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We consider a modified gravity model that we call “dynamical Henneaux-Teitelboim gravity” because of
its close relationship with the Henneaux-Teitelboim formulation of unimodular gravity. The latter is a fully
diffeomorphism-invariant formulation of unimodular gravity, where full diffeomorphism invariance is
achieved by introducing two additional nondynamical fields: a scalar, which plays the role of a
cosmological constant, and a three-form whose exterior derivative is the spacetime volume element.
Dynamical Henneaux-Teitelboim gravity is a generalization of this model that includes kinetic terms for
both the scalar and the three-form with arbitrary couplings. We study the field equations for the cases of
spherically symmetric and homogeneous, isotropic configurations. In the spherically symmetric case, we
solve the field equations analytically for small values of the coupling to obtain an approximate black hole
solution. In the homogeneous and isotropic case, we perturb around de Sitter space to find an approximate
cosmological background for our model.

DOI: 10.1103/PhysRevD.108.024031

I. INTRODUCTION

A. Overview

Cosmic inflation solves a number of fundamental prob-
lems in cosmology by positing an early period of rapid
expansion driven by a constant part of the stress energy
tensor—it provides a framework for explaining why the
observable universe is nearly flat and isotropic [1–3], and it
gives a mechanism for a large-scale structure to form from
density perturbations in the early universe [4]. Meanwhile,
the present cosmological epoch is dominated by dark energy
that is usually attributed to a cosmological constant, albeit a
vastly smaller one [5,6]. In light of these facts, as well as the
recent controversy over the Hubble tension [7,8], and the
long-standing cosmological constant problems [9–11],
simple modifications of general relativity where the cos-
mological constant is promoted to a dynamical field are
worthy of consideration.
One route to accomplishing this is to consider modified

gravity models where the Bianchi identities no longer imply

conservation of the stress energy tensor, but only the weaker
condition that the divergence of the stress tensor is a total
derivative. A minimal modification of general relativity in
which this can be achieved is unimodular gravity [12]. In the
standard formulation of unimodular gravity, the spacetime
volume element is constrained to be equal to a prescribed
background density, with the result that the equations of
motion become the trace-free Einstein equations

Rμν −
1

4
Rgμν ¼ κ

�
Tμν −

1

4
Tgμν

�
; κ ¼ 8πGN: ð1Þ

Taking the divergence of (1) and using the contracted
Bianchi identity ∇μRμν ¼ 1

2
∇νR lead to

∇μTμν ¼
1

4
∇νðRþ κTÞ: ð2Þ

If one imposes conservation of the stress tensor, then we
learn that Λ≡ 1

4
ðRþ κTÞ is a constant, which is just the

pure-trace part of the Einstein equations, in which case
unimodular gravity is classically equivalent to general
relativity. However, if we are willing to consider non-
conserved stress tensors, then unimodular gravity is physi-
cally distinct from general relativity even at the classical
level.1 Some recent proposals for modified gravity models
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1For a recent review of the sometimes subtle differences
between unimodular gravity and general relativity, see [13].
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that draw on ideas from unimodular gravity and topological
field theory lead to the same type of nonconservation of
the stress tensor and the consequent fluctuations in the
effective cosmological constant [14–16]. Here, we promote
the cosmological constant to a dynamical field by consid-
ering a minimal modification of a fully diffeomorphism
invariant, background independent reformulation of unim-
odular gravity due to Henneaux and Teitelboim [17], and we
study the implications for spherically symmetric black holes
and homogeneous, isotropic cosmology.
The paper is structured as follows: in Sec. I B, we give a

brief review of unimodular gravity; in Sec. II, we introduce
dynamical Henneaux-Teitelboim gravity; Sec. III is
devoted to the study of spherically symmetric black holes;
and in Sec. IV we take a first look at the implications of
dynamical Henneaux-Teitelboim gravity for a simple
homogeneous, isotropic cosmological model.

B. Unimodular gravity

The action for unimodular gravity is simply the Einstein-
Hilbert action where the spacetime volume element

ffiffiffiffiffiffi−gp
has been replaced with a fixed background density ϵ:

SUMG ¼
Z
M

ϵ

�
1

2κ
RðgÞ þ LMðg;ψÞ

�
d4x; ð3Þ

where gμν is a metric satisfying
ffiffiffiffiffiffi−gp ¼ ϵ and ψ represents

any matter fields that are present. Varying (3) with respect
to gμν leads to the trace-free Einstein equation (1). The
introduction of the background density ϵ breaks diffeo-
morphism invariance down to transverse diffeomorphism
invariance—i.e., invariance with respect to diffeomor-
phisms generated by vector fields ξ satisfying

Lξðϵd4xÞ ¼ 0: ð4Þ

To preserve full diffeomorphism invariance while retain-
ing the spirit of unimodular gravity, Henneaux and
Teitelboim [17] considered the action2

SHT ¼
1

κ

Z
VolðgÞ

�
1

2
RðgÞ−φþ κLMðg;ψÞ

�
þφdH; ð5Þ

where φ is a scalar, H is a three-form, and VolðgÞ ¼ffiffiffiffiffiffi−gp
d4x is the volume form associated with gμν. Varying

with respect to gμν gives the full set of Einstein’s equations
with φ playing the role of the cosmological constant:

Rμν −
1

2
Rgμν þ φgμν ¼ κTμν: ð6Þ

On the other hand, varying with respect to H leads to
dφ ¼ 0, so the gravitational equations of motion are
equivalent to the usual Einstein equations. Finally, varying
with respect to φ gives VolðgÞ ¼ dH, so whileH is varied
in the action, it can be thought of as a potential for the
spacetime volume in much the same way that ϵ fixes the
spacetime volume in the standard formulation of unim-
odular gravity. Since there are no background structures,
the action (5) is invariant under the full group of diffeo-
morphisms. There is also a gauge symmetry under
H → Hþ dΩ for any two-form Ω.
In addition to restoring background independence and

full diffeomorphism invariance, the Henneaux-Teitelboim
formulation of unimodular gravity automatically has a
conserved stress tensor, unlike the standard formulation.
However, if one introduces additional terms into the
Lagrangian that couple the new fields φ and H to the
metric, this may no longer be the case. As we shall see in
the following section, introducing kinetic terms for both φ
and H is sufficient to violate conservation of the stress
tensor just enough to induce fluctuations in the effective
cosmological constant φ, although including a kinetic term
for just one of them is not.

II. DYNAMICAL HENNEAUX-TEITELBOIM
GRAVITY

We now consider “dynamical Henneaux-Teitelboim
gravity,” defined by the action

SDHT ¼ SHT − α

Z
dH ∧ �dH − β

Z
dφ ∧ �dφ; ð7Þ

which enjoys the same symmetries as the Henneaux-
Teitelboim formulation of unimodular gravity—it is back-
ground independent and fully diffeomorphism invariant,
and it retains the gauge symmetry H → Hþ dΩ for any
two-form Ω. Here and for the remainder of the article we
use geometrized units c ¼ GN ¼ 1, which renders κ dimen-
sionless and gives the action dimensions of ðlengthÞ2.
As a result, α acquires dimensions of ðlengthÞ−2, while
β ∼ ðlengthÞ4.
Varying (7) with respect to gμν leads to the Einstein field

equations with the dynamical field φ playing the role of the
cosmological constant, and where the stress tensor gets
contributions from the old matter Lagrangian LMðg;ψÞ, as
well as the kinetic terms for H and φ:

Rμν −
1

2
Rgμν þ φgμν ¼ κTμν; ð8Þ

Tμν ¼ TðψÞ
μν þ TðφÞ

μν þ TðHÞ
μν ; ð9Þ

where

2Smolin has shown in [18] that certain aspects of the
cosmological constant problem can be resolved using path
integral methods based on the action (5).
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TðψÞ
μν ¼ −

2ffiffiffiffiffiffi−gp ∂LM

∂gμν
þ gμνLM; ð10Þ

TðφÞ
μν ¼ −β

�
∇μφ∇νφ −

1

2
gμν∇ρφ∇ρφ

�
; ð11Þ

TðHÞ
μν ¼ −α

Q̃2

jgj gμν; ð12Þ

withQ ¼ dH, and Q̃ ¼ 1
4!
Qabcdϵ

abcd. The trace-free part of
the gravitational equation (8) is just the trace-free Einstein
equation (1), which, as we noted in the Introduction,
implies that the divergence of the stress tensor is a total
derivative ∇μTμν ¼ 1

4
∇νðRþ κTÞ. On the other hand, the

pure-trace part of (8) is simply φ ¼ 1
4
ðRþ κTÞ. Putting

these together gives

∇νφ ¼ ∇μTμν: ð13Þ

So we see that fluctuations in φ are sourced by non-
conservation of the stress tensor of precisely the type we
have alluded to. As for the scalar and three-form equations
of motion, we can vary (7) with respect to φ to obtain

dH ¼ VolðgÞ − 2βd � dφ; ð14Þ

while varying (7) with respect to H gives

dφ − 2αd � dH ¼ 0: ð15Þ

Taking the Hodge star of (14) and inserting the result into
(15) leads to

dðφþ 4αβ□φÞ ¼ 0; ð16Þ

while taking the Hodge star of (15) and plugging it into
(14) gives

dðHþ 4αβd†dHÞ ¼ VolðgÞ; ð17Þ

where d† ≡ �d�. From Eqs. (16) and (17), we see that if
either α ¼ 0 or β ¼ 0, then we recover dH ¼ VolðgÞ and
dφ ¼ 0, and the model is equivalent to the Henneaux-
Teitelboim formulation of unimodular gravity. However,
when αβ ≠ 0, we obtain nontrivial dynamics for φ.

III. BLACK HOLES

We would like to investigate the implications of this
model for black holes. Our approach is similar to [19], in
which metrics for black holes and other compact objects
were studied for the general case of unimodular gravity with
a nonconserved stress tensor, although here we focus on the
black hole solutions of dynamical Henneaux-Teitelboim

gravity in particular. For this, we consider the static,
spherically symmetric ansatz

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2
2; ð18Þ

H ¼ hðrÞ sin θdt ∧ dθ ∧ dϕ; ð19Þ

φ ¼ φðrÞ; ð20Þ

where the ansatz for H is the most general spherically
symmetric, static three-form up to gauge transformations
and dΩ2

2 ¼ dθ2 þ sin2 θdϕ2 is the round metric on the unit
two-sphere. Additionally, we will only consider contribu-
tions to the stress tensor from H and φ; i.e., we will set
LM ¼ 0 in (7).
Since the stress tensor for H is pure trace, it will be

convenient to divide the Einstein equations into trace-free
and pure-trace parts. The trace-free equations are (1), while
the pure-trace equation is

φ ¼ 1

4
ðRþ κTÞ; ð21Þ

where

R ¼ 1

2r2A2B2
½r2BA02 þ r2AA0B0 − 2rABðrA00 þ 2A0Þ

þ 4A2ðrB0 þ B2 − BÞ� ð22Þ

and

T ¼
�
β
φ02

B
−
4αh02

ABr4

�
ð23Þ

for the static, spherically symmetric ansatz (18)–(20).
Similarly, the trace-free equations reduce to

uþ 1

2rAB2
ðAB0 þ A0BÞ ¼ −κβ

4B
ðφ0Þ2; ð24Þ

−uþ 1

2rAB2
ðAB0 þ A0BÞ ¼ −3

κβ

4B
ðφ0Þ2; ð25Þ

u ¼ βκ

4B
ðφ0Þ2; ð26Þ

where we have defined

u ¼ 1

8r2A2B2
ð2ABA00r2 − AB0A0r2 − BðA0Þ2r2

þ 4A2B2 − 4A2BÞ: ð27Þ

In the above, Eqs. (24)–(26) are the tt, rr, and θθ
components of the trace-free Einstein equations, while
the ϕϕ component is identical to the θθ component, and
all the off-diagonal components vanish. Equations (24)–(26)
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are linearly dependent: by either subtracting (26) from (24)
or adding (26) to (25), we obtain

1

2rAB2
ðAB0 þ A0BÞ ¼ −

κβ

2B
ðφ0Þ2; ð28Þ

which can be integrated to give

AB ¼ e
−κβ

R
r

r0
r̃φ0ðr̃Þ2dr̃ ≡ efðrÞ: ð29Þ

Inserting the above into (26) and using (27) leads to

1

4
A00 þ 1

8
βκrA0φ02 −

A
2r2

þ 1

2r2
efðrÞ ¼ βκ

4
ðφ0Þ2A: ð30Þ

Doing the same for the trace part of the Einstein equa-
tions (21)–(23) and inserting the result into (30) gives

−
A0

r
− A

�
1

r2
−
κβφ02

2

�
þ
�
1

r2
− φ

�
efðrÞ ¼ ακ

r4
h02; ð31Þ

which is a first-order linear equation for AðrÞ. The general
solution is

AðrÞ ¼ 1

r
e
fðrÞ
2

�Z
r

l
e
1
2
fðRÞð1 −GðRÞR2ÞdR − 2m

�
; ð32Þ

where the mass m appears as an integration constant, the

lower end point of integration l ¼
ffiffiffiffi
3
Λ0

q
, and Λ0 is fixed by

matching to the (A)de Sitter (dS)-Schwarzschild metric in
the “decoupling limit,” on which we expand below, and we
have defined

GðrÞ ¼ φþ ακ

r4
e−fðrÞh02: ð33Þ

From (14) and (15), we notice that we can recover the (A)
dS-Schwarzschild metric in the limit as β → 0, 1=α → 0,
and 1=ðαβÞ → 0, which we call the decoupling limit. Notice
that this limit does not reduce the order of the equation of
motions for the scalar φ (16) or for the three-formH (17). In
this case, Eq. (14) leads to dH ¼ VolðgÞ and consequently
d � dH ¼ 0 in Eq. (15). Then Eq. (17) is redundant, while
Eq. (16) becomes d□φ ¼ 0 for which φ ¼ const is a
consistent solution. When dH ¼ VolðgÞ, the stress energy
tensor forH is just a constant times the metric, which can be
absorbed into the cosmological constant. At the level of the
action, we can integrate out H by inserting the solution to
the equation of motion for φ, which is dH ¼ VolðgÞ. Then,
the gauge kinetic term just becomes SH ¼ α

R
VolðgÞ,

which contributes as a cosmological constant term.
We now turn our attention to the equations of motion (16)
and (17) for H and φ. To make progress, through the
decoupling limit, we replace gμν in Eqs. (16) and (17) with

the (A)dS-Schwarzschild metric, gð0Þμν . Now the equation of
motion for H (17) can be integrated once to give

hðrÞ − 4αβA0ðrÞ
�
h00ðrÞ − 2h0ðrÞ

r

�
¼ 1

3
r3 þ C; ð34Þ

where A0ðrÞ ¼ 1 − 2m
r − Λ

3
r2 is the metric function for an

(A)dS-Schwarzschild black hole. This is a linear, inhomo-
geneous equation for hðrÞ, so the general solution is of the
form

hðrÞ ¼ h0ðrÞ þ hpðrÞ; ð35Þ

where h0ðrÞ is the solution of the homogeneous equation
and hpðrÞ is a particular solution. One can check that
hpðrÞ ¼ 1

3
r3 þ C is a satisfactory particular solution. The

corresponding homogeneous equation can be solved using
the method of Frobenius—i.e., we make a generalized
power series ansatz

h0ðrÞ ¼
X∞
n¼0

cnr−nþq: ð36Þ

The allowed values of q and coefficients cn are calculated in
the Appendix. Since the equation is second order, we find
two possible values for q corresponding to the two linearly
independent solutions of the homogeneous equation corre-
sponding to (34):

q ¼ q� ≡ 3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3Λαβ

s
: ð37Þ

Now the solution to the homogeneous equation becomes

h0ðrÞ ¼
X∞
n¼0

cþn r−nþqþ þ
X∞
n¼0

c−n r−nþq− ; ð38Þ

where the coefficients are determined by the following base
cases and recursion relation:

c�1 ¼ 0; ð39Þ

c�2 ¼ c�0 4αβq�ðq� − 3Þ
4Λαβ
3

ðq� − 2Þðq� − 5Þ þ 1
; ð40Þ

c�n ¼ 4αβ

1þ 4αβΛ
3

ð−nþ q�Þð−nþ q� − 3Þ
× ½c�n−2ð−nþ q� þ 2Þð−nþ q� − 1Þ
− 2mc�n−3ð−nþ q� þ 3Þð−nþ q�Þ�; n > 2: ð41Þ

The scalar field equation of motion is given by
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φ − 4αβ

�
A0 þ 2

r
A

�
φ0 − 4αβAφ00 ¼ Λ; ð42Þ

where A and φ both depend on the radius r. Again, we work
around the Schwarzschild-(A)dS metric AðrÞ ¼ A0ðrÞ and
apply the method of Frobenius, with our ansatz given by

φ − Λ ¼
X∞
n¼0

anr−nþs: ð43Þ

We once again refer the reader to the Appendix for the
computation of the allowed values of s and the coefficients
an. The roots of the indicial equation are

s ¼ s� ≡ −
3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3Λαβ

s
; ð44Þ

so again, we have two independent solutions, as we would
expect for a second-order equation. Now the solution
becomes

φ ¼ Λþ
X∞
n¼0

aþn r−nþsþ þ
X∞
n¼0

a−n r−nþs− ; ð45Þ

where the coefficients are

a�1 ¼ 0; ð46Þ

a�2 ¼
a�0

�
2s� þ 3

4Λαβ

�
2Λ
3
ð2s� þ 1Þ ; ð47Þ

a�n ¼ 1
Λ
3
ð−nþ s�Þð−nþ s� þ 3Þ þ 1

4αβ

× ½a�n−2ð−nþ s� þ 2Þð−nþ s� þ 3Þ
− 2ma�n−3ð−nþ s� þ 3Þ2�; n > 2: ð48Þ

Note that ℜðs�Þ < 0 for all values of Λ, α, and β, so that
limr→∞ φðrÞ ¼ Λ, with s� being real for Λ < 0 or Λ ≥ 1

3αβ.

On the interval 0 < Λ < 1
3αβ, s� become complex, including

the physically realistic case when Λ is small and positive.
One might worry that such a situation precludes a physically
meaningful solution for the most relevant region of param-
eter space; however, this is not the case. So far, we have
been assuming that the integration constants aþ0 and a−0 are
real and independent, but they still define a solution of the
homogeneous equation even when they are complex, albeit
a generically complex-valued one. If we instead take
a−0 ¼ āþ0 , then φ is real when s� are complex conjugates.
After some algebra, one finds the explicitly real form

φ ¼ Λþ
X∞
n¼0

2r−nþℜðsþÞ½wn cosðℑðsþÞ lnðrÞÞ

− zn sinðℑðsþÞ lnðrÞÞ�; ð49Þ

where wn ¼ ℜðaþn Þ and zn ¼ ℑðaþn Þ. The series expan-
sions above completely characterize the solutions for φ and
H in the asymptotic region. However, the series will not
converge for all values of r. We will provide expressions
for the radii of convergence of all of our series solutions at
the end of this section. With this in mind, we now search
for a solution to the equations of motion for small r.
The equation of motion for hðrÞ is still given by (34),
but now we guess a power series of the form h0ðrÞ ¼P∞

n¼0 c̃nr
nþq̃. The indicial equation is simply q̃ðq̃ − 3Þ ¼ 0,

giving the two roots q̃1 ¼ 3 and q̃2 ¼ 0. In general, the full
solution for the case of roots q̃1 > q̃2 differing by an integer
is given by

h0ðrÞ ¼
X∞
n¼0

c̃nrnþq̃1 þ k lnðrÞ
X∞
n¼0

c̃nrnþq̃1 þ
X∞
n¼0

d̃nrnþq̃2 ;

ð50Þ

where the procedure for determining the coefficients d̃n
depends on whether k vanishes. If k does vanish, the d̃n can
be obtained using the usual recurrence relation, and other-
wise they must be computed using a more complicated
approach. In general, the value of k is determined by

k ¼ lim
q̃→q̃2

ðq̃ − q̃2Þc̃q̃1−q̃2ðq̃Þ: ð51Þ

For this particular differential equation, the recurrence
relation for general q̃ is given by

c̃1ðq̃Þ ¼ c̃2ðq̃Þ ¼ 0; ð52Þ

c̃nþ3ðq̃Þ ¼
1

8αβmðnþ 3þ q̃Þðnþ q̃Þ

×

�
4αβc̃nþ2ðnþ 2þ q̃Þðn− 1þ q̃Þ

− c̃n

�
1þ 4αβΛ

3
ðnþ q̃Þðn− 3þ q̃Þ

��
; n≥ 0;

ð53Þ

from which we conclude that

k ¼ lim
q̃→0

q̃ c̃3ðq̃Þ ¼ 0: ð54Þ

Hence, the general solution becomes
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h0ðrÞ ¼
X∞
n¼0

c̃nrnþ3 þ
X∞
n¼0

d̃nrn; ð55Þ

where the coefficients are given by

c̃1 ¼ c̃2 ¼ 0; ð56Þ

c̃nþ3 ¼
4αβc̃nþ2ðnþ 5Þðnþ 2Þ − c̃n

�
1þ 4αβΛ

3
ðnþ 3Þn

�
8αβmðnþ 6Þðnþ 3Þ ;

ð57Þ

and

d̃1 ¼ d̃2 ¼ 0; ð58Þ

d̃nþ3 ¼
4αβd̃nþ2ðnþ 2Þðn − 1Þ − d̃n

�
1þ 4αβΛ

3
nðn − 3Þ

�
8αβmðnþ 3Þn ;

ð59Þ

with n ≥ 0. The equation of motion for φðrÞ is given by
(42), but now we guess a power series of the form
φðrÞ ¼ ΛþP∞

n¼0 ãnr
nþs̃. The indicial equation is

s̃2 ¼ 0; ð60Þ

giving repeated root s̃1 ¼ s̃2 ¼ 0, while the recurrence
relation for general s̃ is given by

ã1ðs̃Þ ¼ ã2ðs̃Þ ¼ 0; ð61Þ

ãnþ3ðs̃Þ ¼
1

2mðnþ s̃þ 3Þ2
�
ãnþ2ðnþ s̃þ 2Þðnþ s̃þ 3Þ

− ãn

�
1

4αβ
þΛ

3
ðnþ s̃Þðnþ s̃þ 3Þ

��
; n ≥ 0:

ð62Þ

In the special case of a repeated root, the solution takes the
general form

φðrÞ ¼ Λþ
X∞
n¼0

ãnrnþs̃

þ K̃

�
lnðrÞ

X∞
n¼0

ãnrnþs̃ þ
X∞
n¼1

b̃nrnþs̃

�
; ð63Þ

where K̃ is an integration constant. Here the coefficients an
are given by

ã1 ¼ ã2 ¼ 0; ð64Þ

ãnþ3 ¼
ãnþ2ðnþ 2Þðnþ 3Þ− ãn

�
1

4αβþ Λ
3
nðnþ 3Þ

�
2mðnþ 3Þ2 ; ð65Þ

and the coefficients bn are related to the an by

b̃n ¼
d
ds̃

ãnðs̃Þjs̃¼0; ð66Þ

with n ≥ 0.
The radius of convergence of each power series solution

is the distance in the complex plane between the point
around which the series is expanded and the nearest other
regular singular point of the differential equation. For both
(34) and (42), the regular singular points are located at
r ¼ 0, r ¼ ∞, and the zeros of A0ðrÞ. Thus, the radii of
convergence are determined by the roots of a general
depressed cubic equation

r3 −
3

Λ
rþ 6m

Λ
¼ 0 ð67Þ

with discriminant

Δ ¼ 1

Λ3
−
9m2

Λ2
: ð68Þ

The roots can be written as

R1 ¼ Sþ þ S−; ð69Þ

R� ¼ −
1

2
R1 �

1

2
i

ffiffiffi
3

p
ðSþ − S−Þ; ð70Þ

where

S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3m
Λ

�
�
−

1

Λ3
þ 9m2

Λ2

�
1=2

3

s
:

If Λ < 0, the discriminant is always negative and R1 will be
real, while R� are complex conjugates. The moduli are
jR1j2 ¼ ðSþ þ S−Þ2 while jR�j2 ¼ ðSþ þ S−Þ2 − 3SþS−.
Then, Sþ > 0 and S− < 0, leading to jR�j > jR1j.
So the radius of convergence of the r-series is given by
0 < r < jR1jwhile the radius of convergence of the 1

r-series
is given by 0 < 1

r <
1

jR�j.
If Λ > 0, we have two cases. If Λ > 1

9m2, then the
discriminant is negative and we still have R1 real with
R� being complex conjugates. Since Sþ < 0 and S− < 0,
jR1j > jR�j. Then the radius of convergence of the r-series
is given by 0 < r < jR�j while the radius of convergence
of the 1

r-series is given by 0 < 1
r <

1
jR1j.

Finally, if 0 < Λ < 1
9m2, then Sþ and S− become complex

conjugates and we have three real roots. This can be seen by
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writing S� ¼ ða� ibÞ1=3 ¼ ρ1=3e�iθ=3, where a ¼ − 3m
Λ ,

b ¼ ð 1
Λ3 − 9m2

Λ2 Þ1=2, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, and θ ¼ arctan−1ðb=aÞ.

Then, jR1j ¼ 2ρ1=3 cosðθ=3Þ, and jR�j ¼ ρ1=3ðcosðθ=3Þ�ffiffiffi
3

p
sinðθ=3ÞÞ. Since b=a < 0, i.e., −π=2 ≤ θ ≤ 0, we have

jR1j ≥ jR−j ≥ jRþj with equalities occurring only at the end
points of the interval. Hence, the radius of convergence of
the r-series is given by 0 < r < jR−j, while the radius of
convergence of the 1

r-series is given by 0 < 1
r <

1
jR1j.

With the series solutions for φ and H in hand, one can
now take into account the approximate backreaction on the
(A)dS-Schwarzschild background by substituting the sol-
utions for the fields into the general solution for the metric
function (32).
Using the series solutions for large r, one can perform a

numerical integration to plot the profile function AðrÞ
whose zeros are the black hole and cosmological horizons
for different values of a−0 and āþ0 , as shown in Fig. 1. As
expected, for appropriate values of the couplings and
integration constants, we find a pair of horizons that tend
to the dS-Schwarzschild ones as a�0 → 0. Note that the
discrepancy from A0ðrÞ of the inner horizon is greater than
the outer horizon. However, as φ is allowed to fluctuate
more strongly, i.e., as a�0 becomes large, the solution does
not have a horizon. In Fig. 2 we show the results for
different values of Λ0. For the solution to approach dS-
Schwarzschild in the decoupling limit, we fixΛ0 ¼ Λþ ακ.
For Λ0 < 0, the lower end point of integration in (32)
becomes imaginary and the solution becomes complex and

unphysical. Hence, we see that the model has a dynamical
preference for black holes with Λ0 ≥ 0.
This completes our analysis of spherically symmetric

black holes in dynamical Henneaux-Teitelboim gravity.
Another very natural question to consider is how the
dynamics of the effective cosmological constant modify
the standard cosmological background of general relativity,
which we study in the following section.

IV. COSMOLOGICAL ANALYSIS

We will now consider homogeneous, isotropic configu-
rations sourced only by the fields φ and H with no
additional matter content. Our analysis runs along the
same lines as other work on cosmology in unimodular
gravity with a nonconserved stress tensor, e.g., [20], where
the model we consider here serves as a concrete realization
of the general proposal.
We consider the Friedmann-Robertson-Walker (FRW)

metric

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ ð71Þ

along with the homogeneous and isotropic fields

H ¼ hðtÞdx ∧ dy ∧ dz; ð72Þ

φ ¼ φðtÞ: ð73Þ

Again, we are only considering contributions to the stress
tensor from H and φ, so we set LM ¼ 0 in (7).

FIG. 1. Plots of the metric function AðrÞ are shown for various
choices of the initial values ðāþ0 ; ā−0 Þ ¼ f0; 0.002; 0.004;
0.008; 0.01g × ðm−ðsþþ2Þ

⊙ ; m−ðs−þ2Þ
⊙ Þ, where the label AiðrÞ coin-

cides with the position of the value in the list,m⊙ is the mass of the
sun, and sþ ≈ 0, s− ≈ −3. Here we have fixed m ¼ 50m⊙,
Λ0 ¼ 10−5m−2

⊙ , r0 ¼ 105m⊙, β ¼ 10−3m4
⊙, α ¼ 1

8
× 106m−2

⊙
and chosen the particular solution hðrÞ ¼ 1

3
r3. As a�0 → 0, the

solution approaches the dS-Schwarzschild metric A0ðrÞ, while for
larger values of a�0 the event horizon is pushed outward while the
cosmological horizon is pushed inward. At some critical values of
a�0 the horizons degenerate and the black hole becomes extremal,
while for still larger values of a�0 the solution has a naked
singularity.

FIG. 2. Plots of the metric function AðrÞ are shown for various
values of Λ0 ¼ f1.00; 0.25; 0.50; 2.00; 4.00g × 10−5m−2

⊙ , where
the label AiðrÞ coincides with the position of the value in the list,

m⊙ is the mass of the sun, and we have fixed aþ0 ¼0.005m−ðsþþ2Þ
⊙ ,

a−0 ¼ 0.005m−ðs−þ2Þ
⊙ , with sþ ≈ 0, s− ≈ −3, m ¼ 50m⊙,

r0 ¼ 105m⊙, β ¼ 10−3m4
⊙, α ¼ 1

8
× 106m−2

⊙ , and chosen the
particular solution hðrÞ ¼ 1

3
r3. We see that for small values of

Λ0 both horizons occur for larger values of r, while for larger
values of Λ0 the horizons are pushed inward and closer together
until at some critical value the horizons degenerate and the black
hole becomes extremal. For even larger values of Λ0, no horizons
exist and the solution has a naked singularity.
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We decompose the Einstein equations into trace-free and
pure-trace parts, recalling that the stress tensor forH is pure
trace. The trace-free equation is given by (1), and plugging
in our symmetry-reduced expressions for the metric, three-
form, and scalar, we find a single independent equation:

κ

2
β _φ2 ¼ −

_a2 − aä
a2

: ð74Þ

The trace equation (21) gives

φ ¼ 3

2

�
ä
a
þ _a2

a2

�
−
κ

4

�
β _φ2 þ α

_h2

6a6

�
; ð75Þ

which can be combined with (74) to give

φ ¼ ä
a
þ 2

_a2

a2
−
κα

24

_h2

a6
: ð76Þ

The equations of motion for the scalar and three-form
imply (16) and (17), which upon symmetry reduction
become

_h − 4αβ
d
dt

�
a3

d
dt

�
_h
a3

��
¼ a3; ð77Þ

φ − 4αβ

�
3
_a
a
_φþ φ̈

�
¼ Λ: ð78Þ

Making use of the Hubble parameter H ¼ _a
a, defining

u ¼ φ
Λ, v ¼ _h

a3, and adimensionalizing, we simplify our
problem to three equations3:

u − 1 ¼ 3H̃ _uþü; ð79Þ

v − 1 ¼ 3_v H̃þv̈; ð80Þ

Λ̃u ¼ _̃H þ 3H̃2 þ pv2; ð81Þ

where Λ̃ ¼ 4αβΛ, p ¼ −κα2β=24, H̃ ¼ ffiffiffiffiffiffiffiffi
4αβ

p
H, and

t̃ ¼ t=
ffiffiffiffiffiffiffiffi
4αβ

p
. Thus, we search for a fixed point and find

one at u ¼ 1, v ¼ 1, and H̃ ¼ H0 ≡
ffiffiffiffiffiffiffi
Λ̃−p
3

q
. Perturbing

around this fixed point decouples two of the equations,
yielding

δu ¼ 3H0δ _uþ δü; ð82Þ

δv ¼ 3H0δ _vþ δv̈; ð83Þ

Λ̃δu − 2pδv ¼ δ _̃H þ 6H0δH̃: ð84Þ

These equations are solvable. The first two equations
simply give

δu ¼ Aueωþ t̃ þ Bueω− t̃; ð85Þ

δv ¼ Aveωþ t̃ þ Bveω− t̃; ð86Þ

where ω� ¼ − 3H0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
H2

0 þ 1
q

. The last equation has a

homogeneous solution given by

δH̃ðhÞ ¼ CHe−6H0 t̃ ð87Þ

and a particular solution given by

δH̃ðpÞ ¼ AHeωþ t̃ þ BHeω− t̃; ð88Þ

where the coefficients are

AH ¼ Λ̃Au − 2pAv

ωþ þ 6H0

; ð89Þ

BH ¼ Λ̃Bu − 2pBv

ω− þ 6H0

: ð90Þ

If we impose initial conditions such that Au ¼ Av ¼ 0,
which imply that AH ¼ 0, then φ relaxes to a constant at late
times, allowing for a de Sitter–like phase of accelerated
expansion in the late universe. However, in general both the
exponentially growing and decaying modes will be present,
so we expect that the solution that is compatible with
observations of our current cosmological epoch will be
unstable to small perturbations around this background.
Still, having a solution of the linearized equations of motion
that approaches de Sitter at late times may be useful for
more sophisticated analyses that include matter other than
H and φ.

V. DISCUSSION

In this work we have introduced dynamical Henneaux-
Teitelboim gravity, a minimal modification of general
relativity based closely on the Henneaux-Teitelboim for-
mulation of unimodular gravity that realizes fluctuations in
the cosmological constant sourced by nonconservation of
the energy-momentum tensor. Furthermore, we have con-
sidered the implications of this model for spherically
symmetric black holes and homogeneous, isotropic con-
figurations. To make progress analytically, we have made a
number of simplifying assumptions that should ultimately
be lifted to probe more realistic physical scenarios. For the
analysis of black holes, we have only presented an approxi-
mate solution of all the field equations by perturbing around
the Schwarzschild–de Sitter metric and using series meth-
ods. To establish whether such an approximate solution is
physically viable wewould need, at a minimum, to study the

3It is worth noting the close similarity between Eqs. (79)–(81)
and the slow roll equations. See, e.g., [21].
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geodesic motion of a massive particle orbiting such a black
hole around the equator and compare with astrophysical
observations. The assumption of spherical symmetry dra-
matically simplifies the equations of motion, reducing them
to ordinary differential equations, but, of course, to model
rotating black holes, this restriction must be lifted. Studies
of rotating black holes in similar modified gravity models
such as dynamical Chern-Simons gravity [22–26] suggest
that going to the slowly rotating limit and making use of
numerical methods are likely to be necessary. Finally, the
series solutions we have presented for small and large r
have finite radii of convergence, leaving the possibility of
intermediate regions, possibly containing the event horizon,
which are not covered by either series solution. Here
again, numerical methods for interpolating between the
solutions for small and large r might be useful. We leave
such numerical studies for the future, but note that for the
solutions we have studied in the decoupling limit that are
close to Schwarzschild–de Sitter, the radius of convergence
is well below the scale of the event horizon. On the
cosmology side, we have only considered the contribution
to the stress tensor from the fieldsH and φ for simplicity. To
make realistic predictions, we would need, at a minimum, to
include contributions from general baryonic matter and
radiation as well, to consider the effects of cosmological
perturbations, and, if they are stable, to study the matter-
power spectrum for deviations from ΛCDM. We have also
seen that while a solution of the linearized equations of
motion that approaches de Sitter at late times exists, this
solution is apparently unstable. It would be interesting to
see whether this instability persists in a more realistic
analysis including additional matter and radiation, or
whether, perhaps, the exponentially growing modes might
be dynamically suppressed by the inclusion of additional
matter degrees of freedom. The model we have considered
in this article is a natural extension of the Henneaux-
Teitelboim formulation of unimodular gravity because the
kinetic terms for the scalar and three-form fields are
invariant under the local symmetries of the latter–spacetime
diffeomorphisms and two-form-valued gauge transforma-
tions. Consequently, the kinetic terms are forced upon us by
“Gell-Mann’s totalitarian principle,” which dictates that
“everything that is not forbidden (by local symmetries) is
compulsory.” To put it plainly, renormalization group flow
will generate every term that is compatible with the local
symmetries of the action (5), and that includes kinetic terms
for the scalar and three-form fields. In this sense, the model
we have studied in this article follows straightforwardly
from (5) and general principles of effective field theory.
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APPENDIX: COEFFICIENTS AND INDICES FOR
SERIES SOLUTIONS

In this section we perform detailed calculations of the
coefficients and indices for the series solutions of the
equations of motion for H and φ in the spherically
symmetric case. Let us first focus on the homogeneous
equation

h0ðrÞ − 4αβA0ðrÞ
�
h000ðrÞ −

2h00ðrÞ
r

�
¼ 0: ðA1Þ

Putting the series ansatz h0ðrÞ ¼
P∞

n¼0 cnr
−nþq into (A1)

gives

X∞
n¼0

�
cnr−nþq − 4αβcnð−nþ qÞð−nþ q − 3Þ

×

�
r−nþq−2 − 2mr−nþq−3 −

Λ
3
r−nþq

��
¼ 0: ðA2Þ

Now, reindexing

X∞
n¼0

cn

�
1þ 4αβΛ

3
ð−nþ qÞð−nþ q − 3Þ

�
r−nþq

− 4αβ
X∞
n¼2

cn−2ð−nþ qþ 2Þð−nþ q − 1Þr−nþq

− 4αβ
X∞
n¼3

ð−2mÞcn−3ð−nþ qþ 3Þð−nþ qÞr−nþq ¼ 0:

ðA3Þ

Now, let us find the recurrence relation and the allowed
values of q. First, consider the base cases. For n ¼ 0 we
have only terms of order rq, which yield the indicial
equation

c0

�
1þ 4Λαβ

3
qðq − 3Þ

�
¼ 0: ðA4Þ

Hence,

c0 ¼ 0 or q ¼ q� ≡ 3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3Λαβ

s
: ðA5Þ

We can discard c0 ¼ 0 without loss of generality, since this
amounts to reindexing the sum to start from n ¼ 1. For
n ¼ 1, we have only terms of order rq−1, so

c1

�
1þ 4Λαβ

3
ðq − 1Þðq − 4Þ

�
¼ 0; ðA6Þ

which tells us that either
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c1 ¼ 0 or q ¼ 5

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3Λαβ

s
: ðA7Þ

We accept the first solution since the second one is
inconsistent with c0 ≠ 0. For n ¼ 2, we have only terms
of order rq−2, so

c2

�
1þ 4αβΛ

3
ðq − 5Þðq − 2Þþ

�
− c04αβqðq − 3Þ ¼ 0;

ðA8Þ

which tells us that

c2 ¼
c04αβqðq − 3Þ

4Λαβ
3

ðq − 2Þðq − 5Þ þ 1
: ðA9Þ

Then, for n ≥ 3 we have only terms of order rq−n, so

cn ¼
4αβ

1þ 4αβΛ
3

ð−nþ qÞð−nþ q − 3Þ
× ½cn−2ð−nþ qþ 2Þð−nþ q − 1Þ
− 2mcn−3ð−nþ qþ 3Þð−nþ qÞ�: ðA10Þ

We now work with the scalar field equation

φ − 4αβ

�
A0φ0 þ 2

r
Aφ0 þ Aφ00

�
¼ Λ: ðA11Þ

Subtracting Λ from both sides and letting y ¼ φ − Λ,

AðrÞy00ðrÞþ
�
2

r
AðrÞþA0ðrÞ

�
y0ðrÞ− 1

4αβ
yðrÞ¼ 0: ðA12Þ

Noting the Schwarzschild-AdS metric AðrÞ ¼ 1−
2m
r − Λ

3
r2, we have

�
1 −

2m
r

−
Λ
3
r2
�
y00 þ

�
2

r
−
2m
r2

−
2Λ
3

r

�
y0 −

1

4αβ
y ¼ 0:

ðA13Þ

Plugging in the series ansatz y ¼ P∞
n¼0 anr

−nþs yields

X∞
n¼0

anð−nþ sÞð−nþ sþ 1Þr−nþs−2

−
X∞
n¼0

2manð−nþ sÞ2r−nþs−3

−
X∞
n¼0

an

�
ð−nþ sÞð−nþ sþ 3ÞΛ

3
þ 1

4αβ

�
r−nþs ¼ 0:

ðA14Þ

Reindexing gives

X∞
n¼2

an−2ð−nþ sþ 2Þð−nþ sþ 3Þr−nþs

−
X∞
n¼3

2man−3ð−nþ sþ 3Þ2r−nþs

−
X∞
n¼0

an

�
ð−nþ sÞð−nþ sþ 3ÞΛ

3
þ 1

4αβ

�
r−nþs ¼ 0:

ðA15Þ

Now we focus on the recurrence relation. First, consider
the base case n ¼ 0. Here we only have terms of order rs, so
we have

a0

�
Λ
3
sðsþ 3Þ þ 1

4αβ

�
¼ 0: ðA16Þ

Hence,

a0 ¼ 0 or s ¼ s� ≡ −
3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3Λαβ

s
: ðA17Þ

We can discard a0 ¼ 0 without loss of generality since this
amounts to reindexing the sum to start from n ¼ 1. For
n ¼ 1, we have only terms of order rs−1, so we have

a1

�
Λ
3
ðs − 1Þðsþ 2Þ þ 1

4αβ

�
¼ 0: ðA18Þ

Thus we have

a1 ¼ 0 or s ¼ s� þ 1: ðA19Þ

The second solution is inconsistent with a0 ≠ 0. For n ¼ 2,
we have only terms of order rs−2, giving us

−a2
�
Λ
3
ðsþ 1Þðs− 2Þ þ 1

4αβ

�
þ a0ðsþ 1Þs ¼ 0; ðA20Þ

and so we find

a2 ¼
a0ðsþ 1Þs

Λ
3
ðsþ 1Þðs − 2Þ þ 1

4αβ

¼
a0
�
2sþ 3

4Λαβ

�
2Λ
3
ð2sþ 1Þ ; ðA21Þ

where we used s2 þ 3s ¼ − 3
4Λαβ. Finally, for n ≥ 3, we

have terms of order rs−n, so we have
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− an

�
Λ
3
ð−nþ sÞð−nþ sþ 3Þ þ 1

4αβ

�
þ an−2ð−nþ sþ 2Þð−nþ sþ 3Þ
− 2man−3ð−nþ sþ 3Þ3 ¼ 0; ðA22Þ

which gives us the recurrence relation

an ¼
1

Λ
3
ð−nþ sÞð−nþ sþ 3Þ þ 1

4αβ

× ½a�n−2ð−nþ sþ 2Þð−nþ sþ 3Þ
− 2man−3ð−nþ sþ 3Þ2�; n > 2: ðA23Þ
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