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We use gravitational waves (GWs) from binary black holes (BBHs) and neutron stars inspiraling into
intermediate-mass black holes to evaluate how accurately the future space-based GW detectors such as
LISA, Taiji, and TianQin and their combined networks can determine source parameters and constrain
alternative theories of gravity. We find that, compared with single detector, the detector network can greatly
improve the estimation errors of source parameters, especially the sky localization, but the improvement of
the constraint on the graviton mass mg and the Brans-Dicke coupling constant ωBD is small. We also
discuss possible scalar modes existed in alternative theories of gravity, and we find the inclusion of the
scalar mode has little effect on the constraints on source parameters, mg, and ωBD and the parametrized
amplitude AB of scalar modes are small. For the constraint on the graviton mass, we consider both the
effects in the GW phase and the transfer function due to the mass of graviton. With the network of LISA,
Taiji, and TianQin, we get the lower bound on the graviton Compton wavelength λg ≳ 1.24 × 1020 m

for BBHs with masses ð106 þ 107ÞM⊙, and AB < 5.7 × 10−4 for BBHs with masses ð1þ 2Þ × 105M⊙;
ωBD > 6.11 × 106 for neutron star–black hole binary with masses ð1.4þ 400ÞM⊙.
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I. INTRODUCTION

The discovery of the accelerating expansion of the
Universe by the observations of type Ia supernovae [1,2]
in 1998 imposes a great challenge on Einstein’s general
theory of relativity (GR). The late-time cosmic acceleration
together with the problems of dark matter, quantum gravity,
and singularity of spacetime might imply that GR needs to
be modified. The simplest extension to GR is to add a scalar
field such as Brans-Dicke (BD) theory [3]. The BD field ϕ
not only plays the role of Newton’s gravitational constant
but also mediates gravitational interaction. The most
general scalar-tensor theory that leads to at most second-
order field equations is Horndeski theory [4] and its
generalizations [5]. Another modification of GR is to
introduce higher-order terms of the Riemann tensor in
the action such as the general nonlinear fðRÞ gravity [6]
and Lovelock gravity [7]. If graviton has a mass m, then

gravity is screened at a scale larger than m−1; henceforth,
massive gravity theory may explain the cosmic acceler-
ation. Of course, the mass of graviton should be small so
that gravity can be approximated as a long-range force.
However, the linearized Fierz-Pauli (FP) massive gravity
[8] suffers the problem of the van Dam, Veltman, and
Zakharov (vDVZ) discontinuity [9,10]. Recently, the vDVZ
problem was overcome in the generalized linear massive
gravity [11] without using the Vainshtein mechanism [12].
In Dvali, Gabadadze, and Porrati (DGP) gravity [13], GR is
modified at the cosmological scale, and there is a continu-
ous tower of massive gravitons. In the de Rham,
Gabadadze, and Tolley massive gravity [14], higher-order
nonlinear terms were introduced, and the theory is free
from Bouldware-Deser ghost [15,16]. Other alternative
theories of gravity include the tensor-vector-scalar theory,
or TeVeS theory [17] and the generalized TeVeS theory
[18], Einstein-æther theory [19,20], dynamical Chern-
Simons gravity [21], Hořava gravity [22] and bimetric
theory of gravity [23,24], etc. For reviews of alternative
theories of gravity, see Refs. [25–29].
The constraint on the mass of graviton from the new

solution of the ephemeris INPOP19a ismg ≤ 3.16 × 5.63 ×
10−59 kg at the 90% confidence level [30]. Using the
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measurements on the secular change of the orbital period
from PSR B1913þ 16 [31] and PSR J1738þ 0333 [32],
the constraints on the mass of graviton in FP gravity [8,11]
and DGP gravity [13] were obtained in Ref. [33]. In BD
theory [3,34], the extra dipolar radiation further decreases
the orbital period of a binary system [34,35], so the
measurement on the secular change in the orbital period
of a compact binary can constrain the BD coupling constant
[34–42]. By using the observational results from the
pulsar–white dwarf binary PSR J1738þ 0333, it was
obtained that ωBD > 25000 [32]. The Cassini measurement
[43] on the Shapiro time delay in the solar system gave
the most stringent constraint on BD coupling constant
ωBD > 40000 [43,44].
The detection of gravitational waves (GWs) from

binary black holes (BBHs) by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) Scientific
Collaboration and the Virgo Collaboration opened a new
window to test GR and probe the nature of gravity in the
strong-field and nonlinear regions [45–48]. So far, there are
tens of detected GW events, and we are in a new era of
gravitational Universe [49–53]. The propagation speed of
GWs in GR is the same as the speed of light, and there are
two transverse tensor polarizations. In alternative theories
of gravity, the propagation speed of GWs may differ from
the speed of light, and GWs may have up to six polar-
izations [54–62], so the measurement of polarization
states can distinguish alternative theories of gravity from
GR [63–73]. In massive gravity, the propagation speed of
GWs with higher frequency is larger, so GWs emitted at
earlier time with lower frequencies may reach the detector
later than GWs emitted at later time with higher frequen-
cies, and the observed phase of GWs will be distorted;
henceforth, the observed dephasing in GW waveforms can
place a bound on the mass of graviton. Using the TaylorF2
waveform model and the low-spin prior, the Bayesian
analysis of the first binary neutron star (NS) event
GW170817 gave mg ≤ 1.305 × 10−57 kg [74], which is
weaker than the 90% credible boundmg ≤ 2.26 × 10−59 kg
[75] placed by the LIGO, Virgo, and KAGRA collabora-
tions with the IMRPhenomXP waveform model [76] by
using 43 selected GWTC-3 events including 12 BBHs
observed during the second half of the third observing run.
Considering the GW events with a false alarm rate (FAR)
less than 10−3 yr−1 and signal-to-noise (SNR) ≥ 6 in the
inspiral stage from all 15 GW events observed during the
second half of the third observing run and using para-
metric deviations to the GW inspsiral phase in the
frequency-domain model SEOB-NRv4_ROM [77,78], it
was found that all post-Newtonian deformation coeffi-
cients are consistent with the predictions of GR and the
bound on δφ̂−2 was improved by a factor of ∼2 upon the
GWTC-2 bound due to the long duration of the NS/black
hole (BH) event GW200115_042309 [75]. Based on an
effective antenna pattern function that is constructed from

a subset of polarization modes and performing the null
projection with respect to the subspace spanned by the
component of the beam pattern vectors parallel to the basis
mode(s), no evidence of departing from the pure tensorial
hypothesis as predicted by GR was found from all the
events from the first three observing runs with a FAR less
than 10−3 yr−1 threshold [75]. Because of the no-hair
theorem, BHs do not carry scalar charges, and the orbital
evolution and gravitational radiation from BBHs are
identical in GR and BD theory, so we cannot use
BBHs to distinguish BD theory from GR via dipole
radiation [36,79,80]. Considering a NS with mass
0.7M⊙ inspiraling into a BH with mass 3M⊙ for the
SNR ρ ¼ 10, LIGO/Virgo detectors could give a bound
ωBD ≳ 2000 with the Fisher information matrix (FIM)
method [81]. However, the observation of the GW event
GW190426_152155 of a possible 1.5M⊙ NS=5.7M⊙ BH
binary by LIGO and Virgo placed the bound ωBD ≳ 10
using the Bayesian inference method [82].
The ground-based GW detectors can detect GWs from

the coalescence of stellar-mass compact binaries in the
frequency range 10–103 Hz only, but the future space-
based GW detectors such as LISA [83,84], TianQin [85],
and Taiji [86,87] can detect GWs in the millihertz fre-
quency band with long-duration signals from larger dis-
tance. It is expected that GW detection from inspiral to
merge and ringdown with LISA, Taiji, or TianQin will
place more stringent constraints on alternative theories of
gravity. For one-year observations of BBHs with masses
ð107 þ 107ÞM⊙ at the luminosity distance DL ¼ 3 Gpc
prior to the innermost stable circular orbit (ISCO), LISA
could place the bound on the graviton Compton wavelength
λg ¼ h=ðmgcÞ as λg ≥ 6.9 × 1019 m by using the pattern-
averaged detector noise curve and GW waveform up to 1.5
post-Newtonian (PN) order with the FIM method [88];
employing the LISA sensitivity curve generator, the
lower bound was revised as λg > 4.8 × 1019 m [89]; using
pattern-averaged templates at 2PN order and considering
the spin-orbit coupling, LISA could give the lower bound
λg > 2.2 × 1019 m [90]. Instead of taking the pattern
average, by Monte Carlo simulations of 104 BBHs randomly
distributed and oriented in the skywith mass ð106þ106ÞM⊙,
the average lower bound λg >1.33×1019m with LISA was
given in [90]. For one-year observations of precessing
eccentric BBHs at DL ¼ 3 Gpc prior to the ISCO, applying
the restricted 2PN GW waveforms including the effects
of spin-orbit and spin-spin couplings, spin precession,
and eccentricity, LISA could give the constraint λg > 1.2 ×
1019 m with the pattern-average analysis on ð107 þ 107ÞM⊙
BBHs, while the Monte Carlo simulations of 104 BBHs
randomly distributed and oriented in the sky with masses
ð107 þ 106ÞM⊙ byLISA gave the average bound λg > 3.1 ×
1019 m [91]. In these studies, the effect of the propagation
speed of the massive graviton in the transfer function was
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not considered. In Ref. [92], the author took this effect into
account and proposed an approximate analytical expres-
sion for the averaged transfer function and also consid-
ered the accuracy of parameter estimation with different
space-based GW detectors. It was found that the effect
of the transfer function due to massive graviton on
parameter estimation for small graviton mass is negli-
gible, and for one-year observations of BBHs with
masses ð106 þ 106ÞM⊙ prior to the ISCO using 3.5PN
GW waveform and the FIM method, Taiji could give
better constraint than LISA and TianQin, and the result is
λg > 1.91 × 1019 m [92]. For one-year observations of a
1.4M⊙ NS inspiraling into a 103M⊙ BH prior to the
ISCO with a SNR of 10, using the pattern-averaged GW
waveforms at 1.5PN order and the FIM method, LISA
could give the constraint ωBD ≳ 244549 [93], or ωBD ≳
203772 with the detector noise curve from the LISA
sensitivity curve generator [89]; with the addition of the
spin-orbit coupling to the pattern-averaged 2PN GW
templates, the bound with LISA became ωBD ≳ 21257

[90], while ωBD ≳ 10799 by taking the average of 104

randomly distributed binaries with a SNR of
ffiffiffiffiffiffiffiffi
200

p
[90];

including the spin-orbit and spin-spin couplings to the
pattern-averaged restricted 2PN GW waveforms for
precessing eccentric orbits, LISA could give the bound
ωBD ≳ 1881 [91], and ωBD ≳ 3523 using the average
of 104 randomly distributed binaries with a SNR offfiffiffiffiffiffiffiffi
200

p
[91]. By numerically calculating the eccentric

orbits of a 1.4M⊙ NS inspiraling into a massive BH
with the methods of osculating orbits and self-force,
LISA could give the constraint ωBD > 106 using the
mismatch of GW waveforms between GR and BD theory
with two-year observations [94].
It is well known that extra polarization states exist in

both massive gravity and BD theory, but the effects of extra
polarization states on parameter estimation were not dis-
cussed in the above work. In the present work, we consider
the impact of scalar modes on parameter estimation by
parametrizing the scalar mode in massive gravity hlmB ðfÞ as
ABhl−mðfÞYlmðι; 0Þ [65,70,71,73,95–97]. Note that in the
above studies only the observations with a single detector
like LISA was used to constrain massive gravity and BD
theory, so we study how accurately LISA, Taiji, and
TianQin and their combined networks can determine
source parameters and constrain alternative theories of
gravity by Monte Carlo simulation of 1000 randomly
distributed and oriented binaries in the sky, because
the detector network can greatly improve the sky locali-
zation compared with a single detector [87,98–102].
Although it was found that the effect of the mass of
graviton on the averaged transfer function is negligible
[92], we do not neglect the effect of the graviton mass
in the antenna response. In this paper, we employ the
IMRPHENOMXHM waveform model [76], which

includes higher harmonic modes to make the parameter
estimation. The paper is organized as follows. In Sec. II,
we discuss the antenna response and the parameter
estimation with the FIM method. In Sec. III, we discuss
the estimate errors of source parameters and the con-
straints on λg and ωBD with LISA, Taiji, and TianQin and
their combinations. The conclusion is drawn in Sec. IV.
In this paper, we set G ¼ c ¼ h ¼ 1.

II. FISHER INFORMATION MATRIX METHOD

In terms of the polarization tensor eAij, GWs can be
expressed as

hijðtÞ ¼
X
A

eAijhAðtÞ; ð1Þ

where A¼þ;×;x;y;b;l stands for the plus, cross, vector x,
vector y, breathing, and longitudinal polarizations, respec-
tively. For GWs propagating in the direction Ω̂, the signal
registered in the GW detector is

s½hðtÞ� ¼
X
A

FAhAðtÞ; ð2Þ

where the angular response function FA for the polarization
A is

FA ¼
X
i;j

DijeAij; ð3Þ

the detector tensor Dij for an equal arm space-
based interferometric detector with a single round-trip light
travel is

Dij ¼ 1

2
½ûiûjTðf; û · Ω̂Þ − v̂iv̂jTðf; v̂ · Ω̂Þ�eiΦD; ð4Þ

û and v̂ are the unit vectors along the two arms of the
detector,

ΦDðtÞ ¼ 2πfRe sinðθsÞ cosðωet − ϕs þ φiÞ=c ð5Þ

is the Doppler shift, Re ¼ 1 A:U: is the orbital radius,
ðθs;ϕsÞ is the source location, ωe ¼ 2π=Te is the orbital
frequency of the Earth, Te ¼ 1 year is the period, and φi is
the ecliptic longitude of the detector at t ¼ 0. In massive

gravity theories, the propagation speed of GWs vgwðfÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmgc2Þ2=ð2πℏfÞ2

q
is different from the speed of light

c and depends on the frequency of GWs. Taking this effect
into account, the transfer function Tðf; n̂ · Ω̂Þ for a single
round trip in the arm is [103,104]
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Tðf; n̂ · Ω̂Þ ¼ 1

2

�
sinc

�
f
2f�

ð1 − n̂ · Ω̂=ðvgw=cÞÞ
�

× exp
�
−i

f
2f�

ð3þ n̂ · Ω̂=ðvgw=cÞÞ
�

þ sinc

�
f
2f�

ð1þ n̂ · Ω̂=ðvgw=cÞÞ
�

× exp

�
−i

f
2f�

ð1þ n̂ · Ω̂=ðvgw=cÞÞ
��

; ð6Þ

where L is the arm length of the detector and f� ¼ c=ð2πLÞ
is the transfer frequency.
The inner product between two signals s1ðtÞ and s2ðtÞ is

defined as

ðs1js2Þ ¼ 2

Z
∞

0

s̃�1 s̃2þs̃�2 s̃1
SnðfÞ

df; ð7Þ

where s̃1ðfÞ and s̃2ðfÞ are the Fourier transforms of the
respective gravitational waveforms sðtÞ registered in the
detector; the noise spectral density SnðfÞ for space-based
GW detectors is [105]

SnðfÞ ¼
1

L2

�
Sx þ

�
1þ

�
0.4 mHz

f

�
2
�

4Sa
ð2πfÞ4

�
þ ScðfÞ;

ð8Þ
where the confusion noise is [105]

ScðfÞ ¼ Af−7=3 exp½−fα þ βf sinðκfÞ�
× ½1þ tanhðγðfκ − fÞÞ�; ð9Þ

and the arm length L, the position noise
ffiffiffiffiffi
Sx

p
, and the

acceleration noise
ffiffiffiffiffi
Sa

p
are the parameters of the detector.

L ¼ 2.5 × 109 m,
ffiffiffiffiffi
Sx

p ¼ 15 pm=Hz1=2, and
ffiffiffiffiffi
Sa

p ¼ 3 ×
10−15 ms−2=Hz1=2 for LISA [83,84]; L ¼ ffiffiffi

3
p

× 108 m,ffiffiffiffiffi
Sx

p ¼ 1 pm=Hz1=2 and
ffiffiffiffiffi
Sa

p ¼ 10−15 ms−2=Hz1=2 for
TianQin [85]; and L ¼ 3 × 109 m,

ffiffiffiffiffi
Sx

p ¼ 8 pm=Hz1=2

and
ffiffiffiffiffi
Sa

p ¼ 3 × 10−15 ms−2=Hz1=2 for Taiji [86]. The
SNR for a given GW waveform h is

ρ½h� ¼ ðs½h�js½h�Þ1=2: ð10Þ
We use the FIM method to estimate the source’s

parameters θa. The parameter error is estimated as

Δθa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðθaÞ2 − hθai2i

q
≈

ffiffiffiffiffiffiffi
Σaa

p
; ð11Þ

where Σaa ¼ ðΓ−1Þaa is the diagonal element of the inverse
of the FIM in the large SNR limit, and the element of
FIM Γab is defined as

Γab ≡
�
∂s½h�
∂θa

				 ∂s½h�
∂θb

�
: ð12Þ

The covariant matrix between two parameters θa and θb is
given by

Cab ¼ Σab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣaaΣbb

p
: ð13Þ

The angular resolution ΔΩs is defined as

ΔΩs ¼ 2π sin θs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣθsθsΣϕsϕs

− Σ2
θsϕs

q
: ð14Þ

To carry out the parameter estimation, we use the frequency-
domain waveform model IMRPHENOMXHM [76,106]

h̃ðfÞ ¼ h̃þ − ih̃× ¼
X
l;m

h̃lmðfÞ−2Ylmðι; 0Þ; ð15Þ

which describes the mode of nonprecessing coalescing black
holes in terms of piecewise closed form expressions, where

−2Ylmðι; 0Þ are spherical harmonics of spin weight −2,

h̃l−mðfÞ ¼ AlmðfÞe−iΦlmðfÞ; ð16Þ

and the amplitude Alm and the phase Φlm are given by
IMRPHENOMXHM waveform model [76]. Note that

h̃lmðfÞ ¼ ð−1Þlh̃�l−mð−fÞ;

h̃þðfÞ ¼
1

2
½−2Yl−m þ ð−1Þl−2Y�

lm�h̃l−mðfÞ;

h̃×ðfÞ ¼
i
2
½−2Yl−m − ð−1Þl−2Y�

lm�h̃l−mðfÞ: ð17Þ

For the dependence on the inclination angle ι, we get

h̃ð2;2Þþ ðfÞ ∝ ð1þ cos2 ιÞ=2 and h̃ð2;2Þ× ðfÞ ∝ cos ι. In this
paper, we use the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ
modes to constrain the BD theory and massive gravity.
Because GW interferometers are more sensitive to phase
evolution [95], we mainly discuss the phase correction.
The modification of the phase Φlm in modified gravity
is [76,95,106]

Φ̃lmðfÞ ¼ ΦlmðfÞ þ δΦlmðfÞ;

δΦlmðfÞ ¼
m
2
δΦ22

�
2

m
f

�
: ð18Þ

For Brans-Dicke theory, the amplitude and phase modifica-
tions for the (2,2) mode are [79,81,95,107]

δA22 ¼ −
5S2u−2=3

96ð2þ ωBDÞ
¼ −

7

8
bu−2=3;

δΦ22ðfÞ ¼ −
3

128η
bu−7=3

�
1 −

7

2
u2=3 þ 5πu

−
350

9
u4=3 þ 84

5
πu5=3

�
; ð19Þ
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where u ¼ πMf, f is the frequency of the GW; the total mass
M ¼ M1 þM2,M1, andM2 are themasses of the binary; the
difference of the sensitivity between the two bodies in the
binaries is assumed to be S ¼ 0.3 for NS/BH binaries [90];
ωBD is the BD coupling constant; and

b ¼ 5S2

84ð2þ ωBDÞ
: ð20Þ

The waveform for the breathing mode in Brans-Dicke
theory is

h̃bðfÞ ¼
�
5π

384

�
1=2 S

2þ ωBD

M2

dL
η−7=10u−3=2

× ðsin ιe−iΦ̃1;1ðfÞ þ 2sin2ιu1=3e−iΦ̃2;2ðfÞÞ; ð21Þ

where the first term in the frequency-domain waveform is the
(1,1) mode [95], the second term is the (2,2) mode, dL is the
luminosity distance, M ¼ η3=5M is the chirp mass, and
the symmetric mass ratio η ¼ M1M2=M2. Comparing the
waveforms for the tensor andbreathingmodes,we see that the
amplitude of the breathing mode is suppressed by a factor
of ∼1=ωBD, so we expect the effect of the breathing mode to
not be significant.
Since the dominant effect of a graviton mass is the

dephasing due to the frequency-dependent massive grav-
iton velocity [88,89], we follow Refs. [88–91] to add the
following term to the phase for the (2,2) mode,

δΦ22ðfÞ ¼ −
π2DM

λ2gð1þ zÞ u
−1; ð22Þ

where λg is the wavelength of massive graviton, the
effective distance D is

D ¼ 1þ z
H0

Z
z

0

dz0

ð1þ z0Þ2½ΩMð1þ z0Þ3 þΩΛ�1=2
; ð23Þ

H0 is the Hubble constant, ΩM is the current matter energy
density, andΩΛ is the current energy density of dark energy,
which is taken as the cosmological constant for simplicity.
We use the Planck 2018 results H0 ¼ 67.4 km s−1 Mpc−1,
ΩM ¼ 0.315, and ΩΛ ¼ 0.685 [108]. For alternative theo-
ries of gravity, we should consider extra polarizations, e.g.,
the breathing polarization in BD theory and the scalar modes
in massive gravity. In this paper, we only consider the scalar
mode to see the impact on parameter estimation, and we
parametrize the scalar mode in massive gravity hlmB ðfÞ as
ABhl−mðfÞYlmðι; 0Þ [70,73,95,97].

III. CONSTRAINTS ON ALTERNATIVE
THEORIES OF GRAVITY

In this section, we estimate the errors of the source’s
parameters: the total mass M, the symmetric mass ratio η,

the luminosity distance dL, the sky location ðθs;ϕsÞ and the
angular resolution ΔΩs, the inclination angle ι, the polari-
zation angle ψ s, and the coalescence phase ϕc at the
coalescence time tc, so θ¼ fM;η;dL;θs;ϕs;ψ s; ι; tc;ϕcg.
The mass ratio is defined as q ¼ M1=M2 withM1 ≥ M2, so
the total mass M ¼ ð1þ qÞM2. To constrain the graviton
mass, we need to add the parameter λg and AB if we include
the scalar modes. The effects of massive gravitons are
manifested not only in the phase (18) of GWwaveforms but
also in the transfer function (6). To constrain BD theory, we
need to add the parameter ωBD. Following Refs. [90,91],
for the bound on graviton mass, we consider BBHs with
masses between 103 and 107 solar masses at 3 Gpc, and for
the constraint on the BD coupling constant ωBD, we use
sources of neuron stars inspiraling into intermediate-mass
BHs with masses 400M⊙ and 1000M⊙. The massive BBH
merger rates could be several hundreds per year [109], so
between a few and several tens of massive BBH events
per year could be detected with space-based detectors
[109–111]. There might be 3–300 massive BBH merger
events per year [112] or ≤ 0.34 per year [113], or
∼0.5–1 yr−1 for massive BHs with masses greater than
105M⊙ [114]. For a four-year mission, depending on the
seed model and assumptions, it was estimated that around
1000 massive BBH events could be detected by space-
based detectors in the most optimistic scenario [115]. The
event rate of a NS inspiraling into an intermediate-mass BH
is uncertain. The NS/BH merger rate is estimated to be
between 7.8 and 140 Gpc−3 yr−1 using GW events through
GWTC-3 [116]. LISA might detect ten intermediate mass
ratio inspirals (IMRIs) consisting of BHs with 103M⊙ and
10M⊙ at any given time [117], or IMRIs with an event rate
∼3–10 Gpc−3 yr−1 [118]. To evaluate the capability of
space-based detectors on the test of alternative theories
of gravity, for each source with the specific total mass M
and redshift z, we use Monte Carlo simulation to generate
1000 sources with fcos θs; cos ιg uniformly distributed in
½−1; 1� and fϕs;ψ s;ϕcg uniformly distributed in ½0; 2π�.
We calculate the error of each parameter from each binary
and then take the average of the 1000 results. For the
observations, we consider one-year observations before the
coalescence with the space-based GW detectors LISA,
Taiji, and TianQin and their combined network.

A. Bound on graviton mass

For the constraint on the mass of graviton, we consider
BBHs with different masses at 3 Gpc. We choose the
masses of the small BHs as 106M⊙, 105M⊙, 104M⊙, and
103M⊙ and two different mass ratios, q ¼ 2 and q ¼ 10. To
evaluate the capability of GW detector on the constraint of
the wavelength λg of massive gravitons, we consider all
three space-based GW detectors LISA, Taiji, and TianQin
and their combinations. For the sake of convenience, we
denote the network of LISA and Taiji as LTJ, of LISA and

TESTING ALTERNATIVE THEORIES OF GRAVITY WITH … PHYS. REV. D 108, 024027 (2023)

024027-5



TianQin as LTQ, of TianQin and Taiji as TT, and of LISA,
Taiji, and TianQin as LTT. We also consider the impact of
the scalar mode on the constraint of the wavelength λg by
including the relative amplitude AB of the scalar mode. The
errors of the parameter estimation and the constraints on λg
and AB are shown in Tables I and II and Figs. 1–3.
In Table I, we show the estimation errors of all

parameters along with SNRs for BBHs with masses
ð105 þ 106ÞM⊙ at 3 Gpc with different GW detectors
and their combinations. From Table I, we see that while
the error of angular resolution ΔΩs with TianQin is almost
3 orders of magnitude worse than those with LISA or Taiji,

the constraint on λg is only ∼2 times worse, and the
constraint on AB is only ∼3 times worse. The inclusion
of the scalar mode has little effect on the constraint on λg.
Although the networks LTJ, LTQ, TT, and LTT greatly
improve the accuracy of sky localization, the improvements
on the bound on λg are small compared with LISA or Taiji
alone. The results for BBHs with other masses are similar. In
Table II, we show the constraints on λg andAB along with the
values of SNR for different BBHs with the network LTT.
The results with other detectors are similar. The results show
that the inclusion of the scalar mode has little effect on the
constraint on λg. As the total mass of the BBH increases,

TABLE I. The results of error estimation for different GW detectors and their combinations in massive gravity with and without the
scalar mode. The masses of the BBHs are 106M⊙ and 105M⊙, and the luminosity distance dL is 3 Gpc. The first line of each detector
shows the error estimation without considering the scalar mode. LTJ denotes the LISAþ Taiji network, LTQ denotes the LISAþ
TianQin network, TT denotes the TianQinþ Taiji network, and LTT denotes the LISAþ Taiji þ TianQin network.

Detectors SNR Δ lnM ð10−4Þ Δ ln η ð10−5Þ Δ ln dL ð10−2Þ ΔΩs ð10−5 strÞ Δψs ð10−2Þ Δι ð10−3Þ λg ð1019 mÞ AB ð10−3Þ
LISA 1583 1.78 2.19 1.00 57.4 2.01 1.93 3.94 � � �

1583 1.85 2.28 1.04 66.6 2.05 2.64 3.87 4.43

Taiji 1992 1.33 1.63 0.75 41.3 1.64 1.42 4.60 � � �
1992 1.42 1.74 0.78 49.0 1.68 1.95 4.46 4.58

TianQin 490 6.88 8.40 6.86 10400 11.0 6.54 2.03 � � �
490 7.33 8.94 7.05 12490 11.1 9.90 1.97 13.2

LTJ 2574 1.02 1.25 0.10 0.14 0.16 0.76 5.20 � � �
2574 1.04 1.27 0.11 0.15 0.16 0.78 5.15 1.29

LTQ 1674 1.66 2.04 0.18 0.97 0.27 1.26 4.06 � � �
1674 1.69 2.07 0.18 1.02 0.28 1.30 4.03 1.91

TT 2073 1.26 1.54 0.14 0.68 0.25 1.05 4.69 � � �
2073 1.29 1.58 0.14 0.71 0.27 1.11 4.64 1.51

LTT 2633 1.00 1.22 0.09 0.10 0.14 0.72 5.24 � � �
2633 1.01 1.24 0.09 0.10 0.14 0.73 5.21 1.06

TABLE II. The results of the lower bounds on the wavelength λg of massive graviton and the relative amplitude AB
of the scalar mode with the LISAþ TianQinþ Taiji network (LTT). We consider BBHs with masses M2 for the
small BHs 106M⊙, 105M⊙, 104M⊙, and 103M⊙, and the mass ratio q ¼ 2 and q ¼ 10 at 3 Gpc. We also show the
results of SNR for each binary. The first line of each binary shows the results without considering the scalar mode.

q ¼ M1=M2 ¼ 2 q ¼ M1=M2 ¼ 10

M2 ðM⊙Þ SNR λg ð1019 mÞ AB ð10−3Þ M2 ðM⊙Þ SNR λg ð1019 mÞ AB ð10−3Þ
106 1892 9.49 � � � 106 524 12.4 � � �

1892 9.44 1.52 524 12.4 5.44

105 6002 4.89 � � � 105 2633 5.24 � � �
6002 4.87 0.57 2633 5.21 1.06

104 1156 1.66 � � � 104 1910 2.44 � � �
1156 1.65 2.59 1910 2.44 1.44

103 170 0.70 � � � 103 309 1.41 � � �
170 0.70 11.7 309 1.40 7.71
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the bound on λg becomes stronger. The constraint on AB and
the other parameters become better as the total mass of BBH
increases to a certain value, but the bound on AB and
the constraints on the other parameters along with the SNR
then decrease as the total mass further increases.
In Figs. 1 and 2, we show the bounds on λg versus the

mass of the small BH of the BBH for different detectors

with and without the scalar mode, respectively. In Fig. 3,
we show the bounds on AB versus the mass of the small BH
of the BBH with q ¼ 2 and q ¼ 10 for different detectors.
From Figs. 1 and 2, we see that the addition of the scalar
mode has little effect on the bound on λg for all BHHs and
all detectors. As the total mass of BBHs increases, the
bound on λg becomes stronger for all detectors. Although

FIG. 3. The lower bounds on the relative amplitude AB of the scalar mode for different GW detectors and their combinations in
massive gravity with the scalar mode. The left panel is for q ¼ 2, and the right panel is for q ¼ 10. The luminosity distance dL is 3 Gpc.
Different lines denote different detectors. The insets show the results for TianQin.

FIG. 1. The lower bounds on the wavelength λg of massive graviton for different GW detectors and their combinations without the
scalar mode. The left panel is for q ¼ 2, and the right panel is for q ¼ 10. The luminosity distance dL is chosen as 3 Gpc. Different lines
denote different detectors and different detector network.

FIG. 2. The lower bounds on the wavelength λg of massive graviton for different GW detectors and their combinations in massive
gravity with the scalar mode. The left panel is for q ¼ 2, and the right panel is for q ¼ 10. The luminosity distance dL is 3 Gpc. Different
lines denote different detectors.
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the constraints on other parameters are much worse with
TianQin, the bound on λg with TianQin is just at most ∼2
times weaker than LISA or Taiji. The improvements on the
bounds on λg and AB with the networks LTJ, LTQ, TT, and
LTT are small compared with LISA, Taiji, and TianQin
alone. The strongest bound is obtained for BBHs with
masses ð106 þ 107ÞM⊙ with LTT, and the result is
λg ≳ 1.24 × 1020 m. For TianQin, BBHs with the total
mass around 3 × 105M⊙ give the largest SNR and the
best constraints on AB and the other parameters. For LISA,
Taiji, and the networks LTQ, LTJ, and LTT, BBHs with the
total mass around 5 × 105M⊙ give the largest SNR and
the best constraints on AB and the other parameters; the
strongest bound for AB is AB < 5.7 × 10−4. The depend-
ence of the constraints on the total mass is similar for
different mass ratio q.
For the one-year observations of BBHs with masses

ð1þ 1Þ × 106M⊙ at 3 Gpc with LISA, it was found that
λg > 4.95 × 1019 and λg > 1.33 × 1019 m if the spin-orbit
coupling is included [90]. For the one-year observations of
BBHs with masses ð1þ 10Þ × 106M⊙ at 3 Gpc with LISA,
including both the spin-orbit and spin-spin couplings, it
was found that λg > 4.1 × 1018 m and λg > 4.9 × 1019 m
with the spin precession [91]. Using the pattern-averaged
analysis for BBHs with masses ð1þ 1Þ × 106M⊙ at 3 Gpc,
it was obtained that λg > 1.82 × 1019 m with LISA,
λg > 1.91 × 1019 m with Taiji, and λg > 1.1 × 1019 m with
TianQin [92]. In this paper, because we take higher

modes into account, we get λg > 7.07 × 1019 m for
BBHs with masses ð1þ 2Þ × 106M⊙ at 3 Gpc with
LISA, and λg > 9.80 × 1019 m for BBHs with masses
ð1þ 10Þ × 106M⊙ at 3 Gpc with LISA. For the one-year
observations of BBHs with masses ð1þ 10Þ × 106M⊙ at
3 Gpc with LTT, we get λg ≳ 1.24 × 1020 m.

B. Constraint on BD coupling constant

BHs do not carry scalar charges due to the no-hair
theorem, and the sensitivity of BHs is always sBH ¼ 0.5,
so we cannot use BBHs to constrain BD theory via dipole
radiation. For this reason, we consider NS inspiraling into
intermediate-mass BHs. It was found that NS inspiraling
into the intermediate-mass BH with smaller mass gives
better constraint on ωBD because more GW cycles are
observed for the same observational time [89,93].
Following Refs. [89–91,93], we fix the mass of the NS
as M2 ¼ 1.4M⊙ and assume its sensitivity sNS ¼ 0.2 and
consider intermediate-mass BHs with the mass 400M⊙ and
1000M⊙, so S ¼ sBH − sNS ¼ 0.3. For each space-based
GW detector, we use both Michelson interferometers I
and II and consider binaries of ρ ¼ ffiffiffiffiffiffiffiffi

200
p

; the luminosity
distance and redshift are then determined based on the
flat ΛCDM model with the cosmological parameters
H0 ¼ 67.4 km=s=Mpc,ΩM ¼ 0.315, andΩΛ ¼ 1 − ΩM ¼
0.685 [108]. For the network of GW detectors including
LISA, we set the SNR of LISA as ρ ¼ ffiffiffiffiffiffiffiffi

200
p

, and the
total SNR of the network is the sum of that from each

TABLE III. The results of error estimation for 1.4=1000M⊙ NS/BH binaries by different GW detectors and their
combinations in BD theory with and without the breathing mode. We use both Michelson interferometers I and II
and consider binaries of ρ ¼ ffiffiffiffiffiffiffiffi

200
p

. For the network of GW detectors including LISA, we set the SNR of LISA as
ρ ¼ ffiffiffiffiffiffiffiffi

200
p

, and the total SNR of the network is the sum of that from each individual detector. For the network TT, we
set the SNR of Taiji as ρ ¼ ffiffiffiffiffiffiffiffi

200
p

, and the total SNR of the network TT is the sum of SNRs from Taiji and TianQin.
The first line of each detector shows the error estimation without considering the scalar mode, and the second line of
each detector shows the error estimation including the scalar mode.

Detectors SNR Δ lnM ð10−7Þ Δ ln η ð10−8Þ Δ ln dL ΔΩs ð10−5 strÞ Δψs Δι ωBD ð106Þ
LISA 14 2.70 7.75 0.19 4.72 0.17 0.15 1.39

14 2.70 7.75 0.19 4.72 0.17 0.15 1.39

Taiji 14 2.35 7.57 0.19 3.65 0.17 0.15 1.38
14 2.35 7.57 0.19 3.66 0.17 0.15 1.38

TianQin 14 2.39 7.35 0.28 5.92 0.33 0.22 1.40
14 2.40 7.36 0.28 5.92 0.33 0.22 1.40

LTJ 30 0.83 3.57 0.09 0.61 0.08 0.07 2.96
30 0.83 3.58 0.09 0.60 0.08 0.07 2.96

LTQ 44 0.79 2.59 0.07 0.49 0.07 0.06 4.39
44 0.79 2.59 0.07 0.49 0.07 0.06 4.39

TT 27 1.14 4.17 0.11 1.05 0.10 0.08 2.63
27 1.14 4.17 0.11 1.05 0.10 0.08 2.63

LTT 52 0.55 2.13 0.05 0.26 0.05 0.04 5.17
52 0.55 2.13 0.05 0.26 0.05 0.04 5.17
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individual detector. For the network TT, we set the SNR of
Taiji as ρ ¼ ffiffiffiffiffiffiffiffi

200
p

, and the total SNR of the network TT is
the sum of SNRs from Taiji and TianQin. The results of
the average error of the parameter estimation in BD theory
for 1.4=1000M⊙ NS/BH binaries with different detectors
and their combinations are shown in Table III. The
average lower bounds on ωBD with the network LTT
are shown in Table IV.
In Table III, we show the estimation errors of all

parameters along with SNRs for NS/BH binaries with
masses 1.4=1000M⊙ by different GW detectors and their
combinations. The results for 1.4=400M⊙ NS/BH binaries
are similar. From Table III, we see that the breathing
mode has negligible effect on the constraint on ωBD. The
constraints with Taiji are a little better than those with
LISA. For some parameters, Taiji gives better constraints
than TianQin, but for other parameters, TianQin gives
better constraints. Compared with single detector, the
network improves the accuracy of source parameters
including the sky localization by several times to even 1
order of magnitude than single detector, and the improve-
ment on the bound onωBD is about∼2–4 times. In Table IV,
we show the constraints on ωBD and the values of SNR for
the two NS/BH binaries with the network LTT. The results
also show that the inclusion of the breathing mode has
negligible effect on the constraint on ωBD because the
breathing mode is suppressed by 1=ωBD. As expected, the
bound on ωBD and the constraints on source parameters
from 1.4=400M⊙ NS/BH binaries are a little stronger
than that from 1.4=1000M⊙ NS/BH binaries because the
SNR is larger. With and without the breathing mode, the
bounds on ωBD with LTT are the same, and the result is
ωBD > 6.11 × 106 for 1.4=400M⊙ NS/BH binaries.
For the one-year observations of 1.4=1000M⊙ NS/BH

binaries with LISA, it was found that ωBD > 96719 [90]. If
the spin-orbit and spin-spin couplings were included, the
constraint became ωBD > 4844 and ωBD > 3523 for pre-
cessing eccentric binaries [91]. Our result ωBD > 5.17 × 106

and the constraints on source parameters given in Table III
are better because we consider higher modes for the
waveform.
The GW frequencies from the merger of 1.4=400M⊙ and

1.4=1000M⊙ NS/BH binaries are in the frequency band of
ground-based detectors, so we can improve the bound ωBD

by combining the measurements from space-based detec-
tors and ground-based detectors; i.e., we expect that the
bound can be improved with a multiband analysis.

IV. CONCLUSION

By Monte Carlo simulation of 1000 uniformly distrib-
uted binaries across the sky, we evaluate how accurately the
future space-based GW detectors such as LISA, Taiji, and
TianQin and their combined networks can determine source
parameters and constrain alternative theories of gravity. In
the constraint of alternative theories of gravity, we also
consider the impact of extra polarization by parametrizing
the waveform of the scalar mode hlmB ðfÞ in massive gravity
as ABhl−mðfÞYlmðι; 0Þ, and including the (1,1) and (2,2)
modes for the breathing state in BD theory, we find that the
inclusion of the scalar mode has little effect on the
constraints on source parameters, the graviton mass, and
the BD coupling constant ωBD.
For the constraint on the graviton mass, we consider

BBHs with different masses at 3 Gpc. The masses of the
small BHs are chosen as 106M⊙, 105M⊙, 104M⊙, and
103M⊙, and the mass ratio between the two constituent
BHs in the binary is chosen as q ¼ 2 and q ¼ 10. The mass
of graviton affects not only GW phase but also the transfer
function, and we take both effects into account. Although
the error of angular resolution ΔΩs with TianQin is
almost 1 order of magnitude worse than those with
LISA or Taiji, the constraint on λg is only ∼2 times worse,
and the constraint on AB is only ∼3 times worse. Although
the networks LTJ, LTQ, TT, and LTT greatly improve
the accuracy of sky localization, the improvements on the
bound on λg are small compared with single detector. As the
total mass of the BBH increases, the bound on λg becomes
stronger for all detectors. The constraint on AB and the
other parameters becomes better as the total mass of BBH
increases to a certain value, but the bound on AB and
the constraints on the other parameters along with the
SNR then decrease as the total mass further increases.
The strongest bound is obtained for BBHs with masses
ð106 þ 107ÞM⊙ with LTT, and the result is λg ≳
1.24 × 1020 m. For TianQin, BBHs with the total mass
around 3 × 105M⊙ give the largest SNR and the best
constraints on AB and the other parameters. For LISA,
Taiji, and the networks LTQ, LTJ, and LTT, BBHs with the
total mass around 5 × 105M⊙ give the largest SNR and
the best constraints on AB and the other parameters; the
strongest bound for AB is AB < 5.7 × 10−4. The depend-
ence of the constraints on the total mass is similar for
different mass ratio q.
For the constraints on Brans-Dicke theory, we consider

1.4M⊙ NS inspiraling into intermediate-mass BHs with
masses 400M⊙ and 1000M⊙. The constraints with Taiji are
a little better than those with LISA. For some parameters,
Taiji gives better constraints than TianQin, but for other

TABLE IV. The results of the lower bounds on the ωBD in BD
theory with the LISAþ TianQinþ Taiji network (LTT). We
consider NS/BH binaries with masses 1.4=1000M⊙ and
1.4=400M⊙. We also show the results of SNR for each binary.

1.4=1000M⊙ 1.4=400M⊙

SNR ωBD ð106Þ SNR ωBD ð106Þ
No breathing 52 5.17 62 6.11
With breathing 52 5.17 62 6.11
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parameters, TianQin gives better constraints. Comparing
with a single detector, the network improves the accuracy
of source parameters including the sky localization by
several times to even 1 order of magnitude than single
detector, and the improvement on the bound on ωBD is
about ∼2–4 times. The bounds on ωBD and the constraints
on source parameters from 1.4=400M⊙ NS/BH binaries are
a little stronger than that from 1.4=1000M⊙ NS/BH
binaries. The lower bound on ωBD is ωBD > 6.11 × 106

with LTT for 1.4=400M⊙ NS/BH binaries.
In conclusion, the inclusion of the scalar mode has little

effect on the constraints on source parameters, the graviton
mass, and the BD coupling constant ωBD. By taking higher
modes into account, we can get better constraints on the

alternative theory of gravity. The detector network can
greatly improve the estimation errors of source parameters,
but the improvement of the constraint on alternative theory
of gravity is small.
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