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We reduce the study of perturbations of rotating black holes in higher-derivative extensions of general
relativity to a system of decoupled radial equations that stem from a set of universal Teukolsky equations.
We detail a complete computational strategy to obtain these decoupled equations in general higher-
derivative theories. We apply this to six-derivative gravity to compute the shifts in the quasinormal mode
frequencies with respect to those of Kerr black holes in general relativity. At linear order in the angular
momentum we reproduce earlier results obtained with a metric perturbation approach. In contrast with this
earlier work, however, the method given here applies also to postmerger black holes with significant spin,
which are of particular observational interest.
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I. INTRODUCTION

Gravitational wave (GW) observations probe the char-
acteristic spectrum of quasinormal modes (QNMs) of black
holes [1–9]. Moreover, they will do so with high precision
in the not-too-distant future [10–23].
QNMs of black holes are only significantly excited in

highly dynamical processes such as binary coalescences.
However the spectrum of QNMs is independent of the
specific excitation mechanism, making it a key strong-field
fingerprint of the stationary state to which systems like
binary collisions relax [24]. This is especially so since the
QNM spectrum of black holes in general relativity is fully
determined in terms of just two parameters: the black hole
mass and angular momentum. Advanced GW observations
therefore offer a promising route to constrain compact
objects that are alternatives to black holes and even
modifications to general relativity [25–31].
Working in Einstein’s theory, the precise predictions of

QNMs in terms of the black hole mass and angular
momentum were calculated long ago. This was first done
for static black holes, based on metric perturbations
exploiting spherical symmetry [32–36]. Later this was
done for Kerr black holes using curvature perturbations,
the algebraically special (Petrov type D) nature of the Kerr
metric and its hidden symmetries [37–43]. A key property
of the Kerr QNM spectrum in general relativity is that it is

fully governed by the Teukolsky equation, a single
(decoupled) separable second-order differential equation.1

In contrast with these results, we lack similarly detailed
predictions of the gravitational spectrum of compact
objects that differ from rotating black holes in general
relativity, either by their very nature or on account of
modifications to general relativity. Here, despite a wide
array of results for nonrotating [50–60] and slowly rotating
compact objects [61–67], it has remained a challenging
open problem to obtain the spectrum of highly spinning
black holes. This state of affairs is particularly problematic
since it is precisely this regime that is of key observational
interest [68,69].
The reason it is difficult to find the QNM spectrum in the

presence of significant rotation is simple: the fortunate
extended symmetry of Kerr black holes is generally lost.
This being said, recently significant progress was made to
extend the use of the Teukolsky equation to a more general
setting [70,71]. Yet, the key challenge in the light of
forthcoming GW observations remains: we need a suffi-
ciently general theoretical framework that can be employed
in explicit theories to extract specific QNM predictions that
are precise enough to compare theory with (future) obser-
vations. The goal of this work is to provide a complete
solution to this problem.
We first construct a set of universal Teukolsky equations,

along the same lines as [70,71]. That is, we formulate in full
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1Notwithstanding these impressive results, high-precision
numerical calculations, alternative approaches to various limits,
and analytical properties of the spectrum of rotating black holes
in vacuum four-dimensional general relativity continue to be
active areas of investigation. See e.g. [44–49].
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generality the specific combination of Bianchi identities
that reduce to the usual Teukolsky equations when the
background is a Ricci-flat Petrov type D spacetime. The
universal Teukolsky equations apply to any background
geometry and to any theory, since the theory dependence
only enters through the presence of an effective stress-
energy tensor on the right-hand side of the Einstein
equation. Next we describe in detail how to evaluate these
equations for fluctuations around rotating black hole
solutions that deviate perturbatively from Kerr. Finally,
by following the approach of [72], we show how to
effectively separate these equations into a set of radial
equations.
This three-step strategy can be applied in full generality

in any theory.2 Here we apply it explicitly to the case of a
general effective field theory (EFT) extension of general
relativity with six-derivative corrections. We obtain the
modified radial Teukolsky equations analytically in a slow-
spin expansion and we integrate these to find the correc-
tions to the Kerr QNM frequencies. In addition to several
consistency checks, we perform a highly nontrivial test of
the validity of our approach by matching our results against
earlier studies based on metric perturbations [66]. Contrary
to the latter, the approach implemented here lends itself
more readily to a high-order expansion in spin, hence
allowing us to study perturbations of black holes with
higher angular momentum. The entire approach is sche-
matically summarized in Fig. 1.
The structure of the paper is as follows. First, in Sec. II,

we review the broad class of EFT extensions of general
relativity for which we wish to compute QNMs. In the
next three sections we devise a strategy to accomplish this
goal. In Sec. III we derive the universal Teukolsky
equations and outline how to evaluate these perturbatively
around a Kerr black hole, in the spirit of [70,71]. In
Sec. IV we provide the required ingredients to evaluate
these equations explicitly. In Sec. V we explain how the
equations can effectively be separated, and thereby
reduced to a set of radial equations. In Sec. VI we obtain
these equations for the six-derivative EFT extension of
Einstein gravity introduced in Sec. II. We solve these
numerically in two different ways and obtain explicit
results for the shifts in the QNM frequencies that pass
several consistency tests. We provide some closing
remarks in Sec. VII.

II. EFFECTIVE FIELD THEORY OF GRAVITY

To compute quasinormal modes and make actual model-
based predictions one needs to fix a theory to work with.
This is an important aspect of the problemofmoving beyond
Einstein gravity and has the advantage over more phenom-
enological approaches that it can be folded into different
aspects of the binary two-body problem, rather then merely
parametrizing the ringdown. Although we will set up our
computational framework as generally as possible, part of
our goal is to get explicit results. Therefore, we must fix a
theory. To do so, we will work with the leading-order
corrections to general relativity within an EFT perspective
on gravity. As an additional advantage, this approach aligns
naturally with certain technical assumptions we will make
for practical reasons. In particular, we will work perturba-
tively away from general relativity.
The EFTs we consider consist of all possible covariant

actions that can be constructed from the curvature alone.
Assuming a characteristic length scale l which is small
compared to the characteristic scales of the binary problem,
such a theory naturally organizes itself as a perturbative
series in higher-derivative terms

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ l4Lð6Þ þ l6Lð8Þ þ � � �g: ð2:1Þ

In four dimensions, the four-derivative terms do not modify
the vacuum Einstein gravity solutions, which is the reason
why these do not appear in the EFT above. In this paper we
will focus on the leading corrections to Einstein gravity,
corresponding to the general six-derivative Lagrangian [73]

Lð6Þ ¼ λevRμν
ρσRρσ

δγRδγ
μν þ λoddRμν

ρσRρσ
δγR̃δγ

μν; ð2:2Þ

where

R̃μνρσ ¼ 1

2
ϵμναβRαβ

ρσ ð2:3Þ

is the dual Riemann tensor. Note that, precisely because of
the appearance of R̃μνρσ, the second cubic term violates
parity. It is convenient for the discussion in the next section
to write the equations of motion of this theory as

Gμν ¼ l4Tð6Þ
μν ; ð2:4Þ

where Gμν is the Einstein tensor and Tð6Þ
μν , playing the role

of an effective stress-energy tensor, reads

Tð6Þ
μν ¼ −Rμ

σαβPð6Þ
νσαβ þ

1

2
Lð6Þgμν − 2∇α∇βPð6Þ

μανβ; ð2:5Þ

where

Pð6Þ
μνρσ ¼ 3λevRμν

αβRαβρσ þ
3λodd
2

ðRμν
αβR̃αβρσ þRρσ

αβR̃αβμνÞ:
ð2:6Þ

2In practice, some steps of the computation rely on having an
analytic expression for the corrected Kerr background expressed
as a power series in the spin (cf. Sec. IVA), which is needed
to obtain the radial equations analytically. Most extensions of
general relativity allow for such solutions, including general
higher-derivative gravities and scalar-tensor theories like Einstein-
scalar-Gauss-Bonnet gravity and dynamical Chern-Simons theory
[73]. Our method can also be applied even if an analytic solution is
not known, but it becomes more involved in that case.
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One may also include eight-derivative corrections, with a
general Lagrangian given by [74]

Lð8Þ ¼ ϵ1C2 þ ϵ2C̃
2 þ ϵ3CC̃; ð2:7Þ

with

C ¼ RμνρσRμνρσ; C̃ ¼ RμνρσR̃μνρσ: ð2:8Þ

Since the main goal of this paper is to illustrate the validity
of our approach to compute black hole QNMs, we will only
consider the six-derivative theories. The study of perturba-
tions in the eight-derivative theory will be carried out in a
coming publication [75].
Although interesting, we will not include additional

fields as in say [50–54,63,67,70,71,76–80], but most of
our results could straightforwardly be extended to those
theories as well.

III. THE UNIVERSAL TEUKOLSKY EQUATIONS

In this section, we derive what we call the “universal
Teukolsky equations.” This should simply be taken to mean
that we write down in full generality a particular combi-
nation of Bianchi identities that reduce to the Teukolsky
equations for perturbations around a Petrov type D space-
time. This approach has previously been taken to higher-
order perturbations of rotating black holes in general
relativity [81]. As it is a particularly technical exercise,
we shall only present the essential pieces here and refer the
reader to Appendix A for more details. The final expres-
sions can be found in (3.15) and (3.17).3

A. Derivation

The schematic form of the Teukolsky equation is as
follows,

FIG. 1. Schematic overview of the approach we develop in this paper to compute the spectrum of quasinormal modes of black holes
with significant spin beyond Kerr black holes in general relativity. Dashed lines indicate an approximate or perturbative relation.

3The expressions found here are, in part, described in [82].
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D̂½eaμ; γabc�ð∇½γRαβ�σρÞ ¼ 0; ð3:1Þ

with D̂½eaμ; γabc� a linear, first-order differential operator
depending on the choice of a null frame eaμ and the
associated spin connection γabc. That is to say, the
Teukolsky equation is in essence a linear differential
operator acting on the differential Bianchi identities. The
frame is often explicitly written as4

e1μ ¼ lμ; e2μ ¼ nμ; e3μ ¼ mμ; e4μ ¼ m̄μ;

ð3:2Þ

and is chosen to satisfy

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ: ð3:3Þ

In terms of the frame, the spin connection is defined as

γabc ¼ eaμecν∇νebμ: ð3:4Þ
We shall follow the Newman-Penrose (NP) and Geroch-
Held-Penrose (GHP) approaches to (3.1) but without
making any assumptions on the spacetime or NP frame
along the way. It should be noted that although these
methods are well suited to the task, they are notation heavy.
We mostly follow the convention of [83].
For the frame (3.2), the different components of the spin

connection are denoted by

κ ¼ −mμlν∇νlμ; σ ¼ −mμmν∇νlμ; σ0 ¼ nμm̄ν∇νm̄μ; κ0 ¼ nμnν∇νm̄μ;

ρ ¼ −mμm̄ν∇νlμ; ρ0 ¼ nμmν∇νm̄μ; τ ¼ −mμnν∇νlμ; τ0 ¼ nμlν∇νm̄μ;

ϵ ¼ −
1

2
ðnμlν∇νlμ þmμlν∇νm̄μÞ; ϵ0 ¼ 1

2
ðnμnν∇νlμ þmμnν∇νm̄μÞ;

β0 ¼ 1

2
ðnμm̄ν∇νlμ þmμm̄ν∇νm̄μÞ; β ¼ −

1

2
ðnμmν∇νlμ þmμmν∇νm̄μÞ; ð3:5Þ

while writing the different curvature components as

ϕ00 ¼
1

2
Rμνlμlν; ϕ22 ¼

1

2
Rμνnμnν; ϕ01 ¼

1

2
Rμνlμmν; ϕ21 ¼

1

2
Rμνnμm̄ν;

ϕ02 ¼
1

2
Rμνmμmν; ϕ11 ¼

1

4
ðRμνlμnν þ Rμνmμm̄νÞ; R ¼ −2Rμνlμnν þ 2Rμνmμm̄ν; ð3:6Þ

and

Ψ0 ¼ Cαβμνlαmβlμmν; Ψ1 ¼ Cαβμνlαnβlμmν; Ψ2 ¼ Ψ0
2 ¼ Cαβμνlαmβm̄μnν;

Ψ3 ¼ Ψ0
1 ¼ Cαβμνlαnβm̄μnν; Ψ4 ¼ Ψ0

0 ¼ Cαβμνnαm̄βnμm̄ν: ð3:7Þ

Wewill, for practical computational purposes, reexpress the
final answers simply with this NP notation, but for
compactness, it is useful to work covariantly with respect
to the local rescalings

lμ ↦ eλlμ; nμ ↦ e−λnμ;

mμ ↦ eiθmμ; m̄μ ↦ e−iθm̄μ; ð3:8Þ

where λ; θ ∈ R. More generally, one then says an object X
transforms with weight wGHPðXÞ ¼ fp; qg if it transforms
under the change of frame (3.8) as

X ¼ e
p
2
ðλþiθÞþq

2
ðλ−iθÞX; ð3:9Þ

such that the weights of the frame fields are

wGHPðlμÞ ¼ f1; 1g; wGHPðnμÞ ¼ f−1;−1g;
wGHPðmμÞ ¼ f1;−1g; wGHPðm̄μÞ ¼ f−1; 1g: ð3:10Þ

On the other hand, the spin coefficients with definite
weight are

wGHPðκÞ ¼ f3; 1g; wGHPðσÞ ¼ f3;−1g;
wGHPðρÞ ¼ f1; 1g; wGHPðτÞ ¼ f1;−1g; ð3:11Þ

while ϵ, ϵ0, β, β0 are used to construct the GHP derivatives
of definite weight

Þ0 ¼ ðlα∇α − pϵ − qϵ�Þ; Þ0 ¼ ðnα∇α þ pϵ0 þ qϵ0�Þ;
ð0 ¼ ðmα∇α − pβ þ qβ0�Þ; ð0 ¼ ðm̄α∇α þ pβ0 − qβ�Þ;

ð3:12Þ
as acting on an object of weight fp; qg. In this notation, the
Bianchi identities that we will use are

4Note that we use m̄μ to denote the conjugate of mμ but in the
rest of the quantities conjugation will be denoted by �.
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Þ0Ψ0 − ðΨ1 − ðϕ01 þ Þϕ02 ¼ ρ0Ψ0 − 4τΨ1 þ 3σΨ2 þ σ0�ϕ00 − 2τ0�ϕ01 − 2κϕ�
21 þ 2σϕ11 þ ρ�ϕ02; ð3:13aÞ

ÞΨ4 − ð0Ψ3 − ð0ϕ21 þ Þ0ϕ02
� ¼ ρΨ4 − 4τ0Ψ3 þ 3σ0Ψ2 þ σ�ϕ22 − 2τ�ϕ21 − 2κ0ϕ�

01 þ 2σ0ϕ11 þ ρ0�ϕ�
02; ð3:13bÞ

and

Þ0Ψ3 − ðΨ4 − Þ0ϕ21 þ ð0ϕ22 ¼ −τΨ4 þ 4ρ0Ψ3 − 3κ0Ψ2 þ τ�ϕ22 − 2ρ0�ϕ21 − 2σ0ϕ�
21 þ 2κ0ϕ11 þ κ0�ϕ02

�; ð3:14aÞ

ÞΨ1 − ð0Ψ0 − Þϕ01 þ ðϕ00 ¼ −τ0Ψ0 þ 4ρΨ1 − 3κΨ2 þ τ0�ϕ00 − 2ρ�ϕ01 − 2σϕ�
01 þ 2κϕ11 þ κ�ϕ02: ð3:14bÞ

These expressions (and the additional identities) can be
found, for instance, as (4.12.36)–(4.12.41) in [84]. We
remark that this reference uses a “mostly minus” conven-
tion. In addition, the curvature tensor Rμ

ναβ is defined with
opposite sign. Consequently, our definitions for the spin
coefficients are made with opposite signs compared to
(4.5.22) of [84] as are the curvature scalars, compared to
(4.11.10). On the other hand, (3.7) are the same as (4.11.9)
of [84]. The result of these choices is that the
Bianchi identities in our GHP notation agree with [84].
Nevertheless, as a check, we have independently derived
them.
Now, applying Þ and ð to, respectively, the Bianchi

equations (3.13a) and (3.14b), one finds, upon summing,
the result

Oð0Þ
2 ðΨ0ÞþOð1Þ

2 ðΨ1ÞþOð2Þ
2 ðΨ0Þ¼ 8πðT ð0Þ

2 þT ð1Þ
2 þT ð2Þ

2 Þ;
ð3:15Þ

with

Oð0Þ
2 ¼ 2½ðÞ − 4ρ − ρ�ÞðÞ0 − ρ0Þ

− ðð − 4τ − τ0�Þðð0 − τ0Þ − 3Ψ2�; ð3:16aÞ

Oð1Þ
2 ¼ 4½2κðÞ0 − ρ0�Þ − 2σðð0 − τ�Þ

þ 2ðÞ0κÞ − 2ðð0σÞ þ 5Ψ1�; ð3:16bÞ

Oð2Þ
2 ¼ 6½κκ0 − σσ0�; ð3:16cÞ

T ð0Þ
2 ¼ ðð − τ0� − 4τÞ½ðÞ − 2ρ�ÞTlm − ðð − τ0�ÞTll�

þ ðÞ − 4ρ − ρ�Þ½ðð − 2τ0�ÞTlm − ðÞ − ρ�ÞTmm�;
ð3:16dÞ

T ð1Þ
2 ¼ 1

2
½σÞ − κð�T − ½3σðÞ0 − ρ0�Þ − σ0�ðÞ − 4ρ − ρ�Þ − Þðσ0�Þ�Tll − 2½σðð − τ − τ0�Þ þ ððσÞ�Tlm̄

þ ½3σðð0 − 2τ�Þ þ 3κðÞ0 − 2ρ0�Þ�Tlm − ½3κðð0 − τ�Þ − κ�ðð − 4τ − τ0�Þ − ððκ�Þ�Tmm

þ ½κðþ σðÞ − 2ρ − 2ρ�Þ þ 2ÞðσÞ −Ψ0�ðTln þ Tmm̄Þ − 2½κðÞ − ρ − ρ�Þ þ ÞðκÞ�Tnm; ð3:16eÞ

T ð2Þ
2 ¼ 3½κκ0�Tll þ σσ�Tmm�; ð3:16fÞ

and5

8πTll ¼ 2ϕ00; 8πTlm ¼ 2ϕ01;

8πTmm ¼ 2ϕ02; 8πTnm̄ ¼ 2ϕ21; ð3:16gÞ

8πT ¼ −R; 8πðTln þ Tmm̄Þ ¼ 4ϕ11: ð3:16hÞ

Here, (3.13a) and (3.14b) were additionally used to
replace ðΨ2 and ÞΨ1. Moreover, several other relations
between the spin coefficients and curvature scalars were
used along the way. Relevant additional identities and
details can be found in Appendix A. Similarly, applying Þ0
and ð0 to respectively the Bianchi equations (3.13b) and
(3.14a), one finds, upon summing, the result

Oð0Þ
−2ðΨ4ÞþOð1Þ

−2ðΨ3ÞþOð2Þ
−2ðΨ4Þ¼ 8πðT ð0Þ

−2 þT ð1Þ
−2 þT ð2Þ

−2Þ;
ð3:17Þ

5Naturally, Tll, Tlm, etc., are the components of the stress-
energy tensor in the basis (3.2). This enters in Einstein equations
as Gμν ¼ 8πTμν. In the case of the higher-derivative corrections

we have the Eq. (2.4) and hence we must use 8πTμν ¼ l4Tð6Þ
μν .
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with

Oð0Þ
−2 ¼ 2½ðÞ0 − 4ρ0 − ρ0�ÞðÞ − ρÞ − ðð0 − 4τ0 − τ�Þðð − τÞ − 3Ψ2�; ð3:18aÞ

Oð1Þ
−2 ¼ 4½2κ0ðÞ − ρ�Þ − 2σ0ðð − τ0�Þ þ 2ðÞκ0Þ − 2ððσ0Þ þ 5Ψ3�; ð3:18bÞ

Oð2Þ
−2 ¼ 6½κκ0 − σσ0�; ð3:18cÞ

T ð0Þ
−2 ¼ ðð0 − τ� − 4τ0Þ½ðÞ0 − 2ρ0�ÞTnm̄ − ðð0 − τ�ÞTnn� þ ðÞ0 − 4ρ0 − ρ0�Þ½ðð0 − 2τ�ÞTnm̄ − ðÞ0 − ρ0�ÞTm̄ m̄�; ð3:18dÞ

T ð1Þ
−2 ¼ 1

2
½σ0Þ0 − κ0ð0�T − ½3σ0ðÞ − ρ�Þ − σ�ðÞ0 − 4ρ0 − ρ0�Þ − Þ0ðσ�Þ�Tnn − 2½σ0ðð0 − τ0 − τ�Þ þ ð0ðσ0Þ�Tnm

þ ½3σ0ðð − 2τ0�Þ þ 3κ0ðÞ − 2ρ�Þ�Tnm̄ − ½3κ0ðð − τ0�Þ − κ0�ðð0 − 4τ0 − τ�Þ − ð0ðκ0�Þ�Tm̄ m̄

þ ½κ0ð0 þ σ0ðÞ0 − 2ρ0 − 2ρ0�Þ þ 2Þ0ðσ0Þ −Ψ4�ðTln þ Tmm̄Þ − 2½κ0ðÞ0 − ρ0 − ρ0�Þ þ Þ0ðκ0Þ�Tlm̄; ð3:18eÞ

T ð2Þ
−2 ¼ 3½κ0κ�Tnn þ σ0σ0�Tm̄ m̄�; ð3:18fÞ

and

8πTnn ¼ 2ϕ22; 8πTlm ¼ 2ϕ01; 8πTm̄ m̄ ¼ 2ϕ�
02; 8πTnm̄ ¼ 2ϕ21; ð3:18gÞ

8πT ¼ −R; 8πðTln þ Tmm̄Þ ¼ 4ϕ11: ð3:18hÞ

More details can again be found in Appendix A but suffice
it to say that, aside from the key observations that were
made long ago for the case of rotating black holes [37–42],
the derivation of these expressions is an exercise in trans-
lation and algebra. Yet, it is important to emphasize no
assumptions are made on the spacetime or NP frame to
derive (3.15) and (3.17). Nevertheless, we have sugges-
tively grouped together terms based on quantities that
would vanish in a Petrov D spacetime in an aligned frame.
In order to be entirely explicit, as is useful to do actual

calculations, the NP versions of (3.15) and (3.17) are given
in Appendix A in (A33) and (A35).

B. Linearization

Contrary to the Teukolsky equations, the equations
derived in the previous section apply for any four-
dimensional spacetime and any choice of NP frame.
Also contrary to the Teukolsky equations, they are thus
totally unpractical. Our goal is now to approach the middle
ground, where we are close enough to the Teukolsky
equations to use their nice properties while still being very
general in terms of applicability. The key assumption going
into this is the perturbative nature of the corrections.
All observations so far indicate that this is likely a good
assumption [24] but it should be stressed that non-
perturbative corrections to the spectrum are also of
interest [85–87]. These will not be captured here.
Moreover, in light of the pseudospectral instability of these
modes such corrections could imply an entirely different

spectrum [88–90]. However, the time-domain response
relevant for observations is more robust [91]. Therefore,
we would still expect the perturbative corrections we
compute to be relevant for the observed ringdown.
In general, although there are of course other relations

between these variables, the Eqs. (3.15) and (3.17) involve
the frame ea, spin connection γabc, the (Ricci) curvatures

6

ϕab, and Weyl scalars Ψi, so they take the form

E�2ðea; γabc;ϕab;ΨiÞ ¼ E�2ðΦ;ΨiÞ ¼ 0; ð3:19Þ

where we will denote the variables excluding Ψi collec-
tively as Φ. Consider a perturbation over a solution, so we
make ea → ēa þ δea, γabc → γ̄abc þ δγabc, ϕab → ϕ̄ab þ
δϕab (so in general Φ → Φ̄þ δΦ), and Ψi → Ψ̄i þ δΨi,
where the bar on top of a given quantity denotes that it is
evaluated on the background. The equations above then
yield two linear equations for the perturbations

EδΨ;�2ðδΨiÞ þ EδΦ;�2ðδΦÞ ¼ 0; ð3:20Þ

6Note however that Ricci curvature will be replaced by the
effective stress-energy tensor by imposing the Einstein’s equa-
tions. In the case of higher-derivative theories like in (2.4), the
effective stress-energy tensor is a function of the frame, spin
connection, and Weyl curvature, since at leading order in a
perturbative expansion we only need to evaluate it on a solution
of the (uncorrected) vacuum Einstein’s equations—this is, on a
Ricci-flat spacetime.
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where EδΨ;�2ð·Þ and EδΦ;�2ð·Þ are linear differential oper-
ators. In principle, these equations involve all perturbed
variables. However, a simplification occurs if the back-
ground geometry corresponds to a corrected vacuum (Ricci
flat) Petrov-D solution. By this we mean that the solution
only departs perturbatively from the vacuum Petrov type D
due to, say, higher-derivative corrections. This is in
particular the case for rotating black holes in the
theory (2.1).
As a bookkeeping parameter, we introduce λ to keep

track of the departure from vacuum Petrov type D [e.g., in
the case of higher-derivative corrections this could be l4 or
l6 in (2.1)]. We will work at linear order in λ, since we are
only interested in the leading corrections. Then, our back-
ground geometry will have

Ψ̄i ¼ Ψ̄ð0Þ
i þ λΨ̄ð1Þ

i ; Φ̄i ¼ Φ̄ð0Þ
i þ λΦ̄ð1Þ

i ; ð3:21Þ

with in particular

Ψ̄ð0Þ
0 ¼ Ψ̄ð0Þ

1 ¼ Ψ̄ð0Þ
3 ¼ Ψ̄ð0Þ

4 ¼ 0; ð3:22Þ

ϕ̄ð0Þ
00 ¼ ϕ̄ð0Þ

01 ¼ ϕ̄ð0Þ
02 ¼ ϕ̄ð0Þ

21 ¼ ϕ̄ð0Þ
11 ¼ ϕ̄ð0Þ

22 ¼ 0; ð3:23Þ

κ̄ð0Þ ¼ κ̄0ð0Þ ¼ σ̄ð0Þ ¼ σ̄0ð0Þ ¼ 0; ð3:24Þ

on the assumption that the uncorrected background is of
Petrov type D and that the frame is chosen to be adapted to
the principal null directions. The corrections to these
quantities will nevertheless be nonvanishing in general.
When we evaluate the linearized equation (3.20) on this

type of background, one can see that the operators EδΦ;�2

become of order λ, which we denote by

EδΦ;�2ðδΦÞ ¼ λEð1Þ
δΦ;�2ðδΦÞ: ð3:25Þ

On the other hand,

EδΨ;þ2ðδΨiÞ ¼ Dð0Þ
2 ðδΨ0Þ þ λEð1Þ

δΨ;þ2ðδΨiÞ; ð3:26Þ

EδΨ;−2ðδΨiÞ ¼ Dð0Þ
−2ðδΨ4Þ þ λEð1Þ

δΨ;−2ðδΨiÞ; ð3:27Þ

where Dð0Þ
�2 are the Teukolsky operators for δΨ0;4 on the

Kerr background,

Dð0Þ
þ2 ¼ 2½ðÞ − 4ρ − ρ�ÞðÞ0 − ρ0Þ

− ðð − 4τ − τ0�Þðð0 − τ0Þ − 3Ψ2�jKerr;
Dð0Þ

−2 ¼ 2½ðÞ0 − 4ρ0 − ρ0�ÞðÞ − ρÞ
− ðð0 − 4τ0 − τ�Þðð − τÞ − 3Ψ2�jKerr: ð3:28Þ

Then, to first order in λ, the equations become

Dð0Þ
þ2ðδΨ0Þ þ λ½Eð1Þ

δΨ;þ2ðδΨiÞ þ Eð1Þ
δΦ;þ2ðδΦÞ� ¼ 0; ð3:29Þ

Dð0Þ
−2ðδΨ4Þ þ λ½Eð1Þ

δΨ;−2ðδΨiÞ þ Eð1Þ
δΦ;−2ðδΦÞ� ¼ 0: ð3:30Þ

Now, for every perturbed quantity, its value will be the one
on Kerr plus a linear correction,

δΦ ¼ δΦð0Þ þ λδΦð1Þ: ð3:31Þ

Thus, at first order in λ, the previous equations are
equivalent to

Dð0Þ
þ2ðδΨ0Þ þ λ½Eð1Þ

δΨ;þ2ðδΨð0Þ
i Þ þ Eð1Þ

δΦ;þ2ðδΦð0ÞÞ� ¼ 0; ð3:32Þ

Dð0Þ
−2ðδΨ4Þ þ λ½Eð1Þ

δΨ;−2ðδΨð0Þ
i Þ þ Eð1Þ

δΦ;−2ðδΦð0ÞÞ� ¼ 0: ð3:33Þ

Note that we intentionally do not split δΨ0;4 ¼
δΨð0Þ

0;4 þ λδΨð1Þ
0;4, as we will write an equation for the

complete variables δΨ0;4.
In fact, every zeroth-order perturbed quantity can be

determined in terms of the Teukolsky variables δΨð0Þ
0 and

δΨð0Þ
4 , that is

δΦð0Þ ¼ δΦð0ÞðδΨð0Þ
0 ; δΨð0Þ

4 Þ ¼ δΦð0ÞðδΨ0; δΨ4Þ þOðλÞ:
ð3:34Þ

Therefore, at the end of the day we should be able to write
the equations explicitly as

Dð0Þ
þ2ðδΨ0Þ þ λ½Eð1Þ

δΨ0;þ2ðδΨ0Þ þ Eð1Þ
δΨ4;þ2ðδΨ4Þ� ¼ 0;

Dð0Þ
−2ðδΨ4Þ þ λ½Eð1Þ

δΨ0;−2ðδΨ0Þ þ Eð1Þ
δΨ4;−2ðδΨ4Þ� ¼ 0: ð3:35Þ

These are two coupled equations for the two variables
δΨ0;4. In order to obtain these equations, we first need to
obtain explicitly the relations (3.34). We will achieve this
by finding the leading-order (general relativistic) metric
perturbations associated to solutions to the Teukolsky
equations in a procedure known as metric reconstruction.

C. Implementation

In practice, to obtain the Eq. (3.35) we proceed as
follows. For every quantity Φ ¼ fΨi; ea; γabcg, we must
find its explicit expression as

Φ ¼ Φ̄þ δΦðδΨ0; δΨ4Þ; ð3:36Þ

where Φ̄ is the background value of the corresponding
quantity, consisting of its Einstein gravity value plus a
correction,

Φ̄ ¼ Φ̄ð0Þ þ λΦ̄ð1Þ; ð3:37Þ
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and δΦðδΨ0; δΨ4Þ is the solution of the perturbed quantity
in the Kerr background expressed in terms of δΨ0 and δΨ4.
We remark that the term δΦðδΨ0; δΨ4Þ involves no higher-
derivative corrections; it is the perturbed quantity as
obtained in Einstein gravity.
We then insert (3.36) into (3.15) and (3.17) keeping the

terms linear in the fluctuations δΦ to first order in λ. In this
process we can also reduce the number of derivatives in the
terms proportional to λ by making use of the zeroth-order

Teukolsky equationsDð0Þ
�2ðδΨ0;4Þ ¼ 0. The result is then the

two equations (3.35). In order to carry out this computation
we need two ingredients:
(1) the Newman-Penrose description of the background

geometry (with higher-derivative corrections), and
(2) the solution for every perturbed quantity in the

Einstein gravity case (without corrections) expressed
in terms of δΨ0 and δΨ4.

We address these points in the next section.
There is a last observation that must be made. In general,

it will be convenient to work with complex metric pertur-
bations. However, this comes at the price that complex
conjugates in the NP formalism are not actual complex
conjugates. Instead, the conjugate variables become inde-
pendent and they satisfy their own equations. We need to
consider in particular the equations for δΨ�

0 and δΨ�
4. Thus,

together with (3.15) and (3.17), we also need to consider
their “conjugated” versions, which yield two equations for
δΨ�

0 and δΨ�
4 analogous to (3.35). Therefore, at the end we

will obtain four coupled linear equations for δΨ0, δΨ4, δΨ�
0,

and δΨ�
4.

IV. INGREDIENTS FOR THE COMPUTATION

In this section, we start moving from the abstract
conceptual outline as spelled out in the previous section
and developed along similar lines as [70,71] to the specific
and explicit computation.

A. Newman-Penrose description of the background
geometry

The solutions of (2.1), perturbatively in the higher-
derivative couplings, take the form

ḡμν ¼ ḡð0Þμν þ λḡð1Þμν ; ð4:1Þ

where ḡð0Þμν is a solution of vacuum Einstein equations (i.e., a

Ricci flat metric) and ḡð1Þμν is the correction at linear order in
the higher-derivative couplings which, as in the previous
section, we keep track of through the bookkeeping param-
eter λ. In the case of the rotating black hole solutions, we
use the following ansatz to capture the deviations with
respect to Kerr [73],

ds̄2¼−
�
1−

2Mr
Σ

−λH1

�
dt2−ð1þλH2Þ

4Marð1−x2Þ
Σ

dtdϕ

þð1þλH3ÞΣ
�
dr2

Δ
þ dx2

1−x2

�

þð1þλH4Þ
�
r2þa2þ2Mra2ð1−x2Þ

Σ

�
ð1−x2Þdϕ2;

ð4:2Þ

where

Σ ¼ r2 þ a2x2; Δ ¼ r2 − 2Mrþ a2; ð4:3Þ

and x ¼ cos θ.7 The metric ḡð0Þμν is in this case the Kerr

metric in Boyer-Lindquist coordinates, while ḡð1Þμν is para-
metrized by the four functions Hiðx; rÞ,

ḡð1Þμν dxμdxν¼H1dt2−H2

4Marð1−x2Þ
Σ

dtdϕ

þH3Σ
�
dr2

Δ
þ dx2

1−x2

�

þH4

�
r2þa2þ2Mra2ð1−x2Þ

Σ

�
ð1−x2Þdϕ2:

ð4:4Þ

The solution depends on the two constantsM and a, which
represent the total mass and specific angular momentum as
long as the Hi functions satisfy appropriate boundary
conditions [73], which we assume. We also introduce
the dimensionless spin parameter χ ¼ a=M. Here
we consider solutions with jχj < 1, as the extremal limit
jχj ∼ 1 poses additional difficulties and should be studied
separately. For jχj < 1, the solutions for the Hi functions
can be expressed as a convergent power series in χ, and they
take the form8

Hi ¼
X∞
n¼0

χn
Xn
p¼0

Xqmaxðn;pÞ

q¼0

Hðn;p;qÞ
i xpr−q; ð4:5Þ

7We remark that it is computationally faster to use
the algebraic x variable as opposed to the trigonometric θ
variable.

8In order to determine the convergence of the spin expansion
one can perform standard convergence tests, like the root test,
with a high-order expansion of the solution—in our case, we used
the solution to order χ30. These tests indicate that the power series
is indeed convergent in the exterior of the black hole, with a
radius of convergence jχmaxj ∼ 1. Furthermore, in the case of
certain observables the convergence of the spin expansion can be
checked explicitly as the full series can be summed up analyti-
cally [92,93].

CANO, FRANSEN, HERTOG, and MAENAUT PHYS. REV. D 108, 024040 (2023)

024040-8



for certain coefficients Hðn;p;qÞ
i that one can compute. We

have computed these solutions to order Oðχ30Þ, which we
believe would suffice for most purposes up to spins χ ∼ 0.9.
For smaller spins, much less terms are required to obtain
high accuracy. The availability of this high-order solution
will not yet be fully exploited here, since we will only make
use of anOðχ6Þ expansion in Sec. VI, but it is important for
future applications. The solution could otherwise be
obtained numerically by solving the system of linear partial
differential equations satisfied by the Hi functions, but we
find this less practical.
Let us also take note that the event horizon of the

metric (4.2) is located at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð4:6Þ

and this is not modified by the higher-derivative correc-
tions. This is because we are making a coordinate choice
in (4.2) that guarantees that the horizon is always located
at (4.6).
Let us now provide the Newman-Penrose description of

this spacetime. We again consider a null tetrad eaμ that we
denote by

e1μ ¼ lμ; e2μ ¼ nμ; e3μ ¼mμ; e4μ ¼ m̄μ; ð4:7Þ
and that satisfies

ḡμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ: ð4:8Þ

Just like for the metric, the tetrad vectors are given by their
Kerr value plus a correction,

eaμ ¼ eð0Þaμ þ λeð1Þaμ: ð4:9Þ

For the tetrad in the uncorrected Kerr geometry, we use the
Kinnersley tetrad [83]

lμð0Þ ¼
�
r2 þ a2

Δ
; 1; 0;

a
Δ

�
; ð4:10Þ

nμð0Þ ¼ ðr2 þ a2;−Δ; 0; aÞ 1
Σ
; ð4:11Þ

mμ
ð0Þ ¼

�
ia

ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
;0;−

ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
;

iffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
�

1ffiffiffi
2

p
ζ�
; ð4:12Þ

m̄μ
ð0Þ ¼

�
−ia

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
;−

iffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�

1ffiffiffi
2

p
ζ
;

ð4:13Þ

where

ζ ¼ r − iax: ð4:14Þ

As is well known, this frame has the property that it is
aligned with the principal null directions of the Kerr metric.
Therefore, in this frame, one in particular has (3.22)
and (3.24)

Ψ̄ð0Þ
0 ¼ Ψ̄ð0Þ

1 ¼ Ψ̄ð0Þ
3 ¼ Ψ̄ð0Þ

4 ¼ 0; ð4:15Þ

κ̄ð0Þ ¼ κ̄0ð0Þ ¼ σ̄ð0Þ ¼ σ̄0ð0Þ ¼ 0; ð4:16Þ

as used in the previous section. Then, the correction to the

tetrad can be found from the correction to the metric ḡð1Þμν

in (4.4) as

eð1Þaμ ¼ −
1

2
ḡð1Þαβ ḡ

ð0Þμαeð0Þaβ: ð4:17Þ

There is additional gauge freedom in the choice of eð1Þaμ,
corresponding to infinitesimal Lorentz transformations of
the uncorrected frame. One may use this freedom to set to
zero some of the components of the spin connection or
some of the Weyl scalars (in particular, Ψ1 and Ψ3).
However, this makes the form of the tetrad much more
complicated, so in practice it seems more efficient to work
with the simple choice given by (4.17). This will be the
background tetrad we use throughout.
Once the tetrad is determined, obtaining the coefficients

of the spin connection as well as the Weyl scalars, that we
need for our computations,9 is just an straightforward task
that we carry out with the help of software.

B. Metric reconstruction of Kerr perturbations

In order to find the master equations (3.35) we also need
to express every perturbed quantity on the Kerr back-
ground in terms of the Teukolsky variables. The most
efficient way to accomplish this is by reconstructing the
metric perturbation. From the metric perturbation, the
remaining perturbed quantities can be straightforwardly
computed.
Following [94], one can reconstruct the metric pertur-

bation on the Kerr background as follows,

M∂thμν ¼ −
1

3
∇β

h
ζ4∇αCðμανÞ

β
i
−
1

3
∇β

h
ðζ�Þ4∇αC̄ðμανÞ

β
i
;

ð4:18Þ

where

Cμανβ ¼ 4ðψ0n½μm̄α�n½νm̄β� þ ψ4l½μmα�l½νmβ�Þ; ð4:19Þ

C̄μανβ ¼ 4ðψ�
0n½μmα�n½νmβ� þ ψ�

4l½μm̄α�l½νm̄β�Þ: ð4:20Þ

9Ricci curvature, although nonvanishing, is not needed.
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The variables ψ0;4 and ψ�
0;4 satisfy the Teukolsky equations,

but they are in general different from the Weyl scalars
δΨ0;4, δΨ�

0;4. They are, however, proportional to them, as
we show below. Let us also note that we will be working
with a complex metric perturbation. This implies that
conjugate quantities in the NP formalism are not complex
conjugates anymore, but actually independent quantities.
Therefore, ψ0;4 and ψ�

0;4 have to be treated as independent
variables.
Since these variables satisfy Teukolsky equations, they

can be separated as

ψ0 ¼ e−iωtþimϕR2ðrÞS2ðxÞ; ð4:21Þ

ψ�
0 ¼ e−iωtþimϕR�

2ðrÞS−2ðxÞ; ð4:22Þ

ψ4 ¼ e−iωtþimϕζ−4R−2ðrÞS−2ðxÞ; ð4:23Þ

ψ�
4 ¼ e−iωtþimϕðζ�Þ−4R�

−2ðrÞS2ðxÞ; ð4:24Þ

where the SsðxÞ, RsðrÞ, and R�
sðrÞ functions satisfy the

angular and radial Teukolsky equations

d
dx

�
ð1 − x2Þ dSs

dx

�

þ
�
ðaωÞ2x2 − 2saωxþ Blm −

ðmþ sxÞ2
1 − x2

�
Ss ¼ 0; ð4:25Þ

D2
sRs ¼ Δ−sþ1

d
dr

�
Δsþ1

dRs

dr

�
þ VRs ¼ 0; ð4:26Þ

D2
sR�

s ¼ Δ−sþ1
d
dr

�
Δsþ1

dR�
s

dr

�
þ VR�

s ¼ 0; ð4:27Þ

with

V ¼ ðamÞ2 þ ω2ða2 þ r2Þ2 − 4amMrω

þ isð2amðr −MÞ − 2Mωðr2 − a2ÞÞ
þ Δð−a2ω2 þ s − Blm þ 2irsωÞ; ð4:28Þ

and angular separation constants Blm.
10 Note that the

conjugate variables R�
s satisfy the same equations as Rs.

Now, since the time dependence is separated as e−iωt, we
can express the metric perturbation explicitly as

hμν ¼ −
i

3Mω
∇β½ζ4∇αCðμανÞ

β� − i
3Mω

∇β½ðζ�Þ4∇αC̄ðμανÞ
β�;

ð4:29Þ

We have checked by direct computation that this metric
perturbation indeed satisfies the linearized Einstein’s equa-
tions Rμν ¼ 0.
From hμν we can obtain the perturbation of the

NP frame,

δeaμ ¼ −
1

2
hαβḡð0Þμαēð0Þaβ; ð4:30Þ

where gð0Þμα is the Kerr metric and ēð0Þaβ is the frame (4.10).
It is then straightforward (but computationally heavy) to
obtain the perturbation of the spin connection δγabc and of
the Weyl scalars δΨi, δΨ�

i which are the quantities we need
to evaluate the universal Teukolsky equations (3.15), (3.17)
and their conjugates.
The missing crucial step is to establish the link between

the metric variables ψ i and the Teukolsky variables. To
this end, it is important to observe the following relations
between the four radial variables Rs and R�

s . First of all,
since Rs and the “conjugates” R�

s satisfy the same equation
(and, in the case of QNMs, the same boundary condi-
tions), it follows that they must be proportional, and
therefore,

R�
þ2ðrÞ ¼ qþ2Rþ2ðrÞ;

R�
−2ðrÞ ¼ q−2R−2ðrÞ; ð4:31Þ

for certain constants q�2. We will refer to these constants
as polarization parameters, since they determine the
polarization of the perturbations. This will become clear
in Sec. VI. On the other hand, Rþ2 and R−2 can be related
by means of Starobinsky-Teukolsky (ST) identities, which
we review in Appendix B. These read

R−2 ¼ Cþ2Δ2ðD0Þ4ðΔ2Rþ2Þ;
Rþ2 ¼ C−2ðD†

0Þ4R−2; ð4:32Þ

where D0 and D†
0 are the operators

D0 ¼ ∂r þ
iðωðr2 þ a2Þ −maÞ

Δ
;

D†
0 ¼ ∂r −

iðωðr2 þ a2Þ −maÞ
Δ

: ð4:33Þ

The two proportionality constants C�2 are not indepen-
dent but related by

Cþ2C−2 ¼
1

K2
; ð4:34Þ

10These are related to the more conventional definition of
angular separation constants in the literature, denoted sAlm, by
Blm ¼ sAlm þ s. However, the advantage of using Blm is that they
are the same for s ¼ þ2 and s ¼ −2 and hence we do not need to
distinguish between the two cases.
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where

K2 ¼ D2
2 þ 144M2ω2; ð4:35Þ

and D2 is the ST constant for the angular functions,
given by (B4). Thus, in sum, the relations (4.31) and
(4.32) imply that the full metric perturbation is determined
once we know one of the Rs or R�

s and the constants qs
and Cs.
When we use all of these relations, together with the ST

identities for the angular functions—see Appendix B—we
obtain that the Weyl scalars equal the metric variables up to
proportionality constants,

δΨ2−s ¼Psψ2−s; δΨ�
2−s ¼P�

sψ
�
2−s; s¼�2: ð4:36Þ

The constants Ps, P�
s depend on the polarization parameters

qs and ST constants Cs and are given by

Pþ2 ¼
1

2
þ iD2qþ2

24Mω
−
iCþ2q−2K2

6Mω
;

P−2 ¼
1

2
−
iD2q−2
24Mω

þ iC−2qþ2K2

96Mω
;

P�
þ2 ¼

1

2
þ iD2

24Mωqþ2

−
iCþ2K2

6Mωqþ2

;

P�
−2 ¼

1

2
−

iD2

24Mωq−2
þ iC−2K2

96Mωq−2
: ð4:37Þ

Note that there are two choices for qs and Cs for which
Ps ¼ P�

s ¼ 1, corresponding to qþ2 ¼ q−2 ¼ �1 with

Cþ2 ¼
1

4ðD2 − qþ212iMωÞ ; C−2 ¼
4

D2 − qþ212iMω
:

ð4:38Þ

However, we will not restrict ourselves to this choice of
constants. On the one hand, the choices qþ2 ¼ q−2 ¼ �1
correspond to modes of definite parity, and this is not
suitable for theories that violate parity, in whose case
modes of odd and even parity become mixed. On the other
hand, by allowing the ST constants to be general we will be
able to perform a strong consistency check on our results
in Sec. VI.

V. MASTER RADIAL EQUATIONS

In the previous section, we have provided the details
needed to obtain explicitly the pair of partial differential
equations (3.35) for the Teukolsky variables and their
conjugate versions. In this section we study these equations

explicitly and we show how they can be effectively
separated into a set of four decoupled radial equations.

A. Evaluation and separation of Teukolsky equations

Let us assume that we are performing perturbation
theory on the background of a rotating black hole in the
theory (2.1)—although most of the discussion in this
section can be applied in generality to any other theory.
Our starting point is the two perturbed Weyl scalars δΨ0;4
and their conjugates δΨ�

0;4. We can always separate the
dependence in the t and ϕ coordinates since these are
isometric coordinates. Without loss of generality, we can
additionally decompose the Weyl scalars in spin-weighted
spheroidal harmonics, since these are a basis of functions,
and write

δΨ0 ¼ e−iωtþimϕ
X
l

Plm
2 Rlm

2 ðrÞSlm2 ðxÞ;

δΨ4 ¼ e−iωtþimϕ
X
l

ζ−4Plm
−2R

lm
−2ðrÞSlm−2ðxÞ;

δΨ�
0 ¼ e−iωtþimϕ

X
l

P�lm
2 R�lm

2 ðrÞSlm−2ðxÞ;

δΨ�
4 ¼ e−iωtþimϕ

X
l

ðζ�Þ−4P�lm
−2 R

�lm
−2 ðrÞSlmþ2ðxÞ: ð5:1Þ

This decomposition depends on the four sets of radial
functions Rlm

s ðrÞ, R�lm
s ðrÞ. Also, here we are including the

constants Plm
s and P�lm

s that we found in (4.36). There is no
loss of generality in doing this, as we can always reabsorb
these constants into the radial variables. However, the
computation is clearer in this way.
Now, the logic to find the radial Teukolsky equations

goes as follows. We start with a Weyl tensor that we have
decomposed as (5.1). In order to obtain Eq. (3.35) from
(3.15) and (3.17) we need the metric that produced this
Weyl tensor. Of course, we do not know the answer for
higher-derivative gravities. However, we know the answer
for Einstein gravity: every mode in (5.1) comes from a
metric perturbation given by (4.29). Therefore, in the case
of perturbative higher-derivative corrections, the metric
perturbation associated to the Weyl tensor (5.1) will
correspond to (4.29) plus OðλÞ terms. But these are
irrelevant in order to obtain (3.35), since all the terms
coming from the metric reconstruction are already of order
λ. Hence, we simply need to use (4.29).
Using the expansion (5.1), the metric reconstruction

(4.29) and the background solution (4.2) in (3.15) and
(3.17), and expanding to linear order in the fluctuations and
in the higher-derivative corrections, yields equations of
the form
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ζs−2

ΔΣ

X
l

�
−Slms Plm

s D2
sRlm

s þ λ

�
flms;0;0R

lm
s Slms þ flms;1;0

Rlm
s

dr
Slms þ flms;0;1R

lm
s
Slms
dx

þ flms;1;1
Rlm
s

dr
Slms
dx

�

þ λ

�
hlms;0;0R

�lm
s Slm−s þ hlms;1;0

R�lm
s

dr
Slm−s þ hlms;0;1R

�lm
s

Slm−s
dx

þ hlms;1;1
R�lm
s

dr
Slm−s
dx

�

þ λ

�
glms;0;0R

lm
−sSlm−s þ glms;1;0

Rlm
−s

dr
Slm−s þ glms;0;1R

lm
−s
Slm−s
dx

þ glms;1;1
Rlm
−s

dr
Slm−s
dx

�

þ λ

�
jlms;0;0R

�lm
−s Slms þ jlms;1;0

R�lm
−s

dr
Slms þ jlms;0;1R

�lm
−s

Slms
dx

þ jlms;1;1
R�lm
−s

dr
Slms
dx

��
¼ 0 ð5:2Þ

for s ¼ �2, plus another two conjugate equations. HereD2
s

is the radial Teukolsky operator defined in (4.27) and flms;i;j,
hlms;i;j, g

lm
s;i;j, and jlms;i;j are functions of r and x as well as the

black hole spin a, the angular separation constants Blm, and
the frequencyω. These functions additionally depend on the
Hi functions of the corrected Kerr metric (4.2). They are
given by very lengthy and non-illuminating expressions that
we have obtained explicitly for the six-derivative theories
(2.2). Note that in the terms proportional to λ only first
derivatives appear, as we have used the zeroth-order radial
and angular Teukolsky equations to reduce the derivatives of
higher order. For this reason, the functions flms;i;j, h

lm
s;i;j, g

lm
s;i;j,

and jlms;i;j depend on the angular separation constants Blm.
Let us now make the following two observations. First,

the spin-weighted spheroidal harmonics satisfy the ortho-
gonality relations11

2π

Z
1

−1
dxSlms ðx;aωÞSl0ms ðx; aωÞ ¼ δll0 ; ð5:3Þ

which hold even for complex ω. We can thus project
Eq. (5.2) into Sl

0m
s and obtain an infinite system of radial

equations labeled by the number l0,

− Pl0m
s D2

sRl0m
s þ

X
l

λ

�
fl

0lm
s;0 Rlm

s þ fl
0lm
s;1

dRlm
s

dr
þ hl

0lm
s;0 R�lm

s

þ hl
0lm
s;1

dR�lm
s

dr
þ gl

0lm
s;0 Rlm

−s þ gl
0lm
s;1

dRlm
−s

dr

þ jl
0lm
s;0 R�lm

−s þ jl
0lm
s;1

dR�lm
−s

dr

�
¼ 0; ð5:4Þ

where

fl
0lm
s;i ¼ 2π

Z
1

−1
dxSl

0m
s

�
flms;i;0S

lm
s þ flms;i;1

Slms
dx

�
;

hl
0lm
s;i ¼ 2π

Z
1

−1
dxSl

0m
s

�
hlms;i;0S

lm
−s þ hlms;i;1

Slm−s
dx

�
;

gl
0lm
s;i ¼ 2π

Z
1

−1
dxSl

0m
s

�
glms;i;0S

lm
−s þ glms;i;1

Slm−s
dx

�
;

jl
0lm
s;i ¼ 2π

Z
1

−1
dxSl

0m
s

�
jlms;i;0S

lm
s þ jlms;i;1

Slms
dx

�
: ð5:5Þ

These are functions of r only.
Second, as the quasinormal modes of the Kerr black hole

consist of a single term with a fixed l and m, in the
corrected QNMs the sum in (5.1) will contain a leading
term while the rest of the terms will be of order λ. That is,
for the QNM that we would label with the numbers l0 and
m, we will have Rl0m

s ¼ Oð1Þ and Rlm
s ¼ OðλÞ for l ≠ l0.

Therefore, at first order in λ, Eq. (5.4) becomes

− Pl0m
s D2

sRl0m
s þ λ

�
fl

0l0m
s;0 Rl0m

s þ fl
0l0m
s;1

dRl0m
s

dr
þ hl

0l0m
s;0 R�l0m

s

þ hl
0l0m
s;1

dR�l0m
s

dr
þ gl

0l0m
s;0 Rl0m

−s þ gl
0l0m
s;1

dRl0m
−s

dr

þ jl
0l0m
s;0 R�l0m

−s þ jl
0l0m
s;1

dR�l0m
−s

dr

�
¼ 0; ð5:6Þ

and similarly for the conjugate equations. For l0 ¼ l0 these
are in total four equations that only involve the variables
Rl0m
s , R�l0m

s . Dropping the labels for clarity, we find the
master radial equations

−Pþ2D2
þ2Rþ2þλ

�
fþ2;0Rþ2þfþ2;1

dRþ2

dr
þhþ2;0R�

þ2þhþ2;1
dR�

þ2

dr
þgþ2;0R−2þgþ2;1

dR−2

dr
þjþ2;0R�

−2þjþ2;1
dR�

−2
dr

�
¼0;

−P−2D2
−2R−2þλ

�
f−2;0R−2þf−2;1

dR−2

dr
þh−2;0R�

−2þh−2;1
dR�

−2
dr

þg−2;0Rþ2þg−2;1
dRþ2

dr
þj−2;0R�

þ2þj−2;1
dR�

þ2

dr

�
¼0;

ð5:7Þ

11We remark that, in addition to orthogonality, this relation defines our convention for their normalization.

CANO, FRANSEN, HERTOG, and MAENAUT PHYS. REV. D 108, 024040 (2023)

024040-12



together with their conjugate counterparts.
We still need to compute the integrals in (5.5) in

order to determine the functions fllms;i , hllms;i , gllms;i , and
jllms;i . This could be achieved numerically if a numerical
solution for the corrected background is known. However,
a possibility to obtain an analytic result consists in
performing an expansion in the black hole spin
χ ¼ a=M. On the one hand, we know analytically the
χn expansion of the functions Hi determining the back-
ground black hole metric. On the other hand, the spin-
weighted spheroidal harmonics Slms ðx; aωÞ and the angular
separation constants Blm have known analytic expansions
for small γ ¼ aω [95].12

When we expand the integrand of (5.5) in powers of χ,
we find that every term can indeed be integrated analyti-
cally. We thus are able to obtain explicit expressions for the
functions

fllms;i ðr;a;ωÞ; hllms;i ðr;a;ωÞ; gllms;i ðr;a;ωÞ; jllms;i ðr;a;ωÞ
ð5:8Þ

as series expansions in a. By including enough terms in
these expansions, one should be able to obtain an accurate
result, even for moderate or large spins.
The computation of the functions fllms;i , h

llm
s;i ,g

llm
s;i , and j

llm
s;i

governing Eq. (5.7) for the theory (2.2) is one of the most
important results of this paper.

B. Decoupling of the radial equations

So far we have been able to reduce the problem of
studying black hole perturbations to a system of four
coupled radial equations (5.7) (and their conjugate ver-
sions) for the variables Rs and R�

s . This problem can
already be tackled with different methods in order to find
the quasinormal modes [60], but it is still much more
involved than the case of a decoupled equation. The idea
to decouple these equations is to use the Starobinsky-
Teukolsky identities (4.32) as well as the relations with the
conjugate variables (4.31). In fact, those relations are
already implicitly assumed in (5.7) through the con-
stants Ps.
We note that, upon using the zeroth-order Teukolsky

equations, the ST relationships (4.32) can be expressed in
the form of a first-order operator,

R−2 ¼ Cþ2

�
Aþ2Rþ2 þ Bþ2

dRþ2

dr

�
;

Rþ2 ¼ C−2

�
A−2R−2 þ B−2

dR−2

dr

�
; ð5:9Þ

for given functions A�2, B�2. Taking a derivative in these
expressions and using again the Teukolsky equations we
obtain similar relations for the derivatives dR�2=dr.
Combining these relations with (4.31), we can always
express any of the Rs or R�

s in terms of any of the other
variables.
All of these relations hold at zeroth order in λ because the

radial variables satisfy the zeroth-order Teukolsky equa-
tions. Therefore, we are allowed to assume those relations
in the terms proportional to λ in (5.7). The result is four
decoupled equations of the form

−PsD2
sRs þ λ

�
fs;0Rs þ fs;1

dRs

dr

�
¼ 0;

−P�
sD2

sR�
s þ λ

�
f�s;0R

�
s þ f�s;1

dR�
s

dr

�
¼ 0; ð5:10Þ

for s ¼ �2. The price to pay for the decoupling is that the
functions fs;i, f�s;i now depend on the polarization param-
eters qs and the ST constants Cs. Let us take note that the
dependence on these parameters is of the form

fs;i ¼ fs;i;1 þ qsfs;i;2 þ Csfs;i;3 þ Csq−sfs;i;3; ð5:11Þ

f�s;i ¼ f�s;i;1 þ q−1s f�s;i;2 þ Csq−1s f�s;i;3 þ Csq−sq−1s f�s;i;3;

ð5:12Þ

where each of the fs;i;j and f�s;i;j are functions or r. We
recall that the coefficients Ps and P�

s (4.37) also depend on
these constants.
Now, besides the two polarization parameters qs and one

of the Cs, there is a fourth undetermined constant in the
problem: the frequency ω. In order to obtain the QNMs, we
must proceed as follows. We can solve each equation in
(5.10) independently to find the shift in Kerr’s QNM
frequency,

ωs ¼ ωKerr þ λδωs; ω�
s ¼ ωKerr þ λδω�

s ; ð5:13Þ

where ωs and ω�
s denote the frequency obtained from the

corresponding equation. The shifts δωs and δω�
s are

functions of the various parameters and we can see that
their dependence on them is of the form

12Strictly speaking, one should perform a double series
expansion both in χ and in γ, but for simplicity here we perform
an overall expansion in χ using that γ ¼ Mωχ. This could be
problematic only if ω is large, so that jγj ≫ 1, because in that case
one may need to include more terms in the γ expansion. However,
the result should converge anyways if enough terms are included
in the overall χ expansion. Besides, for the most relevant QNMs,
corresponding to the fundamental modes and a few overtones of
the first few harmonics l ¼ 2; 3;…, we actually have jγj < χ.
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δωs ¼
1

Ps
½δωs;1 þ qsδωs;2 þ Csδωs;3 þ Csq−sδωs;4�;

δω�
s ¼

1

qsP�
s
½qsδω�

s;1 þ δω�
s;2 þ Csδω

�
s;3 þ Csq−sδω�

s;4�;

ð5:14Þ

where δωs;i and δω�
s;i are coefficients that we have to

determine numerically. Now, for a QNM, the same fre-
quency must be a solution of all the equations. Therefore,
the following must hold in a QNM solution:

δωþ2ðqs; CsÞ ¼ δω−2ðqs; CsÞ ¼ δω�
þ2ðqs; CsÞ

¼ δω�
−2ðqs; CsÞ: ð5:15Þ

These equations fix the value of the polarization parameters
qs allowing us to obtain the QNM frequencies. On the other
hand, as we show explicitly in the next section, the value of
the ST constants Cs remains arbitrary because the frequen-
cies are actually independent of these constants. This is a
highly nontrivial fact that cannot be easily concluded from
the form of the equations. Nevertheless, our numeric results
confirm this, as will be discussed in the next section. This is
a strong self-consistency test of our method: it tells us that
the choice of ST constants represents a choice of gauge to
reconstruct the metric perturbation from the Teukolsky
variables. The same behavior is found in general relativity,
where one can reconstruct the metric perturbation in the
ingoing or outgoing radiation gauges, or more generally, as
a linear combination of both [83,94].

VI. QUASINORMAL MODE FREQUENCIES
IN SIX-DERIVATIVE GRAVITY

As an application of our method, we compute the
ðl; mÞ ¼ ð2; 2Þ and (3,3) fundamental QNM frequencies
of the six-derivative theory (2.2) to linear order in the
higher-derivative couplings. By following the procedure
outlined in the previous sections we have obtained the
radial equations (5.10) for those modes at order a6 and a4,
respectively.13 One last technical obstacle arises in the
computation: we observe that the corrections to the
Teukolsky equations in (5.10) have a singular character
at the horizon because fs;i and f�s;i behave as fs;0 ∼ ðr −
rþÞ−1 and fs;1 ∼ ðr − rþÞ0. This behavior, which arises due
to the fact that we have reduced the order of the equations
of motion by imposing the zeroth-order equations, is
problematic for the following reason. Observe that we
want our variables to behave as Rs ∼ ðr − rþÞγ near the
horizon, for a certain γ. In that case we have
D2

sRs ∼ ðr − rþÞγ , but due to the behavior of the fs;i
functions, the terms proportional to λ in (5.10) behave in

turn as ðr − rþÞγ−1. This indicates that the variables Rs, R�
s

are not appropriate in the presence of corrections.14 In fact,
we can redefine the variables as15

Rs ¼ R̂s þ λ

�
αsR̂s þ βs

dR̂s

dr

�
;

R�
s ¼ R̂�

s þ λ

�
α�sR̂�

s þ β�s
dR̂�

s

dr

�
; ð6:1Þ

for radial-dependent coefficients αs, βs, α�s , β�s . The
equation for the new variables R̂s, R̂�

s can again be
rewritten—after making use of the zeroth-order Teukolsky
equation in the terms proportional to λ—in the form
of (5.10), with new functions f̂s;i, f̂�s;i that depend on
the αs, βs, α�s , β�s functions. It suffices to choose these
functions as

αsðrÞ ¼
as

r − rþ
; βsðrÞ ¼ bs; ð6:2Þ

for constants as, bs, and analogously for α�s and β�s . By
choosing the coefficients as, bs appropriately, we can
remove the divergences and obtain well-behaved equations
for the variables R̂s, with the functions f̂s;i satisfying f̂s;0∼
ðr − rþÞ0, f̂s;1 ∼ ðr − rþÞ for r → rþ. In fact, with this
choice we find that these functions take a polynomial form

f̂s;0ðrÞ ¼ M2
XN
n¼0

�
r
M

�
4−n

f̂s;0;n;

f̂s;1ðrÞ ¼ Mðr − rþÞ
XN
n¼0

�
r
M

�
3−n

f̂s;1;n; ð6:3Þ

where f̂s;i;n are coefficients andN increaseswith the order of
the a-expansion. Thus, the resulting equations

−PsD2
sR̂s þ λ

�
f̂s;0R̂s þ f̂s;1

dR̂s

dr

�
¼ 0;

−P�
sD2

sR̂
�
s þ λ

�
f̂�s;0R̂�

s þ f̂�s;1
dR̂�

s

dr

�
¼ 0; ð6:4Þ

now have the same behavior as the zeroth-order Teukolsky
equation for r → rþ and for r → ∞ and we can impose the
usual boundary conditions for QNMs. At r ¼ rþ the
solution must behave as

13In the ancillary files we provide these equations truncated at
order a2 [96].

14In the case of s ¼ þ2 equation, the terms proportional to λ
actually behave as ðr − rþÞγ once we use the value of γ from the
uncorrected Teukolsky equation, so the equation is secretly
regular. This is not the case for the s ¼ −2 equation, though.

15We suspect the origin of these singularities lies in the choice
of corrected NP frame (4.17), which is probably singular at the
horizon. A redefinition of the radial variables is therefore
equivalent to choosing a different NP frame.
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Rs ∼
�

r
rþ

− 1

�
γs
;

γs ¼ −s −
i

r2þ − a2
½2ωMrþ −ma� þ λδγs; ð6:5Þ

where the exponent corresponds to modes falling toward the
black hole horizon and it takes the Kerr value plus a theory-
dependent correction δγs. At infinity r → ∞ we look for
solutions corresponding to outgoing radiation and hence Rs
behaves as

Rs ∼ r−1−2se−iωð1þλδÞr; ð6:6Þ

where δ is again a theory-dependent coefficient.
In order to find the QNM frequencies we have applied

two different numerical approaches. The first one consists
in performing a direct numerical integration of (6.4) with
the boundary conditions (6.5) and (6.6), implementing a
shooting-method strategy in order to find ω. The second
one is based on the approach of [71,97,98], in the spirit of
computing spectral shifts of a perturbed Hermitian oper-
ator. The results we report below were obtained from the
first method, but we checked that the relative difference
between the two methods for the shift in the QNM
frequencies is smaller than 2% for jχj ≤ 0.12 and remains
this small on average for the complete range of values of
angular momentumwe study. Let us discuss the cases of the
even- and odd-parity theories independently.

A. Even-parity corrections

We consider Einstein gravity supplemented with the
even-parity six-derivative operator in (2.2). This will
introduce corrections to the Kerr QNM frequencies that
we can express as

ω ¼ ωKerr þ l4λev
M5

δω; ð6:7Þ

so that δω is a dimensionless coefficient that depends
on the dimensionless spin χ. Our goal is to determine this
coefficient.
In the case of parity-preserving corrections, perturba-

tions can be naturally decoupled into modes of odd and
even parity. For the background metric (4.2), a natural
parity transformation corresponds to

ðx;ϕÞ → ð−x;ϕþ πÞ: ð6:8Þ

One can see that this has the effect on the NP frame
ðmμ; m̄μÞ → −ðm̄μ; mμÞ. In addition, the spheroidal harmon-
ics verify Ssð−xÞ ¼ �S−sðxÞ. Therefore, up to a global sign,
the parity transformation (6.8) is equivalent to Rs ↔ R�

s at
the level of the metric perturbation (4.29). Hence, we
conclude that the modes of definite parity are those with

Rs ¼ �R�
s ; ð6:9Þ

or in other words, this fixes the polarization parameters qs to
be qþ2 ¼ q−2 ¼ �1. The þ sign corresponds to polar
perturbations while the − sign to axial ones. When
qs ¼ �1, we check that, indeed, the conjugate equations
in (6.4) are identical to the nonconjugate ones. Thus,we only
need to consider the equations for R̂þ2 and R̂−2, and only the
ST constants Cs remain unspecified. By solving these
equations and taking into account (4.37) and (5.14), we
obtain that the shifts in the QNM frequencies for each
polarization � take the form

δω�
s ¼ σ�s

1þ γ�s Cs

1þ ρ�s Cs
; ð6:10Þ

for coefficients σ�s , γ�s , ρ�s that depend on the dimensionless
angular momentum χ and that we determine numerically.
Then, onemay think that the ST constants are determined by
the condition that the two shifts are the same (because all the
equations should give the sameQNM frequency), so that we
would have the equation δωþ2 ¼ δω−2 for the ST constants.
However, the numerical results indicate strongly that

γ�s ¼ ρ�s ; ð6:11Þ

meaning that the QNM frequencies are, in fact, independent
of these constants, which can be chosen arbitrarily.
Furthermore, and even more importantly, the numerical
results also indicate that δω�

þ2 ¼ δω�
−2.

To illustrate this, we compute the shifts δωs for Cs ¼ 0
and Cs → ∞. Let us study first the case of the ðl; mÞ ¼
ð2; 2Þ modes. In Fig. 2 we show the four different results,

δωþ2jCþ2¼0; δωþ2jCþ2¼∞; δω−2jC−2¼0; δω−2jC−2¼∞;

ð6:12Þ

for each polarization obtained from a numerical integration
of (6.4) expanded at order χ6. We observe that all of the
frequencies are in fact almost identical for all the values of χ
we are plotting. Especially, the two estimations for δω−2 are
indistinguishable in these plots, indicating that they are
independent of C−2. These two values remain very close to
each other even for larger values of the spin, up to jχj ∼ 0.4.
On the other hand, we observe that the two estimations for
δωþ2 depart slightly from themselves and from δω−2
already at jχj ∼ 0.2. These small discrepancies can be
explained by the truncation of the spin expansion and by
the different character of the s ¼ þ2 and s ¼ −2 equations.
In fact, we expect the equations to yield the same QNM
frequencies only when the complete series in χ is included,
but when the series in truncated at a given order we can
only expect the results to agree for small enough χ.
In this regard, the equation for s ¼ þ2 seems to be quite
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sensitive to the order of the expansion as it converges more
slowly than the s ¼ −2 equation, which turns out to be
more stable. However, the results from both equations
show convergence as more terms are added in the spin
expansion. Thus, we expect that by including additional
orders in χ all the estimations will converge even for
larger spins—in principle, we expect convergence for

all spins jχj < 1, although many terms may be needed
to obtain a good accuracy for black holes close to
extremality.
In order to perform a quantitative comparison, we can fit

the numerical results to a polynomial in χ. Performing a
quadratic fit in the interval −0.1 ≤ χ ≤ 0.1 we obtain the
following result for the polar modes,

δωþ
þ2jCþ2¼0 ¼ ð−0.144þ 0.162iÞ þ ð0.586þ 0.375iÞχ þ ð1.290 − 0.909iÞχ2;

δωþ
þ2jCþ2¼∞ ¼ ð−0.144þ 0.162iÞ þ ð0.586þ 0.375iÞχ þ ð1.290 − 0.909iÞχ2;

δωþ
−2jC−2¼0 ¼ ð−0.144þ 0.162iÞ þ ð0.586þ 0.375iÞχ þ ð1.294 − 0.911iÞχ2;

δωþ
−2jC−2¼∞ ¼ ð−0.144þ 0.162iÞ þ ð0.586þ 0.375iÞχ þ ð1.294 − 0.911iÞχ2; ð6:13Þ

while for the axial ones we get

δω−
þ2jCþ2¼0 ¼ ð0.246 − 0.132iÞ − ð0.289þ 0.560iÞχ − ð1.360 − 0.337iÞχ2;

δω−
þ2jCþ2¼∞ ¼ ð0.246 − 0.132iÞ − ð0.289þ 0.560iÞχ − ð1.360 − 0.337iÞχ2;

δω−
−2jC−2¼0 ¼ ð0.246 − 0.132iÞ − ð0.289þ 0.559iÞχ − ð1.358 − 0.338iÞχ2;

δω−
−2jC−2¼∞ ¼ ð0.246 − 0.132iÞ − ð0.289þ 0.559iÞχ − ð1.359 − 0.338iÞχ2: ð6:14Þ

FIG. 2. Shifts in the polar (top row) and axial (bottom row) QNMs frequencies with ðl; mÞ ¼ ð2; 2Þ, as defined in (6.7), due to the
even-parity six-derivative correction in (2.2). We compute these shifts in four different ways using an Oðχ6Þ expansion of the Eq. (6.4)
and observe that all the frequencies are approximately the same. This indicates that the result is independent of the ST constants and that
the computation is consistent.
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These results pass several consistency tests. First, the
agreement of theOðχ0Þ andOðχ1Þ coefficients is essentially
perfect. In addition, those coefficients match with good
accuracy the results obtained in [66] following a direct
metric perturbation approach. In fact, in that case we got

δωþ ¼−0.137þ0.161iþð0.612þ0.376iÞχþOðχ2Þ;
δω−¼ 0.244−0.130i− ð0.288þ572iÞχþOðχ2Þ; ð6:15Þ
which coincide with the results above with an accuracy
better than 5% for δωþ16 and around 1% for δω−. Finally, the
agreement among the Oðχ2Þ coefficients is also excellent.

The small discrepancies can be easily attributed to the
numerical precision and to the different behavior of the
equations for a finite truncation of the spin series.
As a further test, we have also computed the ðl; mÞ ¼

ð3; 3Þmodes. The convergence in the spin expansion seems
to be faster than for l ¼ 2 and in fact, we obtain a similar
accuracy using an expansion of order χ4 instead of χ6. The
four different estimations for the frequencies are shown in
Fig. 3 where we again observe that all of them remain very
close to each other.
Fitting these results to a quadratic polynomial in the

range −0.1 ≤ χ ≤ 0.1 yields

δωþ
þ2jCþ2¼0 ¼ ð−0.265þ 0.150iÞ þ ð0.575þ 0.418iÞχ þ ð1.405 − 0.473iÞχ2;

δωþ
þ2jCþ2¼∞ ¼ ð−0.265þ 0.150iÞ þ ð0.576þ 0.418iÞχ þ ð1.411 − 0.473iÞχ2;

δωþ
−2jC−2¼0 ¼ ð−0.265þ 0.150iÞ þ ð0.573þ 0.418iÞχ þ ð1.398 − 0.463iÞχ2;

δωþ
−2jC−2¼∞ ¼ ð−0.265þ 0.150iÞ þ ð0.573þ 0.418iÞχ þ ð1.401 − 0.463iÞχ2; ð6:16Þ

and

FIG. 3. Shifts in the polar (top row) and axial (bottom row) QNMs frequencies with ðl; mÞ ¼ ð3; 3Þ, as defined in (6.7), due to the
even-parity six-derivative correction in (2.2). We compute the shifts in four different ways using an Oðχ4Þ expansion of Eq. (6.4).

16We suspect that most of this error comes from the results in [66], since the result in (6.13), obtained in four different ways, seems to
be very robust. Additionally, we can quote the results of [58] for static black holes, which in our conventions yield δωþ ≈ −0.144þ
0.163i and δω− ≈ 0.246 − 0.133i, matching our results here with an error less than 1%.
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δω−
þ2jCþ2¼0 ¼ ð0.343 − 0.134iÞ − ð0.373þ 0.444iÞχ − ð1.295 − 0.319iÞχ2;

δω−
þ2jCþ2¼∞ ¼ ð0.343 − 0.134iÞ − ð0.374þ 0.445iÞχ − ð1.301 − 0.318iÞχ2;

δω−
−2jC−2¼0 ¼ ð0.343 − 0.134iÞ − ð0.372þ 0.445iÞχ − ð1.291 − 0.316iÞχ2;

δω−
−2jC−2¼∞ ¼ ð0.343 − 0.134iÞ − ð0.372þ 0.445iÞχ − ð1.294 − 0.315iÞχ2: ð6:17Þ

We observe excellent agreement among all the coefficients,
including those of χ2, and again the results to linear order
reproduce the ones previously obtained in [66], which we
rewrite here for convenience:

δωþ ¼ −0.258þ 0.151iþ ð0.597þ 0.426iÞχ þOðχ2Þ;
δω− ¼ 0.340 − 0.132i − ð0.369þ 447iÞχ þOðχ2Þ:

ð6:18Þ

These results make us confident that the frequencies are
indeed independent of the choice of ST constants and that
both equations s ¼ 2 and s ¼ −2 yield the same frequen-
cies. These highly nontrivial properties, together with the
fact that we reproduce the results at linear order in the spin
of [66], provide a strong test of the validity of our approach
and computations.

B. Odd-parity corrections

Let us now consider the parity-breaking cubic interaction
in (2.2), and write the corresponding shift in the QNM
frequencies as

ω ¼ ωKerr þ l4λodd
M5

δω: ð6:19Þ

Since this theory does not preserve parity, we can no longer
decouple polar and axial modes, and these are inevitably
mixed. Thus, the polarization parameters qs have to be
determined at the same time as the frequencies by solving

(5.15). Now, based on our experience with the parity-
preserving corrections, we expect the frequencies to be
independent of the choice of ST constants, since these
represent, essentially, a redundancy in our description of
perturbations. To test this, we solve Eq. (5.15) again in the
limits Cs → 0 and Cs → ∞, in which case the s ¼ 2 and
s ¼ −2 equations decouple. For instance, if we set
Cþ2 ¼ 0, then the condition δωþ2 ¼ δω�

þ2 gives us an
equation for qþ2 which has two solutions. Naturally these
correspond to the two possible polarizations for QNMs, and
in this case qþ2 ≠ �1, indicating that these modes do not
have a definite parity. If instead we set Cþ2 → ∞ then the
condition δωþ2 ¼ δω�

þ2 gives us an equation for q−2 which
again has two solutions. A similar discussion applies for the
case of δω−2 ¼ δω�

−2 for C−2 ¼ 0 and C−2 → ∞.
Proceeding in this way, we obtain four independent

estimations for the shifts in the QNM frequencies. If
everything is consistent, the four results should agree.
As a first check, we observe that the two different polar-
izations δω� obtained in each case satisfy

δωþ ¼ −δω−: ð6:20Þ

This is expected for parity-breaking corrections since they
couple odd- and even-parity modes [60,66]. Thus, we show
only the shifts with ReðδωÞ > 0, as the other polarization
simply has a shift −δω. In Fig. 4 we show these shifts for
the ðl; mÞ ¼ ð2; 2Þ modes while in Fig. 5 we show the
ðl; mÞ ¼ ð3; 3Þ ones.

FIG. 4. Shift in the ðl; mÞ ¼ ð2; 2Þ QNM frequency, as defined in (6.19), due to the odd-parity six-derivative correction in (2.2). We
compute the shift in four different ways using an Oðχ6Þ expansion of Eq. (6.4). The four estimations coincide to a very good
approximation, providing a self-consistency test of our method.
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We observe that the four different estimations of the QNM frequencies match with very high accuracy. As before, the
matching between the frequencies obtained from the s ¼ −2 equation is almost perfect while the equation s ¼ þ2 yields
slightly worse results, for the same reasons we explained above in the case of the parity-preserving corrections.
Performing a quadratic fit in the interval −0.1 < χ < 0.1 for the ðl; mÞ ¼ ð2; 2Þ modes yields

δωþ2jCþ2¼0 ¼ ð0.197 − 0.151iÞ − ð0.447þ 0.506iÞχ − ð1.371 − 0.291iÞχ2;
δωþ2jCþ2¼∞ ¼ ð0.197 − 0.151iÞ − ð0.447þ 0.506iÞχ − ð1.373 − 0.289iÞχ2;
δω−2jC−2¼0 ¼ ð0.197 − 0.151iÞ − ð0.445þ 0.506iÞχ − ð1.356 − 0.293iÞχ2;
δω−2jC−2¼∞ ¼ ð0.197 − 0.151iÞ − ð0.445þ 0.505iÞχ − ð1.354 − 0.296iÞχ2; ð6:21Þ

and in the case of the ðl; mÞ ¼ ð3; 3Þ modes we obtain

δωþ2jCþ2¼0 ¼ ð0.304 − 0.143iÞ − ð0.475þ 0.432iÞχ − ð1.354 − 0.396iÞχ2;
δωþ2jCþ2¼∞ ¼ ð0.304 − 0.143iÞ − ð0.475þ 0.433iÞχ − ð1.359 − 0.395iÞχ2;
δω−2jC−2¼0 ¼ ð0.304 − 0.143iÞ − ð0.473þ 0.433iÞχ − ð1.348 − 0.389iÞχ2;
δω−2jC−2¼∞ ¼ ð0.304 − 0.143iÞ − ð0.473þ 0.433iÞχ − ð1.347 − 0.388iÞχ2; ð6:22Þ

finding excellent agreement in all the coefficients. Finally,
these results compare well with those in [66], which we
reproduce here for convenience,17

δω2;2 ¼ 0.192 − 0.151i − ð0.466þ 0.414iÞχ þOðχ2Þ;
δω3;3 ¼ 0.304 − 0.144i − ð0.493þ 0.438iÞχ þOðχ2Þ:

ð6:23Þ
VII. CONCLUSIONS

We have put forward a general framework to analyze
linearized excitations of rotating black holes that depart

perturbatively from a Kerr spacetime. These rotating black
holes arise, for instance, in theories of gravity beyond
general relativity. Our approach, schematically summarized
in Fig. 1, has enabled us to reduce the study of such
gravitational waves propagating on these black hole back-
grounds to a system of four radial equations that stem from
the effective separation of the universal Teukolsky equa-
tions, introduced in Sec. III.
The underlying perturbation theory philosophy, to exploit

the vicinity of the algebraically special Kerr black hole, is in
many ways evident and has been developed previously to
various degrees of generality [70–72,99]. Yet, to put this into
practice has proven to be a huge technical challenge, which
lay at the heart of this work. We have provided a detailed
end-to-end strategy to implement the computation and we
have presented the first results that emerge from this.

FIG. 5. Shift in the ðl; mÞ ¼ ð3; 3Þ QNM frequency, as defined in (6.19), due to the odd-parity six-derivative correction in (2.2). We
compute the shift in four different ways using an Oðχ4Þ expansion of Eq. (6.4). The four estimations coincide to a very good
approximation, providing a self-consistency test of our method.

17As already observed in footnote 16 we suspect that our
results here are more accurate than those in [66] and hence the
small discrepancies can probably be attributed to that reference.
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This entire computation is the synthesis of much previous
work on the subject. On the one hand, the corrected
Kerr background must be known, for which we used the
results of [73] that expresses the corrections to the Kerr
metric analytically as a series in the black hole spin. On the
other hand, it is necessary to reconstruct the metric pertur-
bation (on the uncorrected Kerr background) from the Weyl
scalars. By using the results of [94] we provided an explicit
map between metric variables and the Teukolsky variables
δΨs—see Sec. IV B. Finally, we showed how one can
effectively separate and decouple the Teukolsky equation
by projecting it onto the spin-weighted spheroidal harmon-
ics, as successfully applied by [72] for scalar perturbations.
The series expansion in the black hole angular momentum is
not strictly necessary, yet it turns out to be very important in
practice. The reason is that, contrary to the Kerr metric in
general relativity, rotating black hole backgrounds are
typically not known exactly. Nevertheless, a high-order
expansion in spin allows us to obtain fully analytic radial
equations, postponing the use of numericalmethods until the
very last step—the resolution of these equations.
We applied the approach just outlined explicitly to the

case of the six-derivative EFT in (2.2), in order to obtain the
corrections to the QNMs. As we discussed, the QNMs are
determined by the frequency ω, by the polarization param-
eters q�2, and by the Starobinsky-Teukolsky (ST) constants
C�2. In the case of even-parity higher-derivative correc-
tions, one can decouple perturbations of odd and even
parity, which fixes the polarization parameters to be
qþ2 ¼ q−2 ¼ �1. Given this choice, one should be able
to obtain the QNM frequency by solving any of the radial
Teukolsky equations. Therefore, in order for the result to be
consistent, the two equations (for s ¼ �2) should indeed
yield the same frequencies. On the other hand, parity-
violating higher-derivative corrections mix modes of odd
and even parity and one has to determine the QNM
frequencies simultaneously with the polarization parame-
ters qs by imposing that all radial equations for a given
polarization have the same frequencies. In both cases, the
ST constants should be irrelevant. They represent a choice
of gauge in which one reconstructs the metric perturbation.
Thus, the QNM frequencies should actually be independent
of the ST constants. This is highly nontrivial and provides a
self-consistent check of our results.
In fact, our results in Sec, VI pass three consistency

checks with very high accuracy:
(1) The s ¼ þ2 and s ¼ −2 equations give the same

QNM frequencies.
(2) The shifts in the QNM frequencies are independent

of the choice of Starobinsky-Teukolsky constants.
(3) We reproduce the results of [66] for static and slowly

rotating black holes at linear order in the spin
obtained from a metric perturbation approach.

Any one of these tests is, taken on its own, an impressive
consistency check, when one considers the extensive

calculations, expansions, transformations and the various
numerical methods involved in obtaining the results. Given
that they are all satisfied to a good approximation, we are
confident that we have achieved a successful method to
compute spectral shifts of QNMs of rotating black holes
beyond general relativity.
We note that two of the above tests are based on

redundancies in choices associated e.g. to gauge freedom.
In addition to consistency checks, such redundancies allow
some internal estimate of the precision we achieve.
Moreover, the choices turn out to be not equally amenable
to the combination of expansions and numerics that are
used. For example, we observed that the s ¼ 2 equation is
quite sensitive to the order of the spin expansion, making it
less precise. The s ¼ −2 equation is much more stable.
Indeed, the frequencies computed from the s ¼ −2 equa-
tion pass the second test above with high precision even for
high values of the angular momentum. The exact source of
these discrepancies should be understood better such that
the entire approach can be tuned to the optimal choices.
It is rather straightforward to apply the computational

strategy given here more generally in order to compute
perturbative corrections to the QNM spectrum of Kerr black
holes. Natural extensions include going further in the EFT of
gravity, e.g., by including eight-derivative terms in the effective
action, as well as going to higher values of the black hole spin.
For the latter, one simply needs to include enough terms in
the angular momentum expansion so as to get an accurate
result [100], a process that is now entirely algorithmic.Wewill
report on a thorough analysis of the shifts in the QNM fre-
quencies in these higher-derivative extensions elsewhere [75].
Next, with a little more effort, our method can be

generalized to theories with additional fields, such as
Einstein-scalar-Gauss-Bonnet gravity [101] or dynamical
Chern-Simons gravity [102,103]. In these theories, QNMs
of static [50,52,53] and slowly rotating black holes up to,
respectively, second [63,67] and first order [64,65] in the
angular momentum have been computed using a metric
perturbation approach. In those cases, one needs to take
into account that the stress-energy tensor in the universal
Teukolsky equations (3.15) and (3.17) depends on a scalar
field. Hence, one should be able to obtain a system of radial
equations involving the Teukolsky variables and the scalar
field along the lines of [70,71]. It would be of particular
interest to see if matching results could be obtained with the
methods presented in those works and with the previous
results in [63–65,67]. Indeed, despite our consistency
checks, it would be highly desirable to achieve converging
results from different groups using different approaches.
This could include the analysis of specific limits, such as
the geometrical optics limit [49,104–111], as well as
entirely different methods, such as numerical relativity
beyond general relativity [79,112–123]. Finally, advances
in the latter, together with our work and post-Newtonian/
post-Minkowskian results [74,124–128] could ultimately
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be combined into full theory-based, inspiral-merger-
ringdown waveform templates. The availability of such
waveforms for a broad class of gravitational theories would
help carve out a better motivated theoretical prior on the
space of (potentially) physical waveforms and would re-
present a milestone in our ability to search for physics beyond
general relativity using gravitational wave observations.
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APPENDIX A: NEWMAN/(GEROCH-HELD)-
PENROSE FORMALISM

Here we gather our conventions and useful identities of
the Newman-Penrose (NP) and Geroch-Held-Penrose
(GHP) formalism. Where possible we follow [83].
Recall we have introduced an NP frame

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ: ðA1Þ

In terms of the frame, the spin connection is defined as

γabc ¼ eaμecν∇νebμ: ðA2Þ

We have additionally defined the conventionally named
spin coefficients in (3.5) as well as the projections of the
curvature components on the NP frame in (3.6) and (3.7).
The main difference between the NP and GHP approaches
is that the latter remains covariant with respect to the local

(“type III”) rotations (3.8). This is theoretically appealing
and leads to more compact expressions but for our final
computational purposes we will translate back to the more
explicit NP formulas. The conventional GHP derivatives
which preserve covariant behavior with respect to the local
frame transformation (3.8) were defined in (3.12).
The key starting point to derive the universal Teukolsky

equations in Sec. III are the Bianchi identities. However,
before presenting these, note the relations between spin
coefficients and curvatures in GHP form:

ϕ00 ¼ Þρ − ð0κ − ρ2 þ τ0κ þ τκ� − jσj2; ðA3aÞ

Ψ0 ¼ Þσ − ðκ − ðρþ ρ�Þσ þ ðτ þ τ0�Þκ; ðA3bÞ

ϕ01 þΨ1 ¼ −Þ0κ þ Þτ − ðτ − τ0�Þρ − ðτ� − τ0Þσ; ðA3cÞ

ϕ01 −Ψ1 ¼ −ð0σ þ ðρ − ðρ − ρ�Þτ þ ðρ0 − ρ0�Þκ; ðA3dÞ

ϕ02 ¼ −Þ0σ þ ðτ − τ2 − κκ0� þ ρ0σ þ ρσ0�; ðA3eÞ

Ψ2 þ
1

12
R ¼ −Þ0ρþ ð0τ þ ρρ0� þ σσ0 − jτj2 − κκ0: ðA3fÞ

These are simply a translation from

Rabcd ¼ ∇cγabd −∇dγabc − γabfη
feðγced − γdecÞ

þ γafcη
feγebd − γafdη

feγebc ðA4Þ

into the GHP language. Note that (A3) is Eq. (4.12.32)
of [84] despite the different choices for the metric signature
and Riemann curvature.18 On the other hand it is (2.37)
in [130] for a vacuum spacetime as well as (43) of [83] for a
vacuum Petrov D spacetime (with an appropriately aligned
tetrad). Similarly translating

∇½eRab�cd þ 2ηijγai½eRjb�cd þ 2ηijγci½eRab�jd ¼ 0; ðA5Þ

one finds

ÞΨ1 − ð0Ψ0 − Þϕ01 þ ðϕ00 ¼ −τ0Ψ0 þ 4ρΨ1 − 3κΨ2 þ τ0�ϕ00 − 2ρ�ϕ01 − 2σϕ�
01 þ 2κϕ11 þ κ�ϕ02; ðA6aÞ

ÞΨ2 − ð0Ψ1 − ð0ϕ01 þ Þ0ϕ00 þ
1

12
ÞR ¼ σ0Ψ0 − 2τ0Ψ1 þ 3ρΨ2 − 2κΨ3 þ ρ0�ϕ00 − 2τ�ϕ01 − 2τϕ�

01 þ 2ρϕ11 þ σ�ϕ02;

ðA6bÞ

Þ0Ψ0 − ðΨ1 − ðϕ01 þ Þϕ02 ¼ ρ0Ψ0 − 4τΨ1 þ 3σΨ2 þ σ0�ϕ00 − 2τ0�ϕ01 − 2κϕ�
21 þ 2σϕ11 þ ρ�ϕ02; ðA6cÞ

Þ0Ψ1 − ðΨ2 − Þ0ϕ01 þ ð0ϕ02 −
1

12
ðR ¼ −κ0Ψ0 þ 2ρ0Ψ1 − 3τΨ2 − 2σΨ3 þ κ0�ϕ00 − 2ρ0�ϕ01 − 2ρϕ�

21 þ 2τϕ11 þ τ�ϕ02;

ðA6dÞ
18It differs from [129] by oppositely defined spin coefficients. Their appendix also contains a useful discussion on sign conventions.
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Þϕ11 þ Þ0ϕ00 − ðϕ�
01 − ð0ϕ01 þ

1

8
ÞR

¼ ðρ0 þ ρ0�Þϕ00 þ 2ðρþ ρ�Þϕ11 − ðτ0 þ 2τ�Þϕ01

− ð2τ þ τ0�Þϕ�
01 − κ�ϕ�

21 − κϕ21 þ σϕ�
02 þ σ�ϕ02;

ðA7aÞ

Þϕ�
21 þ Þ0ϕ01 − ðϕ11 − ð0ϕ02 þ

1

8
ðR

¼ ðρ0 þ 2ρ0�Þϕ01 þ ð2ρþ ρ�Þϕ�
21 − ðτ0 þ τ�Þϕ02

− 2ðτ þ τ0�Þϕ11 − κ0�ϕ00 − κϕ22 þ σϕ21 þ σ0�ϕ�
01:

ðA7bÞ

Importantly, these include (2.2) and (2.3) in [41], but they
were also presented in full as (4.12.36)–(4.12.41) of [84] as
well as in special cases in (2.39) of [130], and (44) of [83].
They are, in short, well known in the literature but several
conventions are in circulation. The GHP formalism has a
natural symmetry exchanging l ↔ n and m ↔ m̄. The
associated equations are implicit in (A6) as what is known
in this language as the “primed” versions of these equa-
tions. We will not present all of them explicitly but as a
relevant example note that this is how (A6a) or (3.14b)

ÞΨ1 − ð0Ψ0 − Þϕ01 þ ðϕ00

¼ −τ0Ψ0 þ 4ρΨ1 − 3κΨ2 þ τ0�ϕ00 − 2ρ�ϕ01 − 2σϕ�
01

þ 2κϕ11 þ κ�ϕ02; ðA8Þ

is related to (3.14a)

Þ0Ψ3 − ðΨ4 − Þ0ϕ21 þ ð0ϕ22

¼ −τΨ4 þ 4ρ0Ψ3 − 3κ0Ψ2 þ τ�ϕ22 − 2ρ0�ϕ21 − 2σ0ϕ�
21

þ 2κ0ϕ11 þ κ0�ϕ02
�: ðA9Þ

A last GHP ingredient that is useful for our derivations are
the GHP-commutation relations is

½Þ;Þ0�¼ðτ�−τ0Þðþðτ−τ0�Þð0þðpþqÞFB12þðp−qÞFΩ12;

½Þ;ð�¼ρ�ðþσð0−τ0�Þ−κÞ0þðpþqÞFB13þðp−qÞFΩ13;

½ð;ð0�¼ðρ0�−ρ0ÞÞþðρ−ρ�ÞÞ0þðpþqÞFB34þðp−qÞFΩ34:

ðA10Þ

when acting on an object of weight fp; qg. Here, we have
used a notation associated to the more standard form of a
covariant derivative

Đμ ¼ −nμÞ − lμÞ0 þ m̄μðþmμð0; ðA11Þ

written in terms of the connections Bμ and Ωμ

Đμ ¼ ∇μ þ ðpþ qÞBμ þ ðp − qÞΩμ; ðA12Þ

and defining the associated curvatures as

½Đμ;Đν�V ¼ ððpþ qÞFBμν þ ðp − qÞFΩμνÞV; ðA13Þ

where V has weight fp; qg. In terms of the gauge fields this
becomes

FBμν ¼∇μBν −∇νBμ; FΩμν ¼∇μΩν −∇νΩμ: ðA14Þ

Spelled out explicitly, the commutation relations are

½Þ; Þ0� ¼ ðτ� − τ0Þðþ ðτ − τ0�Þð0 − p

�
κκ0 − ττ0 þΨ2 þ ϕ11 −

1

24
R

�
− q

�
κ�κ0� − τ�τ0� þ Ψ�

2 þ ϕ11 −
1

24
R

�
;

½Þ; ð� ¼ ρ�ðþ σð0 − τ0�Þ − κÞ0 − pðρ0κ − τ0σ þΨ1Þ − qðσ0�κ� − ρ�τ0� þ ϕ01Þ;

½ð; ð0� ¼ ðρ0� − ρ0ÞÞþ ðρ − ρ�ÞÞ0 þ p

�
ρρ0 − σσ0 þ Ψ2 − ϕ11 −

1

24
R

�
− q

�
ρ�ρ0� − σ�σ0� þΨ�

2 − ϕ11 −
1

24
R

�
; ðA15Þ

as can again be compared against (4.12.33)–(4.12.35)
in [84].
To arrive at the generally valid Eqs. (3.15) and (3.17),

one first needs to identify the relevant combination of these
identities that are used to derive the Teukolsky equation.
Let us therefore briefly reduce to this case. That is, we
assume a vacuum Petrov type D spacetime and a frame
aligned along the principal null directions of this spacetime

such that all Weyl curvature components but Ψ2 vanish.
Similarly, κ ¼ σ ¼ κ0 ¼ σ0 ¼ 0 and all ϕij vanish. The only
nontrivial surviving equations from (A3), (A6), and (A7)
are (Equation (43) of [83])

Þρ¼ ρ2; ðτ¼ τ2; Þτ¼ðτ− τ0�Þρ; ðρ¼ðρ−ρ�Þτ;
Ψ2 ¼−Þ0ρþð0τþρρ0�− jτj2; ðA16Þ
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and (Equation (44) of [83])

ÞΨ2 ¼ 3ρΨ2; ðΨ2 ¼ 3τΨ2; ðA17Þ

as well as their primed and conjugated versions. It is the
entirely trivialized (but noncontracted) Bianchi identities
(A6a) and (A6c) that will be the key players in the
perturbation analysis. Finally, the commutation relations
(A15) become (Equation (45) of [83])

½Þ;Þ0�¼ðτ�−τ0Þðþðτ−τ0�Þð0−pðΨ2−ττ0Þ−qðΨ�
2−τ�τ0�Þ;

½Þ;ð�¼ρ�ð−τ0�Þþqρ�τ0�;

½ð;ð0�¼ðρ0�−ρ0ÞÞþðρ−ρ�ÞÞ0 þpðρρ0 þΨ2Þ
−qðρ�ρ0�þΨ�

2Þ: ðA18Þ

Consider perturbations of order ϵ around such a back-
ground19 and let

Ψi ¼ Ψ̄i þ ϵδΨi; γabc ¼ γ̄abc þ ϵδγabc: ðA19Þ

For this derivation, which is mainly motivational, we will
not keep track of the “sources” ϕab, so assume these still
vanish. On account of the vacuum Petrov type D
assumption for the unperturbed case

Ψ̄0 ¼ Ψ̄1 ¼ Ψ̄3 ¼ Ψ̄4 ¼ 0; ðA20Þ

ϕ00 ¼ ϕ01 ¼ ϕ02 ¼ ϕ21 ¼ ϕ11 ¼ ϕ22 ¼ R ¼ 0; ðA21Þ

κ̄ ¼ κ̄0 ¼ σ̄ ¼ σ̄0 ¼ 0: ðA22Þ

We remark that the GHP derivatives will also be perturbed
but only their leading order will play a role so we do not
burden our notation even further by indicating this explic-
itly. Consider Þ acting on (A6c). The first contribution
comes in at order ϵ and is given by

ÞÞ0δΨ0 − ÞðδΨ1 ¼ Þðρ̄0δΨ0Þ − 4Þðτ̄δΨ1Þ þ 3ÞðδσΨ̄2Þ:
ðA23Þ

Similarly acting with ð on (A6a) yields

ðÞδΨ1 − ðð0δΨ0 ¼ −ððτ̄0δΨ0Þ þ 4ððρ̄δΨ1Þ − 3ððδκΨ̄2Þ:
ðA24Þ

Now commute Þ and ð in (A23) in the term ÞðδΨ1. To
leading order, one can use (A18) and finds

ÞÞ0δΨ0 − ðÞδΨ1 − ðρ̄�ð − τ̄0�ÞÞδΨ1

¼ Þðρ̄0δΨ0Þ − 4Þðτ̄δΨ1Þ þ 3ÞðδσΨ̄2Þ: ðA25Þ

Here, we have additionally used the GHP weight

wGHPðΨ1Þ ¼ wGHPðCαβμνlαnβlμmνÞ ¼ f2; 0g: ðA26Þ

In (A24), which came from (A6a) by acting with ð, one can
replace ðΨ1 by using (A6c), while conversely in (A25),
which came from (A6c) by acting with Þ, one can replace
ÞΨ1 using (A6a) (as well as replacing the additional ðΨ1

term from the commutation relation). One finds respec-
tively

ðÞδΨ1 − ðð0δΨ0 ¼ −ððτ̄0δΨ0Þ þ 4δΨ1ðρ̄þ 4ρ̄ðÞ0δΨ0

− ρ̄0δΨ0 þ 4τ̄δΨ1 − 3δσΨ2Þ− 3ððδκΨ̄2Þ;
ðA27Þ

and

ÞÞ0δΨ0 − ðÞδΨ1 − ρ̄�ðÞ0δΨ0 − ρ̄0δΨ0 þ 4τ̄δΨ1 − 3δσΨ̄2Þ
¼ Þðρ̄0δΨ0Þ − 4δΨ1Þτ̄ − ð4τ̄ þ τ̄0�Þ
× ðð0δΨ0 − τ̄0δΨ0 þ 4ρ̄δΨ1 − 3δκΨ̄2Þ þ 3ÞðδσΨ̄2Þ:

ðA28Þ

Now simplify further, by using (A17) to replace
ðΨ̄2 ¼ 3τ̄Ψ̄2, and ÞΨ̄2 ¼ 3ρ̄Ψ̄2, (A16) to replace Þτ̄ ¼
ðτ̄ − τ̄0�Þρ̄ and ðρ̄ ¼ ðρ̄ − ρ̄�Þτ̄, as well as (A3b) to relate
ðδκ with Þδσ using δΨ0

ðδκ ¼ −δΨ0 þ Þδσ − ðρ̄þ ρ̄�Þδσ þ ðτ̄ þ τ̄0�Þδκ: ðA29Þ

The results after some extra rewriting are

ððÞþ 4ρ̄�τ̄ − 20ρ̄τ̄ÞδΨ1 þ 3ðÞ − ρ̄� þ 3ρ̄ÞΨ̄2δσ þ 3ð4τ̄ þ τ̄0�ÞΨ̄2δκ ¼ ððð0 − ðτ̄0 − τ̄0ðþ 4ρ̄ðÞ0 − ρ̄0Þ þ 3Ψ̄2ÞδΨ0; ðA30Þ

and

−ððÞþ4ρ̄�τ̄−20ρ̄ τ̄ÞδΨ1−3ðÞ− ρ̄�þ3ρ̄ÞΨ̄2δσ−3ð4τ̄þ τ̄0�ÞΨ̄2δκ¼ð−ÞÞ0 þ ρ̄�ðÞ0− ρ̄0ÞþÞρ̄0 þ ρ̄0Þ−ð4τ̄þ τ̄0�Þðð0− τ̄0ÞÞδΨ0:

ðA31Þ

19This perturbation parameter ϵ should not be confused with the NP ϵ. The latter will only appear implicitly here in the GHP
derivatives.
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Written in this way, it is obvious that the sum of both equations will, of all the perturbed quantities, only depend on δΨ0.
Thus we have found the (sourceless) Teukolsky equation for δΨ0

−½ðÞ − 4ρ̄ − ρ̄�ÞðÞ0 − ρ̄0Þ − ðð − 4τ̄ − τ̄0�Þðð0 − τ̄0Þ − 3Ψ̄2�δΨ0 ¼ 0; ðA32Þ

as can be confirmed against (58) of [83]. The logic in the main text to derive the universal Teukolsky equations (3.15) and
(3.17) is simply to consider the same combinations and perform the same manipulations but without dropping any terms.
Finally, given the dependence of the GHP derivatives on the GHP weight of the fields they are acting upon, to insert

actual coordinate expressions, it is useful to write these in terms of the more explicit NP forms

Oð0Þ
2 ðΨ0Þ þOð1Þ

2 ðΨ1Þ þOð2Þ
2 ðΨ0Þ ¼ 8πðT ð0Þ

2 þ T ð1Þ
2 þ T ð2Þ

2 Þ; ðA33Þ

with

Oð0Þ
2 ¼ 2ð−β0� þ τ0� þ 3β þ 4τÞm̄μ∇μ − 2mν∇νm̄μ∇μ þ 2ð−lμ∇μðρ0Þ þ 4lμ∇μðϵ0Þ − 4mμ∇μðβ0Þ þmμ∇μðτ0ÞÞ

þ 2ð4β0τ0� þ τ0β0� − 4β0β0� þ ρ0ρ� − τ0τ0� − 4ϵ0ρ� þ 4ϵ0ϵ� − ρ0ϵ� þ 16τβ0

þ 12ββ0 − 3βτ0 þ 4ρρ0 − 4ττ0 − 3Ψ2 − 16ρϵ0 − 12ϵϵ0 þ 3ϵρ0Þ
þ 2ð−ρ� þ ϵ� − 4ρ − 3ϵÞnμ∇μ þ 2lν∇νnμ∇μ þ 2ð4ϵ0 − ρ0Þlμ∇μ þ 2ðτ0 − 4β0Þmμ∇μ; ðA34aÞ

Oð1Þ
2 ¼ −8m̄μ∇μðσÞ − 8σm̄μ∇μ þ 8nμ∇μðκÞ þ 8κnμ∇μ − 8σβ� − 8κρ0� þ 8στ� þ 8κϵ0� − 40σβ0 þ 20Ψ1 þ 40κϵ0; ðA34bÞ

Oð2Þ
2 ¼ 6ðκκ0 − σσ0Þ; ðA34cÞ

T ð0Þ
2 ¼ Tlmf−2lμ∇μðτ0�Þ − 2mμ∇μðρ�Þ − 2lμ∇μðβÞ − 2mμ∇μðϵÞ − 2ρ�β0� − 2ϵβ0�

þ 8βρ� − 2βϵ� þ 8ρτ0� þ 4ρ�τ0� þ 8τρ� þ 8ϵτ0� − 2ϵ�τ0� þ 8βρþ 12βϵþ 8τϵg
þ Tmmflμ∇μðρ�Þ − 2lμ∇μðϵ�Þ þ 2lμ∇μðϵÞ − ðρ�Þ2 − 4ρρ� þ 8ρϵ� − 5ϵρ�

þ 3ρ�ϵ� − 2ðϵ�Þ2 þ 8ϵϵ� − 6ϵ2 − 8ρϵg þ lμ∇μðTlmÞðβ0� − 3τ0� − 5β − 4τÞ
þ lμ∇μðTmmÞð2ρ� − 3ϵ� þ 4ρþ 5ϵÞ þmμ∇μðTllÞð−3β0� þ 2τ0� þ 5β þ 4τÞ
þ Tllf−2mμ∇μðβ0�Þ þmμ∇μðτ0�Þ þ 2mμ∇μðβÞ þ 3β0�τ0� þ 8τβ0� − 2ðβ0�Þ2 þ 8ββ0�

− 5βτ0� − ðτ0�Þ2 − 4ττ0� − 6β2 − 8βτg þmμ∇μðTlmÞð−3ρ� þ ϵ� − 4ρ − 5ϵÞ
þ lμ∇μðmν∇νðTlmÞÞ þmμ∇μðlν∇νðTlmÞÞ − lμ∇μðlν∇νðTmmÞÞ −mμ∇μðmν∇νðTllÞÞ; ðA34dÞ

T ð1Þ
2 ¼ Tmm̄f2lμ∇μðσÞ− 2σρ� þ 2σϵ� − 2ρσ −Ψ0 − 6σϵgþ Tlm̄f2σð−β0� þ τ0� þ 3βþ τÞ− 2mμ∇μðσÞg

þ σðlμ∇μðTmm̄Þ þ lμ∇μðTlnÞÞ− 2σmμ∇μðTlm̄Þ þ κðmμ∇μðTmm̄Þ þmμ∇μðTlnÞÞ þ 3σm̄μ∇μðTlmÞ
− 3κm̄μ∇μðTmmÞ þ lμσ0�∇μðTllÞ− 3σnμ∇μðTllÞ þ 3κnμ∇μðTlmÞ
þ Tllflμ∇μðσ0�Þ þ 3σρ0� − 4ρσ0� − ρ�σ0� − 6σϵ0� − 3ϵσ0� þ ϵ�σ0� − 6σϵ0g
þ Tlnf2lμ∇μðσÞ− 2σρ� þ 2σϵ� − 2ρσ −Ψ0 − 6σϵg
þ Tmmfmμ∇μðκ�Þ þ κ�β0� − 6κβ� − 3βκ� − κ�τ0� − 4τκ� þ 3κτ� − 6κβ0g

þ κ�mμ∇μðTmmÞ þ
1

2
ðσlμ∇μðTÞ− κmμ∇μðTÞÞ− 2κlμ∇μðTnmÞ− 2Tnmlμ∇μðκÞ

þ 6Tlmfσðβ0 − τ�Þ− κρ0� þ κϵ0g þ 2κTnmfρ� − ϵ� þ ρþ 3ϵg; ðA34eÞ

T ð2Þ
2 ¼ ð3κκ0�ÞTll þ ð3σσ�ÞTmm; ðA34fÞ

and
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Oð0Þ
−2ðΨ4Þ þOð1Þ

−2ðΨ3Þ þOð2Þ
−2ðΨ4Þ ¼ 8πðT ð0Þ

−2 þ T ð1Þ
−2 þ T ð2Þ

−2Þ; ðA35Þ

with

Oð0Þ
−2 ¼ 2ð−β� þ τ� þ 3β0 þ 4τ0Þmμ∇μ − 2m̄ν∇νmμ∇μ þ 2ð−nμ∇μðρÞ þ 4nμ∇μðϵÞ − 4m̄μ∇μðβÞ þ m̄μ∇μðτÞÞ

þ 2ð4βτ� þ τβ� − 4ββ� þ ρρ0� − ττ� − 4ϵρ0� þ 4ϵϵ0� − ρϵ0� þ 16τ0β

þ 12β0β − 3β0τ þ 4ρ0ρ − 4τ0τ − 3Ψ2 − 16ρ0ϵ − 12ϵ0ϵþ 3ϵ0ρÞ
þ 2ð−ρ0� þ ϵ0� − 4ρ0 − 3ϵ0Þlμ∇μ þ 2nν∇νlμ∇μ þ 2ð4ϵ − ρÞnμ∇μ þ 2ðτ − 4βÞm̄μ∇μ; ðA36aÞ

Oð1Þ
−2 ¼ 8lμ∇μðκ0Þ þ 8κ0lμ∇μ − 8mμ∇μðσ0Þ − 8σ0mμ∇μ − 8σ0β0� − 8κ0ρ� þ 8σ0τ0� þ 8κ0ϵ� − 40βσ0 þ 20Ψ3 þ 40ϵκ0;

ðA36bÞ

Oð2Þ
−2 ¼ 6ðκκ0 − σσ0Þ; ðA36cÞ

T ð0Þ
−2 ¼ Tnm̄f−2nμ∇μðτ�Þ − 2m̄μ∇μðρ0�Þ − 2nμ∇μðβ0Þ − 2m̄μ∇μðϵ0Þ − 2ρ0�β� − 2ϵ0β�

þ 8β0ρ0� − 2β0ϵ0� þ 8ρ0τ� þ 4ρ0�τ� þ 8τ0ρ0� þ 8ϵ0τ� − 2ϵ0�τ� þ 8β0ρ0 þ 12β0ϵ0 þ 8τ0ϵ0g
þ Tm̄ m̄fnμ∇μðρ0�Þ − 2nμ∇μðϵ0�Þ þ 2nμ∇μðϵ0Þ − ðρ0�Þ2 − 4ρ0ρ0� þ 8ρ0ϵ0� − 5ϵ0ρ0�

þ 3ρ0�ϵ0� − 2ðϵ0�Þ2 þ 8ϵ0ϵ0� − 6ϵ02 − 8ρ0ϵ0g þ nμ∇μðTnm̄Þðβ� − 3τ� − 5β0 − 4τ0Þ
þ nμ∇μðTm̄ m̄Þð2ρ0� − 3ϵ0� þ 4ρ0 þ 5ϵ0Þ þ m̄μ∇μðTnnÞð−3β� þ 2τ� þ 5β0 þ 4τ0Þ
þ Tnnf−2m̄μ∇μðβ�Þ þ m̄μ∇μðτ�Þ þ 2m̄μ∇μðβ0Þ þ 3β�τ� þ 8τ0β� − 2ðβ�Þ2 þ 8β0β�

− 5β0τ� − ðτ�Þ2 − 4τ0τ� − 6β02 − 8β0τ0g þ m̄μ∇μðTnm̄Þð−3ρ0� þ ϵ0� − 4ρ0 − 5ϵ0Þ
þ nμ∇μðm̄ν∇νðTnm̄ÞÞ þ m̄μ∇μðnν∇νðTnm̄ÞÞ − nμ∇μðnν∇νðTm̄ m̄ÞÞ − m̄μ∇μðm̄ν∇νðTnnÞÞ; ðA36dÞ

T ð1Þ
−2 ¼ Tmm̄f2nμ∇μðσ0Þ − 2σ0ρ0� þ 2σ0ϵ0� − 2ρ0σ0 −Ψ4 − 6σ0ϵ0g þ Tnmf2σ0ð−β� þ τ� þ 3β0 þ τ0Þ − 2m̄μ∇μðσ0Þg

þ σ0ðnμ∇μðTmm̄Þ þ nμ∇μðTlnÞÞ − 2σ0m̄μ∇μðTnmÞ
þ κ0ðm̄μ∇μðTmm̄Þ þ m̄μ∇μðTlnÞÞ þ 3σ0mμ∇μðTnm̄Þ
− 3κ0mμ∇μðTm̄ m̄Þ þ nμσ�∇μðTnnÞ − 3σ0lμ∇μðTnnÞ þ 3κ0lμ∇μðTnm̄Þ
þ Tnnfnμ∇μðσ�Þ þ 3σ0ρ� − 4ρ0σ� − ρ0�σ� − 6σ0ϵ� − 3ϵ0σ� þ ϵ0�σ� − 6σ0ϵg
þ Tlnf2nμ∇μðσ0Þ − 2σ0ρ0� þ 2σ0ϵ0� − 2ρ0σ0 −Ψ4 − 6σ0ϵ0g
þ Tm̄ m̄fm̄μ∇μðκ0�Þ þ κ0�β� − 6κ0β0� − 3β0κ0� − κ0�τ� − 4τ0κ0� þ 3κ0τ0� − 6κ0βg

þ κ0�mμ∇μðTm̄ m̄Þ þ
1

2
ðσ0nμ∇μðTÞ − κ0m̄μ∇μðTÞÞ − 2κ0nμ∇μðTlm̄Þ − 2Tlm̄nμ∇μðκ0Þ

þ 6Tnm̄fσ0ðβ − τ0�Þ − κ0ρ� þ κ0ϵg þ 2κ0Tlm̄fρ0� − ϵ0� þ ρþ 3ϵ0g; ðA36eÞ

T ð2Þ
−2 ¼ ð3κ0κ�ÞTnn þ ð3σ0σ0�ÞTm̄ m̄: ðA36fÞ

APPENDIX B: STAROBINSKY-TEUKOLSKY IDENTITIES

The Starobinsky-Teukolsky identities provide a relation between the Teukolsky equations of spins�s [40,131,132]—see
also [133] for a modern view on these identities.
Let us start by reviewing the ST identities for the angular functions20 SsðxÞ. Given two spin-weighted harmonic functions

Sþ2 and S−2 that satisfy Eq. (4.25) and that are normalized according to

20In this section we omit the lm labels for the sake of clarity.
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2π

Z
1

−1
dxSsðxÞ2 ¼ 1; ðB1Þ

these are related by

S−2 ¼
1

D2

L−1L0L1L2Sþ2;

Sþ2 ¼
1

D2

L†
−1L

†
0L

†
1L

†
2S−2; ðB2Þ

where Ln and L†
n are the operators

Ln ¼
mþ nxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p − aω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂

∂x
;

L†
n ¼ −mþ nxffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p þ aω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂

∂x
: ðB3Þ

The constant D2 is in fact the same in the two identities on
account of the normalization of the functions, and it is
given by

D2 ¼ ½ð8þ 6Blm þ B2
lmÞ2 − 8ð−8þ B2

lmð4þ BlmÞÞmγ þ 4ð8 − 2Blm − B2
lm þ B3

lm

þ2ð−2þ BlmÞð4þ 3BlmÞm2Þγ2 − 8mð8 − 12Blm þ 3B2
lm þ 4ð−2þ BlmÞm2Þγ3

þ 2ð42 − 22Blm þ 3B2
lm þ 8ð−11þ 3BlmÞm2 þ 8m4Þγ4

− 8mð3Blm þ 4ð−4þm2ÞÞγ5 þ 4ð−7þ Blm þ 6m2Þγ6 − 8mγ7 þ γ8�1=2; ðB4Þ

where γ ¼ aω.
Consider now the radial ST identities. Suppose that we

have two variables R�2 satisfying the corresponding radial
Teukolsky equations (without corrections)

D2
þ2Rþ2 ¼ 0; D2

−2R−2 ¼ 0: ðB5Þ

Then, let us define two auxiliary variables as follows,

R̃−2 ¼ Δ2ðD0Þ4ðΔ2Rþ2Þ;
R̃þ2 ¼ ðD†

0Þ4R−2; ðB6Þ

where D0 and D†
0 are the operators

D0 ¼ ∂r þ
iðωðr2 þ a2Þ −maÞ

Δ
;

D†
0 ¼ ∂r −

iðωðr2 þ a2Þ −maÞ
Δ

: ðB7Þ

Then, it follows by direct computation that the variables
R̃�2 also satisfy the corresponding Teukolsky equation
D2

�2R̃�2 ¼ 0. Furthermore, when studying black hole
perturbations, we are interested in solutions that satisfy
outgoing boundary conditions at infinity and at the black
hole horizon. The map (B6) preserves these conditions,

meaning that if the original variables R�2 satisfy
them, so do the transformed variables R̃�2. Due to the
unicity of solutions of a second-order ODE with fixed
boundary conditions, it follows that, in fact, the trans-
formed variables must be proportional to the original ones,
R̃�2 ∝ R�2. Therefore, there must exist two constants C�2

such that

R−2 ¼ Cþ2Δ2ðD0Þ4ðΔ2Rþ2Þ;
Rþ2 ¼ C−2ðD†

0Þ4R−2; ðB8Þ

The two constants are not independent due to the identity
obtained by applying the map twice,

R−2 ¼ Cþ2C−2Δ2ðD0Þ4ðΔ2ðD†
0Þ4R−2Þ: ðB9Þ

This allows one to conclude that

Cþ2C−2 ¼
1

K2
; ðB10Þ

where the constant K2 reads

K2 ¼ D2
2 þ 144M2ω2: ðB11Þ
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