρ; Sμ, and
Wμν are

ρ≡ 1

2
ðEμEμ þ BμBμÞ; Sμ ≡ ϵμνρEνBρ; ð46Þ

Wμν ≡ 1

2
ðEμEμ þ BμBμÞhμν − EμEν − BμBν: ð47Þ

Rewriting ρ in terms of the variables (E; Eμ;B;Bμ) in
1þ 1þ 2 formalism, we have

ρ¼ 1

2
ðE2þB2Þþ1

2
ðEμEμþBμBμÞ¼ ρðnÞ þρ2−space: ð48Þ

Thus, ρðnÞ corresponds to the energy of the EM field along
nμ, and ρ2−space corresponds to the energy of the EM field in
the 2-space. The energy flux Sμ (a vector in 3-space) can be
rewritten in 1þ 2 space as
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Sμ ¼ Snμ þ Sμ; ð49Þ

where S is the Poynting vector of the EM field along the
spacelike vector nμ and Sμ is the energy flux in the 2-space.
These are given by

S ¼ Sμnμ ¼ ϵμνEμBν; ð50Þ

Sμ ¼ −ϵμνðEBν − BEνÞ ¼ −ðEEν þ BBνÞ: ð51Þ

In deriving the last expression, we have used the orthogon-
ality condition between the electric and magnetic fields in
the 2-space, i.e., Eν ¼ ϵνμBμ. As we will see in the next
section, the memory vector depends on the part of the
electromagnetic energy density ρ and Sμ.

IV. MEMORY EFFECT IN ARBITRARY
SPACETIME

Having written the Maxwell equations in 1þ 1þ 2
formalism for an arbitrary spacetime, we now evaluate
the memory effect. Usually, in the literature, one uses the
Lorentz force equation to derive EMmemory. The equation

of motion of a charged body (of mass m and charge e) in
both gravitational and electromagnetic fields is

m
duα
dτ

−
m
2
gβγ;αuβuγ ¼ eFαβuβ: ð52Þ

However, the above expression does not consider the new
couplings between the electric and magnetic field compo-
nents in Eqs. (36)–(39). Hence, we use the complete
Maxwell equations (36)–(41) and explicitly obtain the
change in velocity (Δuμ) of the timelike observer. More
specifically, using Eqs. (37) and (39), we first calculate the
acceleration vectorAμ in the 2-space. We can then integrate
the expression for the acceleration vector (Aμ in the
2-space) with respect to time t or null time coordinate
u≡ ðt − rÞ leading to the memory vector.
In the rest of this section, we calculate Aμ for observers

whose tangents are congruent to the spacelike geodesics.
This implies nσDσnρ ¼ n0ρ ¼ 0; i.e., nμ is tangent
to a congruence of spacelike geodesics [47]. Using this
condition and substituting _Eμ̄ ¼ h̃μν _E

ν;B0ρ ¼ nνDνBρ in
Eqs. (37) and (39), we get

h̃μν _E
ν þ ϵμρnνDνBρ ¼ −

1

2
ΘEμ − ðαμ þ 2ϵμρΩρÞE þ ðΣμρ þΩϵμρÞEρ

þ ðϵμρAρ þ ϵμνD̃νÞB − ϵμνðD̃νnρÞBρ − ϵμρABρ; ð53Þ

ðh̃μν _Bν − ϵμρnνDνEρÞ ¼ −
1

2
ΘBμ − ðαμ þ 2ϵμρΩρÞB þ ðΣμρ þΩϵμρÞBρ

− ðϵμρAρ þ ϵμνD̃νÞE þ ϵμνðD̃νnρÞEρ þ ϵμρAEρ: ð54Þ

Multiplying Eq. (53) with B, multiplying Eq. (54) with E, and subtracting the resultant equations leads to

ϵμνAν ¼ −
ϵμν
2

DνðE2 þ B2Þ
ðE2 þ B2Þ þ

�
Σμν þ Ωϵμν −

Θ
2
h̃μν

� ðEBν − BEνÞ
ðE2 þ B2Þ

þ ϵμν

�
σ̃ρν þ ω̃ρν þ Θ̃

2
h̃ρν

� ðBBρ þ EEρÞ
ðE2 þ B2Þ þ ϵμρAðEEρ þ BBρÞ

ðE2 þ B2Þ
þ B
ðE2 þ B2Þ ðh̃μν

_Eν þ ϵμρnνDνBρÞ − E
ðE2 þ B2Þ ðh̃μν

_Bν − ϵμρnνDνEρÞ: ð55Þ

To have a transparent understanding, we substitute the definitions (48)–(51) in the expression above, resulting in

ϵμνAν ¼ −
ϵμν
2

DνρðnÞ
ρðnÞ

−
ϵνα

2

�
Σμν þΩϵμν −

Θ
2
h̃μν

�
Sα

ρðnÞ
−
ϵμν
2

�
σ̃ρν þ ω̃ρν þ Θ̃

2
h̃ρν

�
Sρ

ρðnÞ

−
ϵμρSρA
2ρðnÞ

þ B
2ρðnÞ

ðh̃μν _Eν þ ϵμρnνDνBρÞ − E
2ρðnÞ

ðh̃μν _Bν − ϵμρnνDνEρÞ: ð56Þ

This is the master equation for the EM memory in arbitrary spacetime regarding which we would like to discuss the
following points: First, to our understanding, this is the first time the EM memory has been obtained for an arbitrary
spacetime. In the previous calculations [18,19], the authors have restricted to asymptotic flat spacetimes. Second, the last
two terms in the RHS of the above expression vanish in the asymptotic limit. To see this, let us consider a spherically
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symmetric spacetime. Let t refer to the time coordinate and
r to the radial coordinate and the null coordinate is
u≡ t − r. In the asymptotic limit ∂u ∼ ∂t and ∂u ∼ −∂r.
Setting uμ ≡ ð1; 0; 0; 0Þ and nμ ≡ ð0; 1; 0; 0Þ, the penulti-
mate term in the RHS of the above equation simplifies to

h̃μν _E
ν þ ϵμρnνDνBρ ≃ h̃μνu0∇0Eν þ ϵμρn1∇1Bρ

≃ h̃μν∂uEν − ϵμρ∂uBρ

¼ fðuÞ∂uð ¯̃hμνEν − ĒμνBνÞ; ð57Þ

where h̃μν ¼ fðuÞ ¯̃hμν and ϵ̄μν ¼ fðuÞϵμν. The terms with
bars represent their time independent parts. The above
expression vanishes if Eν and Bν are orthogonal to each
other in the 2-space. As we mentioned earlier (35), in
2-space, the electric and magnetic fields are always
orthogonal to each other. Similarly, the last term can also
be shown to vanish in the asymptotic limit. Thus, the above
master equation (56) reduces to

ϵμνAν ¼ −
ϵμν
2

DνρðnÞ
ρðnÞ

−
ϵνα

2

�
Σμν þΩϵμν −

Θ
2
h̃μν

�
Sα

ρðnÞ

−
ϵμν
2

�
σ̃ρν þ ω̃ρν þ Θ̃

2
h̃ρν

�
Sρ

ρðnÞ
−

ϵμρ
2ρðnÞ

SρA:

ð58Þ

Third, the above expression provides a nice geometrical
understanding of the various contributions to the memory
effect. The first term in the RHS corresponds to the change
in the EM field energy (ρðnÞ) along nμ in the 2-space. This
does not contain any contribution from the kinematical
properties of the spacetime. In other words, this term will
vanish if the EM field energy does not change in the
2-space, such as a 2D flat sheet. However, as we show in
the next section, this is nonzero in flat spacetime expressed
in spherical coordinates. The next two terms in the RHS are
proportional to the energy flux (Sα) in the 2-space.
However, both these terms have different kinematical
information of the spacetime and vanish for flat spacetime.
The second term in the RHS carries information about
shear ðΣμνÞ, vorticity scalar (Ω) related to nμ, and expansion
scalar (Θ) corresponding to timelike observer uμ. The third
term in the RHS carries information about shear ðσ̃μνÞ,
vorticity tensor ðω̃μνÞ, and expansion scalar ðΘ̃Þ corre-
sponding to the spacelike vector nμ.
Fourth, as mentioned earlier, we have not included

external currents or charges in our analysis. Hence, the
acceleration vector does not have a contribution from the
external sources. Hence, the memory vector we obtain is
equivalent to the null-kick derived in Refs. [18,19]. It is
also important to note that these authors did not obtain the
contributions due to the kinematical properties of the

spacetime. However, as we will see in the next section,
their contribution can be significant.
Last, to obtain the memory vector, we need to integrate

the above expression with respect to the proper time of the
observer—Δuμ is the memory vector. It is interesting to
note that initially if the observer has nonzero velocity only
along the time direction, at a later time, due to the memory
effect, there is a nonzero velocity in the 2-space.

V. APPLICATION TO SPECIFIC SPACETIMES

In the previous section, we obtained a master equa-
tion (56) for the EM vector for an arbitrary 4D spacetime
using 1þ 1þ 2-formalism.
As discussed in the previous section, the master equa-

tion (56) corresponding to the acceleration of the comoving
observer in the 2D surface provides a physical under-
standing of the contribution to the memory. For instance,
the leading order contribution only requires information
about the total energy density of the EM field, while
the subleading contributions contain information about the
spacetime geometry and the other components of the
energy-momentum tensor of the EM field. This is the first
time to our knowledge that a transparent and easily
applicable final expression for electromagnetic memory
has been derived for general curved spacetime. To illustrate
this fact, we consider specific examples and obtain the
memory vector. In this section we obtain the memory
vector for flat, FLRW, pp-wave, and Kerr spacetimes.

A. Minkowski spacetime

To compare the master equation with the existing
results [18], we first consider Minkowski spacetime in
spherical coordinates:

ds2 ¼ −dt2 þ dr2 þ r2γAB; ð59Þ
where

γAB ¼
�
1 0

0 sin2 θ

�
ð60Þ

is the metric describing the unit 2-sphere. In Minkowski
spacetime, the 4-velocity of the timelike congruence
observer is uμ ≡ ð1; 0; 0; 0Þ and the spacelike vector is
nμ ≡ ð0; 1; 0; 0Þ. Since ∇μuν ¼ 0 and ∇μnν ¼ 0, the kin-
ematics quantities, defined in Secs. II A and II B vanish for
the Minkowski spacetime. Hence, only the first term in
Eq. (56) will be nonzero, i.e.,

Aν
Flat ¼ −

1

2

Dνρn
ρn

: ð61Þ

As mentioned earlier, the acceleration vector corresponds to
acceleration in the 2-sphere. Hence, it is appropriate to
switch to the 2-sphere index:
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AA ¼ uμ∇μuA ¼ u0∂0uA þ 2u0ΓA
0Bu

B:

Since the 4-velocity uμ is zero in the 2-sphere, we have
AA ¼ u0∂0uA ¼ ∂tuA. In the null coordinate, this becomes
AA ¼ ∂tuA. Substituting the above expression in Eq. (61)
and integrating in the null coordinate, we have

ΔuA ≡
Z

duAA ¼ −
1

2

Z
du

DAρn
ρn

: ð62Þ

The above expression is velocity kick with respect to the
Lagrangian observers. To compare this with the net
momentum (kick) vector as seen by the asymptotic static
observers (Eulerian observers), we need to do a coordinate
transformation. Specifically, we need to transform from
coordinate basis ðe⃗θ; e⃗ϕÞ to orthogonal coordinate basis
ðθ̂; ϕ̂Þ. In terms of ðθ̂; ϕ̂Þ, we have Δu⃗≡ Δuμe⃗μ, where
e⃗θ ¼ θ̂=r; e⃗ϕ ¼ ϕ̂=ðr sin θÞ. Thus, the velocity kick with
respect to the asymptotic static observers is given by

Δu⃗Flat ¼
1

r

�
Δuθθ̂ þ Δuϕ

sin θ
ϕ̂

�
: ð63Þ

Interestingly, the EM memory vector in Minkowski space-
time is inversely proportional to r and matches with
Ref. [18]. This passes the first test that the master
equation (56) indeed describes the EM memory vector
for a static asymptotic observer. In the rest of this section,
we obtain the memory vector for nonflat geometries and
show the robustness of our approach.

B. FLRW spacetime

The conformally flat FLRW metric in spherical coor-
dinates is

ds2 ¼ aðηÞ2ð−dη2 þ dr2 þ r2γABÞ; ð64Þ

where the conformal time (η) is related to the cosmic time
(t) by dt ¼ aðηÞdη. In 1þ 3 formalism, the fundamental
observer with timelike 4-velocity in the FLRW metric is
uμ ¼ dxμ=dt ¼ dxμ=ðaðηÞÞdη ¼ ð1; 0; 0; 0Þ=aðηÞ. For this
choice of observer, the 3-space projection tensor ðhμνÞ
orthogonal to uμ is

hμν ¼
�
a2ðηÞ 0

0 a2ðηÞr2γAB

�
: ð65Þ

Since the FLRW line element is homogeneous and
isotropic, only the expansion scalar (Θ) is nonzero:

Θ ¼ 3
HðηÞ
aðηÞ where H ¼ a0ðηÞ

aðηÞ ;

where 0 refers to the derivative with respect to η. Other
kinematic quantities vanish, i.e., σμν ¼ ωμν ¼ 0.
We now spilt the 3-space into 1þ 2 by choosing the

following spacelike vector nμ ¼ ð0; 1; 0; 0Þ=aðηÞ. This
satisfies the conditions: nμnμ ¼ 1 and uμnμ ¼ 0. Repeating
the steps discussed in Sec. II B for the line element (64),
we get

Θ̃ ¼ 2

aðηÞ
1

r
; σ̃μν ¼ ω̃μν ¼ 0:

It is important to note that while Θ is a function of η only, Θ̃
depends on both η and r. Also, Θ depends on the Hubble
parameterH, while Θ̃ is inversely proportional to r. Hence,
at large distances, Θ̃ decays faster compared to Θ.
Substituting the above expressions in Eq. (58), we have

Aν
FLRW ¼ −

1

2

Dνρn
ρn

þ 1

4ρn
SνðΘ − Θ̃Þ: ð66Þ

Just as Minkowski spacetime, Aν will have components
only in the 2-sphere. Using the fact that the fundamental
observers have zero velocity in the 2-sphere and repeating
the earlier analysis, we have

AA ¼ u0∂0uA ¼ 1

aðηÞ
∂uA

∂η
:

In terms of the null coordinate uð≡ η − rÞ, we have

AA ¼ 1

aðuÞ
∂uA

∂u
:

Substituting the above expression in Eq. (66), we have

∂uA

∂u
¼ −

aðuÞ
2

DAρn
ρn

þ aðuÞ
4ρn

SAðΘ − Θ̃Þ: ð67Þ

Integrating the above expression with respect to u leads to
the following memory vector:

ΔuAFLRW¼−
1

2

Z
du

aðuÞ
ρn

DAρnþ
1

4

Z
du

aðuÞ
ρn

SAðΘ− Θ̃Þ:

ð68Þ

This is the expression for the memory vector in FLRW
spacetime regarding which we want to highlight the
following points: First, unlike Minkowski spacetime, here
the fundamental observers are Lagrangian, and hence, we
do not have to transform the above expression to
Lagrangian observers. Second, our results differ from the
results of Ref. [37]. In Ref. [37], the authors show that the
EM memory effect in FLRW differs from the Minkowski
only by the conformal factor aðηÞ or aðuÞ. In other words,
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their analysis did not account for the geometric contribution
to the memory effect. As mentioned earlier, the geometric
contribution leads to a nonzero energy flux (SA) contri-
bution. Also note that the ordinary memory derived in
Ref. [37] is not present in Eq. (68) as we have assumed any
external charge or current to be zero. Third, we find that
ρðnÞ and the energy flux (SA) contribute oppositely. It will
be interesting to see whether the two contributions nullify
the EM memory.

C. pp-Wave spacetimes

In this subsection, we derive the EM memory for
a special kind of plane-fronted wave with parallel rays
(pp-waves) called plane-wave metric [60]:

ds2 ¼ −2dudv − F ðu; x; yÞdu2 þ dx2 þ dy2; ð69Þ

where F ðu; x; yÞ ¼ AðuÞðx2 − y2Þ þ 2BðuÞxy describes
the plane wave and AðuÞ, BðuÞ are arbitrary functions
such that F > 0. Note that u, v are not light-cone
coordinates. u is a timelike coordinate and v is a null
coordinate.
We split the above 4D spacetime into 1þ 3 form and

later into 1þ 1þ 2-form by considering the following
timelike velocity vector (uμ) and spacelike vector ðnμÞ:

uμ ≡ ðF ðu; x; yÞð−1=2Þ; 0; 0; 0Þ;
nμ ≡ ðF ðu; x; yÞð−1=2Þ;−F ðu; x; yÞð1=2Þ; 0; 0Þ:

For the above choice of timelike vector, the 3-space
projection tensor ðhμνÞ is

hμν ¼

2
666664
0 0 0 0

0 1
F ðu;x;yÞ 0 0

0 0 1 0

0 0 0 1

3
777775: ð70Þ

Substituting these in the definitions in Sec. II, only a
nonzero quantity is the expansion scalar (Θ):

Θ ¼ −
ðx2 − y2ÞA0ðuÞ þ 2xyB0ðuÞ

2ð2BðuÞxyþ AðuÞðx2 − y2ÞÞ3=2 : ð71Þ

The nonzero projection tensor h̃μν components in the
2-space are h̃xx ¼ 1; h̃yy ¼ 1. Thus, the memory vector
for the special kind of pp-wave spacetimes is

Aν
PP ¼ −

1

2

Dνρn
ρn

þ Θ
4ρn

Sν: ð72Þ

Here, the acceleration of the timelike observer is confined
to the x-y plane, i.e.,

AA
PP ¼ −

1

2

DAρn
ρn

þ Θ
4ρn

SA; ð73Þ

where the index A, B corresponds to ðx; yÞ. Evaluating the
acceleration vector along x and y, we have

AðPPÞ
xðyÞ ¼ −

1

2ρn
∂xðyÞðρnÞ þ

Θ
4ρn

SxðyÞ: ð74Þ

Integrating the above equation with respect to u, we have

ΔuPPxðyÞ ¼ −
1

2

Z
du

∂xðyÞðρnÞ
ρn

þ Θ
4

Z
du

SxðyÞ
ρn

: ð75Þ

The above expression for the velocity kick is for a
generic plane-wave metric. To gain some physical intuition,
we consider two specific forms—the Penrose limit
of the Schwarzschild and FLRW spacetimes [60]. For
Schwarzschild spacetime, we have

AðuÞ ¼ 6

25u2
; BðuÞ ¼ 0:

Substituting these in Eq. (71), we have

ΘPP;Sch ¼
5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðx2 − y2Þ
p :

It is interesting to note that although the spacetime metric
does not differentiate between the two spatial coordinates
ðx; yÞ, in order for Θ to be real, the above expression
demands that x > y. Thus, the velocity kick due to the EM
wave in the PP-wave limit of Schwarzschild spacetime can
occur only if x > y and is given by

ΔuPPSchxðyÞ ¼−
1

2

Z
du

∂xðyÞðρnÞ
ρn

þ 5

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðx2−y2Þ

p Z
du

SxðyÞ
ρn

:

ð76Þ
In the case of the Penrose limit of FLRW spacetime with
power-law scale factor aðtÞ ∼ th, we have

AðuÞ ¼ −
h

ð1þ hÞu2 ; BðuÞ ¼ 0:

Substituting these in Eq. (71), we have

ΘPP;FLRW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ

hðy2 − x2Þ

s
;

ΔuPPFLRWxðyÞ ¼ −
1

2

Z
du

∂xðyÞðρnÞ
ρn

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ hÞp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy2 − x2Þ

p Z
du

SxðyÞ
ρn

: ð77Þ
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Here again, we see that in order for Θ to be real, the above
expression demands that y > x. Thus, the velocity kick due
to the EM wave in the PP-wave limit of FLRW spacetime
occurs in a different region of the 2-space compared to
Schwarzschild. Thus, the EM memory has a distinct
signature for different spacetimes and can potentially be
used as a probe.

D. Kerr spacetime

In this section, we derive the memory effect in Kerr
spacetime. In Boyer-Lindquist coordinates ðt; r; χ;ϕÞ, the
Kerr spacetime is

ds2 ¼
�

2mr
r2 þ a2χ2

− 1

�
dt2 þ

�
r2 þ a2χ2

r2 − 2mrþ a2

�
dr2

þ
�
r2 þ a2χ2

1 − χ2

�
dχ2 −

�
4marð1 − χ2Þ
r2 þ a2χ2

�
dtdφ

þ ð1 − χ2Þ
�
r2 þ a2 þ 2ma2rð1 − χ2Þ

r2 þ a2χ2

�
dφ2; ð78Þ

where χ ≡ cos θ. In this case, the timelike observer
4-velocity ðuμÞ and the spacelike vector ðnμÞ are [61]

uμ ¼
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 2mrþ a2

r2 þ a2χ2

s
; 0; 0; 0

#
;

nμ ¼
"
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþ a2

r2 þ a2χ2

s
; 0; 0

#
:

We give below the kinematical quantities (discussed in
Sec. II B) for Kerr spacetime in 1þ 1þ 2 formalism
obtained in Ref. [61]:

Θ ¼ 0; Σμν ¼ 0; ð79Þ

Ω ¼ −
2marχ

ffiffiffiffi
L

p

J
ffiffiffiffiffiffi
K3

p ; Θ̃ ¼ W

J
ffiffiffiffiffiffiffiffiffi
K3L

p ; ð80Þ

ω̃μν ¼ ω̃ϵμν ¼ 0; A ¼ −
mD

ffiffiffiffi
L

p

J
ffiffiffiffiffiffi
K3

p ; ð81Þ

σ̃μν ¼

2
6666664

0 0 0 0

0 0 0 0

0 0 − 1
2

a2ðm−rÞ ffiffiffi
K

p

J
ffiffiffi
L

p 0

0 0 0 1
2

a2ðm−rÞM2
ffiffiffiffiffi
LK

p
J 2

3
7777775
; ð82Þ

where

M¼ χ2 − 1; D¼ −r2 þ a2χ2; L¼ r2 − 2mrþ a2;

ð83Þ

J ¼ r2 − 2mrþ a2χ2; K ¼ r2 þ a2χ2; ð84Þ

W ¼ 2r3ðr − 2mÞ2 þ a4χ2ðmþ r −mχ2 þ rχ2Þ
þ a2r2ð−3mþ rþ χ2ð3r − 5mÞÞ: ð85Þ

Substituting these expressions in Eq. (58), and noting
that the memory vector lies in the 2D surface, we get

AA ¼ −
1

2

DAρðnÞ
ρðnÞ

−
Ω
2

ϵABSB

ρðnÞ

−
1

2

�
σ̃AB þ Θ̃

2
h̃AB

�
SB

ρðnÞ
−

A
2ρðnÞ

SA: ð86Þ

This is the EM memory vector for a Lagrangian observer
in Kerr spacetime. Note that this is a generic result for
any value of angular momentum. For a better physical
insight, we consider the a → 0 limit. Substituting a → 0 in
Eqs. (79)–(85), we have

M0 ¼ χ2 − 1; D0 ¼ −r2; L0 ¼ r2 − 2mr; ð87Þ

J 0 ¼ r2 − 2mr; K0 ¼ r2; W0 ¼ 2r3ðr − 2mÞ2;
ð88Þ

Ω0¼ σ̃0
μν¼0; Θ̃0¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr−2mÞ

r3

r
; A¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3ðr−2mÞ
p :

ð89Þ

Substituting the above quantities in Eq. (86), we have

AA ¼−
1

2

DAρðnÞ
ρðnÞ

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r− 2m
r3

r
SA

ρðnÞ
−

1

2ρðnÞ

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ðr− 2mÞ

p SA:

ð90Þ

This is the EM memory vector for a Lagrangian observer in
Schwarzschild spacetime, regarding which we want to
mention the following points: First, in the limit r → ∞
reduces to Minkowski spacetime expression (61). Second,
in the limit r → ∞, the subleading term is proportional to
r−1. Third, to derive the memory vector ΔuA, we have to
switch to the null time coordinate u ¼ t − r and integrate
Eq. (90) with respect to u at the asymptotic limit. Last, to
evaluate the memory effect experienced by the static
asymptotic (Lagrangian) observer, we need to do the
transformation from ðe⃗θ; e⃗ϕÞ to the orthogonal coordinate
basis ðθ̂; ϕ̂Þ as in Sec. VA.

VI. CONCLUSIONS

In this work, we have derived a master equation for
electromagnetic memory in an arbitrary spacetime.We used
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the covariant formalism to obtain the same. More
specifically, we used the 1þ 1þ 2 covariant formalism.
The 1þ 1þ 2 decomposition of spacetime is a natural
extension of the 1þ 3 formalism in which the three-space is
further decomposed using a given spatial direction. This
choice of covariant formalism is because the net momentum
(kick) vector lies on the 2D surface for arbitrary spacetime.
Also, the electric and magnetic fields are transverse to the
direction of propagation of the passing EM wave.
The EM memory (58) has three distinct contributions:

The first contribution is due to the change in the EM field
energy (ρðnÞ) along nμ in the 2-space. This is nonzero for
Minkowski spacetime. The second contribution is propor-
tional to the energy flux (Sα) in the 2-space. This has
kinematical information of the spacetime and vanishes for
the flat spacetime. The third contribution is proportional to
the acceleration A along the timelike vector uμ. To our
understanding, the earlier approaches could not isolate the
different contributions to the EM memory as done in
this work.
Thus, the master equation (56) corresponding to the

acceleration of the comoving observer in the 2D surface
provides a physical understanding of the contribution to the
memory. For instance, the leading order contribution only
requires information about the total energy density of the
EM field, while the subleading contributions contain
information about the spacetime geometry and the other
components of the energy-momentum tensor of the EM
field. This is the first time a transparent and easily
applicable final expression for electromagnetic memory
has been derived for a general curved spacetime. Note that

derivation of the master equation (56) does not rely on the
asymptotic properties. The analysis only requires the notion
of comoving observers. This contrasts with the earlier
works where one needs to assume a specific asymptotic
nature of the fields and spacetime.
We then obtained the EM memory for different

spacetimes. In the case of FLRW spacetime, we showed
that the earlier analysis did not account for the geometric
contribution to the memory effect [37]. Specifically, their
analysis did not account for the geometric contribution
leading to a nonzero energy flux (SA) contribution. We
have also obtained the EM memory for Kerr spacetime. We
also showed that the EM memory has a distinct signature
for different pp-wave spacetimes and can potentially be
used as a probe.
It would be interesting to extend our analysis for black

holes with multiple horizons and those that are not
asymptotically flat. These may be particularly relevant
for using EM memory as a probe to Primordial Black
holes. Finally, our analysis points to the possibility of using
1þ 1þ 2 covariant formalism to understand gravitational
memory in a unified manner [62]. These are currently under
investigation.
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