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In recent years, significant progress has been made in the computation of conservative and dissipative
scattering observables using the post-Minkowskian approach to gravitational dynamics. However, for
accurate modeling of unbound orbits, an appropriate effective-one-body (EOB) resummation of the post-
Minkowski results that also accounts for dissipative dynamics is desirable. As a step in this direction, we
consider the electromagnetic analog of this problem here. We show that a six-parameter equation of motion
encapsulates the effective-one-body dynamics for the electromagnetic scattering problem appropriate to
third order in the coupling constant. Three of these six parameters describe the conservative part of the
dynamics, while the rest correspond to the radiation-reaction effects. Here we show that only two radiation-
reaction-related parameters are important at the desired order, making the effective number of parameters in
our formalism to be 5. We compute the explicit forms of these five parameters by matching EOB scattering
observables to that of the original two-body ones computed by Saketh et al. [Phys. Rev. Res. 4, 013127
(2022)]. Interestingly, our formalism leads to a conjecture for the subleading angular momentum loss, for
which no precise computations exist. In addition, we demonstrate that the bound-orbit observables
computed using our method are in perfect agreement with those calculated using unbound-to-bound
analytical continuation techniques. Finally, we qualitatively discuss the extension of our formalism to
gravity.
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I. INTRODUCTION

With the dawn of gravitational wave (GW)
astronomy [1–5], a new avenue has opened up to explore
the deeper aspects of astrophysics and fundamental phys-
ics. Additionally, the GW detectors’ network is expanding
and being upgraded at a promising pace [6–8]. Future
gravitational wave detectors, like the Cosmic Explorer and
Einstein telescope, will have a very high signal-to-noise
ratio and potentially help test general relativity (GR) in
strong-gravity regimes [9,10]. This, in turn, has led to an
increasing demand for accurate theoretical modeling of
binary systems in GR and beyond. Among the several
complementary theoretical perspectives on the two-body
problem in relativistic gravity, the study of scattering
dynamics has recently attracted much attention.
The post-Minkowskian (PM) scheme [11–14], wherein

one computes the classical scattering observables in a weak
field expansion and without restriction on velocities, has
benefited from the recent progress made in scattering
amplitude computations and other quantum field theory
techniques [15–41]. Although PM formalism is naturally
adapted for two-body gravitational scattering, one can

also extract information about bound binary systems
from the scattering results by mapping to effective-
one-body (EOB) [12–14], effective-field-theory (EFT)
methods [16,17] and judicious analytic continuation pre-
scriptions [22,42]. Therefore, in particular, the PM scheme,
in conjunction with EOB, furnishes a promising theoretical
framework to address the full binary dynamics in GR.
Initially formulated for the post-Newtonian (PN) frame-

work, the EOB formalism in GR has been extended only
recently for the PM approach [12]. A variant of the EOB
formalism for PM that is more compatible with scattering-
amplitude-based techniques has also been developed [43].
The vast majority of PM literature until now, however, has
focused on the conservative sector of the binary gravita-
tional dynamics. The same is true about the literature on
EOB resummation of PM results. However, dissipation and
radiation are key features of binary systems. Therefore, it is
imperative to have a better theoretical understanding of
the dissipative effects in such systems. However, there
have been promising developments in this field in recent
years [25,28,33,37,44–48] that are pretty promising.
Important progress can be made by constructing an EOB
formalism that systematically accounts for dissipative and
conservative effects at the necessary order in PM approxi-
mation and naturally connects to scattering-amplitude-
based methods.
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In light of this, it is instructive to look at a closely related
but more easily tractable problem, namely, to set up the
EOB formulation of binary scattering dynamics in electro-
magnetism (EM). The scattering of charged particles in EM
and, more generally, Yang-Mills theories is of significant
interest. Although the difficulties introduced by nonlinear-
ities are absent, the classical scattering problem in the
Abelian gauge theory shares some of the technical hurdles
one runs into in GR [49]. Moreover, the more direct gauge
theory results may also be used to build the corresponding
gravity results by using an appropriate version of the
double-copy relations [50–53]. Hence, the EOB formalism
for EM theory, which is the focus of this paper, not only
serves as a useful toy model but also potentially as a source
of ingredients to construct the gravity results. Recently, an
EOB formalism for conservative and dissipative PM
dynamics was put forward in [54]. The approach we set
out to describe here is different in spirit from the one
described in [54] and, therefore, we hope that the same can,
in turn, motivate a novel approach to EOB for dissipative
PM dynamics.
The paper is organized as follows: We review the

classical electromagnetic scattering in Sec. II. Then in
Sec. III, we describe the effective-one-body formalism
adapted to address the relativistic EM scattering dynamics.
The formalism is further elaborated in Sec. IV and,
concluded by solving the unknown parameters in Sec. V.
In Sec. VI, we illustrate the application of our formalism for
extracting results concerning bound orbits. Then, in
Sec. VII, we also present a brief comparison of our
approach with certain other ones. We conclude with a
summary and outline the future outlook in Sec. VIII. In the
Appendixes, we outline some of the mathematical details
concerning our work that are not explicitly discussed in the
main text.
Throughout the paper, we shall follow the ðþ;−;−;−Þ

signature, c ¼ 1, and the notation k≡ 1=ð4πϵ0Þ, where ϵ0
is the vacuum permittivity. We also follow the notations:
A • B≡ AμBμ, where Aμ and Bμ are two four-vectors and
jVj2 ≡ −V • V, for a spacelike vector Vμ.

II. REVIEW OF THIRD-ORDER
POSTLINEAR RESULTS

The postlinear (PL) approach is analogous to the PM
scheme, where one seeks a formal series solution to the
classical scattering problem in gauge theory. Like the PM
scheme, the series is expanded in the coupling constant
without any restriction on the velocities of the scatterers.
For example, in Ref. [55], the scattering up to second order
in the coupling was performed for EM (and GR). Recently,
Saketh et al. [49] extended Westpfahl’s results for EM to
the third-order scattering problem, which we shall refer to
as 3PL. As mentioned in the Introduction, the key result
of this work is a prescription for a convenient EOB

resummation of the EM scattering results up to 3PL and
including leading-order dissipative effects due to radiation
reaction (RR). As we show, our approach is also efficient in
providing a one-to-one correspondence between certain
observables concerning bound and unbound orbits. Before
discussing the EOB formalism, we briefly review 3PL
results, closely following Ref. [49]. (Also, see Ref. [56] for
a closely related discussion, but using modern amplitude
methods).

A. Kinematics

We consider relativistic EM scattering of two particles of
rest massesmi and charges qi, respectively, where i ¼ 1, 2.
We solve the scattering problem as a function of the
asymptotic initial momenta pμ

i and the asymptotic initial
impact parameter vector bμ. The initial momenta, in turn,
can be written in terms of the initial velocities uμi as
pμ
i ¼ miu

μ
i . By definition, b • ui ¼ 0, for i ¼ 1, 2. While

most of the results do not depend on the sign of q1 × q2, for
concreteness, we will assume q1q2 < 0. This will allow us
to connect some EM results to gravitational results.
It is often convenient to rephrase these initial data

in terms of certain center-of-momentum (COM) and
“relative” quantities. The standard definitions for the initial
relative velocity v, the corresponding Lorentz factor γ, and
the COM energy E are

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ γ ¼ p1 • p2

m1m2

; ð1Þ

E2 ¼ ðp1 þ p2Þ2 ¼ m2
1 þm2

2 þ 2m1m2γ

¼ M2 þ 2mMðγ − 1Þ; ð2Þ

where the total mass M ¼ m1 þm2 and the reduced mass
m ¼ m1m2=M. In addition, the COM velocity Uμ and the
“relative momentum” Pμ are defined as

Uμ ¼ ðpμ
1 þ pμ

2Þ
E

; ð3Þ

Pμ ¼ 1

E
½ðp2 • UÞpμ

1 − ðp1 • UÞpμ
2�; ð4Þ

jPj≡
�
M
E

�
ðmγvÞ; ð5Þ

where jPj is the magnitude of the spacelike vector Pμ. With
the above definitions, we find that the magnitude of initial
COM angular momentum J has the form

J ¼ jPjjbj ¼
�
M
E

�
ðmγvbÞ: ð6Þ
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B. PL scattering dynamics

The scattering dynamics is described in terms of the
worldlines zμi ðτiÞ, parametrized by the proper time τi of the
respective particle. Further, we can describe the electro-
magnetic field generated by the particles by the gauge
potential Aμ. Assuming the Lorentz gauge condition
∂μAμ ¼ 0, the worldlines are solutions to the following
set of coupled differential equations:

□AμðxÞ ¼ 4πkJμðxÞ

≡ 4π

�X2
i¼1

qi

Z
dτi _z

μ
i δ

4ðx− ziÞ
�

ðMaxwell’sEq:Þ;

ð7Þ

miz̈i¼ qiFμ
νðziÞ_zνi

þ2kq2i
3

ð z…μ
i þ _zμi z̈i • z̈iÞ ðLorentz-Dirac Eq:Þ; ð8Þ

where Fμν ¼ ð∂μAν − ∂νAμÞ denotes the external field
acting on a given particle, and the effects of the self-field
are encapsulated in the second term on the rhs of
Eq. (8). The exact scattering worldline functions zμi ðτiÞ
self-consistently satisfy Eqs. (7) and (8), with the ini-
tial conditions _zμi ð−∞Þ ¼ uμi , limτ1→−∞z1ðτ1Þ • b ¼ b2, and
limτ2→−∞z2ðτ2Þ • b ¼ 0.
However, even in the EM case, the exact solutions zμi ðτiÞ

are not available. Therefore, in the PL approach, one resorts
to an iteration scheme, wherein one starts by expanding the
worldlines as a series in coupling constant k,1

zμ1ðτ1Þ ¼ bμ þ uμ1τ1 þ kzð1Þμ1 ðτ1Þ þ k2zð2Þμ1 ðτ1Þ
þ k3zð3Þμ1 ðτ1Þ þ � � � ; ð9Þ

zμ2ðτ2Þ ¼ uμ2τ2 þ kzð1Þμ2 ðτ2Þ þ k2zð2Þμ2 ðτ2Þ
þ k3zð3Þμ2 ðτ2Þ þ…: ð10Þ

Note that the zeroth-order solutions describe the free
straight-line trajectories. The above series ansatz is then
fed into Eqs. (7) and (8) to iteratively solve the corrections
to the straight-line paths at progressively higher orders in k;
hence, the name “postlinear formalism.” In Ref. [49], the

solution of the worldlines up to zð2Þi ðτiÞ and momenta up to

mi _z
ð3Þ
i ðτiÞ were explicitly computed and, from them, the

relevant scattering observables were also extracted.
Unfortunately, the precise forms of the 3PL worldlines
are rather lengthy and not quite illuminating. Hence, in the

next subsection, we shall briefly summarize the scattering
observables presented in Ref. [49].

C. Scattering observables

In this subsection, we concentrate on three scattering
observables—scattering angle χ, magnitude of the radiated
angular momentum δJ, and the radiated COM energy δE—
computed in Ref. [49], which are relevant to the current
work. The scattering angle χ is defined via

sin χ ¼ −Δp1 • b
jbjjPð∞Þj ¼

−Δp1 • b
jbjjPj þOðk4Þ; ð11Þ

where Δpμ
1 ¼ m1 _z1ð∞Þ −m1 _z1ð−∞Þ is the net impulse on

particle 1 and jPð∞Þj is the final relative momentum. The
3PL result for χ is [49]

χ ¼ χcons þ χrad; ð12Þ

χcons ¼
2kq1q2
mγjbjv2 hνðγÞ −

πk2q21q
2
2

2m2γ2jbj2v2 hνðγÞ

þ 2k3q31q
3
2½ð2γ2 − 3Þh2νðγÞ − 6νv4γ3�

3m3jbj3γ5v6 hνðγÞ

þOðk4Þ; ð13Þ

χrad ¼ −
4k3q21q

2
2

3mjbj3γv3
��

q21
m2

1

þ q22
m2

2

�

−
3q1q2
m1m2

�
1

γv2
−
tanh−1ðvÞ

γ3v3

��
hνðγÞ þOðk4Þ; ð14Þ

where χconsðχradÞ denotes the conservative (radiative) part
of the scattering angle. The symmetric mass ratio (ν) and
hνðγÞ are defined as

ν ¼ m
M

; hνðγÞ ¼
E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
: ð15Þ

The radiated angular momentum δJ is the negative of the
binary system’s net change in total angular momentum.
Hence, δJ ¼ Ji − Jf, where Ji and Jf are the initial and
final angular momenta, respectively. With this definition,
the radiated angular momentum in the COM frame δJ
reduces to

δJ ≡ k2δJ2 þ k3δJ3 þ � � � ; ð16Þ

¼ −
4k2q1q2mγ

3jbjhνðγÞ
��

q21
m2

1

þ q22
m2

2

�

−
3q1q2
m1m2

�
1

γv2
−
tanh−1ðvÞ

γ3v3

��
þOðk3Þ: ð17Þ

The radiated linear momentum Kμ is defined as the
negative of the sum of impulses on both particles. Hence,

1Technically, the series expansion is about a dimensionless
quantity k̃≡ kq1q2=J. However, we can be sloppy about it if we
are sufficiently careful about the regime of validity (k̃ ≪ 1) of the
results.
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Kμ ¼ −Δpμ
1 − Δpμ

2, where Δpμ
i ¼ mi _z

μ
i ð∞Þ − pμ

i , for
i ¼ 1, 2. The radiated COM energy δE is then defined
as KμUμ and reduces to

δE≡ k2δE2 þ k3δE3 þ � � � ð18Þ

¼ πk3q21q
2
2

4jbj3hνðγÞ
�
3γ2 þ 1

3γv

�
q21
m2

1

þ q22
m2

2

�

þ ðγ − 1Þð3γ2 þ 1Þ
3γv

�
q21m
m3

1

þ q22m
m3

2

�
−
GðγÞ
γv

q1q2
m1m2

�

þOðk4Þ; ð19Þ

GðγÞ ¼ ð3γ2þ 1Þ
ðγvÞ2

�
γ−

tanh−1ðvÞ
γv

�
−

4

ðγvÞ2 ðγ− 1Þ2: ð20Þ

As mentioned earlier, the main aim of this work is to devise
an EOB formulation that, in addition to effectively captur-
ing the perturbative information contained in the above
two-body scattering observables, also encapsulates certain
nonperturbative aspects. This latter feature, in turn, can
potentially enable us to go beyond the scope of the weak
field regime of PL and also gain insights into the bound
binary dynamics.

III. EFFECTIVE-ONE-BODY FORMALISM:
THE SETUP

The EOB formalism is the canonical transformation that
maps the dynamics of a relativistically interacting two-
body system to that of a single particle in an external
background. More specifically, the EOB maps the compact
binary dynamics of general relativity to the test particle
motion in an external background metric. The EOB
formalism, first introduced in the seminal paper [14] and
further developed in several works [57–60], is now rou-
tinely used in the detection of gravitational waves in LIGO-
VIRGO-KAGRA.
Incidentally, the original paper of Buonanno and

Damour [14] cites an old work of Brezin et al.
(BIZ) [61], which essentially discusses an EOB formalism
for EM as one of the primary inspirations. The BIZ paper
used an approximate summation of the “crossed-ladder”
Feynman diagrams of 2 → 2 EM scattering amplitude,
which essentially recovered the eikonal asymptotic behav-
ior and arrived at the bound-state energy spectrum En by
inspecting the poles of the corresponding Green’s function.
Although this approximation did not effectively capture the
centrifugal effects, their expression for En correctly
accounted for the recoil effects. The BIZ expression for
the two-body bound-state energy En can be mapped to the
relativistic one-body spectrum ϵn of a particle, with mass
being the reduced mass, moving in a static Coulomb
potential as E2

n ¼ m2
1 þm2

2 þ 2ðm1 þm2Þϵn. However,
the BIZ paper does not account for the radiative effects.

In the present discussion, we shall formulate an EOB
approach to EM that is naturally adapted for the classical
PL scheme. In the rest of this section, we briefly discuss
EOB basics for completeness. In the following sections, we
explicitly show that our proposal efficiently accounts for
the leading-order radiation-reaction effects. We also quali-
tatively discuss how our proposal can be extended to GR.

A. EOB kinematics

As mentioned above, the starting point of EOB formal-
ism is establishing a map between relevant quantities of the
original two-body problem and the effective-one-body
system. Because of the choice of canonical transformations,
this mapping has some freedom. Here, we consider a choice
introduced in [43] in the context of EOB formalism for PM
gravity. This choice allows the conservative EOB dynamics
up to 3PM to be cast as the motion of a particle in an
effective metric. In contrast, the conventional mapping used
in Refs. [14,57] leads to modifying the standard mass-shell
condition. Moreover, the new mapping introduced in [43]
also connects more directly with the results of the original
two-body scattering observables.
The three key ingredients of the EOB mapping are as

follows: (i) energy map, (ii) momentummap, and (iii) angu-
lar momentum map. The total energy E, the relative
momentum Pμ, and the angular momentum J for a system
of free particles are defined in Eqs. (2), (4), and (6),
respectively. We shall denote the energy, spatial momen-
tum, and angular momentum of the reduced mass in the
effective-one-body description by ϵ, pμ, and j, respectively.
The EOB mapping amounts to the following identification:

ϵ ¼ E2 −m2
1 −m2

2

2M
; ð21Þ

pμ ¼ hνðγÞPμ; ð22Þ

j ¼ hνðγÞJ; ð23Þ

jbj → jbj; ð24Þ

χ → χ; ð25Þ

where hνðγÞ is defined in Eq. (15). The last two equations
above emphasize that the impact parameters and scattering
angles of the original two-body system and the EOB
problem are identified. It is easily seen that j ¼ mvγjbj,
jpj ¼ mvγ, and ϵ ¼ mγ, as is desired.

B. EOB dynamics

Let xμðτÞ ¼ ðtðτÞ; x⃗ðτÞÞ denote the effective worldline
that describes the relative dynamics of the two-body such
that m_xi ¼ pi, where the dot ( :) denotes derivative with
respect to the proper time of the reduced mass. The final
ingredient of the EOB formalism for PL is a prescription for
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effective dynamics for xμ, which encapsulates all the
information contained in the two-body scattering observ-
ables up to the desired order.
The success and utility of the conventional EOB for-

malism for GR stem from the fact that, once the relevant
parameters of the effective dynamics are fixed by matching
the appropriate observables to a given order of an approxi-
mation scheme (like, for instance, PM, post-Newtonian),
the EOB formalism can make sensible predictions even a
bit beyond the regime of validity of the original approxi-
mation scheme. This feature can be attributed to the fact
that the EOB formalism implicitly resums the approximate
series expansion (i.e., either PM or PN expansions) and
effectively translates the same to a systematic deformation
about the test-particle limit (i.e., ν → 0). For instance,
by construction, the effective metric in the PN EOB
formalism can be viewed as a ν-deformed Schwarzschild
metric with the mass parameter being M ¼ m1 þm2 (see,
for instance, [14,57,60]).
Motivated by this, we seek an EOB dynamics for the PL

formalism that can also be viewed as a deformation of the
test-particle limit in EM. The equation of motion in the test-
particle limit m1=m2 → 0 is given simply by the Lorentz-
Dirac equation,

m1ẍμ ¼ q1FðcÞμ
ν _xν þ

2kq21
3

ðx…μ þ _xμẍ • ẍÞ; ð26Þ

where FðcÞ
μν is the static Coulomb field generated by the

charge q2. It is instructive to define the Coulomb force-field
tensor F ðcÞ

μν via F ðcÞ
μν ≡ q1FðcÞ

μν. The Coulomb force-
field tensor can be written in terms of the vector potential
AðcÞ

μ, which takes the form

AðcÞ
μ ¼

�
kq1q2
r

; 0; 0; 0

�
: ð27Þ

The Lorentz-Dirac equation, recast in terms of the
Coulomb force-field tensor, is given by

m1ẍμ¼F ðcÞμ
ν _xν

þ2km1

3

��
q21
m2

1

�
F ðcÞμ

ν;α _xν _xαþ
�
q21
m3

1

�
ðF ðcÞμ

νF ðcÞν
α _xα

−F ðcÞα
νF ðcÞν

β _xβ _xα _xμÞ

þ2k
3

�
q41
m3

1

�
F ðcÞμ

ν;ασ _xν _xα _xσ
�
þOðk4Þ: ð28Þ

We neglect the Oðk4Þ terms since they will not be relevant
for the 3PL results. Now, motivated by the form of the test-
particle limit given by Eq. (28), we propose that the EOB
dynamics is described by the following deformed Lorentz-
Dirac equation:

mẍμ¼F μ
ν _xν

þ2km
3

�
AF μ

ν;α _xν _xαþBðF μ
νF ν

α _xα−F α
νF ν

β _xβ _xα _xμÞ

þ2k
3
CF μ

ν;ασ _xν _xα _xσ
�
þOðk4Þ; ð29Þ

where A, B, and C are three parameters of dimensions
q21=m

2
1, q

2
1=m

3
1, and q

4
1=m

3
1, respectively. Although we have

motivated the above EOB equation of motion as a natural
deformation of the Lorentz-Dirac equation, in the spirit of
conventional EOB formalism in the gravitational case, the
same deformed dynamics can be shown to follow from
general principles, like Lorentz invariance, gauge invari-
ance, etc., and some minimal further assumptions, as we
discuss in Sec. VII A. This alternative perspective, akin to
the effective-field-theory approach, signifies that Eq. (29) is
not entirely ad hoc.
The proposed deformation of the dynamics has two

distinct aspects: (i) the deformation of the conservative
force field (or, equivalently, the potential); F ðcÞ

μν → F μν

(or, equivalently, AðcÞ
μ → Aμ), and (ii) the deformation of

the radiation-reaction force; accomplished by replacement
of the coefficients q21=m

2
1, q

2
1=m

3
1, and q

4
1=m

3
1 in the leading

radiation-reaction term in square brackets on the right-hand
side of Eq. (28) by, respectively, A, B, and C. While the
former captures the conservative part of the two-body
dynamics, the latter encodes the radiative effects. As in
gravity, we consider a static and radial external force field.
Further, we can assume the following form for the
deformed potential:

Aμ ¼ ðϕ; 0; 0; 0Þ; ð30Þ

ϕðrÞ ¼ E
X∞
n¼1

�
kq1q2
rM

�
n
ϕnðν; γÞ: ð31Þ

In the limit ν → 0, the scalar potential ϕ must reduce to
kq1q2=r. We shall explicitly see that this is indeed the case.
Moreover, it is also easy to see that the conservative
dynamics is effectively described by the following
Hamiltonian:

Hðp⃗; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗ • p⃗þm2

q
þ ϕðjx⃗jÞ; ð32Þ

where x⃗ and p⃗ are the effective-one-body coordinate and
momenta, respectively. In particular, Hamilton’s equations
of motion that follow from H, namely, dxi=dt ¼ ∂piH and
dpi=dt ¼ −∂xiH, can be shown to be equivalent to the
conservative limit (i.e., A; B;C → 0) of Eq. (29).
It is well known that Hamiltonian formalism cannot

describe generic dissipative systems. For the special case of
dissipative forces that are linear in velocity, one can employ
the Rayleigh dissipation function [62]. However, this
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approach fails to describe a more general class of dis-
sipative features. For a discussion of this issue and a
modified Hamiltonian formalism that can accommodate
generic dissipative systems, see Ref. [63]. Nevertheless, we
can study the classical evolution using the effective
deformed Lorentz-Dirac equation. The parameters A and
B, in the radiation-reaction terms therein, can be assumed in
the following form:

A ¼ α1ðν; γÞ
�
q21
m2

1

þ q22
m2

2

�
þ α2ðν; γÞ

q1q2
m1m2

; ð33Þ

B ¼ β1ðν; γÞ
�

q21
m2

1m
þ q22
m2

2m

�
þ β2ðν; γÞ

�
q21
m3

1

þ q22
m3

2

�

þ β3ðν; γÞ
q1q2

mm1m2

: ð34Þ

Here, we expect α1ð0; γÞ ¼ β1ð0; γÞ þ β2ð0; γÞ ¼ 1, so that
the Lorentz-Dirac equation is retained in the test-particle
limit. To accommodate all potential terms of the required
dimension that can be generated from q1, q2, m1, m2, one
would have naively assumed an infinite series expansion
for both A and B based on the dimension analysis. For
instance, one could have added terms proportional to
q31=ðq2m2

2Þ, q1001 =ðq982 m2
2Þ, etc., to the ansatz for A.

However, from the form of dissipative scattering observ-
ables δJ and δE, given by Eqs. (16) and (18), respectively,
one can guess that the finite expansions in Eqs. (33) and
(34) would suffice. On the other hand, the form of C can
only be fixed when the dissipative variables are known to
Oðk4Þ, which is currently unavailable. However, fortu-
nately, the parameter C does not contribute to either χ or
δE, up to Oðk3Þ. Hence, we shall ignore this term for the
most part, barring some comments at a few junctures.
In summary, up to third order, we have three sets of

unknown dimensionless parameters in the EOB dynamics:
fϕ1;ϕ2;ϕ3g, fα1; α2g, and fβ1; β2; β3g. The next step is to
determine the explicit forms of these parameters by
matching the observables of the EOB problem to those
of the original two-body problem, as discussed in
Sec. III A.

IV. EFFECTIVE-ONE-BODY FORMALISM:
THE OBSERVABLES

The effective potential ϕðrÞ, as defined in Eq. (31), is
characterized by an infinite set of coefficients fϕnjn ¼
1; 2; 3;…g. However, as mentioned earlier, for results up to
3PL, the subset fϕ1;ϕ2;ϕ3g would suffice. We can fix
fϕ1;ϕ2;ϕ3g by matching the conservative part of the
scattering angle of the EOB problem to that of the original
two-body problem; whereas, to fix A and B, we shall do a
similar exercise with the leading-order radiated angular
momentum and radiated energy. Therefore, our next step is
to solve the scattering problem of the EOB system to 3PL.

A. Perturbative approach to the EOB dynamics

As described in Eq. (29), we now solve the hyperbolic-
like orbits of the reduced mass, interacting with an effective
conservative force F ðrÞ and a radiation-reaction force.
Because of the system’s symmetry, the entire scattering
orbit will be constrained on a plane, where we introduce the
polar coordinate system ðr; θÞ. As is standard in the study
of orbital dynamics, for convenience, we introduce the
variable u≡ 1=jx⃗j≡ 1=r. Now, we want to obtain the
function uðθÞ that mathematically represents the orbit. In
the spirit of the PL scheme, we shall solve the scattering
orbit uðθÞ as a series in the coupling constant. To this end,
we expand as follows:

uðθÞ¼mγ

j
sinθþ

�
kq1q2
j

�
ũ1ðθÞþ

�
kq1q2
j

�
2

ũ2ðθÞ

þ
�
kq1q2
j

�
3

ũ3ðθÞþ �� �

≡u0ðθÞþku1ðθÞþk2u2ðθÞþk3u3ðθÞþ �� � ; ð35Þ

where j is the initial angular momentum. Let us denote the
angular momentum along the orbit of the EOB particle by
J ðθÞ. Because of the radiation reaction, J ðθÞ is not a
constant along the orbit. It is also convenient to expand the
varying angular momentum J ðθÞ in powers of k as
follows:

J ðθÞ≡mr2 _θ

¼ jþ
�
kq1q2
j

�
2

J̃ 2ðθÞ þ
�
kq1q2
j

�
3

J̃ 3ðθÞ þ � � �

≡ jþ k2J 2ðθÞ þ k3J 3ðθÞ þ � � � : ð36Þ

Note that θ-dependent corrections start only at Oðk2Þ, the
reason for which will be clear shortly. Similarly, we can
also expand the energy function EðθÞ as

EðθÞ≡ εþ ϕ

¼ ϵþ
�
kq1q2
j

�
2

Ẽ2ðθÞ þ
�
kq1q2
j

�
3

Ẽ3ðθÞ þ � � �

≡ ϵþ k2E2ðθÞ þ k3E3ðθÞ þ � � � ; ð37Þ

where ε≡m_t. The evolution equations of uðθÞ, J ðθÞ, and
E can be derived from Eq. (29) and the mass-shell condition
written in polar coordinates. The orbit is a solution to the
following differential equation:

u00 þ u −
εε0

J 2u0
þ ε2J 0

J 3u0
¼ 0; ð38Þ

where the prime ( 0) denotes derivative with respect to θ.
The rates of change of angular momentum and energy
function take the forms
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J 0ðθÞ ¼ 2km
3

�
A

�
εF
m2u

�
− B

�
F 2

u2
þ F 2J 2

m2

�
þ 2k

3
C

�
J 2u0u3F

m2
þ J 2u0u4∂uF

m2

��
; ð39Þ

E0ðθÞ ¼ 2km
3

�
A

�
J uF
m

−
J ðu0Þ2∂uF

m

�
− B

�
J εF 2

m2

�
þ 2k
3m2

CðJ 2uu0ð3uF þ u∂uF Þ − ðu0Þ2ð2∂uF þ ∂
2
uFuÞÞÞ

�
: ð40Þ

Now, we can perturbatively solve the system of the three
equations (38)–(40) in powers of k. To this end, we need to
substitute Eq. (35) into the three equations and iteratively
solve the system. In particular, the equation of motion of
the orbit at the nth order can be cast in the following form:

u00n þ un þ Unðun−1; un−2;…; u0Þ ¼ 0: ð41Þ

On the other hand, the equation describing the dissipation
of energy and angular momentum simplifies to

J 0
n ¼ T nðun−2; un−3;…; u0Þ; ð42Þ

E0
n ¼ Pnðun−2; un−3;…; u0Þ: ð43Þ

1. Comments on the C-dependent RR term

Although we have displayed the C-dependent RR term
in Eq. (29) for generality, as we show in this subsection, the
observables at Oðk3Þ are independent of C. To see this, we
first rewrite the C-dependent RR term as a total derivative,
modulo Oðk4Þ terms,

4k2mC
9

F μ
ν;ασ _xν _xα _xσ ¼

4k2mC
9

d
dτ

½F μ
ν;α _xν _xα�

þOðk4Þ: ð44Þ

Substituting the rhs of the above expression in Eq. (29), we
see that the contribution to the energy radiated from this
term goes at most as limτ→∞½u3ðτÞ − u3ð−τÞ� and, hence,
vanishes at Oðk3Þ. Similarly, the C-dependent piece of the
rate of change of angular momentum, Eq. (39),

4k2C
9

�
J 2u0u3F

m2
þJ 2u0u4∂uF

m2

�
∝k3

d
dθ

u6þOðk4Þ; ð45Þ

is also a total derivative. Since u → 0 at the asymptotes, it
follows that the contribution of the above term to δJ
vanishes at Oðk3Þ. Thus, from the above two observations,
one can naively conclude that C cannot be fixed with the
knowledge of Oðk3Þ observables. On the other hand, the
same observations also indicate that we may predict
the subleading contribution to δJ from only knowing the
explicit forms of the coefficients A and B, whose explicit
forms are not available in the literature. In Sec. VA, we
discuss this in detail.

B. Scattering observables: The conservative parts

We define the conservative scattering angle χcons as the
part of the total scattering angle χ that can be attributed
to the dynamics generated by the conservative potential
while neglecting the radiation-reaction terms. The standard
formula below gives the conservative scattering angle
to be

χcons ¼ π − 2j
Z

∞

rminðcÞ

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðϵ − ϕÞ2 −m2�r2 − j2

p ; ð46Þ

where rminðcÞ is the conservative piece of the value of radial
coordinate at the closest approach and is given by

rminðcÞ ¼ jbj þ hνq1q2ϕ1

γmv2
kþ hνq21q

2
2ðhνϕ2

1 þ 2γ2νv2ϕ2Þ
2jbjγ4m2v4

k2

þ hννq31q
3
2ðγνϕ3 − hνϕ1ϕ2Þ
jbj2γ2m3v2

k3 þOðk4Þ ð47Þ

≡ jbj þ b1kþ b2k3 þ b3k3 þOðk4Þ; ð48Þ

where b1; b2; b3; :: are constant coefficients defined by the
above series. A straightforward computation yields

χcons ¼
2kq1q2ϕ1hν
jbjγmv2

þ πk2q21q
2
2hνð2γνϕ2 − hνϕ2

1Þ
2jbj2γ2m2v2

þ 2k3q31q
3
2hν

3jbj3γ6m3v6
½ϕ1hνðγð2γ2 − 3Þðϕ2

1hν − 6γνϕ2Þ

− 6νϕ2Þ þ 6γ5ν2v4ϕ3� þOðk4Þ: ð49Þ

C. Scattering observables: The dissipative parts

From Eqs. (39) and (40), and noting that F is OðkÞ, we
see that E0 and J 0 are Oðk2Þ. Moreover, to solve EðθÞ and
J ðθÞ toOðk3Þ, we require only the orbital equation uðθÞ to
OðkÞ. Solving Eq. (38) iteratively, we get

uðθÞ ¼ mvγ
j

sin θ þ
�
kq1q2
j

��
hνϕ1mγ

j

�
ðcos θ − 1Þ

þOðk2Þ: ð50Þ

Substituting the above in Eqs. (39) and (40), and integrat-
ing, we get
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J ðθÞ ¼ j −
�
kq1q2
j

�
2
�
2jAm2γ2vϕ1hν

3q1q2

�
ðcos θ − 1Þ þOðk3Þ; ð51Þ

EðθÞ ¼ ϵ −
�
kq1q2
j

�
2
�
2γ3Am3v3ϕ1hν

3q1q2

�
sin2θ cos θ þOðk3Þ: ð52Þ

We have delegated the rather lengthy expressions forJ 3 and E3 to Appendix A. An interesting thing to note is that, although
the perturbations of both energy and angular momentum start atOðk2Þ, the radiated angular momentum δJ isOðk2Þ, while
the radiated energy δE starts only at Oðk3Þ. More precisely,

δJ ≡ −½J ðπ − χÞ − J ð0Þ� ð53Þ

¼ −
�
kq1q2
j

�
2 4Ajγ2m2vϕ1hν

3q1q2

þ
�
kq1q2
j

�
3 πγ2jm2½ϕ2

1hνð4Aðv2 þ 2Þ þ Bð3γ2 þ 1Þmv2Þ − 8Aγνv2ϕ2�
12q1q2

þOðk4Þ; ð54Þ

δE ≡ −½Eðπ − χÞ − Eð0Þ� ð55Þ

¼
�
kq1q2
j

�
3 πγ3k3m3v2h2ν

12q21q
2
2

ð4Aþ 3Bγ2mv2Þ þOðk4Þ: ð56Þ

As mentioned in Sec. IVA 1, the third-order contribution to δJ is indeed independent of C.

V. DETERMINING THE EOB PARAMETERS

In the previous section, we perturbatively obtained the
expressions for uðθÞ; EðθÞ, and J ðθÞ, including the radi-
ation-reaction terms. In this section, we determine the
hitherto unknown coefficients fϕig; fαig, and fβig in the
EOB formulation. We also discuss how the EOB formalism
can provide a way to obtain subleading contribution to the
loss in angular momentum.
To determine the first set of parameters fϕ1;ϕ2;ϕ3g, we

equate the conservative piece of the scattering angle of the
original problem to that of the EOB one. This yields

ϕ1 ¼ 1; ð57Þ

ϕ2 ¼
hν − 1

2γν
; ð58Þ

ϕ3 ¼
ð2γ4 − 3γ2 þ 1Þðhν − 1Þhν − 2γ5νv4

2γ6ν2v4
: ð59Þ

Similarly, we obtain the radiative coefficients fαig and fβig
using the matching conditions derived from the EOB
mapping given in Sec. III A,

δE
hν

¼ δEþ ðδEÞ2
2E

¼ δEþOðk4Þ; ð60Þ

δJ
hν

¼ δJ þ J
E
δEþ δEδJ

E
¼ δJ þOðk3Þ: ð61Þ

The above mapping yields

α1 ¼
1

hν
; α2 ¼

3

γ3v3hν
ðtanh−1ðvÞ − γ2vÞ; ð62Þ

β1 ¼
3γ2 − 4γhν þ 1

3γ3v2h2ν
; β2 ¼

ðγ − 1Þð3γ2 þ 1Þ
3γ3v2h2ν

;

β3 ¼
4hν½γ3v − γ tanh−1ðvÞ� þ ð3γ2 þ 1Þ tanh−1ðvÞ þ γv½ð4 − 3γÞγ2 − 9γ þ 4�

γ6v5h2ν
: ð63Þ

This concludes our EOB formalism for the electromagnetic scattering problem, which accounts for the leading-order
radiative effects. Appendix C contains the expansion of the EOB potential in the test-particle limit.
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A. Determining subleading radiated
angular momentum

We now argue how the EOB formalism can be used to
derive the subleading contribution to the angular momen-
tum loss. As mentioned earlier, the direct computation of
this Oðk3Þ term to δJ is currently unavailable. However,
once the explicit forms of A and B are known, one can use
Eq. (54) along with the EOB mapping from δJ → δJ to
“predict” the third-order contribution to δJ. We find that
this contribution δJ3 is

δJ3 ¼
�
J
3m

�
hν

�
3

γ
þ 4

γ3v2

�
− 3ν

��
δE3

þ
�
πq1q2ðhνð3γ2ðv2− 2Þþ 4Þ− 3γ2v2Þ

12γ2Jvhν

�
δJ2; ð64Þ

where δJ2 and δE3 correspond to the leading-order radiated
angular momentum [Eq. (16)] and energy [Eq. (18)].

VI. RESULTS FOR BOUND ORBITS

In the gravitational case, one of the most important
applications of classical scattering results has been accu-
rately forecasting bound-orbit dynamics. Several promising
methods have been proposed to achieve this, including EFT
methods [16,17] and analytic continuations [22,42]. Here,
we explore using EOB formalism to extract binary-orbit
results from the unbound-orbit ones.
For the EM case, which is the focus of this work, binary

orbits exist for q1q2 < 0. These binary orbits satisfy
E < M, which in the EOB language translates to ϵ < m.
The method initiated in Refs. [22,42] corresponds to
obtaining certain bound-orbit results by the analytical
continuation of appropriate scattering observables into
the domain γ < 1. As a consistency check of our formal-
ism, we now verify whether we can reproduce the bound
orbits’ results obtained using analytical continuation meth-
ods. In this section, we explicitly evaluate (1) the periastron
shift ΔΦ and (2) the energy radiated per orbital period
(ΔE), and (3) the angular momentum loss per orbital period
(ΔJ) using the EOB formalism and compare them against
the expressions evaluated using analytic continuation. For
completeness, we have exhibited the expressions from the
analytical continuation method in Appendix D.
To compare bound-orbit results, it is convenient to employ

certain useful variables. We start with the mass-subtracted
energy (or “the nonrelativistic energy”) Enr ≡ E −M. The
bound orbits correspond to those with Enr < 0. Recalling
thatEnr < 0 corresponds to ϵ=m ¼ γ < 1, the function hν ¼
E=M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðγ − 1Þp
for the bound orbits satisfies

hν < 1. Since hν and γ were originally defined for the
scattering problem (for which hν; γ ≥ 1), we introduce a
subscript (b) for these variables whenever they specifically

refer to bound orbits; i.e., hνðbÞ and γðbÞ for Enr < 0.
Moreover, for bound orbits v ¼ ivb, where vb ∈ R.

A. Periastron shift

The leading-order periastron shift is expected at Oðk2Þ.
So, we shall next find the conservative bound orbit at this
order. The (conservative) equation of motion for the orbit
takes the form

u00 þ ω2uþ
�
kq1q2
j2

�
γðbÞmϕ1hνðbÞ þOðk3Þ ¼ 0; ð65Þ

ω2 ¼ 1 −
�
kq1q2
j2

�
2

hνðbÞ ðϕ2
1hνðbÞ − 2γðbÞνϕ2Þ; ð66Þ

where the subscript (b) with γ and hν refers to bound orbits
(i.e., γðbÞ; hνðbÞ < 1). The orbital equation is

ubðθÞ ¼ ū cos½ωðθ − θ̄Þ� − γðbÞkmq1q2ϕ1hνðbÞ
j2

; ð67Þ

where the constant ū can be found by demanding the
mass-shell condition and θ̄ just captures the initial con-
dition. Therefore, the periastron shift atOðk2Þ can be found
from

ΔΦ ¼ 2π

ω
− 2π þOðk4Þ ð68Þ

¼ πk2q21q
2
2hνðbÞðϕ2

1hνðbÞ − 2γðbÞνϕ2Þ
j2

þOðk4Þ ð69Þ

¼ πk2q21q
2
2

J2hνðbÞ
þOðk4Þ; ð70Þ

where in Eq. (70) we have used Eqs. (57) and (58), along
with the EOB map J ¼ hνj. Note that the above expression
matches exactly with (D2).

B. Energy loss per orbit

Equation (40) gives the general expression for the rate of
change of energy. Hence, the total energy loss per orbital
period of the EOB particle ΔE is

ΔE ¼ −
I

E0dθ: ð71Þ

Substituting the bound-orbit solution ubðθÞ from Eq. (67)
into the above equation yields

ΔE¼
πγðbÞðγ2ðbÞ−1Þk3m3q21q

2
2ϕ

2
1h

2
νðbÞð4Aþ3Bðγ2ðbÞ−1ÞmÞ

6j3

þOðk4Þ: ð72Þ
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Using the EOB mapping in Eq. (60), the above equation
translates to

ΔE¼
πm3k3q21q

2
2ðγ2ðbÞ−1Þ

2J3h4νðbÞ

�ð3γ2ðbÞ þ1Þ
3

�
q21
m2

1

þ q22
m2

2

�

þ
ðγðbÞ−1Þð3γ2ðbÞ þ1Þ

3

�
q21m
m3

1

þq22m
m3

2

�
−GðγðbÞÞ

q1q2
m1m2

�

þOðk4Þ; ð73Þ

where we have also used the explicit forms of A and B as
found in Sec. V to arrive at the final expression. The above
expression matches exactly with that in Eq. (D3).
As a further consistency check, it is instructive to

consider the nonrelativistic limit of the above expression.
To this end, recall the definition of nonrelativistic energy
Enr ≡ E −M, so that hνðbÞ ¼ Enr=M þ 1. Therefore, the
nonrelativistic limit ΔEnr of the energy loss takes the form

ΔE ¼ ΔEnr þO
�
E2
nr

M2

�
; ð74Þ

ΔEnr ¼
4πm2k3q21q

2
2Enr

3J3

�
q1
m1

−
q2
m2

�
2

þOðk4Þ: ð75Þ

The above expression matches perfectly with the leading-
order nonrelativistic limit of energy loss computed in
Appendix B.

C. Angular momentum loss per orbit

Equation (39) describes the rate of change of angular
momentum. The angular momentum lost per orbit of the
EOB particle is

ΔJ ¼ −
I

J 0dθ: ð76Þ

Substituting the bound orbit ubðθÞ from Eq. (67) into the
above equation, we get

ΔJ ¼
2πAk3m2q21q

2
2hνðbÞðγ2ðbÞ þ2γ2ðbÞhνðbÞ−1Þ

3j2

þ
πBð3γ4−2γ2ðbÞ−1Þk3m3q21q

2
2h

2
νðbÞ

6j2
þOðk4Þ: ð77Þ

Now, using the EOB mapping in Eq. (61), we can evaluate
the angular momentum loss per orbit of the original binary
system,

ΔJ ¼
2πAk3m2q21q

2
2hνðbÞð−νγ3ðbÞ þ γðbÞνþ hνðbÞðγ2ðbÞ þ 2γ2ðbÞhνðbÞ − 1ÞÞ

3J2

−
πBðγ2ðbÞ − 1Þk3m3q21q

2
2hνðbÞð3γðbÞðγ2ðbÞ − 1Þν − ð3γ2ðbÞ þ 1Þh2νðbÞÞ

6J2
þOðk4Þ: ð78Þ

Substitution of A and B in the above equation produces a
lengthy expression, which is not illuminating and will
not be given here. However, the final expression thus
obtained matches exactly the one obtained from Eq. (D5).
In other words, ΔJ from our EOB formalism is precisely
2k3δJ3 þOðk4Þ.
As in the case of energy loss, the nonrelativistic limit of

ΔJ yields

ΔJ ¼ ΔJnr þO
�
Enr

M

�
; ð79Þ

ΔJnr ¼
4πk3m2q21q

2
2

3J2

�
q1
m1

−
q2
m2

�
2

: ð80Þ

The above expression for ΔJnr matches precisely with the
explicit nonrelativistic computation of angular momentum
loss given in Appendix B.

VII. COMPARISON TO OTHER APPROACHES

In the previous section, we demonstrated how to use the
EOB formalism to derive physical quantities for the binary
orbit from the unbound-orbit ones. We also showed that the
EOB formalism gives identical results to the other
approaches. In this section, we compare and contrast our
approach to certain other ones, although mainly concerning
gravitational dynamics, already available in the literature.

A. Effective-field-theory-inspired approach

The EFT-based approach for gravitational binaries of
nonrotating compact objects was pioneered by Goldberger
and Rothstein [64,65]. The extension of the approach that
accounts for the spin was also later developed [66,67]. For a
modern review of the EFT approach to gravitational
dynamics, consult [68]. EFT methods have recently been
used to study PM dynamics [69–74], even including the
radiation effects [45,75–81].
In Sec. III B, we invoked Eq. (29) as a deformation of the

standard Lorentz-Dirac equation to account for the recoil
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effects. However, one can also motivate the same deformed
Lorentz-Dirac equation from EFT-inspired reasoning. To
this end, instead of referring to the Lorentz-Dirac equation,
we can seek the most general form of the radiation-reaction
force that is allowed by symmetries of the system. More
specifically, we look for additions to the Lorentz force
equation that are (1) Lorentz invariant, (2) gauge invariant,
(3) orthogonal to _xν. The above assumptions, along with
the fact that F μ

ν ¼ OðkÞ and kq2=m has dimensions of
length, imply that the allowed terms, up to Oðk3Þ, are
proportional to

fAF μ
ν;α _xν _xα; BðF μ

νF ν
α _xα − F α

νF ν
β _xβ _xα _xμÞ;

kCF μ
ν;ασ _xν _xα _xσg; ð81Þ

where A, B, and C are three parameters of dimensions
q21=m

2
1, q

2
1=m

3
1, and q41=m

3
1, respectively. The idea is to

generate terms by either takingmultiple derivatives ofF and
contraction with an appropriate number of velocity vectors
or taking products of F ’s and contracting by an appropriate
number of velocity vectors or a combination of these two.Of
course, while generating these terms, one should be mindful
of the order in k of the same as well as introduce appropriate
coefficients so that the terms have the desired dimension.
The simplest term obtained in this manner, therefore, has the
schematic form ∂xF _x _x, followed by FF _x and, finally,
∂x∂xF _x _x _x, exhausting terms up to Oðk3Þ. By extending
this logic, one canwrite down the radiation-reaction terms to
any desired order and introduce appropriate parameters,
which can be fixed by matching observables of the EOB
problem to that of the original two-body one.

B. Conventional approaches to EOB
for dissipative dynamics

The dissipative effects due to radiation can be accounted
for by adding an appropriate radiation-reaction term to the
equation of motion. Retaining our notation for the polar
coordinates for the relative coordinate, the radiation-reaction
f force can be generically written as f ¼ frr̂þ ðfθ=rÞθ̂. The
rate of change of total angular momentum and energy takes
the following form [33,82]:

dE
dt

¼ dr
dt

fr þ
dθ
dt

fθ; ð82Þ

dJ
dt

¼ fθ: ð83Þ

Finding the components ffr; fθg of the radiation-reaction
force requires balancing the energy and angular momentum
emitted to infinity by radiation with that dissipated by the
EOB system. In the gravity case, this PM-inspired approach
was used to determine the radiation response force as a series
inG. To facilitate this, in Ref. [44], the RR force components
were written in terms of two functions cr and cp, such that

f≡ ðcr þ cpÞprr̂þ
cpJ
r

θ̂; ð84Þ

where pr is the radial component of the relative momentum.
The idea is to find the functions fcr; cpg by an appropriate
matching of the energy and angular momentum radiated as
gravitational waves to, respectively, the energy and angular
momentum lost by the binary system. In the spirit of PM and
further assuming fcr; cpg to be functions of only r and jpj2,
Ref. [44] describes the general procedure to find these
functions as a series in G and gives explicit results up
to OðG2Þ.
One can employ a similar approach for the EM case as

well. As opposed to the top-down approach for RR force in
Ref. [44], our method begins with the most general
expression for the RR force at the desired order, so the
series expansions of the corresponding functions fcr; cpg
are straightforward and follow directly from expanding the
appropriate components of Eq. (29). To this end, we first
assume the functions cr and cp to have the following
general expansion:

cr ¼
1

r

��
kq1q2
Mr

�
2

cð2Þr þ
�
kq1q2
Mr

�
3

cð3Þr þ � � �
�
; ð85Þ

cp ¼ 1

r

��
kq1q2
Mr

�
2

cð3Þp þ
�
kq1q2
Mr

�
3

cð3Þp þ � � �
�
: ð86Þ

On the other hand, the radial and angular components of the
RR force in Eq. (29) that, ignoring the C-dependent term,
take the forms

fr ¼
�
2kA
3

∂rF −
2kBJ 2

3mr2ε
F 2

�
prþ; ð87Þ

fθ ¼
�
2kAF
3r

−
2kmBF 2

ε

�
1þ J 2

m2r2

��
J ; ð88Þ

where F ¼ −∂rϕ and ε ¼ m_t. In the above equation, we
can use the definition of fcr; cpg from Eq. (84) and the
series expansion for the ϕ obtained in Sec. V to arrive at

cr ¼
1

r

�
−
2Ak2q1q2ϕ1hν

r2
þ
�
−
16Ak3νq21q

2
2ϕ2hν

3mr3

þ 2Bk3q21q
2
2ϕ

2
1h

2
ν

3γr3

�
þOðk4Þ

�
; ð89Þ

cp ¼ 1

r

�
2Ak2q1q2ϕ1hν

3r3
þ
�
4Ak3νq21q

2
2ϕ2hν

3mr3

−
2Bk3q21q

2
2ϕ

2
1h

2
νðj2 þm2r2Þ

3γm2r5

�
þOðk4Þ

�
; ð90Þ

where A and B are also as found in Sec. V.
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We can now compare our findings to those related to
gravity [44]: First, in Ref. [44], it was found that demand-
ing δE and δJ at OðG2Þ in the gravitational case fixes the
RR force entirely at that order. For instance, the fact that δE
vanishes at Oðk2Þ implies that cp ¼ −3cr þOðG4Þ. Using
Eqs. (89) and (90), it is easy to see that the analogous
condition, namely, cp ¼ −3cr þOðk4Þ, is automatically
satisfied in our formalism.

VIII. SUMMARY AND FUTURE OUTLOOK

We have described the effective-one-body formalism for
conservative and radiative dynamics of a relativistic
electromagnetic binary system. As a concrete illustration
of the formalism, we discussed the details of EOB
dynamics at Oðk3Þ. At this order, the system’s symmetry
requires that the EOB dynamics be parametrized by three
conservative parameters fϕ1;ϕ2;ϕ3g and three dissipative
parameters fA;B;Cg. While the former set describes the
conservative potential of the EOB dynamics, the latter
captures the radiation-reaction force. However, physical
arguments show that the parameter C is irrelevant for
observables at Oðk3Þ. By matching the conservative part of
the Oðk3Þ scattering angle of the original two-body
problem and that of the EOB system, we found the explicit
forms of the parameters fϕ1;ϕ2;ϕ3g. Similarly, by com-
paring the Oðk3Þ radiated energy and Oðk2Þ angular
momentum on both sides, following the EOB mapping
reviewed in Sec. III A, we found the explicit forms of the
dissipative parameters A, B. With the exact values of
fϕ1;ϕ2;ϕ3g and A, B, our formalism describes the full
dynamics of an electromagnetically charged binary system
at Oðk3Þ, including certain nonperturbative aspects. As a
further application and cross-check, we have studied the
bound-orbit dynamics of the system at Oðk3Þ using our
formalism. To this end, we focused on calculating three
observables: the periastron shift (Δϕ), radiated energy per
orbit (ΔE), and radiated angular momentum per orbit (ΔJ).
Our results for these observables match perfectly with the
ones expected from the method of unbound-to-bound
analytical continuation.
Interestingly, our formalism leads to a conjecture for the

subleading contribution to the net angular momentum loss
for the unbound orbits (δJ3), whose explicit computations
are unavailable yet. The significance of the subleading
angular momentum loss in a scattering encounter is that via
an analytic continuation argument [see Eq. (D5) and, for
more details, [49]]; one can show that δJ3 is directly related
to the leading-order radiated angular momentum per period
in a bound orbit. Using our EOB formalism, we have also
independently shown that this is, in fact, the case. As a
corollary, our formalism leads to the leading-order PL
expression for radiated angular momentum per period for a
bound orbit, valid to all orders in velocity. The non-
relativistic limit of the angular momentum loss can be

independently derived from standard results on dipole
radiation (see Appendix B). We verified that the non-
relativistic limit of our expression for ΔJ matches precisely
with that obtained by explicit nonrelativistic calculations,
potentially indicating that our conjecture is accurate. It
must be emphasized that a mere analytic continuation of δJ
up to the order available in [49] gives ΔJ ¼ 0þOðk3Þ,
rendering the approach essentially futile in making pre-
dictions of leading-order angular momentum loss in bound
orbits. Moreover, as noted in Ref. [49], the explicit
computation of δJ3 (and, by analytical continuation, ΔJ)
requires first solving the exact forms of the worldlines of
the original scattering particles atOðk3Þ. The solving of the
worldlines at 3PL involves rather cumbersome integrals.
However, if correct, the EOB approach offers an extremely
economical way to derive δJ3 and ΔJ. In summary, our
conjecture for the leading-order ΔJ shows that our EOB
formalism is not only a convenient resummation of the
already available 3PL results, but also has predictive power.
In Sec. VII A, we have briefly discussed a plausible

alternate interpretation of the EOB dynamics in terms of the
EFT framework. However, it is desirable to formalize the
reasoning therein, which will be the subject of a forth-
coming publication. Here, we will briefly outline how one
could achieve this objective. The standard Lagrangian-
based EFT approach cannot efficiently account for dis-
sipative effects. An elegant Lagrangian formulation of
classical dissipative systems, inspired by the Schwinger-
Keldysh formalism for nonequilibrium quantum systems,
was proposed in [63]. For the EOB particle considered in
this work, the application of this formalism starts with the
doubling xμ → fxμ1; xμ2g, while the Lagrangian takes the
form

L ¼ LEMðxμ1; _xμ1Þ − LEMðxμ1; _xμ1Þ þ Kðxμi ; _xμi Þ; ð91Þ

where i ¼ 1, 2, LEm is the standard quadratic Lagrangian
for a particle in an external electromagnetic field, andK is a
function that cannot be written as a difference of the form
fðxμ1; _xμ1Þ − fðxμ2; _xμ2Þ. The radiation-reaction terms can be
accounted for by an appropriate choice of Kðxμi ; _xμi Þ. This
choice, in turn, may be further constrained by the sym-
metries of the systems and expanded in powers of coupling
k in a manner analogous to the standard EFT approach.
Presumably, such a systematic procedure would lead to an
alternate, more rigorous justification for the deformed
Lorentz-Dirac equation given in Eq. (29). Further, it would
be interesting to see if the RR coefficients (i.e., A, B, C,
etc.) can be directly related to the scattering amplitude
analogous to the conservative potential extracted from
amplitudes.
We are confident that the formalism outlined here for

the EM case can be extended to gravity. However, one
immediate hurdle to a naive extension of our approach to
the GR case is that, even in the test-particle limit, the
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leading-order RR force, as, for instance, described by the
MiSaTaQuWa equation [83,84], is not a simple local
function of the worldline of the particle. Rather, it depends
on the history of the particle as well. Nevertheless, one
might seek a suitable deformation of the MiSaTaQuWa
equation that can serve as the RR term in the EOB equation
of motion.
Alternatively, one might employ the series expansion

approach described in [44] (and briefly revised in
Sec. VII B). Regarding this, in Ref. [44], it was assumed
that cr and cp are functions of r and jp⃗j2. It appears that the
EM analog of this assumption is inconsistent with the
expressions for cr and cp given by Eqs. (89) and (90). It
seems more reasonable to regard fcðiÞr; cðiÞpg as functions
of both jp⃗j2 and ðJ 2=m2r2Þ. Consequently, the assumption

that the RR force can be written in radial gauge appears to
be not true, at least in the EM case. In GR, this assumption
(of dependence on only r and jp⃗j2) may hold, while the
same is violated in EM. If this is the case, it merits
additional investigation and will be the subject of sub-
sequent studies.
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APPENDIX A: THIRD-ORDER ENERGY
AND ANGULAR MOMENTUM

The third-order angular momentum is given by

J 3ðθÞ ¼ AJ 3ðAÞðθÞ þ BJ 3ðBÞðθÞ þ CJ 3ðCÞðθÞ; ðA1Þ

J 3ðAÞ ¼
γ2m2q21q

2
2hνðϕ2

1hνð4 sinðθÞ − 2θðv2 þ 2Þ þ v2 sinð2θÞÞ þ 2γνv2ϕ2ð2θ − sinð2θÞÞÞ
6j2

; ðA2Þ

J 3ðBÞ ¼ −
γ2m3q21q

2
2v

2ϕ2
1h

2
νð4θð3γ2v2 þ 4Þ þ γ2v2 sinð4θÞ − 8 sinð2θÞðγ2v2 þ 1ÞÞ

48j2
; ðA3Þ

J 3ðCÞ ¼
4γ6m5q1q2v6ϕ1hνsin6ðθÞ

9j4
: ðA4Þ

The third-order energy turns out to be

E3 ¼ AE3ðAÞðθÞ þ BE3ðBÞðθÞ þ CE3ðCÞðθÞ; ðA5Þ

E3ðAÞðθÞ ¼
γ3hm3q21q

2
2v

2ðhϕ2
1ð−2θ þ sinðθÞ þ 5 sinð2θÞ − 3 sinð3θÞÞ − 8γνv2ϕ2sin3ðθÞ cosðθÞÞ

6j3
; ðA6Þ

E3ðBÞðθÞ ¼ −
γ5h2m4q21q

2
2v

4ϕ2
1ð12θ − 8 sinð2θÞ þ sinð4θÞÞ

48j3
; ðA7Þ

E3ðCÞðθÞ ¼ −
2γ5hm4q1q2v5ϕ1sin3ðθÞð3 cosð2θÞ þ 1Þ

9j3
: ðA8Þ

APPENDIX B: NONRELATIVISTIC LIMIT OF
ANGULAR MOMENTUM AND ENERGY LOSS

The dipole formula for the rate of radiated angular
momentum loss is [85]

dJ
dt

¼ −
2k
3
D ×D

…
; ðB1Þ

where D is the dipole moment vector. For a binary system
of charges, we have

D ¼
�
q1
m1

−
q2
m2

�
mr; ðB2Þ

where r is the position vector of particle 2 with respect to
particle 1. In the nonrelativistic limit, the force between the
charges is the simple Coulomb force. Using this fact, the
rate of angular momentum loss

dJ
dθ

¼ −
2k2mq1q3

3r

�
q1
m1

−
q2
m2

�
2

: ðB3Þ
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The nonrelativistic orbit is given by r ¼ R=ð1þ σ cos θÞ,
where σ2¼1þ 2EnrJ2

mðkq1q2Þ2 and R ¼ J2=ðkq1q2mÞ. Integrating
the above equation over one orbital period, we find that the
nonrelativistic limit of angular momentum loss per orbit is
given by

ΔJnr ¼
4πk3m2q21q

2
2

3J2

�
q1
m1

−
q2
m2

�
2

: ðB4Þ

The dipole energy loss, on the other hand, has the
following expression [85]:

dE
dt

¼ −
2k
3
D
…
• _D: ðB5Þ

Again, using the fact that the force between the particles is
Coulombic, the above equation simplifies to

dE
dθ

¼ 2k3mq21q
2
2

3Jr2

�
q1
m1

−
q2
m2

�
2

: ðB6Þ

Upon integrating the above equation for one orbit, we get

ΔEnr ¼
4πm2k3q21q

2
2Enr

3J3

�
q1
m1

−
q2
m2

�
2

þOðk4Þ: ðB7Þ

APPENDIX C: EXPANSION ABOUT THE
TEST-PARTICLE LIMIT

It is instructive to look at expansions of the EOB
parameters in the symmetric mass ratio ν. The effective
potential takes the form

ϕðrÞ ¼ kq1q2
r

þ ν

�ðγ − 1Þkq1q2
r

þ ðγ − 1Þk2q21q22
2γmr2

−
ð2γ þ 1Þk3q31q32
2γ2ðγ þ 1Þm2r3

þOðk4Þ
�
þOðν2Þ; ðC1Þ

which has the leading-order term consistent with that
expected from the test-particle limit. On the other hand,
the radiative coefficients have the expansions

α1 ¼ 1þ ð1 − γÞνþOðν2Þ; ðC2Þ

α2 ¼
3ðtanh−1ðvÞ − vγ2Þ

v3γ3
þ 3ðγ − 1Þðvγ2 − tanh−1ðvÞÞν

v3γ3

þOðν2Þ; ðC3Þ

β1 þ β2 ¼ 1þ ð2 − 6γ2Þν
3γ þ 3

þOðν2Þ; ðC4Þ

β3 ¼
νðð−6γ2þ4γ−2Þcosh−1ðγÞþ2γð3γððγ−2Þγþ3Þ−4ÞvÞ

γ4ðγþ1Þv3 þð3γ−1Þcosh−1ðγÞþ γðð5−3γÞγ−4Þv
γ4ðγþ1Þv3 þOðν2Þ: ðC5Þ

In particular, at the leading order, α1 and β1 þ β2 are both
unity, which is also consistent with the expected test-
particle limit.

APPENDIX D: RESULTS FOR BOUND ORBITS
FROM OTHER METHODS

In this appendix, we give the results of the analytical
continuation method for (1) the periastron shiftΔΦ [22,42],
(2) the energy radiated per orbital period (ΔE) [49,86], and
(3) the angular momentum loss per orbital period (ΔJ) [49].
Following Refs. [22,42], the periastron shift can be found
from the scattering angle by analytically continuing Enr
and J,

ΔΦðEnr; JÞ ¼ −χðEnr; JÞ − χðEnr;−JÞ: ðD1Þ

Note that the left-hand side is defined for Enr < 0, while the
right-hand side is written in terms of functions originally
defined for Enr > 0, but analytically continued to the
bound-orbit domain Enr < 0. Hence, from Eq. (13), the
leading-order periastron shift takes the following form:

ΔΦ ¼ πk2q21q
2
2

J2hνðbÞ
þOðk4Þ: ðD2Þ

Similarly, following Refs. [49,86], the energy loss per orbit
can be obtained by analytically continuing the energy, i.e.,

ΔEðEnr; JÞ ¼ δEðEnr; JÞ − δEðEnr;−JÞ: ðD3Þ
As in the expression for the periastron shift, on the left-
hand side is a function naturally defined for bound orbits
(Enr < 0), while the right-hand side is constructed from
analytic continuations of functions originally defined for
scattering orbits (Enr > 0). From Eq. (18), the energy loss
per orbit is then given by

ΔE¼
πm3k3q21q

2
2ðγ2ðbÞ−1Þ

2J3h4νðbÞ

�ð3γ2ðbÞ þ1Þ
3

�
q21
m2

1

þ q22
m2

2

�

þ
ðγðbÞ−1Þð3γ2ðbÞ þ1Þ

3

�
q21m
m3

1

þq22m
m3

2

�
−GðγðbÞÞ

q1q2
m1m2

�

þOðk4Þ: ðD4Þ
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Likewise, the loss of angular momentum per orbit is [49]

ΔJðEnr; JÞ ¼ δJðEnr; JÞ þ δJðEnr;−JÞ: ðD5Þ

Since the second-order contribution to δJ is odd in J, the
above equation implies that ΔJ is Oðk3Þ. In particular,

ΔJ ¼ 2k3δJ3 þOðk4Þ; ðD6Þ

where δJ3 on the right-hand side of the above equation is to
be understood as the analytic continuation of the same [i.e.,
as given in Eq. (64)] to the domain Enr < 0.
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