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This article provides a detailed investigation into the motion of the surrounding particles around a
polymer black hole in loop quantum gravity (LQG). Using effective potential, the critical bound orbits and
innermost stable circular orbits (ISCO) are analyzed. The study finds that the radii and angular momentum
of the critical bound orbits decrease with an increase in the parameter Aλ which labels the LQG effects,
while the energy and angular momentum of the ISCO also decreases with an increase in Aλ. Based on these
findings, we then explore the periodic orbits of the polymer black hole in LQG using rational numbers
composed of three integers. Our results show that the rational numbers increase with the energy of particles
and decrease with the increase of angular momentum based on a classification scheme. Moreover,
compared to a Schwarzschild black hole, the periodic orbits in a polymer black hole in LQG consistently
have lower energy, providing a potential method for distinguishing a polymer black hole in LQG from a
Schwarzschild black hole. Finally, we also examine the gravitational wave radiations of the periodic orbits
of a test object which orbits a supermassive polymer black hole in LQG, which generates intricate
gravitational wave waveforms that can aid in exhibiting the gravitational structure of the system.
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I. INTRODUCTION

Black holes are a unique and immensely powerful force
of gravity that gives rise to a range of fascinating astro-
nomical phenomena in their vicinity, including gravita-
tional waves (GWs) [1], gravitational lensing [2], shadows
[3,4], etc. Through the study of the geodesics of test
particles in the vicinity of a black hole, we are able to
explore these phenomena and potentially tackle some of the
most challenging problems in the universe. This approach
allows us to delve deeply into the nature of gravity and gain
a more profound understanding of Einstein’s theory of
general relativity (GR). One type of orbit for the test
particle, the periodic orbit around a black hole, is an
important phenomenon of GR. Periodic orbits are special
because they capture fundamental information about orbits
around a black hole and all generic black hole orbits are
small deviations from periodic orbits [5]. In particular,
periodic orbits are crucial in solving some of the most
difficult problems in astrodynamics, such as understanding

the motion of planetary satellites, the long-term stability of
the solar system, and the motion of galactic potentials.
However, while periodic orbits have been extensively
studied in these contexts, their behavior in relativistic
astrophysical systems, such as compact binary stars and
the gravitational radiation of an extreme-mass-ratio inspiral
(EMRI) system, remains a topic of active research.
Stellar-mass black holes are commonly known to be

tightly bound in orbit around a significantly larger black
hole, which can be approximated as a timelike test particle
orbiting a supermassive black hole. Such binary systems,
known as the EMRI systems, are one of the main targets of
future space-based gravitational detectors, such as LISA
[6,7], Taiji [8], Tianqin [9,10], etc. Possible detections of
these systems provide a positive to explore the nature of
gravity and cosmology [11,12]. The bound orbits of stellar-
mass black holes around a supermassive black hole may
exhibit peculiar behavior during the inspiral stage of GW
detection. As a result of GW radiation, two black holes with
an extreme mass ratio move closer to each other. During
this process, periodic orbits act as continuous transitions
and play an important role in studying GW radiation [13].
Given this, Levin et al. proposed a classification of

periodic orbits for mass particles, which is highly useful
for understanding the dynamics of black hole mergers.
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Their classification scheme follows Poincaré paradigm,
which states that the behavior of a dynamical system can be
understood by studying its periodic trajectories. In the
zoom-whirl classification [5], each periodic orbit is char-
acterized by three topological integers, z, w, and v, which
represent scaling, rotation, and vertex behaviors of the
orbit, respectively. The tracing order of leaves is also
demonstrated. The rational number q explicitly measures
the extent of periapsis precession beyond the ellipse and the
orbit’s topology. With this taxonomy, the study of the
periodic orbits has been conducted for a lot of black hole
spacetimes, such as Schwarzschild black holes, Kerr
black holes, charged black holes, Kerr-Sen black holes,
naked singularities, etc, see Refs. [5,14–38] and references
therein.
Recently, a quantum extension of the Schwarzschild

black hole was constructed based on polymer quantization
in the context of LQG [39,40], called polymer black hole.
This is an effective quantum spacetime that arises from a
specific μ̄-scheme based on the polymerlike quantization
inspired by LQG, in which the quantum theory of black
hole is achieved by replacing the canonical variables ðb; cÞ
in the phase space of the black hole spacetime with their

regularized counterparts, b → sinðδbbÞ
δb

and c → sinðδccÞ
δc

, where
δb and δc are two quantum polymeric parameters that
control the relevant scales of the quantum effects of LQG
[41]. In this picture, the quantum effect is controlled by the
parameter Aλ which sensitively depends on δb and δc and its
exact value in LQG has not been determined yet. In this
effective quantum spacetime, similar to the case in loop
quantum cosmology, the spacetime singularity of the
classical Schwarzschild black hole can be replaced by a
quantum bounce that connects the black hole region and the
white hole region. Based on this quantum-extended
Schwarzschild black hole, a rotating spacetime with
LQG effects has been constructed using the Newman-
Janis algorithm [42]. Several phenomenological implica-
tions of this black hole have been studied. For example, in
[43], how quantum effects can influence primordial black
hole formation within a quantum gravity framework has
been discussed in detail. In addition, people have also
tested the LQG black holes with the Event Horizon
Telescope observations [44,45] and constrain the parameter
arises in LQG black hole with the observational data of
M87* and Sgr A* [46–48]. Some other phenomenological
studies on testing LQG with black holes observations and
GWs can be found in [42,49–66] and references therein.
The main purpose of this paper is devoted to the study of

the periodic orbital behaviors of the surrounding particles
around the polymer black hole in LQG. We explore in
detail how the LQG effect affects the behaviors of orbits. In
addition to studying the periodic orbits of the polymer
black hole in LQG, we have also delved into the gravita-
tional wave radiation of the periodic orbits. In gravitational
wave astronomy, one generally uses effective potentials to

understand “zoom-whirl” behaviors of the periodic orbits,
which are commonly studied in the context of classical
mechanics and scattering theory. These types of orbits are
predicted to be prevalent in EMRI systems [67], where
small compact objects are absorbed by supermassive black
holes. They are a key source for space-based laser inter-
ferometer space antennae such as LISA [6,7], Taiji [8], and
Tianqin [9,10]. An EMRI system composed of the polymer
black hole in LQG and a stellar-mass compact object which
experiences a periodic orbit may provide an unprecedented
opportunity to explore the properties of a polymer black
hole in LQG.
This article focuses on the periodic orbits of a massive

test particle around a polymer black hole in LQG. The
paper is structured as follows. In Sec. II, we present a brief
review of the polymer black hole solution in LQG, and in
Sec. III we explore the effective potential for a test massive
particles around the polymer black hole in LQG and study
the marginally bound orbits (MBO) and the innermost
stable circular orbits (ISCO) using the effective potential.
Sec. IV is dedicated to the study of periodic orbits
characterized by three rational numbers in polymer black
holes in LQG, by taking into account the zoom-whirl
structure [5] and the classification of bound orbits. In
Sec. V, we delve into the gravitational wave radiation of the
periodic orbits around the polymer black holes in LQG.
Finally, Sec. VI presents the conclusions and discussions.
Through the paper, we use a geometrized unit system with
G ¼ c ¼ 1, and adopt the metric convention ð−;þ;þ;þÞ.

II. POLYMER BLACK HOLE IN LOOP QUANTUM
GRAVITY

In this section, we present a brief review of the polymer
black hole in LQG. This black hole is a quantum extension
of the static and spherically symmetric metric by solving
the LQG effective equations. The metric of this polymer
black hole is given by [39,40,42]

ds2 ¼ −8AλM2
bAðrÞdt2 þ dr2

8AλM2
bAðrÞ þ BðrÞdΩ2; ð2:1Þ

where the metric functions AðrÞ and BðrÞ are defined in
terms of radial variable r as

AðrÞ ¼ 1

BðrÞ
�
1þ r2

8AλM2
b

��
1 −

2Mbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AλM2

b þ r2
p �

; ð2:2Þ

BðrÞ ¼ 512A3
λM

4
bM

2
w þ ðrþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8AλM2
b þ r2

p Þ6
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AλM2

b þ r2
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AλM2

b þ r2
p

þ r2Þ3 ; ð2:3Þ

with Mb and Mw being two Dirac observables of the loop
quantum model of this black hole. The parameter Aλ is
defined as Aλ ≡ ðλk=ðMb=MwÞÞ2=3=2, where λk denotes a
quantum parameter related to holonomy modifications in
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LQG [39,40]. It is worth mentioning here that parameter λk
can be eliminated after fixing the integration constants and
introducing the two Dirac observables Mb and Mw for
solving the effective equations in LQG [39,40].
One important feature of this polymer black hole in LQG

is that it is free of any singularity in its interior. When the
radial variable r → 0, the areal radius BðrÞ reaches a
minimum which smoothly connects an asymptotically
Schwarzschild black hole to a white hole with mass Mb
and Mw, respectively [39,40]. This is similar to the
quantum bounce in LQC. If the bounce is symmetric, then
one has Mb ¼ Mw. In this paper, similar to [39,40,42], we
consider such interesting and meaningful symmetric
bounce scheme and set M ¼ Mb ¼ Mw. Then the metric
functions AðrÞ and BðrÞ can be rewritten in the form of

AðrÞ ¼ 1

BðrÞ
�
1þ r2

8AλM2

��
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AλM2 þ r2

p �
; ð2:4Þ

BðrÞ ¼ 2AλM2 þ r2: ð2:5Þ

It is easy to obtain the location of the horizon of this
polymer black hole in LQG by solving AðrÞ ¼ 0, which
gives

rh ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Aλ

p
: ð2:6Þ

Obviously, the horizon does not exist if Aλ > 1=2. Here we
also need to mention that when all the effects of LQG are
absent, i.e., Aλ ¼ 0, the above metric reduces to the
Schwarzschild spacetime precisely.
For later convenience, let us introduce a new metric

function, ÃðrÞ ¼ 8AλM2AðrÞ, then the metric of this
polymer black hole in LQG can be cast into the form of

ds2 ¼ −ÃðrÞdt2 þ dr2

ÃðrÞ þ BðrÞðdθ2 þ sin2 θdϕ2Þ: ð2:7Þ

III. GEODESICS, MARGINALLY BOUND ORBITS,
AND THE INNERMOST STABLE

CIRCULAR ORBITS

A. Geodesics and effective potential

Let us first consider the evolution of a particle in the
black hole spacetime. We start with the Lagrangian of the
particle,

L ¼ 1

2
gμν

dxμ

dλ
dxν

dλ
; ð3:1Þ

where λ denotes the affine parameter of the world line of the
particle. For massless particles, we have L ¼ 0 and for
massive ones L < 0. Then the generalized momentum pμ

of the particle can be obtained via

pμ ¼
∂L
∂_xμ

¼ gμν _xν; ð3:2Þ

which leads to four equations of motions for a particle with
energy E and angular momentum L,

pt ¼ gtt_t ¼ −E; ð3:3Þ

pϕ ¼ gϕϕ _ϕ ¼ L; ð3:4Þ

pr ¼ grr _r; ð3:5Þ

pθ ¼ gθθ _θ: ð3:6Þ

Here a dot denotes the derivative with respect to the affine
parameter λ of the geodesics. From these expressions we
obtain

_t ¼ −
E
gtt

¼ E

ÃðrÞ ; ð3:7Þ

_ϕ ¼ L
gϕϕ

¼ L
BðrÞ sin2 θ : ð3:8Þ

For timelike geodesics, we have gμν _xμ _xν ¼ −1. Substituting
_t and _ϕ we can get

grr _r2 þ gθθ _θ
2 ¼ −1 − gtt_t2 − gϕϕ _ϕ

2

¼ −1þ E2

ÃðrÞ −
L2

BðrÞ sin2 θ : ð3:9Þ

We are interested in the evolution of the particle in the
equatorial circular orbits. For this reason, we can consider
θ ¼ π=2 and _θ ¼ 0 for simplicity. Then the above expres-
sion can be simplified into the form

1

2
_r2 ¼ εeff − VeffðrÞ; ð3:10Þ

where VeffðrÞ denotes the effective potential which is
given by

VeffðrÞ ¼
1

2

�
1þ L2

BðrÞ
�
ÃðrÞ; ð3:11Þ

and

εeff ¼
1

2
E2: ð3:12Þ

One immediately observes that VeffðrÞ → 1
2
as r → þ∞,

as expected for asymptotically flat spacetime. In this case,
the particles with energy E > 1 are able to escape to
infinity, and E ¼ 1 is the critical case between bound and
unbound orbits. In this sense, the maximum energy for the
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bound orbits is E ¼ 1. We also plot the effective potential
for two different values of LQG parameter Aλ respectively
in Fig. 1. Different curves in each figure of Fig. 1
correspond to different values of angular momentum L
and energy E of the geodesics.

B. Marginally bound orbits

Now let us turn to consider the MBO in a polymer black
hole in LQG, which is one of the important circular orbits
and has the maximum energy. This bound orbit is defined
by the following conditions,

_r2 ¼ E2 − 2Veff ¼ 0;
dVeffðrÞ

dr
¼ 0; ð3:13Þ

with E ¼ 1. Solving these conditions one can determine the
radius rmbo of the MBO and the angular momentum Lmbo
for this orbit. For a polymer black hole in LQG, the above
equations do not have an exact solution and one can find an
approximate solution by treating Aλ as a small quantity, i.e.,

rmbo ≃ 4M

�
1 −

9

4
Aλ

�
; ð3:14Þ

and

Lmbo ≃ 4Mð1 − AλÞ: ð3:15Þ

where we use ðLmbo; rmboÞ denotes ðLmbo; rmboÞ for poly-
mer black holes in LQG. From the above equations, we can
plot rmbo and Lmbo vs Aλ for MBO, whose behaviors with
respect to Aλ are displayed in Fig. 2.

C. Innermost stable circular orbits

As we mentioned in above, the marginally bound orbit
corresponds to the bound orbit that has the maximum

energy E¼1. All the bound orbits which have energy E<1
can only exist beyond rmbo, i.e., r > rmbo. The stabilities of
these orbits are determined by the sign of d2VeffðrÞ=dr2.
Stable orbits correspond to d2VeffðrÞ=dr2 > 0, and unsta-
ble ones have d2VeffðrÞ=dr2 < 0. The critical condition,
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FIG. 1. Veff as a function of polymer black holes in LQG. The angular momentum varies from MBO to ISCO from top to bottom. The
extremal points of Veff are represented by the dashed line. In the left panel, from top to bottom, each curve with different colors
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d2VeffðrÞ
dr2

¼ 0; ð3:16Þ

together with the conditions in (3.13) for E < 1 determine
the radius of the ISCOs. As we mentioned previously, the
bound orbits can only exist when E < 1. For this reason, in
order to find the ISCO, which represents the innermost and
stable bounded orbit of the polymer black hole, one has to
ensure E < 1 here.
For a polymer black hole in LQG, these conditions yield,

Eisco ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L2

z

BðrÞ
�
ÃðrÞ

s
; ð3:17Þ

Lisco ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ã 0ðrÞB2ðrÞ
BðrÞÃ 0ðrÞ − ÃðrÞB0ðrÞ

s
; ð3:18Þ

with the radius risco of the ISCO satisfying the relation

L2ÃðrÞB0ðrÞ2
BðrÞ3 −

L2B0ðrÞÃ 0ðrÞ
BðrÞ2 −

L2ÃðrÞB00ðrÞ
2BðrÞ2

þ 1

2

�
1þ L2

BðrÞ
�
Ã 00ðrÞ − risco ¼ 0: ð3:19Þ

Again, with the LQG effects, the above equations in general
do not admit exact solutions and one can find approximate
solutions by treating the LQG parameter Aλ ≪ 1, which
gives

Lisco ≃ 2
ffiffiffi
3

p
M

�
1 −

23

36
Aλ

�
; ð3:20Þ

and

risco ≃ 6Mð1 − AλÞ; ð3:21Þ

where Lisco and risco represent the angular momentum and
radius of the ISCO in the polymer black hole in LQG. This
approximate result clearly shows that the positive LQG
parameter Aλ tends to decrease the radius of the ISCO. In
Fig. 3, we plot the results of risco, Eisco, and Lisco with
respect to the LQG parameter Aλ of the polymer black hole
in LQG. It is shown that the radius, energy, and angular
momentum for the ISCO all decrease with Aλ. When the Aλ

are absent (i.e., Aλ ¼ 0), all these quantities reduce to those
of the Schwarschild black hole.
Figure 1 shows the behaviors of the effective potential

with LQG parameter Aλ ¼ 0.1 (left panel) and Aλ ¼ 0.2
(right panel) respectively. The corresponding angular
momentum L for each curve in both figures vary from
Lisco to Lmbo from top to bottom. The extremal points of the
effective potential Veff for each curve are represented by the
dashed line. In addition, the effective potential of ISCO has

only one extreme value, and in other cases, there are two
extreme values. To support a bound orbit, the energy E has
to be restricted to be E2

isco ≤ E ≤ E2
mbo ¼ 1 for a given

particle. It indicates that E cannot be too high, otherwise
there is no solution, and E cannot be too small, otherwise
the particle will fall into the black hole. The allowed range
of E also depends on the angular momentum L of the
particle. In Fig. 4, we plot the allowed regions of E − L in
the E − L diagram for the bound orbits in the polymer
black hole in LQG for different values of Aλ.

IV. PERIODIC ORBITS

In this section, we shall seek the periodic timelike orbits
around the polymer black holes in LQG. This is a spheri-
cally symmetric black hole. We adopt the taxonomy
introduced in [5] for indexing different periodic orbits
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FIG. 3. The angular momentum Lisco (upper panel), radius risco
(middle panel), and energy Eisco (bottom panel) for the innermost
stable circular orbits.
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around the polymer black holes in LQG with a triplet of
integers ðz; w; vÞ, which denote the zoom, whirl, and vertex
behaviors. Normally, the periodic orbits are those orbits
that can return exactly to their initial conditions after a finite
time, which requires that the ratio between the two
frequencies of oscillations in the r-motion and ϕ-motion
has to be a rational number. And a generic orbit around the
black hole can be approximated by a nearby periodic orbit

since any irrational number can be approximated by a
nearby rational number. Therefore, the exploration of the
periodic orbits would be very helpful for understanding the
structure of any generic orbits and the corresponding
radiation of the gravitational waves. It plays an important
role in the study of gravitational wave radiation.
According to the taxonomy of Ref. [5], we introduce

the ratio q between the two frequencies, ωr and ωϕ of
oscillations in the r-motion and ϕ-motion respectively, in
terms of three integers ðz; w; vÞ as

q≡ ωϕ

ωr
− 1 ¼ △ϕ

2π
− 1 ¼ wþ v

z
: ð4:1Þ

Since ωϕ

ωr
¼ Δϕ=ð2πÞ with Δϕ≡ H

dϕ being the equatorial
angle during one period in r, which is required to be an
integer multiple of 2π. Using the geodesic equations of the
polymer black holes in LQG, q can be calculated via

q ¼ 1

π

Z
r2

r1

_ϕ

_r
dr − 1

¼ 1

π

Z
r2

r1

L

BðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ð1þ L2

z
BðrÞÞÃðrÞ

q − 1; ð4:2Þ

where r1 and r2 are two turning points. For different
periods, the azimuth through which particles pass △ϕ can
be expressed as

△ϕ ¼ 2

I
dϕ; ð4:3Þ

Similarly, using the geodesic equations of the polymer
black holes in LQG, △ϕ can be calculated via

△ϕ ¼ 2

Z
ϕ2

ϕ1

dϕ

¼ 2

Z
r2

r1

_ϕ

_r
dr

¼ 2

Z
r2

r1

L

BðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ð1þ L2

BðrÞÞÃðrÞ
q dr: ð4:4Þ

For a bound orbit, the value of its angular momentum only
changes from ISCO to MBO. In order to facilitate our
analysis and calculation, we write the angular momentum L
for a given bound orbit in the following form,

L ¼ Lisco þ ϵðLmbo − LiscoÞ; ð4:5Þ

where ϵ ¼ 0 and ϵ ¼ 1 represent the angular momentum
of ISCO and MBO respectively and will be limited to the
range of (0,1), because when the parameter ϵ is greater
than 1, there is no bound orbit. Therefore, the angular
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FIG. 4. The allowed regions (in shadow) of the (L, E) for the
timelike particle’s bound orbits around polymer black holes in
LQG. The values of Aλ from top to bottom are 0, 0.1, 0.2. The
shadow area moves to the left as Aλ becomes larger. In these
figures, the red and blue boundaries of the shadow regions
represent the outermost and innermost stable circular orbits for
different angular momenta L, respectively.
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momentum can be determined by taking different values
of the parameter ϵ. In the Fig. 5, when we take different
values ϵ, the rational number q for bound orbits are
displayed in four subfigures by varying energy E, which
correspond to ϵ ¼ 0.3, ϵ ¼ 0.5, ϵ ¼ 0.7, and ϵ ¼ 0.9,
respectively. We find from Fig. 5 that the rational number
q increases slowly with the increase of energy E. When it
approaches the maximum value of energy, q suddenly
explodes. When ϵ are the same, the maximum energy
decreases with the increase of the LQG parameter Aλ. By
comparing different ϵ, we can also find that the maximum
energy increases with the increase of E.
In addition, we also take different values of energy to

illustrate the rational number q as a function of angular
momentum L, as shown in Fig. 6. Among them, E ¼ 0.95,
0.96, 0.97. We found that the rational number q decreases
slowly with the increase of energy L. We magically found
that q became positive infinity when the angular momen-
tum reached the minimum value. When E is the same, the
minimum angular momentum L decreases with the increase
of Aλ. By comparing different E, we can also find that the
minimum angular momentum L increases with the increase
of E.

In Fig. 7, we show periodic orbits with fixed energy
E ¼ 0.96 and LQG parameter Aλ ¼ 0.05 with different
integers ðz; w; vÞ. Obviously, z describes the number of
blade shapes for the orbit. As z increases, the blade profile
grows, and the trajectory becomes more complex. In Fig. 8,
we show periodic orbits with fixed Aλ ¼ 0.05 and ϵ ¼ 0.5
with different integers ðz; w; vÞ. It is evident that z describes
the number of blade shapes for the orbit. As z increases, the
blade profile grows, and the trajectory becomes more
complex.
We also show the value of q and energy E in Tables I

and II for different periodic orbits with ϵ ¼ 0.3 and ϵ ¼ 0.5,
respectively. It can be seen from Tables I and II that the
periodic orbit around the polymer black holes in LQG has
lower energy than the classical Schwarzschild black hole.
In addition, when we determine the values of Aλ and q, the
energy of the periodic orbit varies with ϵ and increases.

V. GRAVITATIONAL WAVE RADIATION FROM
PERIODIC ORBITS

In this section, we provide a preliminary exploration of
the gravitational radiation emitted by the periodic orbits of
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a test particle orbiting a supermassive polymer black hole.
For this purpose, we consider an EMRI system, in which
the smaller object has a mass much smaller than the
supermassive black hole. In this way, it is convenient to
treat this small object as a perturbation to the spacetime of
the supermassive polymer black hole. With this treatment,
when the change in the energy E and angular momentum L
of the smaller object due to the gravitational radiation is
sufficiently small over a few periods, one is able to adopt
the adiabatic approximation, so that one can trace the
periodic orbits which obey geodesic equation over a few
orbital periods and calculate the corresponding gravita-
tional radiation.
We adopt the kludge waveform developed in [68] to

calculate the gravitational wave emitted from the peri-
odic orbits in the supermassive polymer black hole. The
main strategy of the kludge waveform is as follows;
treating the small object as a test particle, first, calculate
the orbit of the particle (the periodic orbit in this paper)
by solving the geodesic equation, and then use the
quadrupole formula of gravitational radiation to get

the corresponding gravitational waves. The periodic
orbits of a test particle in the polymer black hole in
LQG by solving the geodesic equation have been
obtained in the above section. Then the gravitational
waves emitted from these orbits can be calculated by
using the following formula up to the quadratic order
[69,70],

hij ¼
4ηM
DL

�
vivj −

m
r
ninj

�
; ð5:1Þ

where M is the mass of the polymer black hole, m the
mass of the test particle, DL the luminosity distance of
the EMRI system, η ¼ Mm=ðM þmÞ2 the symmetric
mass ratio, vi the spatial velocity of the test particle, and
ni is the unit vector which points to the radial direction
associated to the motion of the test particle.
Then one can project the above GW onto the detector-

adapted coordinate system and in which the corresponding
plus hþ and cross h×, GW polarizations are given by
[69,70]
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FIG. 7. Periodic orbits of different ðz; w; vÞ around the polymer black holes in LQG with Aλ ¼ 0.05 and E ¼ 0.96.
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FIG. 8. Periodic orbits of different ðz; w; vÞ around the polymer black holes in LQG with Aλ ¼ 0.05 and ϵ ¼ 0.5.
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hþ ¼ −
2η

DL

M2

r
ð1þ cos2ιÞ cosð2ϕþ 2ζÞ; ð5:2Þ

h× ¼ −
4η

DL

M2

r
cos ι sinð2ϕþ 2ζÞ; ð5:3Þ

where ι is the inclination angle between the EMRI’s orbital
angular momentum and the line of sight and ζ is the
latitudinal angle.
To illustrate the GW waveform of different periodic

orbits and how the LQG effect can affect it, we consider an
EMRI system that consists of a small component with mass
m ¼ 10M⊙ and a supermassive black hole with mass M ¼
107M⊙ with M⊙ being the solar mass. The inclination
angle ι and the latitudinal angle ζ are set to be ι ¼ π=4 and
ζ ¼ π=4 for simplicity, and we adopt the luminosity
distance DL ¼ 200 Mpc. In Figs. 9 and 10, as two
examples, we show the GW waveforms emitted by two
typical periodic orbits, with ðz; w; vÞ ¼ ð3; 1; 2Þ and
ðz; w; vÞ ¼ ð4; 1; 3Þ respectively. In both figures, we plot
the plus hþ and cross h× of GW polarizations for GR,
polymer black hole with Aλ ¼ 0.05, and Aλ ¼ 0.02, respec-
tively. It is evident to see that the GW waveforms clearly
exhibit the zoom-whirl behaviors of the periodic orbits.
In Fig. 9, for example, the periodic orbit (with
ðz; w; vÞ ¼ ð3; 1; 2Þ) has several zoom and whirl phases
in one complete period. Correspondingly, the GW wave-
forms of the plus hþ and h× show distinctly quiet phases
during the highly elliptical zooms followed by louder
glitches during the nearly circular whirls. The number of
the quiet phases is the same as the number of the leaves of

the orbits, while the number of the louder glitches is the
same as the number of whirls of the orbits. Compared to the
Schwarzschild case (with Aλ ¼ 0), the LQG parameter Aλ

mainly changes the phases of the GW signals with a slight
(almost negligible) change to the amplitudes. These proper-
ties suggest that the GW signals emitted by the periodic
orbit can show the basic number of whirl and zoom phases
and may be potentially useful for identifying the properties
of the zoom-whirl orbits and constraining LQG effects in
future GW detections.
Here we would like to make a few remarks about the

limitation of the calculations of the waveforms and
the potential extensions of the current study. First, we
use the adiabatic approximation with which we ignore the
backreaction of the gravitational radiation to the periodic
orbits. This approximation is sufficient if one only con-
siders a few periods (in this section we only consider one
complete period of the orbit). It is interesting to explore
how gravitational radiation can affect the long-term evo-
lution of periodic orbits. Second, by using the quadratic
formula (5.1) to calculate the waveforms one in general
ignores the contributions of multipoles higher than the
quadratic order. The main purpose of this section is not to
construct accurate waveforms for gravitational radiation,
but to explore whether the GW signals emitted by the
periodic orbits in polymer black holes can capture some
basic orbital properties. It is quite important for future GW
detections to construct more accurate waveforms by adding
more multipole moments to the gravitational wave expan-
sion formulae. And at last, the detection of GWs emitted
by EMRI systems is one of the main targets of future

TABLE I. The energy E for the orbits with different ðz; w; vÞ and different black hole parameter Aλ. The angular momentum parameter
ϵ ¼ 0.3. Note that Aλ ¼ 0 denotes the Schwarzschild black hole case.

Aλ Eð1;1;0Þ Eð1;2;0Þ Eð2;1;1Þ Eð2;2;1Þ Eð3;1;2Þ Eð3;2;2Þ Eð4;1;3Þ Eð4;2;3Þ

0 0.953628 0.957086 0.956607 0.957170 0.956864 0.957178 0.956946 0.957181
0.02 0.957761 0.955270 0.954769 0.955360 0.955036 0.955369 0.955122 0.955371
0.04 0.949823 0.953483 0.952960 0.953579 0.953239 0.953589 0.953328 0.953592
0.06 0.947972 0.951731 0.951186 0.951833 0.951475 0.951843 0.951568 0.951847
0.08 0.946162 0.950018 0.949452 0.950126 0.949751 0.950137 0.949848 0.950140
0.1 0.944402 0.948351 0.947765 0.948464 0.948073 0.948475 0.948173 0.948479

TABLE II. The energy E for the orbits with different ðz; w; vÞ and different black hole parameter Aλ. The angular momentum
parameter ϵ ¼ 0.5.

Aλ Eð1;1;0Þ Eð1;2;0Þ Eð2;1;1Þ Eð2;2;1Þ Eð3;1;2Þ Eð3;2;2Þ Eð4;1;3Þ Eð4;2;3Þ

0 0.965425 0.968383 0.968026 0.968434 0.968225 0.968438 0.968285 0.96844
0.02 0.962852 0.965915 0.965538 0.965971 0.965747 0.965975 0.965810 0.965977
0.04 0.960303 0.963474 0.963075 0.963535 0.963295 0.963540 0.963362 0.963541
0.06 0.957782 0.961063 0.960642 0.961129 0.960873 0.961135 0.960944 0.961137
0.08 0.955293 0.958687 0.958243 0.958758 0.958485 0.958765 0.958560 0.958767
0.1 0.952843 0.956350 0.955883 0.956427 0.956136 0.956434 0.956216 0.956436
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space-based detectors, such as LISA, Taiji, Tianqin, etc.
It is natural to ask how these future detectors can be used to
constrain or test the effects of LQG in the periodic orbits.
We expect to come back to these issues for a future study.

VI. DISCUSSIONS AND CONCLUSIONS

In this study, we investigated the periodic orbit character-
istics of polymer black holes in LQG. Firstly, we derived
the geodesics of particles in the background of a polymer

black hole in LQG, which significantly differs from the
case of a Schwarzschild black hole but approaches the latter
in the limit of Aλ → 0. Next, we numerically calculated the
MBOs and ISCOs in the polymer black hole in LQG using
its effective potential. The results showed that as Aλ

increases, the radius and angular momentum of both the
MBOs and ISCOs decrease. Additionally, we analyzed the
allowed parameter region ΔS in the ðL; EÞ plane and found
that ΔS for the bound orbits around the polymer black hole
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FIG. 9. The left figure is a sketch figure which shows a typical periodic orbit around a black hole with ðz; w; vÞ ¼ ð3; 1; 2Þ. In the right
figure, the dotted line represents the gravitational wave of the Schwarzschild black hole, while the orange solid line represents the
gravitational wave of a polymer black hole in LQG with Aλ ¼ 0.05, ϵ ¼ 0.5, and q ¼ 1þ 2=3. The purple solid line represents the
gravitational wave of a polymer black hole in LQG with Aλ ¼ 0.02, ϵ ¼ 0.5, and q ¼ 1þ 2=3.
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FIG. 10. The left figure is a sketch figure which shows a typical periodic orbit around a black hole with ðz; w; vÞ ¼ ð4; 1; 3Þ. In the
right figure, the dotted line represents the gravitational wave of the Schwarzschild black hole, while the orange solid line represents
the gravitational wave of a polymer black hole in LQG with Aλ ¼ 0.05, ϵ ¼ 0.5, and q ¼ 1þ 3=4. The purple solid line represents the
gravitational wave of a polymer black hole in LQG with Aλ ¼ 0.02, ϵ ¼ 0.5, and q ¼ 1þ 3=4.
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in LQG decreases as Aλ increases. HereΔS denotes the area
of the shadow region in the ðL; EÞ plane in Fig. 4.
Based on the properties of the MBOs and ISCOs, we

further investigated the periodic orbits of polymer black
holes in LQG. We found that the rational number q which
characterizes the orbits increases with the particle’s energy
and decreases with its angular momentum. Specifically, for
fixed energy E, q increases with Aλ, while for fixed angular
momentum L, q decreases with Aλ. According to refer-
ence [5], each periodic orbit is described by a set of
parameters ðz; w; vÞ, and we also extended the study to
these orbits with the same w and v. The results showed that
energy decreases with decreasing z, for fixed angular
momentum, higher z orbits generally have lower energy.
When z → ∞, these orbits tend towards circles with the
lowest energy. In the region Lisco < L < Lmbo, all eccentric
periodic orbits around the polymer black hole in LQG
exhibited some kind of scaled vortex behavior. These
results may provide a way to distinguish between polymer
black holes in LQG and Schwarzschild black holes by
testing the periodic orbits around the central source.
Furthermore, the gravitational wave radiation from the

periodic orbits in polymer black holes in LQG is also
preliminary explored. It is shown that the GW signals
clearly exhibit the zoom-whirl behaviors of the periodic

orbits. As shown in Figs. 9 and 10, the periodic orbits (with
ðz; w; vÞ ¼ ð3; 1; 2Þ and ðz; w; vÞ ¼ ð4; 1; 3Þ), the GW
waveforms of the plus hþ and h× show distinctly quiet
phases during the highly elliptical zooms followed by
louder glitches during the nearly circular whirls. The
number of the quiet phases is the same as the number of
the leaves of the orbits, while the number of the louder
glitches is the same as the number of whirls of the orbits. It
is also shown that the LQG effects mainly affect the phases
of GW rather than their amplitudes. These properties may
be used for identifying the orbital structure of EMRI system
and testing/constraining the polymer black hole in LQG
with future GW detectors.
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