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We investigate the linear stability of scalarized black holes (BHs) and neutron stars (NSs) in the Einstein-
scalar-Gauss-Bonnet (GB) theories against the odd- and even-parity perturbations including the higher
multipole modes. We show that the angular propagation speeds in the even-parity perturbations in the
l → ∞ limit, with l being the angular multipole moments, become imaginary and hence scalarized BH
solutions suffer from the gradient instability. We show that such an instability appears irrespective of the
structure of the higher-order terms in the GB coupling function and is caused purely due to the existence of
the leading quadratic term and the boundary condition that the value of the scalar field vanishes at the
spatial infinity. This indicates that the gradient instability appears at the point in the mass-charge diagram
where the scalarized branches bifurcate from the Schwarzschild branch. We also show that scalarized BH
solutions realized in a nonlinear scalarization model also suffer from the gradient instability in the even-
parity perturbations. Our result also suggests the gradient instability of the exterior solutions of the static
and spherically-symmetric scalarized NS solutions induced by the same GB coupling functions.
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I. INTRODUCTION

In the context of gravitational theories, scalar fields
appear e.g., as a consequence of dimensional reduction of
higher-dimensional theories and provide a natural path to
extend general relativity (GR) [1]. Fundamental issues in
cosmology, such the origin of inflation and the late-time
acceleration of our Universe, may be considered as an
indication of the existence of new gravitational scalar fields
beyond GR. In particular, scalar fields have been one of
the most popular frameworks to address the accelerated
expansions in the early- and late-time stages of our
Universe. On the other hand, the suppression of extra
scalar forces requires the necessity of a screening mecha-
nism (see e.g., Ref. [2]) which exists beyond the conven-
tional scheme of the scalar-tensor theories. The Horndeski
[3–6] and DHOST [7,8] theories known as the higher-
derivative scalar-tensor theories without Ostrogradsky
instabilities could implement the suppression mechanisms
of extra scalar forces.
Physics of black holes (BHs) and neutron stars (NSs)

may also be able to probe the existence of scalar fields in
strong gravity regimes [1,9]. BH no-hair theorems hold for

scalar-tensor theories with (non)canonical kinetic term, non-
negative potential, and nonminimal coupling to the scalar
curvature [10–19], and the shift symmetric subclass of the
(beyond) Horndeski theories with the regular coupling
functions of the scalar field ϕ and its kinetic term X ≔
− 1

2
gμν∂μϕ∂νϕ [20–23]. If the conditions for the no-hair

theorem are met, the Schwarzschild or Kerr solutions are the
unique vacuum solutions of the gravitational field equations
under the given symmetry respectively.
On the other hand, when the scalar field is nonminimally

coupled to the Gauss-Bonnet (GB) invariant ξðϕÞR2
GB in the

Lagrangian density where ξðϕÞ is the coupling function
and R2

GB ≔ R2 − 4RαβRαβ þ RαβμνRαβμν represents the GB
invariant, BH solutions with nontrivial profiles of the scalar
field exist because of the violation of the assumptions in the
no-hair theorem. Such BH solutions include those for the
dilatonic couplings ξðϕÞ ∝ e−cϕ [24–37] and for the linear
coupling with the shift symmetry ξðϕÞ ¼ c0ϕ [38,39], with
c and c0 being constants. For such monotonic couplings, the
Schwarzschild or Kerr metrics are no longer solutions.
Models for spontaneous scalarization were first studied

for NSs. Even in the simplest model discussed by Damour
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and Esposito-Farèse [40,41], the presence of the scalar field
can significantly modify the properties of NSs via the
tachyonic instabilities, while satisfying the experimental
constraints in the weak-field regimes [42]. Irrespective of
the choice of the equations of state, spontaneous scalariza-
tion occurs for the coupling above the certain threshold
[43,44], while binary-pulsar observations have put very
stringent bounds [45]. On the other hand, for a long time,
there has been no successful model for spontaneous
scalarization of BHs. The nonminimal coupling to the
Ricci scalar could not trigger the tachyonic instability of the
Schwarzschild or Kerr BH, because the Ricci scalar
vanishes on such a background. More recently, however,
it has been shown that spontaneous scalarization of BHs
could also be realized in the presence of the GB coupling
ξðϕÞR2

GB with the Z2 symmetry, ξð−ϕÞ ¼ ξðϕÞ, such as
ξðϕÞ ¼ η

8
ϕ2 þOðϕ4Þ for the positive quadratic coupling

η > 0 [46–60] (see also Ref. [61] for a review). Sponta-
neous scalarization of the Schwarzschild BH requires
η > 0, because the GB invariant R2

GB is always positive
in the Schwarzschild backgrounds. While BHs with the
nontrivial profile of the scalar field for the pure quadratic
coupling ξðϕÞ ¼ η

8
ϕ2 [46] could not be the endpoint of the

tachyonic instability of Schwarzschild BH solutions, non-
linear corrections to the quadratic term η

8
ϕ2 in the coupling

function ξðϕÞ could make the static and spherically
symmetric scalarized BHs stable against the radial pertur-
bations [47,49–51]. Then, it was numerically confirmed
that such nontrivial BHs could be realized as the endpoint
of the instability [54,55]. On the other hand, for highly
spinning BHs, spontaneous scalarization could occur for
the negative quadratic coupling η < 0 [58,59], as the GB
invariant may change the sign in the highly spinning Kerr
backgrounds. Beyond the standard scalarization scheme
induced by the linear tachyonic instability, in the Einstein-
scalar-GB theory with the Z2-symmetric coupling where
the leading term is given by the quartic order term ϕ4 or
higher ones, scalarization of static and spherically sym-
metric BHs could be induced nonlinearly because of the
existence of the large initial perturbation of the scalar field
above a certain threshold value [62,63]. The spinning
nonlinearly scalarized BH solutions were constructed
recently in Refs. [57,60]. Moreover, in the presence of
matter fields, Ref. [64] showed that the same type of the GB
coupling function as that in Refs. [47,49] could also lead to
spontaneous scalarization of NSs, for both signs of the
leading quadratic term η

8
ϕ2 in the coupling function ξðϕÞ.

On the other hand, it is well-known that the Einstein-
scalar-GB theories correspond to a subclass of the
Horndeski theories which are known as the most general
scalar-tensor theories with the second-order equations of
motion. The linear stability analysis of the static and
spherically symmetric BH and NS solutions in the
Horndeski theories have been performed in the literature

[65–67]. These linear stability conditions have been applied
to various static and spherically symmetric BH solutions
with the nontrivial profile of the scalar field in the
Horndeski theories in Refs. [68,69]. In Ref. [68], it has
been shown that the static and spherically symmetric BH
solutions in reflection-symmetric subclass of shift-
symmetric Horndeski theories generically suffer from the
ghost or Laplacian instability in the even-parity perturba-
tions in the vicinity of the BH event horizon, which
includes the exact non-asymptotically-flat BHs present for
the couplingsG4 ⊃ X [70–73] and the exact BH solutions in
the models with G4 ⊃ ð−XÞ1=2 [21]. Moreover, in generic
non-reflection- and non-shift-symmetric Horndeski theories
static and spherically symmetric BH solutions with a non-
vanishing constant kinetic term on the horizon X ≠ 0
inevitably suffer from a ghost or gradient instability [69].
On the other hand, within the perturbative regime, it was
shown that only the nontrivial static and spherically sym-
metric BH solutionswhich are free from the ghost or gradient
instability correspond to those in scalar-tensor theories with
the power-law couplings to the GB invariant (with the
possible corrections from the regular galileon couplings),
which include asymptotically-flat BH solutions in the shift-
symmetric theorywith the linear coupling to theGB invariant
ϕR2

GB, which is equivalent to G5ðXÞ ∝ ln jXj [38,39].
However, scalarized BHs obtained through the coupling to
the GB invariant can be realized in the nonperturbative
regime with the Oð1Þ dimensionless coupling constant
normalized by the typical size of the system, e.g., the size
of the BH event horizon, and hence are beyond the linear
stability analysis in the previous studies.
In this paper, we will investigate the linear stability of the

static and spherically symmetric scalarized solutions in the
Einstein-scalar-GB theories against the odd- and even-
parity perturbations. Wewill show that the sound speeds for
the angular propagations in the even-parity perturbations
are imaginary in the limit of l → ∞ with l being the
angular multipole moments, and hence the static and
spherically symmetric scalarized BH solutions will suffer
from the gradient instabilities in the angular directions,
while they satisfy the other linear stability conditions. We
will also show that the appearance of such instabilities is
irrespective of the structure of the higher-order terms in the
GB coupling functions. Our result will also apply to the
exterior solutions of static and spherically symmetric
scalarized NSs in the same class of the Einstein-scalar-
GB theories, which share the same form of the external
solutions as the BH case. Finally, we will show that the
nontrivial BH solutions in a nonlinear scalarization model
with the GB coupling function of the form ξðϕÞ ∝ ϕ4 þ
dϕ6 þ � � �, with d being constant, also suffer from the
gradient instability in the angular propagations in the
even-parity perturbations. From our analysis, we will
expect that the static and spherically symmetric scalarized
BH solutions in the Einstein-scalar-GB theories with any
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Z2-symmetric coupling functions would generically suffer
from the gradient instabilities along the angular propaga-
tions in the even-parity perturbations.
The paper is organized as follows: In Sec. II, we review

the Einstein-scalar-GB theory as a subclass of the
Horndeski theories. We then discuss the properties of the
static and spherically BH solutions in the Einstein-scalar-
GB theories including the scalarized BH solutions. In
Sec. III, we review the linear stability conditions of the
static and spherically symmetric vacuum solutions with the
static scalar field against the odd- and even-parity pertur-
bations in the Horndeski theories. In Sec. IV, we apply the
linear stability criteria introduced in Sec. III to the scalar-
ized BH solutions and the exterior solutions of scalarized
NS solutions in the asymptotic limit. In Sec. V, we also
discuss the linear stability of the static and spherically
symmetric vacuum solutions which could be realized as the
consequence of nonlinear scalarization. Section VI is
devoted to giving a brief summary and conclusion.

II. EINSTEIN-SCALAR-GAUSS-BONNET
THEORIES AND SPONTANEOUS

SCALARIZATION

A. Einstein-scalar-GB theory as the subclass
of the Horndeski theories

We consider the Horndeski theories [3,6,74] whose
action is composed of the four-independent parts

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼

Z
d4x

ffiffiffiffiffiffi
−g

p X5
i¼2

Li; ð2:1Þ

with the Lagrangian densities given by

L2 ≔ G2ðϕ; XÞ;
L3 ≔ −G3ðϕ; XÞ□ϕ;

L4 ≔ G4ðϕ; XÞRþG4Xðϕ; XÞ½ð□ϕÞ2 − ðϕαβϕαβÞ�;

L5 ≔ G5ðϕ; XÞGμνϕ
μν −

1

6
G5Xðϕ; XÞ

× ½ð□ϕÞ3 − 3□ϕðϕαβϕαβÞ þ 2ϕα
βϕβ

ρϕρ
α�; ð2:2Þ

where gμν is the spacetime metric, R and Gμν are the Ricci
scalar and Einstein tensor associated with gμν, respectively,
ϕ is the scalar field, ϕμ ¼ ∇μϕ, ϕμν ¼ ∇μ∇νϕ, and so on,
with ∇μ being the covariant derivative associated with the
metric gμν, X represents the canonical kinetic term
X ≔ −ð1=2Þgμνϕμϕν, and Gi¼2;3;4;5ðϕ; XÞ are free func-
tions of ϕ and X.
The Einstein-scalar-GB theory

LsGB ¼ 1

2κ2
½Rþ ζX þ ξðϕÞR2

GB�; ð2:3Þ

where κ2ð¼ 8πGÞ denotes the gravitational constant, ζ is a
constant, and ξðϕÞ is the coupling function of the scalar
field ϕ to the GB invariant

R2
GB ≔ R2 − 4RαβRαβ þ RαβμνRαβμν; ð2:4Þ

is known as subclass of the Horndeski theories (2.1) with
the following choice of the coupling functions [6,75]

G2ðϕ; XÞ ¼
1

2κ2
ζX þ 4

κ2
ξð4ÞðϕÞX2ð3 − ln jXjÞ; ð2:5Þ

G3ðϕ; XÞ ¼
2

κ2
ξð3ÞðϕÞXð7 − 3 ln jXjÞ; ð2:6Þ

G4ðϕ; XÞ ¼
1

2κ2
þ 2ξð2ÞðϕÞ

κ2
Xð2 − ln jXjÞ; ð2:7Þ

G5ðϕ; XÞ ¼ −
2

κ2
ξð1ÞðϕÞ ln jXj; ð2:8Þ

where ξðnÞ ≔ ∂
nξðϕÞ=∂ϕn. We choose ζ > 0 so that the

scalar field has the correct sign of the kinetic term if the GB
coupling vanishes.

B. Static and spherically symmetric
scalarized BH solutions

We assume the static and spherically symmetric
spacetime

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2γabdθadθb; ð2:9Þ

and the static scalar field

ϕ ¼ ϕðrÞ; ð2:10Þ
where fðrÞ, hðrÞ, and ϕðrÞ are the pure functions of the
radial coordinate r, γab represents the metric of the unit
two-sphere, and the coordinates θa run over the angular
directions. Substituting the ansatz (2.9) and (2.10) into the
Lagrangian (2.3) and varying it with respect to f and h,
we obtain the equations of motion for f and h which are
given by

2ðrþ 2ð1 − 3hÞξð1Þϕ0Þh0 þ 1

2
ð−4þ hð4þ ζr2ϕ02ÞÞ

− 8hðh − 1Þðϕ02ξð2Þ þ ϕ00ξð1ÞÞ ¼ 0; ð2:11Þ

2ðrþ 2ð1 − 3hÞξð1Þϕ0Þf0 − f
2h

ð4þ hð−4þ ζr2ϕ02ÞÞ ¼ 0:

ð2:12Þ

Similarly, varying the Lagrangian (2.3) with respect to
the scalar field ϕ, we obtain the scalar-field equation of
motion as
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ϕ00 þ 1

2

�
4

r
þ f0

f
þ h0

h

�
ϕ0 þ 4

ζr2f
ð−1þ hÞξð1Þf00ðrÞ − 2f0ξð1Þ

ζr2f2h
ðh2f0 þ fh0 − f0h − 3fhh0Þ ¼ 0: ð2:13Þ

Solving Eq. (2.12) with respect to h−1, we obtain

1

h
¼ 1

8f

�
4f0ðrþ 2ξð1Þϕ0Þ þ fð4 − ζr2ϕ02Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−384ff0ξð1Þϕ0 þ ð4f0ðrþ 2ξð1Þϕ0Þ þ fð4 − ζr2ϕ02ÞÞ2

q �
: ð2:14Þ

For the domain of the radial coordinate, we consider r > rh
with rh (> 0) being the position of the event (outermost)
horizon of the spacetime. We assume that f > 0, f0 > 0,
h > 0, h0 > 0 for r > rh, and in the limit of r → rh f → 0,
h → 0, fh → constant, and ϕ and ϕ0 are regular. Then, in the
limit of r → rh, Eq. (2.12) becomes

f
h

����
r→rh

¼ ðrþ 2ξð1Þϕ0Þf0jr→rh ; ð2:15Þ

which can be obtained only from the (þ)-branch of
Eq. (2.14), provided that rþ 2ξð1Þϕ0jr→rh > 0. Thus, in
the rest of the paper we only focus on the (þ)-branch.
Obviously, Eq. (2.15) implies that

ðrþ 2ξð1Þϕ0Þh0jr→rh ¼ 1: ð2:16Þ

Assuming rþ 2ξð1Þϕ0jr→rh > 0 and substituting the
ðþÞ−branch of Eq. (2.14) into Eqs. (2.11) and (2.13),
we obtain a set of the equations which are quasilinear for
f00ðrÞ and ϕ00ðrÞ, and, by rearranging them, we obtain the
evolution equations for fðrÞ and ϕðrÞ with respect to r,

f00ðrÞ ¼ Ff½f; f0;ϕ;ϕ0; r�; ϕ00ðrÞ ¼ Fϕ½f; f0;ϕ;ϕ0; r�;
ð2:17Þ

where Ff and Fϕ are the nonlinear combinations of the
given variables. After integrating Eq. (2.17) for fðrÞ and
ϕðrÞ with the given boundary conditions near the event
horizon and substituting them into Eq. (2.14), hðrÞ can be
obtained numerically.
We assume that ξðϕÞ is a Z2-symmetric function

across ϕ ¼ 0, ξð−ϕÞ ¼ ξðϕÞ, and thus satisfies ξð1Þð0Þ ¼
ξð3Þð0Þ ¼ ξð5Þð0Þ ¼ � � � ¼ ξð2iþ1Þð0Þ ¼ � � � ¼ 0 (where i ¼ 3;
5; 7;…). Since the GB invariant is topological invariant, we
may also set ξð0Þ ¼ 0 without loss of generality, and hence

the most general Z2-symmetric coupling function which
satisfies our requirement is given by

ξðϕÞ ¼ η

8
ϕ2 þ

X∞
i¼2

α2iϕ
2i; ð2:18Þ

where α4;6;8;��� are the constant coefficients for the higher-
order terms. In order to realize the tachyonic instability of
the Schwarzschild solution against the radial perturbations,
we require η > 0.
Near the horizon r ¼ rh, the solution can be expanded as

[46–48,50,51]

fðrÞ ¼ f1ðr − rhÞ þOððr − rhÞ2Þ; ð2:19Þ

hðrÞ ¼ rhζ

48ξð1Þðϕ0Þ2
 
r2h −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4h −

96ξð1Þðϕ0Þ2
ζ

s !

× ðr − rhÞ þOððr − rhÞ2Þ; ð2:20Þ

ϕðrÞ ¼ ϕ0

"
1 −

1

4rhϕ0ξ
ð1Þðϕ0Þ

×

 
r2h −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4h −

96ξð1Þðϕ0Þ2
ζ

s !
ðr − rhÞ

#

þOððr − rhÞ2Þ; ð2:21Þ
where ϕ0 is the value of the scalar field at the event
horizon, f1 is an arbitrary constant representing the time-
reparametrization invariance in the static and spherically
symmetric spacetimes, and we omit to show the
Oððr − rhÞ2Þ terms explicitly. As a consistency check,
one can easily confirm that the above assumption rþ
2ξð1Þϕ0jr→rh > 0 and the relation (2.16) are satisfied, using
the above expansions. On the other hand, in the large-
distance limit r ≫ rh, we obtain the asymptotic solutions
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f
f∞

¼ 1 −
2M
r

þ ζMQ2

12r3
þMQ

6r4
ðζMQþ 24ξð1Þðϕ∞ÞÞ þO

�
1

r5

�
;

h ¼ 1 −
2M
r

þ ζQ2

4r2
þ ζMQ2

4r3
þMQ

3r4
ðζMQþ 24ξð1Þðϕ∞ÞÞ þO

�
1

r5

�
;

ϕ ¼ ϕ∞ þQ
r
þMQ

r2
þ 1

r3

�
4M2Q

3
−
ζQ3

24

�
þ M
6r4

�
12M2Q − ζQ3 −

24Mξð1Þðϕ∞Þ
ζ

�
þO

�
1

r5

�
; ð2:22Þ

where ϕ∞ ≔ ϕðr → ∞Þ is the asymptotic value of the
scalar field, and M and Q are the mass and the scalar
charge, respectively. We note that the constant f∞ (> 0)
also represents the time-reparametrization invariance in the
static and spherically symmetric spacetimes, and may be set
to unity after the proper rescaling of the time coordinate.
From Eq. (2.22),M and Q can be numerically evaluated as

M ¼ r
2
ð1 − hÞjr→∞; Q ¼ −r2ϕ0ðrÞjr→∞: ð2:23Þ

The scalarized solutions connect two values of the scalar
field: ϕ0 ≠ 0 near the horizon r ¼ rh and

ϕ∞ ¼ 0; ð2:24Þ

in the large-distance limit.
We focus on the nodeless scalarized solution where

the scalar field ϕ monotonically approaches 0 from a
nonzero value on the horizon, which is known as the
fundamental solution and only the stable solution against
the radial perturbations [49,50]. In order to satisfy the
boundary condition (2.24), we require that ϕmonotonically
approaches 0 from ϕ0 ≠ 0 on the horizon. From Eq. (2.21),
we then have to impose ϕ0ξ

ð1Þðϕ0Þ > 0 near the horizon.
For the Z2-symmetric coupling (2.18), without loss of
generality we may assume that

ϕ0 > 0; ξð1Þðϕ0Þ > 0: ð2:25Þ

Under the boundary condition (2.24) for the scalarized
solutions, with the use of the properties ξð1Þð0Þ ¼ ξð3Þð0Þ ¼
ξð5Þð0Þ ¼ � � � ¼ ξð2iþ1Þð0Þ ¼ � � � ¼ 0 (where i ¼ 3; 4; 5;…),
Eq. (2.22) reduces to

f
f∞

¼ 1 −
2M
r

þ ζMQ2

12r3
þ ζM2Q2

6r4
þO

�
1

r5

�
;

h ¼ 1 −
2M
r

þ ζQ2

4r2
þ ζMQ2

4r3
þ ζM2Q2

3r4
þO

�
1

r5

�
;

ϕ ¼ Q
r
þMQ

r2
þ 1

r3

�
4M2Q

3
−
ζQ3

24

�

þ M
6r4

ð12M2Q − ζQ3Þ þO
�
1

r5

�
: ð2:26Þ

As we will see later, in order to check whether one of the
stability conditions (3.10) introduced later is satisfied or not,
we need higher-order terms in the power of r−1, which are
omitted inEq. (2.26). For the stability analysis of the scalarized
solution (see Sec. IV) we need to expand the background
solution at least up toOðr−8Þ, and for the stability analysis of
the nonlinearly scalarized solutions (see Sec. V)we need to do
that at least up to Oðr−12Þ. However, since the expression of
these higher-order corrections to Eq. (2.26) are quite involved,
we do not show them explicitly here.
In the presence of matter fields, scalarization of NSs

could also be realized for the same type of the coupling
functions [64]. In contrast to the BH scalarization in the
static and spherically symmetric spacetime, since the GB
could change the sign in the presence of matter fields, the
NS scalarization could occur for both signs of the coupling
terms. Assuming the same asymptotic value of the scalar
field as Eq. (2.24), the metric and the scalar field in the
exterior solutions for scalarized NSs can also be described
by Eq. (2.26). In this case, the values of the mass and scalar
charge,M and Q, are determined via the matching with the
interior solutions with matter fields at the surface of a NS
and the use of Eq. (2.23) in the asymptotic limit.

III. LINEAR STABILITY AGAINST THE ODD-
AND EVEN-PARITY PERTURBATIONS

In this section, we review the linear stability conditions
of the static and spherically symmetric solutions with the
static scalar field (2.10), which have been obtained in
Refs. [65–67] (see also Refs. [68,69] for applications of
these conditions to the concrete BH solutions in the
Horndeski theories). As in the case of GR and the conven-
tional scalar-tensor theories, the perturbations about the
static and spherically symmetric solutions can be decom-
posed into the odd- and even-parity perturbations. For the
higher-order multipolar modes l ≥ 2, while the odd-parity
perturbations contain just one metric degree of freedom
(d.o.f.), i.e., one of the two tensorial polarizations, the even-
parity perturbations contain two d.o.f.s, i.e., the other
tensorial polarization and the scalar-field polarization.

A. Linear stability conditions
in the odd-parity perturbations

The linear stability against the odd-parity perturbations is
ensured under the following three conditions [65]:
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F ≔ 2G4 þ hϕ02G5;ϕ − hϕ02
�
1

2
h0ϕ0 þ hϕ00

�
G5;X > 0;

ð3:1Þ

G ≔ 2G4 þ 2hϕ02G4;X − hϕ02
�
G5;ϕ þ

f0hϕ0G5;X

2f

�
> 0;

ð3:2Þ

H≔ 2G4 þ 2hϕ02G4;X − hϕ02G5;ϕ −
h2ϕ03G5;X

r
> 0: ð3:3Þ

The squared propagation speeds of the odd-parity pertur-
bations along the radial and angular directions are given,
respectively, by

c2r;odd ¼
G
F
; c2Ω;odd ¼

G
H

: ð3:4Þ

Thus, if all the conditions (3.1)–(3.3) are satisfied, all the
sound speeds in Eq. (3.4) are positive.

B. Linear stability conditions
in the even-parity perturbations

In the even-parity perturbations, the kinetic term of the
tensorial polarization has the correct sign for (3.2), and then
that for the scalar field has the correct sign [66], if the
following condition is satisfied

K ≔ 2P1 − F > 0; ð3:5Þ

with

P1 ≔
hμ

2fr2H2

�
fr4H4

μ2h

�0
; μ ≔

2ðϕ0a1 þ r
ffiffiffiffiffiffi
fh

p
HÞffiffiffiffiffiffi

fh
p ;

ð3:6Þ

where a1 is given in Appendix A. In the limit of high
frequencies, the conditions for the absence of Laplacian
instabilities of the even-parity tensorial polarization ψ and
the scalar field polarization δϕ along the radial direction are
given, respectively, by

c2r1;even ¼
G
F

> 0; ð3:7Þ

c2r2;even ¼
2ϕ0½4r2ðfhÞ3=2Hc4ð2ϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞ − 2a21f

3=2
ffiffiffi
h

p
ϕ0Gþ ða1f0 þ 2c2fÞr2fhH2�

f5=2h3=2ð2P1 − F Þμ2 > 0; ð3:8Þ

where c2 and c4 are presented in Appendix A. Since c2r1;even
is the same as c2r;odd, only the second propagation speed
squared c2r2;even provides an additional stability condition.
We note that for the monopole mode l ¼ 0 there is no
propagation for the gravitational perturbation, while the
scalar-field perturbation δϕ propagates with the same radial
velocity as Eq. (3.8). We also note that for the dipole mode
l ¼ 1 there is only one gauge d.o.f. for fixing δϕ ¼ 0,
under which the gravitational perturbation propagates with
the same radial speed squared as Eq. (3.8).
We then turn to the linear stability conditions against the

propagation in the angular directions. In the limit of large
multipoles l ≫ 1, the conditions associated with the
squared angular propagation speeds in the even-parity
perturbations are [67–69]

c2Ω� ¼ −B1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

q
> 0; ð3:9Þ

where we present the explicit form of B1 and B2 in
Appendix A. These conditions are satisfied if and only if

B2
1 ≥ B2 > 0 and B1 < 0: ð3:10Þ

IV. LINEAR STABILITY OF SCALARIZED
SOLUTIONS

In this section, we apply the linear stability conditions
mentioned in the previous section, Eqs. (3.1)–(3.3), (3.7),
(3.8), and (3.10) to the static and spherically symmetric
scalarized solutions discussed in the literature. For our
discussion, we employ the expansion of the metric and
scalar field in the large-distance region (2.26) with the
boundary condition of the scalar field (2.24).

A. The quartic-order coupling

First, we consider the quartic-order coupling function
discussed in Refs. [50,51]

ξðϕÞ ¼ η

8
ðϕ2 þ αϕ4Þ; ð4:1Þ

where η and α are constants. We require that η > 0 and
α < 0, so that the Schwarzschild solution suffers from the
tachyonic instability and the scalarized BHs are stable
against the radial perturbations [50,51], respectively.
In the limit of r → ∞, under the boundary condition

(2.24), the functions F , G, and H defined in Eqs. (3.1)–
(3.3) can be expanded as
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F ¼ 1

κ2

�
1 −

3Q2η

r4

�
þO

�
1

r6

�
;

G ¼ 1

κ2

�
1þMQ2η

r5

�
þO

�
1

r6

�
;

H ¼ 1

κ2

�
1þQ2η

r4

�
þO

�
1

r6

�
; ð4:2Þ

which are always positive at the leading order. The sound
speeds for the radial and angular propagations in the odd-
parity perturbations (3.4) and that for the radial propagation
of the metric perturbations in the even-parity perturbations
(3.7) coincide with the speed of light at the leading order,
with the corrections of Oðr−4Þ. The function K defined by
Eq. (3.5) can be expanded as

K ¼ ζQ2

κ2r2

�
1

4
þM

r

�
þO

�
1

r4

�
; ð4:3Þ

which is also positive for the correct sign of the kinetic term
ζ > 0. The sound speed of the radial perturbations of the
scalar field in the even-parity perturbations c2r2;even, which
can be evaluated via Eq. (3.8), also coincides with the speed
of light at the leading order, with the corrections ofOðr−9Þ.
Thus, in the large-r region the scalarized BHs are linearly
stable against all types of propagations in the odd-parity
perturbations and against the radial propagations in the
even-parity perturbations.
We now check the angular sound speeds of the even-

parity perturbations. The functions B1 and B2 can be
expanded as

B1 ¼ −1þQ2η

2r4
þQ2ð−20M2 þQ2ð24αþ ζÞÞη

24r6

þMQ2ηð−16M2ζ þQ2ζð12αþ ζÞ þ 12ηÞ
6ζr7

þO
�
1

r8

�
; ð4:4Þ

B2 ¼ 1 −
Q2η

r4
−
Q2ð−20M2 þQ2ð24αþ ζÞÞη

12r6

þMQ2ηð16M2ζ −Q2ζð12αþ ζÞ þ 24ηÞ
3ζr7

þO
�
1

r8

�
;

ð4:5Þ

leading to

B2
1 − B2 ¼ −

12MQ2η2

ζr7
þO

�
1

r8

�
; ð4:6Þ

which is negative at the leading order and the first condition
of Eq. (3.10) is not satisfied, sinceM > 0 and ζ > 0 for the
correct sign of the scalar kinetic term. We also note that the

above result (4.6) is independent of the sign of η and Q. In
addition, since the leading term in Eq. (4.6) does not
depend on the coefficient of the quartic-order term α, we
expect that the same leading behavior should be obtained
for other nonlinear coupling functions.

B. The exponential coupling

To confirm our expectation in the previous subsection,
we consider the exponential coupling function discussed
originally in Ref. [47]

ξðϕÞ ¼ η

8β
ð1 − e−βϕ

2Þ; ð4:7Þ

which has also been employed in the literature
[47,49,52,54,55,61]. Again, in order to obtain BH solutions
which are linearly stable against the radial perturbations,
we require that η > 0 and β > 0. In the limit of the spatial
infinity, r → ∞, under the boundary condition (2.24), the
functions of F , G, and H can be expanded as Eq. (4.2),
which are always positive. The functionK can be expanded
as Eq. (4.3), which is also positive at the leading order.
The sound speeds for the radial and angular propagations in
the odd-parity perturbations (3.4) and that for the radial
propagation of the metric perturbations in the even-parity
perturbations (3.7) coincide with the speed of light at
the leading order, with the corrections of Oðr−4Þ. The
sound speed of the radial propagation of the scalar field in
the even-parity perturbations c2r2;even can be evaluated via
Eq. (3.8) and also coincides with the speed of light at the
leading order, with the corrections of Oðr−9Þ. Thus, in the
large-r region the scalarized BHs are linearly stable against
the odd-parity perturbations and against the radial prop-
agations in the even-parity perturbations.
The functions B1 and B2 can be expanded as

B1 ¼ −1þQ2η

2r4
þQ2ð−20M2 þQ2ð−12β þ ζÞÞη

24r6

þMQ2ηð−16M2ζ þQ2ζð−6β þ ζÞ þ 12ηÞ
6ζr7

þO
�
1

r8

�
; ð4:8Þ

B2 ¼ 1 −
Q2η

r4
þQ2ð20M2 þQ2ð12β − ζÞÞη

12r6

þMQ2ηð16M2ζ þQ2ζð6β − ζÞ þ 24ηÞ
3ζr7

þO
�
1

r8

�
;

ð4:9Þ

which also lead to the same leading behavior of B2
1 − B2 as

Eq. (4.6), and again we find that the first condition of
Eq. (3.10) is not satisfied.
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Reference [64] showed that the same coupling func-
tion as Eq. (4.7) could realize scalarization of static and
spherically symmetric NSs. In contrast to the case of BH
scalarization, since in the static and spherically symmetric
spacetimes the GB invariant could change the sign in the
presence of matter fields, NS scalarization could occur for
both signs of the parameter η. Since the metric and the
scalar field in the exterior solutions for scalarized NSs are
also described by Eq. (2.26), our results in the section can
also be applied to the case of NS scalarization. As the
leading-order term in Eq. (4.6) is irrespective of the sign of
η, the first condition of Eq. (3.10) is violated also for NS
scalarization with any matter equation of state. Thus, our
analysis in this section should exclude both BH and NS
scalarization models induced by the GB coupling function
of the form (4.7).

C. More general coupling functions

Along the same analysis for more general couplings
(2.18), we obtain the same leading behavior as Eq. (4.6).
Thus, the instability does not depend on the higher-order
structure of the coupling function ξðϕÞ. The result that
the gradient instability in the even-parity perturbations
appears in the angular directions, irrespective of the
detailed structure of ξðϕÞ, implies that in the large-l limit
the onset of this instability would take place in the vicinity
of the bifurcation point of the scalarized branch from the
Schwarzschild branch in the mass-charge diagram, i.e., on
the axis ofQ ¼ 0, whose position is also irrespective of the
higher-order terms in ξðϕÞ.
It would be very interesting if one can obtain universal

constraints on the generic coupling functions ξðϕÞ from
theoretical considerations. For example, it is known that
so-called positivity bounds [76] put nontrivial constraints
on low-energy effective field theories by assuming the
existence of local, causal, unitary, and Lorentz-invariant
ultraviolet (UV) completions. However, the positivity
bounds in the presence of gravity are rather subtle and
still at the stage of development, in particular require
some additional assumptions about unknown behaviors
of the UV completion of gravity (see e.g., Ref. [77]).
Moreover, even without inclusion of gravity the naive
positivity bounds may be violated around Lorentz-violating
backgrounds [78]. Nonetheless, some trials to consider

positivity bounds in the context of the Einstein-scalar-GB
theories have been made (see e.g., Ref. [79]). It is certainly
worthwhile developing our understanding of positivity
bounds in the presence of gravity around Lorentz-violating
backgrounds such as BHs.

V. LINEAR STABILITY OF BLACK HOLES
IN A NONLINEAR SCALARIZATION MODEL

We then consider the case of another exponential
coupling function discussed originally for nonlinear BH
scalarization in Refs. [62,63],

ξðϕÞ ¼ ηNL
16βNL

ð1 − e−βNLϕ
4Þ; ð5:1Þ

where ηNL and βNL > 0 are constants.
In the limit of r → ∞, under the boundary condition

(2.24), the functions F , G, and H defined in Eqs. (3.1)–
(3.3) can be expanded as

F ¼ 1

κ2

�
1 −

5Q4ηNL
r6

�
þO

�
1

r7

�
;

G ¼ 1

κ2

�
1þMQ4ηNL

r7

�
þO

�
1

r8

�
;

H ¼ 1

κ2

�
1þQ4ηNL

r6

�
þO

�
1

r6

�
; ð5:2Þ

which are always positive at the leading order. The sound
speeds for the radial and angular propagations in the odd-
parity perturbations (3.4) and that for the radial propagation
of the metric perturbations in the even-parity perturbations
(3.7) coincide with the speed of light at the leading order.
The function K defined by Eq. (3.5) can be expanded as
Eq. (4.3), which is also positive for ζ > 0. The sound speed
of the radial propagations of the scalar field in the even-
parity perturbations c2r2;even, which can be evaluated via
Eq. (3.8), also coincides with the speed of light at the
leading order. Thus, the scalarized BHs are linearly stable
against all types of propagations in the odd-parity pertur-
bations and against the radial propagations in the even-
parity perturbations.
The functions B1 and B2 can be expanded as

B1 ¼ −1þQ4ηNL
2r6

þMQ4ηNL
r7

þM2Q4ηNL
r8

þ 1

r9

�
−M3Q4ηNL þ

1

24
MQ6ζηNL

�

−
Q4ηNL
480r10

ð4336M4 − 192M2Q2ζ þQ4ð240βNL þ ζ2ÞÞ

þ 1

r11

�
−
166

5
M5Q4ηNL þ

89

40
M3Q6ζηNL þ

6MQ6η2NL
ζ

þMQ8

�
−3βNLηNL −

17ζ2ηNL
640

��
þO

�
1

r12

�
; ð5:3Þ
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B2 ¼ 1 −
Q4ηNL
r6

−
2MQ4ηNL

r7
−
2M2Q4ηNL

r8
þ 2

r9

�
M3Q4ηNL −

1

24
MQ6ζηNL

�

þ Q4ηNL
240r10

ð4336M4 − 192M2Q2ζ þQ4ð240βNL þ ζ2ÞÞ

þ 1

r11

�
332

5
M5Q4ηNL −

89

20
M3Q6ζηNL þ

24MQ6η2NL
ζ

þMQ8

�
6βNLηNL þ

17ζ2ηNL
320

��
þO

�
1

r12

�
; ð5:4Þ

leading to

B2
1 − B2 ¼ −

36MQ6η2NL
ζr11

þO
�

1

r12

�
; ð5:5Þ

which is negative at the leading order and the first condition
of Eq. (3.10) is not satisfied, sinceM > 0 and ζ > 0 for the
correct sign of the scalar kinetic term. We note that the
above result (5.5) is independent of the sign of ηNL and Q.
In addition, the leading term in Eq. (5.5) does not depend
on the coefficient of the higher-order terms βNL. Thus, the
nonlinear scalarization model also suffers from the gradient
instability along the angular propagations in the even-parity
perturbations.
Through the similar analysis,we expect that scalarizedBH

(andNS) solutions obtained in the Einstein-scalar-GB theory
with Z2-symmetric coupling functions where the leading-
order term is given byϕ6 or higher-order powers ofϕ are also
linearly unstable against the angular propagations of the
even-parity perturbations. In order to show this, we need to
expand the background solutions up to the order ofOðr−16Þ
or even higher order in the power of r−1. Since this would
require more computation power, we postpone the explicit
analysis on such cases for future work. Nevertheless,
according to the results so far, it is natural to expect that
scalarized BH and NS solutions obtained in the Einstein-
scalar-GB theory with any Z2-symmetric coupling function
are also linearly unstable in the case that the asymptotic value
of the scalar field is zero, which would exclude models of
scalarization induced by the GB coupling at least in the
context of the static and spherically symmetric backgrounds.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the linear stability of
the static and spherically-symmetric scalarized BH solu-
tions in the Einstein-scalar-GB theories. Since the Einstein-
scalar-GB theories are a subclass of the Horndeski theories,
we applied the linear stability conditions for the static and
spherically symmetric BH solutions which have been
obtained in Refs. [65–67]. Perturbations about the static
and spherically symmetric spacetimes are decomposed into
the odd- and even-parity perturbations. While the odd-
parity perturbations contain one d.o.f. corresponding to one
of the tensorial polarizations, the even-parity perturbations
contain two d.o.f.s which correspond to the other tensorial

polarization and the polarization of the scalar field. The
linear stability conditions are given by Eqs. (3.1)–(3.3),
(3.5), and (3.10).
We have studied three different models for spontaneous

scalarization of the static and spherically symmetric sol-
utions, namely, Eqs. (4.1), (4.7), and more general (2.18).
For all these coupling functions, we showed that while the
scalarized BH solutions satisfy the linear stability con-
ditions in the odd-parity perturbations, they do not satisfy
the first condition of Eq. (3.10), which means that in the
limit of the large angular multipoles l ≫ 1 the sound
speeds along the angular propagation in the even-parity
perturbations become imaginary and the even-parity per-
turbations suffer from the gradient instability. Since such a
behavior solely depends on the parameter η which repre-
sents the leading quadratic-order coupling in Eqs. (2.18),
(4.1), and (4.7), our results are independent of the higher-
order structure in the GB coupling function ξðϕÞ and the
onset of the instabilities in the angular directions arises due
to the fact that the leading-order term in the GB coupling
function is given by the quadratic order term and the scalar
field approaches zero at the spatial infinity. Since in the
models of spontaneous scalarization of BHs the onset of the
tachyonic instability is governed by the quadratic order
term, the instability of the scalarized BHs in the limit of
l → ∞ arises at the bifurcation point of the scalarized
branch from the Schwarzschild branch in the mass-charge
diagram. We also argued that the gradient instability of the
angular perturbations in the even-parity perturbations could
arise in the exterior region of the scalarized NS solutions
with the same GB couplings, irrespective of the sign of the
quadratic order couplings, as the scalarized BHs and NSs
share the same asymptotic form of the metric. Thus, both
scalarized BHs and external solutions of scalarized NSs
generically suffer from the gradient instability along the
angular propagations in the even-parity perturbations.
We now mention the difference from the analysis of

Ref. [75], which studied the odd- and even-parity perturba-
tions of static and spherically symmetric hairy BH solutions
in the Einstein-scalar-GB theories and argued that the
perturbations are well-behaved (See also Refs. [68,69]).
While scalarized solutions discussed in our work are con-
structed in the nonperturbative regime for which the dimen-
sionless quadratic-order coupling constant becomes ofOð1Þ,
jηj=r2h ¼ Oð1Þ [See Eq. (2.18)], the authors of Ref. [75]
considered the background BH solutions realized as the
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perturbative deviation from the Schwarzschild solution. We
also would like to emphasize that while in scalarized
solutions the scalar field is assumed to have the vanishing
amplitude ϕ∞ ¼ 0, Eq. (2.24), as the boundary condition at
the spatial infinity r → ∞, Ref. [75] in general assumed a
nonzero amplitude of the scalar field at the spatial infinity.
The effective dimensionless coupling constant defined in
Eq. (3.6) in Ref. [75], which was regarded as the expansion
parameter for the construction of the background solution,
always vanishes for the Z2-symmetric coupling functions
(2.18) and under the boundary condition (2.24), ϕ∞ ¼ 0.
Thus, since our work considers the different parameter
regimes and the different boundary conditions from those
in Ref. [75], we cannot directly compare our results with
theirs.
Recently, the authors of Ref. [80] argued in the presence

of the GB coupling as well as the coupling of the scalar
field to the Ricci scalar that static and spherically sym-
metric scalarized BHs which are linearly stable against the
radial perturbations can be unstable against the perturba-
tions in the l ¼ 2mode in the even-parity perturbations for
above the critical coupling to the Ricci scalar. They also
constructed the static and axisymmetric scalarized BH
solutions which could be realized as the consequence of
the tachyonic instability in the l ¼ 2 sector and clarified
the existence of the two new branches of the axisymmetric
scalarized BHs, which have prolate and oblate configura-
tions, respectively, and share the same bifurcation points
from the radially stable branch. With the results in Ref. [80]
that scalarized BHs stable against the l ¼ 0 perturbations
could be unstable against the l ¼ 2 perturbations, as well
as the fact that after the decomposition into the angular
multipole modes the l-dependence in the equation of
motion for the scalar field perturbation in the decoupling
limit appears only in the form of c2Ωlðlþ 1Þ with c2Ω being
the angular sound speed squared, we can speculate that
such an instability occurs only in the case of the imaginary
angular sound speed c2Ω < 0 and appears more efficiently
for higher multipole modes l > 2. We thus expect that the
same type of instabilities should exist for arbitrary larger
values of multipole moments l ≥ 2, and then the bifurca-
tion point of the scalarized branches with the lth order
deformation would be shifted to the direction of the smaller
scalar charge Q in the mass-charge diagram. In the limit of
l → ∞, having speculated from our results in this paper,
the bifurcation points of the new scalarized branches
with the lth order deformation approaches the bifurcation
point of the radially stable scalarized branches from the

Schwarzschild branch in the mass-charge diagram, which is
on the axis of the vanishing scalar charge Q ¼ 0. As the
consequence, all the scalarized BHs are unstable against the
small angular deformation on the event horizon. A further
inspection of such deformed scalarized BHs will be left for
future work.
We also analyzed the linear stability of BH solutions in a

nonlinear scalarization model, whose coupling function is
given by Eq. (5.1). We also showed that in this model BHs
with the vanishing asymptotic value of the scalar field do
not satisfy the first condition of Eq. (3.10), and suffer from
the gradient instability of even-parity perturbations in the
angular directions. Since the leading-order term of B2

1 − B2

does not depend on the parameter for the higher-order
terms βNL, we also expect that such an instability is due to
the existence of the leading quartic-order coupling as well
as the vanishing asymptotic amplitude of the scalar field
at the spatial infinity. From the above results, we also
expect that the static and spherically symmetric BH
solutions with the vanishing asymptotic values of the scalar
field realized with any Z2-symmetric GB coupling function
suffer from the gradient instability of the angular prop-
agations in the even-parity perturbations. On the other
hand, as demonstrated for the linear coupling model with
the shift symmetry in Appendix B, BHs with the nontrivial
scalar field in the Einstein-scalar-GB theories with non-Z2-
symmetric coupling function would be linearly stable for
all types of perturbations, at least in the large-r region. In
summary, our results would exclude all the static and
spherically symmetric BH and NS solutions realized in
both the spontaneous and nonlinear scalarization models
with the Z2-symmetric coupling functions.
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APPENDIX A: COEFFICIENTS ASSOCIATED
WITH PERTURBATIONS

The quantities a1, c2, and c4 in Eqs. (3.6) and (3.8) are
given by

a1 ¼
ffiffiffiffiffiffi
fh

p ��
G4;ϕ þ

1

2
hðG3;X − 2G4;ϕXÞϕ02

�
r2 þ 2hϕ0

�
G4;X −G5;ϕ −

1

2
hð2G4;XX −G5;ϕXÞϕ02

�
r

þ 1

2
G5;XXh3ϕ04 −

1

2
G5;Xhð3h − 1Þϕ02

	
; ðA1Þ

MASATO MINAMITSUJI and SHINJI MUKOHYAMA PHYS. REV. D 108, 024029 (2023)

024029-10



c2 ¼
ffiffiffiffiffiffi
fh

p ��
1

2f

�
−
1

2
hð3G3;X − 8G4;ϕXÞϕ02 þ 1

2
h2ðG3;XX − 2G4;ϕXXÞϕ04 −G4;ϕ

�
r2

−
hϕ0

f

�
1

2
h2ð2G4;XXX −G5;ϕXX

�
ϕ04 −

1

2
hð12G4;XX − 7G5;ϕXÞϕ02 þ 3ðG4;X − G5;ϕÞ

�
r

þ hϕ02

4f
ðG5;XXXh3ϕ04 − G5;XXhð10h − 1Þϕ02 þ 3G5;Xð5h − 1ÞÞ

�
f0

þ ϕ0
�
1

2
G2;X −G3;ϕ −

1

2
hðG2;XX −G3;ϕXÞϕ02

�
r2

þ 2

�
−
1

2
hð3G3;X − 8G4;ϕXÞϕ02 þ 1

2
h2ðG3;XX − 2G4;ϕXXÞϕ04 − G4;ϕ

�
r −

1

2
h3ð2G4;XXX −G5;ϕXXÞϕ05

þ 1

2
h½2ð6h − 1ÞG4;XX þ ð1 − 7hÞG5;ϕX�ϕ03 − ð3h − 1ÞðG4;X −G5;ϕÞϕ0

	
; ðA2Þ

c4 ¼
1

4

ffiffiffi
f

pffiffiffi
h

p
�
hϕ0

f

�
2G4;X − 2G5;ϕ − hð2G4;XX −G5;ϕXÞϕ02 −

hϕ0ð3G5;X − G5;XXϕ
02hÞ

r

�
f0

þ 4G4;ϕ þ 2hðG3;X − 2G4;ϕXÞϕ02 þ 4hðG4;X −G5;ϕÞϕ0 − 2h2ð2G4;XX − G5;ϕXÞϕ03

r

	
: ðA3Þ

The quantities B1 and B2 in Eq. (3.9) are

B1 ¼
r3

ffiffiffiffiffiffi
fh

p
H½4hðϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞβ1 þ β2 − 4ϕ0a1β3� − 2fhG½r ffiffiffiffiffiffi

fh
p ð2P1 − F ÞHð2ϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞ þ 2ϕ02a21P1�

4fhð2P1 − F ÞHðϕ0a1 þ r
ffiffiffiffiffiffi
fh

p
HÞ2 ;

ðA4Þ

B2 ¼ −r2
r2hβ1½2fhFGðϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞ þ r2β2� − r4β2β3 − fhFGðϕ0fhFGa1 þ 2r3

ffiffiffiffiffiffi
fh

p
Hβ3Þ

fhϕ0a1ð2P1 − F ÞF ðϕ0a1 þ r
ffiffiffiffiffiffi
fh

p
HÞ2 ; ðA5Þ

where

β1 ¼
1

2
ϕ02 ffiffiffiffiffiffi
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r

�
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H
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−
1

r

��
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2

r
ðfhÞ3=2FGH; ðA7Þ

β3 ¼
ffiffiffiffiffiffi
fh

p
H

2
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�
hc04 þ

1

2
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2

�
−
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p
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�
H
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þH0

��
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h
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H
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H
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p
�
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with

e4 ¼
1

ϕ0 c
0
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4fhϕ02 ð
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f
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p
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d3 ¼ −
1

r2

�
2ϕ00
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h

�
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−
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2
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APPENDIX B: LINEAR STABILITY OF BHS IN
THE SHIFT-SYMMETRIC SCALAR-GAUSS-

BONNET THEORY

For reference, we consider the linear stability of BH
solutions with the nontrivial scalar field in the shift-
symmetric scalar-GB theory with the linear coupling

ξðϕÞ ¼ γϕ; ðB1Þ

which were discussed in Refs. [38,39], where γ is constant.
For such a linear coupling, the expansion of the background
solutions (2.22) in the large-r limit reduces to

f
f∞

¼ 1 −
2M
r

þ ζMQ2

12r3
þMQ

6r4
ðζMQþ 24γÞ þO

�
1

r5

�
;

h ¼ 1 −
2M
r

þ ζQ2

4r2
þ ζMQ2

4r3
þMQ

3r4
ðζMQþ 24γÞ

þO
�
1

r5

�
;

ϕ ¼ ϕ∞ þQ
r
þMQ

r2
þ 1

r3

�
4M2Q

3
−
ζQ3

24

�

þ M
6r4

�
12M2Q − ζQ3 −

24Mγ

ζ

�
þO

�
1

r5

�
; ðB2Þ

where the asymptotic value of the scalar field ϕ∞ has no
physical meaning due to the shift symmetry.
Using the solution in the limit of the spatial infinity

r → ∞, Eq. (B2), the functions F , G, and H defined in
Eqs. (3.1)–(3.3) can be expanded as

F ¼ 1

κ2

�
1 −

8Qγ

r3

�
þO

�
1

r4

�
;

G ¼ 1

κ2

�
1þ 4MQγ

r4

�
þO

�
1

r5

�
;

H ¼ 1

κ2

�
1þ 4Qγ

r3

�
þO

�
1

r5

�
; ðB3Þ

which are always positive at the leading order. Thus,
BH solutions are linearly stable against the odd-parity
perturbations.
The function K defined by Eq. (3.5) can be expanded

as Eq. (4.3), which is also positive. We also show that
the sound speeds along the radial propagation in the even
parity perturbations (3.7), and (3.8) coincide with the
speed of light at the leading order, with the corrections
ofOðr−3Þ. Regarding the angular propagations in the even-
parity perturbations, we obtain the leading behavior of the
functions B1 and B2

B1 ¼ −1þ 2Qγ

r3
−
2MQγ

r4
þ −16M2Qγ þQ3γζ

r5

þ 2γ

3r6

�
−12M3Q − 12Q2γ −

480M2γ

ζ
þMQ3ζ

�

þO
�
1

r7

�
; ðB4Þ

B2 ¼ 1 −
4Qγ

r3
þ 4MQγ

r4
þ 16M2Qγ −Q3γζ

2r5

þ 4γ

3r6

�
12M3Qþ 12Q2γ þ 48M2γ

ζ
−MQ3ζ

�

þO
�
1

r7

�
; ðB5Þ

and hence

B2
1 − B2 ¼

4γ2ð144M2 þ ζQ2Þ
ζr6

þO
�
1

r7

�
; ðB6Þ

which is positive at the leading order for the correct sign of
the scalar kinetic term ζ > 0. Thus, in contrast to the case
of the Z2-symmetric GB couplings discussed in the main
text, the two conditions of Eq. (3.10) are satisfied. The results
obtained in this appendix are consistent with Ref. [68].
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