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Gravitational waves (GWs) from merging binary black holes (BHs) enable unprecedented tests of
gravitational theories beyond Einstein’s general relativity (GR) in highly nonlinear, dynamical regimes.
Such GW measurements require an accurate description of GW signatures that may arise in alternative
gravitational models. In this work, we focus on a class of higher-curvature extensions of GR, the scalar-
Gauss-Bonnet theories, where BHs can develop scalar hair. In an inspiraling binary system, this leads to
scalar-induced tidal effects in the dynamics and radiation. We calculate the dominant adiabatic dipolar tidal
effects via an approximation scheme based on expansions in post-Newtonian, higher-curvature, and tidal
corrections. The tidal effects depend on a characteristic scalar Love number, which we compute using BH
perturbation theory, and have the same scaling with GW frequency as the higher-curvature corrections. We
perform case studies to characterize the net size and parameter dependencies of these effects, showing that
at low frequencies, tidal effects dominate over the higher-curvature contributions for small couplings within
current bounds, regardless of the total BHmass, while at high frequencies they are subdominant. We further
consider prospects observing both of these regimes, which would be interesting for breaking parameter
degeneracies, with multiband detections of LISA and ground-based detectors or the Einstein Telescope
alone. We also assess the frequency range of the transition between these regimes by numerically solving
the energy balance law. Our results highlight the importance of the dipolar scalar tidal effects for BHs with
scalar hair, which arise in several beyond-GR paradigms, and provide ready-to-use inputs for improved
GW constraints on Gauss-Bonnet theories.
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I. INTRODUCTION

With the advent of gravitational-wave (GW)
astronomy [1], compact objects as sources of GWs have
become unique laboratories for testing our understanding of
general relativity (GR) in unexplored strong-field, nonlinear,
and dynamical regimes of gravity—a regime inaccessible to
Solar System tests [2], binary pulsars [3], as well as
observations around the Galactic center [4,5]. Extracting
the information on the fundamental source physics from
the GW data relies on cross-correlating the detector output
with theoretical models. With the GW detectors such as
advanced LIGO, Virgo, and KAGRA poised to yield much
larger and more precise datasets in the coming years [6],
and the next-generation detectors such as Einstein Telescope
(ET) [7], Cosmic Explorer [8], and LISA [9] planned,
accurate theoreticalmodeling of thegravitationalwaveforms
is of high interest and essential for precision tests of
gravity. While current analysis pipelines for theory-agnostic
null tests of GR are successfully established [10–13],
the interpretation of the results to constrain classes of
alternative theories is limited and faces subtleties
(cf., [14,15]). It is thus important to complement such tests

with full inspiral-merger-ringdown waveform models in the
well-motivated beyond-GR theories. This is needed for
systematic searches of predicted beyond-GR signatures in
the data and for setting stronger theoretical constraints. In
beyond-GR theories the GW propagation, generation, and
properties of compact objectsmaybe altered. This affects the
entire binary coalescence process, which begins with the
inspiral regime amenable to perturbative methods.
In this work, we focus on the derivation of the so-called

scalar-induced dipolar tidal effects during a binary inspiral
in scalar Gauss-Bonnet (sGB) gravity to push ahead on the
ongoing efforts of computing analytical waveforms in this
class of theories [16–20]. These theories have a dynamical
scalar field φ that nonminimally couples to the Gauss-
Bonnet (GB) topological invariant, which is a quadratic
combination of curvature quantities. They represent higher-
order curvature extensions to GR involving a specific
combination of curvature terms that guarantees ghost-free
second-order equations of motion [21]. The sGB gravity
arises from the low energy limit of several quantum gravity
paradigms [22–24] and agrees with GR in the weak-
curvature regime [25]. Hence, it provides a useful effective

PHYSICAL REVIEW D 108, 024026 (2023)

2470-0010=2023=108(2)=024026(33) 024026-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2911-4098
https://orcid.org/0000-0003-1604-9805
https://orcid.org/0000-0002-3394-6105
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.024026&domain=pdf&date_stamp=2023-07-13
https://doi.org/10.1103/PhysRevD.108.024026
https://doi.org/10.1103/PhysRevD.108.024026
https://doi.org/10.1103/PhysRevD.108.024026
https://doi.org/10.1103/PhysRevD.108.024026


theory of gravity for astrophysical tests. Moreover, recent
work [26–28] proved the mathematical well posedness
of the theory, paving the way for the first set of fully
nonlinear and noniterative numerical computations of
GWs [29–35].
Black holes, in particular, attain interesting features in

sGB gravity, such as having nontrivial scalar-hair pro-
files [28,36–46] or exhibiting spontaneous (de)scalariza-
tion [47–53]. These features are related to the properties of
the coupling function fðφÞ between the scalar field φ
and the GB quadratic curvature invariant (see [54] for a
general review). Coupling functions having a nonvanishing
derivative when evaluated at a zero field configuration lead
to BHs with nontrivial scalar hair. Examples of such
couplings include fðφÞ ¼ 2φ and fðφÞ ¼ e2φ correspond-
ing to shift symmetric [38] and dilatonic [37,55] GB
theories respectively. For couplings with vanishing
derivatives, the (de)scalarization can happen spontane-
ously. Coupling functions of this type are, for example,
fðφÞ ¼ φ2 [47,51,52] and fðφÞ ¼ e2φ

2

[48]. Thus, BHs in
sGB gravity can evade the “no-hair” theorems [36,42,43,56]
and have a monopole scalar charge. In an inspiraling binary
system, this moving charge sources dipolar scalar radiation,
which affects the dynamics and the morphology of GWs.
Another novel effect for BHs with scalar hair, which we

consider here for the first time in the sGB context, are
scalar-induced tidal effects. They arise from the interaction
of the scalar condensate configuration surrounding a BH
with the scalar field sourced by the companion, whose
gradients across the condensate produce scalar tidal fields.
In general, couplings with tensor-tidal effects also play a
role and give rise to a rich phenomenology; however, in this
paper we focus on the dominant dipolar effect involving
tidal interactions only in the scalar sector. The induced
scalar dipole moment contributes to the scalar radiation and
changes the energetics of the system.
More precisely, the tidal response of a compact object is

characterized by its tidal Love numbers. These character-
istic parameters quantify the ratio of the induced multipole
moments to the perturbing tidal field in the limit of a static
tidal environment and encode information about the nature
and interior structure of the object [57,58]. Within GR, the
Love numbers of BHs vanish [59–65], while they are
nonzero for other objects such as exotica [66,67] or neutron
stars [68–70], for which recent GW discoveries enabled the
first constraints [71].
Tidal effects have been incorporated into the waveforms

of inspiraling binaries in GR by exploiting the hierarchy of
scales: the size of the objects is small compared to the orbital
scale, which in turn is small compared to the wavelength of
GWs. This enables meshing different approximation
schemes adapted to different scales: a fully relativistic
description of the region near the compact objects, a
post-Newtonian (PN) approximation for the dynamics,
and a multipolar post-Minkowski approximation for the

asymptotic radiation [70,72–75]. The PN approximation
applies at large orbital separations, where the gravitational
fields are weak and the motion is slow. In this regime, the
dynamics and GWs are dominated by point-mass effects,
with the finite size of the objects contributing small but
relatively clean and cumulative corrections. This perturba-
tive information on finite-size effects has also been incorpo-
rated in complete waveform models [76–81]. Similar to the
tensor tidal Love numbers, a scalarized compact object can
also have scalar Love numbers, as well as mixed scalar-
tensor ones. Scalar dipolar tidal effects have previously been
computed for neutron stars in scalar-tensor theories for the
dynamics [82,83] and radiation [84].
In this work, we compute, for the first time, the scalar

tidal love number for BHs with scalar hair in sGB gravity,
focusing on nonspinning BHs. We use relativistic pertur-
bation theory to compute the scalar dipolar Love numbers
and obtain closed-form expressions under the assumption
that the sGB corrections are small. Building on the
computation of the two-body Lagrangian [17] and the
scalar and tensor waveforms [18,19] to linear order in
the GB coupling and to relative 1PN order, we calculate the
tidal contributions to the BH dynamics and radiation
from the tidally induced scalar dipole moment and obtain
explicit expressions for the corresponding signatures in the
Fourier-domain GW phasing. We perform case studies to
analyze the parameter dependencies and features of the
tidal and higher curvature corrections to the GW phase
evolution. We also quantify the regimes of validity of our
analytic results for the GW phase expressions, which
distinguish between a low (high) frequency regime
dominated by the scalar dipole (tensor) radiation by
comparing with numerical solutions of the energy balance
condition.
This paper is organized as follows. In Sec. II we outline

the sGB theory and a general treatment of the matter action
including scalar-induced dipolar finite size effects. We also
explain the multiple expansion parameters used in the
calculations and the different approximation schemes.
Section III contains our derivation of the tidal contributions
to the two-body Lagrangian and binding energy, and
Sec. IV the tidal contributions to the scalar and tensor
waveforms and the GW phasing. Independently in Sec. V
we derive the scalar tidal Love number using BH pertur-
bation theory and a small coupling approximation.
Collecting our results we show different case studies of
BH systems to analyze the dependencies of the tidal and
higher curvature corrections to the GW phasing in Sec. VI
and conclude in Sec. VII.
In this paperwe use the standard notation for symmetrized

and antisymmetrized indices, namely xðiyjÞ denotes sym-
metrization and x½iyj� antisymmetrization. We use a multi-
index notation for products of vector components:
xijk ≡ xixjxk, and a capital letter superscript denotes a
product of that dimensionality: xL ≡ xk1xk2 � � � xkl .
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II. SCALAR-GAUSS-BONNET GRAVITY

A. Action

The action of sGB theory is given by

S ¼ c3

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ð∇φÞ2 þ αfðφÞR2
GB�

þ Sm½Ψm;A2ðφÞgμν�; ð1Þ

where R is the Ricci scalar on the four-dimensional
manifold M with the metric gμν and φ is the canonical
scalar field. The fundamental coupling constant of the
theory is α and has dimensions of length squared; we
discuss current bounds on it below. The function fðφÞ is a
dimensionless coupling function, which we keep generic
for most of the paper except for specific case studies in
Sec. VI. The GB invariant R2

GB is given by

R2
GB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð2Þ

The quantity Sm is the general matter action with Ψm
denoting the matter fields having a generic nonminimal
coupling to the metric through a function AðφÞ.
There are two different interpretations of the action (1),

which is expressed in the so-called Einstein frame. In this
frame, the scalar field is not coupled to the Ricci scalar, so
the GR limit is preserved even for large scalar fields. Using
a conformal transformation, we can equivalently express
the action in the Jordan frame, where the scalar field is also
coupled to R but couplings to standard-model fields are
unaffected, which corresponds to AðφÞ ¼ 1 in Sm. For GB
corrections derived from the low energy limit of quantum
gravity theories such as string theories, the direct result is in
the Jordan frame, with (1) representing a transformation of
the theory with conformal factor AðφÞ ¼ eφ for dilatonic
couplings. A different perspective on the action (1) is as an
effective theory that reduces to GR in low-curvature
regimes but includes higher-curvature corrections. In this
case the Einstein frame action (1) is the fundamental theory.
In principle, the choice of frame is expected to leave
observables unaffected, provided the calculations are car-
ried out consistently to the final measurements. We also
note that the Einstein and Jordan frame descriptions
coincide in the weak-coupling limit, where φ is small
and the conformal factor can be approximated to be 1.
Having noted these subtleties, we will work with the action
in the form (1) throughout this paper.
We next discuss existing bounds on sGB theory. For the

case of a dilatonic coupling function, current observational
constraints on α are the following. Minimum constraints
are set by Solar System tests; the measurement of the
Shapiro time delay by the Cassini spacecraft estimatedffiffiffi
α

p
< 8.9 × 106 km [85]. Stronger constraints come from

low-mass x-ray binary observations [86] and from
Bayesian parameter estimation with GW detections [87].

The latest stringent GW bounds are derived from the
analysis of the O1-O3 datasets of the LIGO/Virgo and
show

ffiffiffi
α

p ≲ 0.4–1.33 [88–91] km. Cases with quadratic or
Gaussian coupling functions have, so far, remained uncon-
strained from observations.
To proceed with calculations based on the action (1)

requires specifying the relevant matter action. To make the
calculations analytically tractable we will use an adiabatic
approximation for the system during the early inspiral. In
this regime, the timescales associated with the source
dynamics are much faster than the changes induced by
GW losses. This enables an approximate description that
separates between the dynamics of the source and the
radiation, which are connected through energy and angular
momentum balance laws. We further adapt this description
to the hierarchy of length scales in the early inspiral, at
large orbital separation.

B. Hierarchy of scales in a binary inspiral

The system considered in this work encompasses a
binary of two nonspinning black holes with a nontrivial
scalar configuration at large separation r. We further
assume that the black holes follow circular orbits that
slowly decay due to GW losses. To calculate the GWs
requires solving the equations of motion derived from the
action (1) for the dynamical spacetime and scalar field. This
is a theoretical challenge. Thus, we focus here on the
inspiral regime of the system, where the black holes are at
large separation and a clear hierarchy of length- and
timescales emerges which makes the problem amenable
to analytical approximation methods. Such methods rely on
a tapestry of different perturbative expansions adapted to
different patches of the spacetime. In the calculations
below, we trace the flow of information between different
parts of this system, from the consideration of a nearly
isolated black hole experiencing scalar tidal perturbations
to the orbital scales in the dynamics and ultimately to the
waveforms at the GW detectors. These different regimes
are characterized by different length scales that are impor-
tant, as illustrated in Fig. 1. We see that the smallest scale is
the size of the BH, which is of order the Schwarzschild
radius

rS ¼
2GM
c2

; ð3Þ

with M being the mass of the BH. The typical scale
associated to the scalar condensate surrounding the BH is
Lφ ∼ 10rS, as we show in Sec. V below. The orbital
separation r during the early inspiral is the second-largest
scale, with the longest one being the reduced wavelength ƛ
of the GWs. Different physics dominates on these different
scales, which makes it useful to divide the calculation into
three zones: the body-zone near the BHs, the orbital (near)
zone, and the far (wave) zone, the latter two we show
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explicitly in Fig. 1. In each zone we use a different
approximation scheme, and match between them in inter-
mediate zones.
To establish suitable perturbation schemes in each zone

requires identifying the relevant small dimensionless
parameters to define different perturbation expansions.
The first such parameter relevant here is the ratio of the
characteristic size of each BH and scalar condensate to the
orbital radius, which we denote by

εtid ∼
Lφ

r
≪ 1: ð4aÞ

This assumption assures the validity of the skeletoniza-
tion approximation which we introduce in the next section.
We will comment further on the scale Lφ and the range of
validity of the skeletonized approximation in Sec. VA 2. In
addition, we use the PN weak-field, slow motion parameter
characterizing relativistic corrections

εPN ∼
GM
rc2

∼
v2

c2
≪ 1; ð4bÞ

and the coupling strength of deviations from GR

ϵ ¼ c4α
G2m2

≪ 1 ð4cÞ

wherem is the total mass of the binary system. We will also
use a more restrictive version involving the GB coupling
parameter that is based on each BH in the binary system,
where

α̂ ¼ α

r2S
≪ 1: ð4dÞ

We treat all of these small parameters (4) as independent.
The organization of our calculation is that we start with

the description of the system viewed on the orbital scale,
where the BHs behave essentially as point particles with
small corrections due to the scalar condensates encapsu-
lated in a scalar-dependent mass and a tidally induced
scalar dipole moment. For the computations in Secs. III
and IV we expand perturbatively in the post-Newtonian
parameter εPN. This expansion is valid in the near zone in
which the distance to a field point and the source is less
than the characteristic wavelength [92].
At larger distances, the retardation effects, which are

considered small in the PN expansion, become important.
Additionally in Sec. IV we consider the waveforms at the
detector, one can expand in large R, resulting in a
multipolar treatment of the fields. In these sections we
implicitly assume small εtid such that a skeletonized
description applies but not making additional explicit
approximations in this parameter.
At this stage, our results are valid for generic values of

the GB coupling. In Sec. III D we specialize the binary
calculations to quasicircular orbits. To obtain closed-form
expressions for quantities of interest requires expanding in
ϵ and εtid, in addition to the expansion in εPN. We obtain
results for the GW phase in terms of global characteristics
of each body, i.e., BH and scalar condensate, when viewed
from far away, such as a mass, sensitivity, and tidal
deformability coefficient. To relate these parameters to

FIG. 1. Schematic figure of a binary system of the two BHs with masses and velocities mA, mB, vA, and vB respectively. The scalar
field configuration is shown in orange. The orbital near zone shows the characteristic length scales of the horizon radius rH and the scalar
cloud Lϕ. At large distances R from the source the waveforms hij, φ are found with characteristic wavelength ƛ. The inset shows the
body zone around one BH at far distance r̃ from the observer. The sections for which the different zones are relevant are shown as well.

VAN GEMEREN, SHIRALILOU, and HINDERER PHYS. REV. D 108, 024026 (2023)

024026-4



the fundamental properties of the BH and scalar field
configuration requires a different approximation adapted to
studying the detailed behavior in the proximity of one BH,
which we discuss in Sec. V. For the computations in this
regime, again to obtain analytical closed-form results, we
use a double perturbative expansion in α̂ and εtid to linear
order in both parameters. With these results in hand we
match to the parameters entering the description of the
orbital dynamics and GWs at large distances r̃ from
the black hole by extracting the multipole structure of
the configuration.

C. Skeletonized matter action with scalar-induced
tidal effects

The hierarchy of scales discussed above enables an
approximate description of the orbital dynamics based
on a worldline skeleton [93,94]. In this skeletonization
approach, a compact object, say body A, is reduced to a
central worldline zμA with tangent uμA ¼ dzμA=dτA, together
with additional global characteristics such as a mass and
higher multipole moments. As in other effective field
theories, an effective action for the worldline dynamics,
Sm, can be constructed as a functional of the fields φ; gμν
expanded around their values on the central worldline for
each body. By using field redefinitions and a derivative
counting scheme, one can truncate the expansion to a finite
number of terms. For finite size effects, a more powerful
approach than a direct derivative expansion that is capable
of capturing additional internal dynamical effects of the
object is to use the multipole moments associated to the
worldline as the fundamental dynamical degrees of free-
dom in the effective action. Symmetry considerations such
as time reversal and parity invariance then dictate the kinds
of couplings that can appear in such an action, and a
multipole counting scheme truncates the number of rel-
evant terms. The coupling coefficients in the effective
action are fixed by matching to a full description of the
body, which determines the information about the body
they encode. The skeletonized action framework was
initially developed to describe compact objects viewed
on the orbital scale; however, it can also be used to describe
objects surrounded by matter configurations [17,84,94]
provided that the matter configurations are sufficiently
concentrated that the hierarchy of scales still applies. Here,
we will use this formalism for including the effects of
tidally induced scalar dipole moments, which are absent in
GR, in addition to the previously established [17] point-
mass action. We comment on the regime of validity of this
approach in Appendix A and Sec. V.
Specifically, we consider the skeletonized matter action

to be a sum of the point-particle action Spp and the action
for the scalar-induced dipolar tidal effects Stid:

Sm½gμν;φ; xμA� ¼ Spp þ Stid: ð5Þ

The point-particle effective action contains the center-of-
mass contributions from the two objects Spp ¼ SApp þ SBpp,
which can be written in terms of a scalar-dependent mass
M̄ðφÞ as

SApp ¼ −c
Z

M̄AðφÞdsA; ð6aÞ

and similarly for body B, where dsA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdx

μ
Adx

ν
A

q
is

the differential along the worldline of particle A. Here, the
scalar-dependent mass M̄A is at this stage just a coupling
coefficient, which accounts for the presence of a scalar
condensate surrounding the body. However, as this mass
term does not include any gradients of φ it does not
describe finite-size effects. We add such effects based on
the action describing linear tidal effects for the scalar
dipole, which is derived in Appendix A and was previously
used in the context of scalar-tensor theories in [84,95]. For
a body A the tidal interactions involve a scalar dipole
moment denoted by Qμ

A and a scalar tidal field sourced by
the companion Eμ

A. The tidal field felt by body A and
sourced by body B is given by Eμ

A ¼ −∂μφB, where an
evaluation on the worldline of A is implied; see Appendix A
for further discussion of the tidal field. The tidal action for
scalar-induced dipolar effects consists of the coupling
between the dipole and the tidal field, and a contribution
from the internal dynamics of the dipole, and is given by
StidA ¼ c

R
dsALtid

A with

Ltid
A ¼−Qμ

AE
A
μ þ

1

2λAs ðωA
s Þ2

ð _Qμ
A
_QA
μ − ðωA

s Þ2QμAQ
μ
AÞ; ð6bÞ

where λAs and ωA
s are coupling coefficients already written

in a suggestive form and we have chosen the normalization
of the dipole such that the coupling coefficient for the first
term is unity. Here, overdots denote derivatives with respect
to proper time along the worldline. The equations of motion
for QA

μ derived from the action (6b) in the adiabatic limit,
where we assume that variations in the tidal field are
much slower than the internal timescales associated to the
dipole, are

QA
μ ¼ −λAs EA

μ : ð6cÞ

Using (6c) to integrate out the dipole degrees of freedom
from the adiabatic limit of (6b) leads to the effective tidal
action

SAtid ¼ c
Z

dsA
λAs
2
∂μφB∂

μφB: ð6dÞ

The coupling parameter is called the dipolar scalar tidal
deformability parameter λAs , which characterizes the
response of A to a static scalar dipolar tidal field. The full
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definition of this parameter and its dependence on the
fundamental properties of the theory and the BH can be
found in Sec. V B. Similar to the point-particle action, the
total tidal action is the sum of the individual contributions
Stid ¼ SAtid þ SBtid, with the results for body B obtained by
interchanging the body labels (A ↔ B) in (6d).

D. Field equations

The field equations are found by varying the action (1)
and (6) with respect to the dynamical fields. For the tensor
field in the trace-reversed form, we obtain

Rμν ¼ 2∇μφ∇νφ−4α

�
Pμανβ−

gμν
2
Pαβ

�
∇α∇βfðφÞ

þ8πG
c4

�
Tpp
μν−

gμν
2
Tpp

�
þ8πG

c4

�
T tid
μν −

gμν
2
T tid

�
; ð7Þ

where Pμνρσ ¼ Rμνρσ − 2gμ½ρRσ�ν þ 2gν½ρRσ�μ þ gμ½ρgσ�νR,
and Pμν ≡ Pλ

μλν. The point-mass part of (7) agrees
with [17]. The distributional energy-momentum tensors
and their traces are given by

Tpp
μν ¼ −2ffiffiffiffiffiffi−gp δSpp

δgμν
; T tid

μν ¼
−2ffiffiffiffiffiffi−gp δStid

δgμν
; ð8Þ

with the corresponding traces Tpp ¼ gαβTpp
αβ and similarly

for the tidal part. Varying the action with respect to the
scalar field leads to

□φ ¼ −
1

4
αf0ðφÞR2

GB −
4πG
c4

ðδ̄Spp þ δ̄StidÞ; ð9Þ

with

δ̄Spp ¼
1ffiffiffiffiffiffi−gp δSpp

δφ
; δ̄Stid ¼

1ffiffiffiffiffiffi−gp δStid
δφ

; ð10Þ

where □≡ gαβ∇α∇β denotes the d’Alembertian operator.
The derivation and explicit expressions for the terms in (8)
and (10) can be found in Appendix B.

III. POST-NEWTONIAN, SMALL COUPLING,
AND TIDAL APPROXIMATIONS FOR THE

BINARY DYNAMICS

A. Expansions of the fields

In order to find the contribution of the scalar tidal effects
to the conservative dynamics of compact bodies, we rely on
an approximation scheme based on perturbative expansions
in the PN approximation, where we work to 1PN order,
as well as in the GB coupling and tidal effects, which we
each consider to linear order. We treat these expansions
as independent, though assume that the corrections
are all small; more details are discussed in Sec. III C.

For simplicity, we do not indicate the triple expansion on all
of the quantities. We also note that some of the results in
this section have broader validity as, for instance, they do
not require the small-coupling assumption.
The PN framework restricts the dynamics to the region of

weak-field and low-velocity for a gravitationally bound
system, i.e., Gm=rc2 ≈ v2=c2 ≪ 1, where m, r, and v are
the characteristic mass, size, and velocity of the source.
These are the relevant dimensionless expansion parameters
that are used for the PN perturbative expansion. Here we
keep track of factors of 1=c, which are each counted as a
half-PN order.
To solve the field equations (7) and (9) in the space-time

region around the binary (i.e., the near zone, see Fig. 1), we
expand the metric around Minkowski space-time and the
scalar field around the background value φ0 [96]

g00 ¼ e−2U=c2 þOðc−6Þ;
g0i ¼ −4gi=c3 þOðc−5Þ;
gij ¼ δije2U=c2 þOðc−4Þ;
φ ¼ φ0 þ c−2δφð1Þ þOðc−4Þ: ð11Þ

From the expansion for the scalar field (11) it follows
that the scalar-dependent mass M̄AðφÞ has an expansion of
the form

M̄A ¼ m0
A

�
1þ α0A

c2
δφð1Þ þ 1

c4
ðα0Aδφð2Þ

þ½ðα0AÞ2 þ β0A�δφð1ÞÞ
�
þOðc−6Þ; ð12Þ

where m0
A denotes the leading-order coefficient, which we

will match with the BH mass in Sec. V. The so-called
sensitivity parameter α0A measures the coupling of the
skeletonized BH to the background scalar field and is
defined by

α0A ¼ d ln½M̄AðφÞ�
dφ

����
φ¼φ0

; β0A ¼ dαAðφÞ
dφ

����
φ¼φ0

: ð13Þ

We will relate these parameters to the scalar charge
in Sec. V.
With the above ansatz and approximations, we expand

the equations of motion and solve for the expansion
coefficients order by order in 1=c. This results in solutions
for the fields U, gi, and φ in the near zone, where the PN
expansion is valid, as discussed in Sec. II B. Appendix B
contains the explicit derivations of the fields up to first
order in the PN expansion, which show that the tidal
contributions to the field equations (i.e., T tid

μν and δ̄Stid)
do not contribute to the fields at this PN order; see also
Sec. II E in [97] for a related discussion. The solutions have
the leading-order behavior
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U ¼ Gm0
A

r
þ ðA ↔ BÞ þOðc−2Þ; ð14Þ

δφð1Þ ¼ −
Gm0

Aα
0
A

r
þ ðA ↔ BÞ: ð15Þ

These solutions are valid in the region of the orbital scales,
in the near zone [92]. Using these solutions, Ref. [17]
constructed the effective PN Lagrangian for the dynamics
of a binary system. Below, we discuss the modifications to
the Lagrangian due to the tidal effects.

B. Two-body Lagrangian with dipolar tidal effects

As shown in Appendix B, the presence of tidal terms
in (7) does not change the solutions to the field potentialsU
and δφð1Þ at 1PN order. Hence we can use the known
solutions of [17] to expand the Lagrangian. The Lagrangian
of body A in the field of body B is given by

LA ¼ dSApp
dt

þ dSAtid
dt

: ð16Þ

The term dSApp=dt was calculated in [17] and we do not
repeat it here. Using similar methods for the tidal con-
tribution leads to

dSAtid
dt

¼ 1

2
cλðsÞA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gAαβ

dxαA
dt

dxβA
dt

s
gμνB ∂μφB∂νφB

¼ 1

2
cλðsÞA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
�
1 −

UA

c2
−

v2A
2c2

�s

× ½−e2UB=c2ð∂0φBÞ2 þ e−2UB=c2ð∇φBÞ2� þ…

¼ 1

2
λðsÞA c2ð∇φBÞ2 þOðc−4Þ: ð17Þ

Using the lowest-order solution for φ from (14), this can be
written as

dStid
dt

¼ 1

2
λðsÞA

G2ðm0
Bα

0
BÞ2

c2r4
þOðc−4Þ: ð18Þ

Combining (18) with the point particle Lagrangian
from [17], the overall two-body Lagrangian to 1PN order
is given by

LAB ¼ −m0
Ac

2 þ 1

2
m0

Av
2
A þ Gᾱm0

Am
0
B

2r
þ 1

8c2
m0

Av
4
A

þ Gᾱm0
Am

0
B

rc2

�
−
Gᾱm0

A

2r
ð1þ 2β̄BÞ þ

3

2
ðv2AÞ

−
7

4
ðvA · vBÞ −

1

4
ðn · vAÞðn · vBÞ þ

γ̄

2
ðvA − vBÞ2

	

þ αf0ðφ0Þ
r2

G2m0
Am

0
B

r2c2
½m0

Aðα0B þ 2α0AÞ�

−
1

4

G2ᾱ2μm
r4c2

ζ þ ðA ↔ BÞ; ð19Þ

wherem ¼ m0
A þm0

B is the total mass, μ ¼ m0
Am

0
B=m is the

reduced mass, r ¼ krk ¼ kxA − xBk is the relative sepa-
ration vector, and n ¼ r=r its unit vector. Following the
notation of [19], we define the binary parameters:

ᾱ≡ ð1þ α0Aα
0
BÞ; γ̄≡−2

α0Aα
0
B

ᾱ
; β̄A ≡ 1

2

β0Aðα0BÞ2
ᾱ2

;

S� ≡ α0A � α0B
2

ffiffiffi
α

p ; β� ≡ β̄A � β̄B
2

; ð20Þ

with the coefficients α0, β0 from (13). We also define the
quantity ζ to be the weighted averages of the tidal
deformabilities

ζ ≡ −λðsÞA
m0

Bα
0 2
B

ᾱ2m0
A

− λðsÞB
m0

Aα
0 2
A

ᾱ2m0
B
: ð21Þ

Note that we included the minus sign of the tidal con-
tribution in the definition of ζ. Furthermore, as discussed
in [19], the scalar contributions to the dynamics have a
similar effects as in scalar-tensor theories in that they
renormalize the gravitational constant to be Gᾱ, which also
appears in the scalar finite-size terms but not in the
additional GB effects from the higher curvature corrections.
From the Lagrangian (19) we obtain the equations of

motion using the Euler-Lagrange equations. After con-
verting to the center-of-mass (CM) frame using the rela-
tions given in [19]—for which we have confirmed that the
tidal corrections do not modify these equations at the
considered order—we obtain the relative acceleration,

a ¼ −
Gᾱm
r2

nþ Gᾱm
c2r2

�
n

�
3

2
η_r2 − ð1þ 3ηþ γ̄Þv2

	

þ2v_r½2 − ηþ γ̄� þ 2Gᾱmn
r

�
2þ ηþ γ̄ þ βþ −

Δm
m

β−

	

þ 2Gᾱmn
r

�
−
2αf0ðφ0Þ
ᾱ3=2r2

�
3Sþ þ Δm

m
S−

�
þ ζ

mr2

	�
;

ð22Þ
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where Δm ¼ m0
A −m0

B is the mass difference, η ¼ μ=M is
the symmetric mass ratio, v ¼ _r is the relative velocity.

C. Discussion of the expansion scheme adopted here

The results computed thus far were based only on the PN
approximation, without any additional assumptions on the
GB coupling. Within this approximation, the Lagrangian
(19) contains terms at linear order in α and in λs, which first
appear at Oð1=c2Þ, i.e., the same order as the 1PN GR
terms. However, they scale with the orbital separation as
1=r4, similar to 3PN GR terms, which arises because the
coupling coefficients are dimensionful, for instance α=r2

and Gζ=ðc2r3Þ are dimensionless. Similar degeneracies of
tidal and PN corrections can in fact be disentangled via
analytic continuation [98]. In the calculations below, which
will require perturbatively inverting various relations for
circular orbits, we will explicitly expand to leading orders
in the small coupling ϵ and the tidal perturbations εtid, as
well as for small PN parameter, treating any cross-terms as
negligible corrections for our purposes here. To avoid
further notational complexity of the equations, we do
not explicitly indicate this expansion on all the quantities,
and also do not convert explicitly to appropriate dimen-
sionless coefficients. We also note that adopting this triple
expansion from the beginning leads to the same Lagrangian
as (19), which corroborates the consistency of our
approach. Thus, given the above considerations, we do
not use an explicit PN-order counting for the tidal and GB
contributions, but note that they are generally suppressed
compared to 1PN GR terms. This is similar to the case of
tensor tidal effects in GR, where an analogous situation
arises and is addressed via a similar mathematical
formalism [99].

D. Radius-frequency relation and binding energy
for circular orbits

In the following, we will restrict our attention to the
quasicircular orbits with _r ¼ ̈r ¼ 0. The orbital angular
frequency ω is computed from ω2 ¼ −a · r=r2 evaluated in
the circular limit, which gives the generalized Kepler’s law:

ω2¼Gᾱm
r3

�
1−

Gᾱm
rc2

�
3−ηþ γ̄þ2βþ−2

Δm
m

β−

−
4αf0ðφ0Þ
ᾱ3=2r2

�
3Sþþ

Δm
m

S−

�
þ 2ζ

mr2

	
þOðc−4Þ

�
: ð23Þ

Because the observable quantity is the frequency rather
than the gauge-dependent orbital radius, we invert (23) to
eliminate r in favor of ω. It is convenient to work with a
frequency parameter

x ¼
�
Gᾱmω

c3

�
2=3

; ð24Þ

which differs from the commonly-used analogous quantity
in GR by a factor of ᾱ. We perturbatively invert (23) by
expanding to linear order in ϵ and εtid and truncate the
remaining terms to 1PN order. This leads to the radius-
frequency relationship

rðxÞ ¼ Gᾱm
c2x

�
1 −

1

3
x

�
3 − ηþ γ̄ þ 2βþ − 2

Δm
m

β−

�

þ 4αf0ðφ0Þ
Gm2ᾱ7=2

c4x3
�
Sþ þ Δm

3m
S−

�
−

2ζ

3G2ᾱ2m
c4x3

	
:

ð25Þ

From the Lagrangian (19) we derive the conserved binding
energy of the system, again working perturbatively in the
small parameters. In the CM frame, and after expressing the
result in terms of x using (25), we obtain

EðxÞ¼−
μc2x
2

�
1þx

�
−
3

4
−

η

12
þEs

�
þx3c4ðEGBþEtidÞ

	
;

ð26aÞ

with the sensitivity-dependent contributions

Es ¼ −
2

3
γ̄ þ 2

3
βþ −

2

3

Δm
m

β−; ð26bÞ

the GB contribution

EGB ¼ −
10

3

αf0ðφ0Þ
G2ᾱ7=2m2

�
3Sþ þ Δm

m
S−

�
; ð26cÞ

and the tidal terms

Etid ¼
5

3

ζ

G2m3ᾱ2
: ð26dÞ

In Sec. VI we analyze the dependencies of the tidal and GB
contributions to the binding energy on the parameters of the
binary system.

IV. TIDAL EFFECTS IN THE SCALAR
AND GRAVITATIONAL WAVEFORM

In this section we derive different contributions from the
tidal terms as appearing in the scalar and tensor waveforms.
Focusing on circular orbits, we also find tidal modifications
to the scalar and tensor energy flux rates and the overall
GW phasing in the Fourier domain.

A. Tidal-induced dipolar radiation

The scalar and tensor waveforms are constructed from
radiative solutions to the equations of motion in the far
zone. For the scalar field we can rewrite (9) as
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□η
δφ

c2
¼ □ηΦ ¼ 4πμs; ð27Þ

with μs containing the source terms from (9). For the
waveform calculation, we are interested in the solutions
to this equation at the position of a distant observer (such
as the GW detectors), in contrast to the near-zone sol-
utions discussed in Sec. III. This requires a different
approximation scheme for the integration, as explained
in details in [100,101]. The relevant part of the scalar field
integral can be expressed as a multipole expansion of the
form

ΦðxÞ ¼
X∞
l¼0

ΦlðxÞ

¼ −
X∞
l¼0

ð−1Þl
l!

∂L

�
1

R
ILs ðτÞ

�
; ð28Þ

with R the distance from the source to the observer and
τ ¼ t − R=c is the retarded time. The scalar multipole
moments are given by

ILs ðτÞ ¼
Z
M

d3x0μsðτ;x0Þx0L: ð29Þ

We refer to [19,92] for the details on this derivation
following the DIRE approach [92,100,102]. The dominant
radiative part of the scalar multipole fields at large distances
is given by

ΦlðxÞ ¼
NL

Rl!

�
∂

c∂t

�
l
ILs þOðR−2Þ; ð30Þ

where N ¼ R=R is the directional unit vector pointing
from the source to the observer. We are particularly
interested in calculating the corrections to Φl due to the
scalar tidal effects.
As discussed in Sec. II C, the leading-order scalar tidal

effects lead to induced dipole moments QðsÞ
μ of each body.

From (14) and (6c) we obtain the leading-order induced
dipole moment

QðsÞ
i ¼ −

X
A≠B

λðsÞA

c2
∂i
Gm0

Bα
0
B

r
¼ ζ̄

ri
c2r3

; ð31Þ

with

ζ̄ ¼ −λAGm0
Bα

0
B − λBGm0

Aα
0
A: ð32Þ

Note that this tidal quantity involves a different combina-
tion of parameters than the tidal contributions to the
binding energy (21). For instance, it depends linearly
instead of quadratic on the sensitivities. The contribution

from this induced dipole moment to the overall scalar
radiation is1

Φtid
i ðxÞ ¼ G

Rc2
1

c
∂QðsÞ

i

∂t
Ni þOðR−2Þ

¼ Gμ
ffiffiffī
α

p

Rc3
ζ̄

ᾱ3=2Gm2ηr2

�
Gᾱm
c2r

�

×
�
ðN · vÞ − 3_r

ðN · rÞ
r

	
: ð33Þ

Together with the monopole, quadrupole and octupole
scalar radiation of [19] we can construct the scalar wave-
form via (28) up to relative 0.5PN order. We correct the
waveform relative to [19] removing an overall factor of 2
and a different prefactor of the term proportional to the
coupling constant. The full scalar waveform including the
tidal contribution is given in Appendix C via (C3).
For the case of tensor waveforms, we have shown that

the tidal contributions only modify the waveforms through
their corrections to the acceleration term (22) (i.e., they do
not modify tensor multipole moments at the considered
order). The full gravitational waveforms to 1PN order
including these tidal terms is given in (C6).

B. Tidal contributions to the scalar energy flux

The scalar energy flux is calculated from the scalar
waveform via

F S ¼
c3R2

4πG

I
_Φ2d2Ω; ð34Þ

where the angular integration over the products of unit
vectors in _Φ2 is computed using the identities from [103].
Tidal contributions to the energy flux arise both from the
tidal dipole radiation [proportional to ζ̄ defined in (32)] and
from the tidal contribution in the relative acceleration
[proportional to ζ defined in (21)]. The latter comes in
when differentiating the lowest-order term of the scalar
waveform. We find the total GB contributions to the scalar
energy flux to be

FGB
S ¼ η2

Gᾱc3

�
Gᾱm
r

�
4
�
−
8

c2

�
αf0ðφ0ÞS−Sþffiffiffī

α
p

r2

�

×

�
SþþΔm

m
S−

��
−3_r2þv2−

2Gᾱm
3r

	
þ32Gmᾱ

3rc2

×

�
αf0ðφ0ÞS2

−

ᾱ3=2r2

��
3SþþΔm

m
S−

�
þOðc−3Þ

	
; ð35Þ

1The prefactor of G
c2 results from matching the definition of the

moments (29) which contain factors of G and c implicitly (C2)
and (31). Note there is also an overall factor of c2 difference in the
definitions of both moments which can be recovered from
dimensional analysis.
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and the dipolar tidal contribution

F tid
S ¼ η2

Gᾱc3

�
Gᾱm
r

�
4
�

4ζ̄S−
Gmμᾱ3=2c2r2

�
−3_r2 þ v2

−
2Gmᾱ

3r

�
−
Gmᾱ

r
16ζS2−
3mc2r2

þOðc−3Þ
	
: ð36Þ

Both of these contributions enter at 0.5PN order.
Expressions for the total scalar energy flux including all
other contributions up to that order is given in Appendix C.
Specializing to circular orbits, and writing the expres-

sions in terms of the dimensionless PN parameter x defined
in (24), the scalar flux becomes

F SðxÞ ¼ x4c5½S4þ xðS5þ S5GBx2c4 þ S5tidx2c4Þ�; ð37Þ

with S4 and S5 given in (C8) and the Gauss Bonnet
contribution given by

S5GB ¼
�
4αf0ðφ0Þη2S−
3ᾱ7=2G3m2

��
8S−
3ᾱ

�
3Sþ þ Δm

m
S−

�

−2Sþ
�
Sþ þ Δm

m
S−

�	
; ð38Þ

and the tidal contribution by

S5tid ¼
�

4ηS−
3G3ᾱm3

��
ζ̄

Gᾱ3=2m
−
4ηS−ζ

3

�
: ð39Þ

Our result (38) for S5GB contains an additional term
compared to [19], which results from substituting the
relative acceleration in the lowest-order term of the scalar
waveform.

C. Tidal corrections to the tensor energy flux

The tensor energy flux is computed from the tensor
waveform via

F T ¼ c3R2

32πG

I
_hijTT _h

ij
TTd

2Ω: ð40Þ

Here, tidal contributions enter only from the relative
acceleration when differentiating the lowest-order term
in the tensor waveform. The resulting tidal correction is
given by

F tid
T ¼ 8

15

η2

Gᾱ2c5

�
Gᾱm
r

�
4 Gᾱ
c2r3

ð56_r2 − 48v2Þζ: ð41Þ

The Gauss Bonnet contribution is

FGB
T ¼ 8

15

η2

Gᾱ2c5

�
Gᾱm
r

�
4
�

f0ðφ0Þ
7c2

ffiffiffī
α

p
r2

��
Sþ

�
1þ 6

25
η

�

þ Δm
m

S−

��
1350v4 þ 5100_r4

þ Gᾱm
r

ð−750v2 þ 950_r2Þ − 900v2 _r2
�

þ Gm
r

�
3Sþ

Δm
m

S−

�
ð672v2 − 784_rÞ

�	
: ð42Þ

Here we completed the result for the GB terms of [19].
Again specializing to circular orbits in terms of PN
parameter x (24), the total tensor flux is

F TðxÞ¼ x5c5½T5þxðT6þT6GBx2c4þT6tidx2c4Þ�; ð43Þ

with T5 and T6 arising from the scalar and PN corrections
and given explicitly in (C8). The GB contributions are

T6GB ¼
�
128αf0ðφ0Þη2
5ᾱ9=2G3m2

��
Δm
m

S−

�
25

14
þ 4

3ᾱ

�

þ Sþ

�
25

14
þ 4

ᾱ
þ 3

7
η

�	
; ð44Þ

and the tidal terms are

T6tid ¼ −
256η2ζ

15G3ᾱ4m3
: ð45Þ

The total flux is obtained from the sum of the tensor and
scalar energy flux F ¼ F S þ F T .

D. Phase evolution in Fourier domain

To further analyze the effects of the tidal contribution on
the gravitational wave signal we consider the tidal con-
tributions to the phase evolution during an inspiral. In the
adiabatic limit _ω=ω2 ≪ 1 assuming circular orbits, the
radius slowly shrinks as determined by energy balance

_EðωÞ ¼ −F ðωÞ: ð46Þ

With the relation _ϕ ¼ ω for the evolution of the orbital
phase we obtain the set of differential equations

dϕ
dt

− ω ¼ 0;
dω
dt

þ F ðωÞ
E0ðωÞ ¼ 0: ð47Þ

The dominant GWmode due to the quadrupole oscillates at
twice the orbital frequency f ¼ ω=π. There are different
ways to solve the system (47) and obtain the GW phasing.
For data analysis, it is useful to have closed-form expres-
sions for the GW phasing in the Fourier domain. Using the
stationary phase approximation (SPA) [104], the Fourier
transform of the GW signal is given by
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h̃SPAðfÞ ¼ A

ffiffiffiffiffiffiffi
2π

m _ω

r
e−i½ψðfÞþπ=4�: ð48Þ

Here,A is the amplitude of the mode and the Fourier phase
given by ψ ≡ 2ϕðtðfÞÞ − 2πftðfÞ. With (47) we can
combine this to the second-order differential equation for
the Fourier phase

d2ψðωÞ
dω2

¼ −2
E0ðωÞ
F ðωÞ : ð49Þ

Using the parameter x from (24), the Fourier phase is
calculated from

ψ ¼ −
Z �Z

E0ðxÞ
F ðxÞ dx

�
3

ffiffiffi
x

p
c3

Gᾱm
dxþ ϕc − 2πftc: ð50Þ

Here the integration constants are expressed in terms of tc
and ϕc and correspond to the choice of reference point in
the evolution.
One can approach the expansion of the ratio in (50) in

different ways, here we use the so called Taylor F2
approximant [105], where the ratio is perturbatively
expanded using the explicit results for the fluxes (C7)
and (C4) and the orbital energy (26). Furthermore, we split
the calculation of the Fourier phase in two domains: in the
dipolar-driven (DD) regime where the scalar radiation
dominates, and the quadrupolar-driven (QD) domain where
the tensor radiation is dominant. The scalar dipolar domi-
nated regime is relevant for

xDD ≪
5c2S2

−ᾱ

24
or fDD ≪

�
5

24

�
3=2 c3S3

−
ffiffiffī
α

p

πGm
; ð51Þ

while at much higher frequencies the system is considered to
be in the QD regime. Note that this condition is approximate
and is based only on the leading-order contributions to the
fluxes. We analyze the validity of this approximation in
Sec. VI. In Fig. 2 we show the evolution of some example
binaryBH systems in the LISA [106], advanced LIGO [107]
and ET [108] sensitivity bands and indicate the transition
frequency for each case. The plot shows the characteristic
strain

ffiffiffiffiffi
Sn

p
× f and signal amplitude hc ¼ f × jh̃ðfÞj for

four systemswith averagemasses of 30M⊙ and 18M⊙, and a
small total mass systemwith 8M⊙ all located at a distance of
dL ¼ 150 Mpc. Note that these amplitudes are found using
the GR waveform template IMRPhenomXP [109] which is
sufficient for our purpose here. TheGB and tidal corrections
to the signal would result in accelerated mergers yet their
contribution to amplitude changes is expected to be small.
The vertical lines in Fig. 2 show the frequency based on (51)
for which the DD regime would shift to the QD regime for
the different BH systems. In Sec. VI C 2 we analyze these
systems and their overall phasing behavior in both the DD
regime and the QD regime.

1. Phase evolution in the dipolar-driven domain

In the DD regime we factor out the leading-order
ð−1ÞPN scalar contribution in the flux and we expand
the ratio up to first order in x, which has the following
structure,

E0ðxÞ
FDDðxÞ ¼

−3ᾱGm
8ηS2−c3x4

ð1þ ðE0
0 − fDD2 ÞxÞ; ð52Þ

where the coefficients are given in (C9). Performing the
integration in (50) we obtain for the Fourier phasing in the
DD regime

FIG. 2. The dimensionless characteristic strain
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn × f

p
of different GW detectors and the signal strain hc ¼ f × jh̃ðfÞj for different

BH binary systems as a function of frequency f. The vertical lines mark the approximate transition frequency from DD to QD regime for
each binary using (51) and assuming

ffiffiffi
α

p ¼ 1.7 km.
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ψ ¼ 1

4ηS2
−x3=2

�
1þ ρDDxþ c4x3

�
ðρDDGB þ ρDDtid Þ logðxÞ −

1

3
ðρDDGB þ ρDDtid Þ

	�
þ ϕc − 2πftc; ð53Þ

with

ρDD ¼ −
108

5ᾱS2−
þ
�
12 −

18

γ̄

��
βþ −

Δm
m

β−

�
þ 18

γ̄

Sþ
S−

�
Δm
m

βþ − β−

�
− 3γ̄ þ 21η

4
−
18S2þ
5S2−

þ 117

20

ρDDGB ¼ 3αf0ðφ0Þ
G2m2ᾱ5=2S−

�
−16S−

ᾱ

�
Δm
m

S− þ 3Sþ

�
þ 2Sþ

�
Δm
m

S− þ Sþ

�	
;

ρDDtid ¼ 3

G2ᾱ2m3η

�
−

ζ̄

ᾱ3=2GmS−
þ 8ηζ

	
: ð54Þ

Note that the GB and tidal contribution always come in
the combination ðρGB þ ρtidÞ hence have a degenerate
scaling with the frequency.
From the prefactor of (54) we notice that in the limit of

S− ⟶ 0 and the limit α ⟶ 0 corresponding to the equal
mass system and GR limit respectively, the dipolar driven
Fourier phase diverges. The inverse scaling with the mass
ratio and coupling is coming from the inverse ratio of the
change in binding energy and the total flux changing from
the orbital phasing in the time domain to the Fourier
domain as described by (47) to (49). Therefore the
interpretation of the scaling in the time domain is more
intuitive; as the scalar flux vanishes for a vanishing
coupling and the dipolar radiation scales linearly with
S−, the orbital phasing in the time domain vanishes in the
GR limit and for equal mass systems as expected. In the
Fourier domain this intuitive interpretation is absent and
these limits only from (54) are not well defined. The total
description does hold as the divergence coincides with a
vanishing dipolar driven regime in both limits (51). We still
analyze the parameter dependencies of the dipolar driven
phasing in Sec. VI outside these limits as the scalings in the
Fourier domain are the relevant ones with respect to GW
data analysis.

2. Phase evolution in the quadrupolar-driven domain

For the QD phasing we repeat a similar analysis, but now
we factor out the leading-order tensor contribution in the
total flux. We also split the QD flux in a part with and
without dipolar terms. As the dipolar terms scale with S−
we define the following decomposition,

FQD ¼ F nondip þ F dip; ð55Þ

with nondipolar contribution defined by

F nondip ≡ lim
S−→0

F ; ð56Þ

and the dipolar part being the remainder such that
F dip ¼ F − F nondip. Explicitly we obtain when including
up to 1PN fractional corrections

F nondip ¼
32η2ξ̄c5

5Gᾱ2
x5½1þ fnd2 x�;

F dip ¼
4S2

−η
2c5

3Gᾱ
x4½1þ fd2x�; ð57Þ

with the explicit coefficients delegated to Appendix C,
Eq. (C10). With these definitions we can factor the non-
dipolar contribution to the ratio in Eq. (50) in the form

E0ðxÞ
F ðxÞ ≃

E0ðxÞ
F nondipðxÞ

�
1 −

F dipðxÞ
F nondipðxÞ

�
; ð58Þ

which can be expressed as

E0ðxÞ
F ðxÞ ≃ −

5Gmᾱ2

64c3ηξ̄x5
½1þ ðE0

0 − fnd2 Þx�

þ 25Gmᾱ3S2
−

1536c3ξ̄2ηx5
½1þ ðE0

0 − 2fnd2 þ fdÞx�; ð59Þ

with

ξ̄ ¼ ð1þ S2þᾱ=6Þ: ð60Þ

Integrating (50) with (58) leads to

ψQD ¼ ψnondip þ ψdip þ ϕc þ 2πftc; ð61Þ

with

ψnondip¼
6ᾱ

256ηξ̄x5=2
½1þρndxþðρndGBþρndtidÞc4x3�;

ψdip¼−
10S2

−ᾱ
2

3584ηξ̄2x7=2
½1þρdxþðρdGBþρdtidÞc4x3�: ð62aÞ
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Here the nondipolar coefficients are given by

ρnd ¼ 6235

756ξ̄
−
10

3
−
�
10 −

175

ξ̄

�
η

27
þ 80

27

�
1

ξ̄
− 1

�
γ̄

þ
�
80

27
þ 160

27ξ̄

��
βþ −

Δm
m

β−

�
; ð62bÞ

ρndGB ¼ f0ðφ0Þα
G2m2ᾱ5=2

�
−
800

3ᾱ

�
3Sþ þ Δm

m
S−

�

þ Sþ
ξ̄

�
−
1000

7
−
240

7
η −

320

ᾱ

�	
; ð62cÞ

ρndtid ¼
ζ

G2ᾱ2m3

�
400

3
þ 160

3ξ̄

	
; ð62dÞ

and the dipolar parts are

ρd ¼ 1247

96ξ̄
−
301

40
þ
�
245

24ξ̄
−
21

8

�
ηþ

�
14

3ξ̄
−
7

2

�
γ̄

þ 7Sþ
γ̄S−

�
β− −

Δm
m

βþ

�

þ
�
28

3ξ̄
þ 7

γ̄

��
βþ −

Δm
m

β−

�
; ð62eÞ

ρdGB ¼ f0ðφ0Þα
G2m2ᾱ5=2S−

�
−35Sþ

�
Sþ þ Δm

m
S−

�

−
560S−
3ᾱ

�
3Sþ þ Δm

m
S−

�

−
S−Sþ
ξ̄

�
250þ 560

ᾱ
þ 60η

�	
; ð62fÞ

ρdtid ¼
1

G2ᾱ2m3

�
35ζ

2ᾱ3=2GμS−
þ 280ζ

3

�
1þ 1

ξ̄

�	
: ð62gÞ

In the GR limit, obtained by setting ᾱ ¼ 1 and all scalar
parameters and the GB and tidal corrections to zero, the QD
phase (61) agrees with known results for the 1PN TaylorF2
phasing, e.g., [105]. This completes the expressions neces-
sary to calculate the effects in the GW amplitude and
phasing. However, the results we have obtained are still
parametrized in terms of the coupling coefficients in the
skeletonized action such as the sensitivities α0 and tidal
deformabilities λs. The next step is to perform a matching
calculation that connects these parameters with the strong-
field properties of the scalar condensate in the vicinity of
the BH. We discuss this process in the next section, after
briefly reviewing the case without tidal effects, which
determines the mass parameters and sensitivities.

V. DETERMINING THE
SKELETON PARAMETERS

In this section, we discuss the information contained in
the coupling coefficients that appear in the skeletonized
action (6), specifically the scalar charge α0 with the related
parameter β0 and the tidal deformability λs, which all
depend on the fundamental properties of the BHs with
scalar hair. Determining these coefficients requires calcu-
lations based on a fully relativistic approximation scheme.
The starting points for this are the vacuum equations of
motion (7) and (9), omitting all the source terms that we
used for the skeletonized description. We solve the equa-
tions of motion for equilibrium configurations to obtain the
scalar charge and for their linearized perturbations to
compute the Love number, then extract the asymptotic
behavior at large distances from the center of the BH and
match the coefficients in the skeletonized action. For these
calculations, explicit expressions can only be obtained
when specializing to the small-coupling approximation,
which we will specialize to in this section.

A. Spacetime and scalar equation of motion
to linear order in the coupling

Solutions for BH spacetimes in sGB gravity have already
been computed with both the analytical and numerical
techniques [17,37,110–118]. Here, we are interested in
analytical solutions, which rely on the assumption that the
GB corrections are small; specifically that the dimension-
less coupling defined in (4d) is small, α̂ ≪ 1. From the
equations of motion (7) and (9) we see that in the small-
coupling limit, the leading-order corrections to the BH
metric appear atOðα̂2Þ, as the inhomogeneous solutions for
φ are OðαÞ and the source terms in the metric equations of
motion are either quadratic in derivatives of φ or involve
an explicit factor of α together with a derivatives of φ.
Therefore, the sGB static and spherically symmetric space-
times reduce to the Schwarzschild solution at leading order
in α̂ [17,111,113]. This sources the scalar field at Oðα̂Þ
through the GB scalarR2

GB ¼ 48M2=r̃6 þOðα̂2Þ, whereM
and r̃ are the ADM mass and radial coordinate of the
Schwarzschild spacetime. Corrections to the Schwarzschild
metric enter only at subleading orders in α̂, which we
neglect here. In standard Schwarzschild coordinates
ðt; r̃; θ; ϕ̃Þ centered on the BH, the line element is given by

ds2S ¼ −ð1 − uÞc2dt2 þ 1

1 − u
dr̃2 þ r̃2dΩ2; ð63Þ

with dΩ2 ¼ sin2 θdθdϕ̃ the differential solid angle, S
shorthand for “Schwarzschild,” and u the dimensionless
inverse radial variable
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u ¼ rS
r̃
; ð64Þ

with rS defined in (3).
In this spacetime and to linear order in α̂ the scalar field

equation of motion (9) reduces to

gμνS ∇μ∇νφ ¼ −
48G4M4α̂

c8r̃6
f0ðφÞ: ð65Þ

We look for solutions to (65) using an ansatz for the
asymptotic expansion of the field for α̂ → 0 of the form

φ ¼ φð0Þ þ α̂φð1Þ þOðα̂2Þ: ð66Þ

Substituting (66) into (65) and collecting orders of α̂ leads
to the following set of equations:

□Sφ
ð0Þ ¼ 0;

□Sφ
ð1Þ ¼ −

48G4M4

c8r̃6
f0ðφð0ÞÞ: ð67Þ

We look for static solutions φ ¼ φðr̃; θ; ϕ̃Þ at each order.
The angular functions that solve the homogeneous equa-
tions (67) are the spherical harmonics. This motivates the
following separation of variables ansatz for the scalar field

φ ¼
X
lm

Rlmðr̃ÞYlmðθ; ϕ̃Þ: ð68Þ

1. Solution for the equilibrium scalar
field configuration

Substituting the ansatz (68) into (67), using the property
of the spherical harmonics r̃2∇2Ylm ¼ −lðlþ 1ÞYlm and
converting from r̃ to u using (64) turns the equation at
Oðα̂0Þ into

ð1 − uÞRð0Þ00
lm ðuÞ − Rð0Þ0

lm ðuÞ − lðlþ 1Þ
u2

Rð0Þ
lmðuÞ ¼ 0: ð69Þ

As we are interested in a background configuration that is
spherically symmetric we focus on l ¼ 0, where the

solution to (69) simplifies to Rð0Þ
00 ¼ c1 þ c2 logð1 − uÞ.

Regularity at the horizon u ¼ 1 requires choosing c2 ¼ 0
so that only a constant remains, which we redefine such that
the leading-order coefficient in (68) with l ¼ m ¼ 0 is
given by

φð0Þ ¼ c1Y00 ¼ φ∞: ð70Þ

This makes explicit the dependence on the boundary
conditions at infinity.
At orderOðα̂1Þ the radial equation with l ¼ 0 is given by

ð1 − uÞRð1Þ00
00 ðuÞ − Rð1Þ0

00 ðuÞ ¼ −6
ffiffiffi
π

p
u2α̂f0ðφ∞Þ; ð71Þ

where we have used (70) in the source term. Choosing the
integration constant to enforce regularity at the horizon we
obtain

Rð1Þ
00 ¼ 2

ffiffiffi
π

p
f0ðφ∞Þ

�
uþ 1

2
u2 þ 1

3
u3
�
: ð72Þ

The total background (B) equilibrium field configuration
up to linear order in α̂ using (66) with (70) and (72) is
given by

φB ¼ φ∞ þ α̂f0ðφ∞Þ
�
uþ 1

2
u2 þ 1

3
u3
�
þOðα̂2Þ; ð73Þ

which agrees with results in literature [17].

2. Characteristic scale for the scalar condensate

The approximate results for the background field (73)
enable more quantitative statements about the characteristic
scale Lφ introduced in Sec. II C. As the falloff of the
background scalar field configuration (73) is slow at large
distances from the BH, a concern is that Lφ could be very
large such that the skeletonized description becomes
inadequate early on in the inspiral. To quantify Lφ, we
compute the ADM energy of the field given by

Eφ ¼
Z
S

ffiffiffi
γ

p
d3xnαTαβtβ; ð74Þ

where tβ is the timelikeKilling vector ∂
!
=∂t andS is a spatial

hypersurface with induced metric γαβ and a timelike unit
normal nα. Using the energy-momentum tensor identified
from the right-hand side of the nontrace-reversed version of
(7) and the approximate field profile (73), to second order in
the coupling this becomes Eφ ∼ 4πα̂2f0ðφ∞Þ2

R
drð89r5S þ

7r4Srþ 7r3Sr
2 þ 49r2Sr

3 þ rSr4 þ r5Þ=r7. Performing the
integral we find that ≳95% of the energy are contained
within∼5.5rS.While there is no unique criterion for defining
the bulk concentration of the field, we will consider here
scales of

Lφ ∼Oð6rSÞ ð75Þ

as the characteristic size of the scalar condensate. The exact
value ofLφ is irrelevant for our purposes; the key point is that
despite the slow falloff, the majority of scalar energy is
nevertheless concentrated on relatively small scales Lφ, thus
motivating a skeletonized approximation.
Additionally we study the zero component of the energy-

momentum tensor related to the energy density ρ of the
scalar field. For an order of magnitude estimation we find
the value of ρ for a binary system consisting of 10M⊙ and
20M⊙, at a typical frequency of 100 Hz to beOð1ÞM⊙=pc3.
This is two to 3 orders of magnitude less than typical dark
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matter environments for which dynamical friction is rel-
evant [119,120]. Even though the dynamical friction effects
contain more subtleties for massless scalar fields [121], this
force in general scales linearly with the energy density
hence this gives a rough estimation of the validity of
neglecting dynamical friction effects.

3. Matching the sensitivity

The sensitivity and its link to the characteristic param-
eters of GB theories and the BH was already discussed in
detail in [17,122]. For completeness, we include here a
brief overview, as we will extend this matching strategy to
determine the tidal Love number coefficient in the skel-
etonized description. For a hairy BH, the scalar charge D
can be read off from the coefficient of the 1=r̃ falloff in the
asymptotic expansion of the scalar field near spatial
infinity. Specifically, for r̃ → ∞ we have

lim
r̃→∞

φB ¼ φ∞ þD
r̃
þOðr̃−2Þ: ð76aÞ

Comparing (76a) with the Oðr̃−1Þ coefficient in the
asymptotic expansion of (73) near spatial infinity we read
off that

D ¼ α̂rSf0ðφ∞Þ: ð76bÞ

Likewise, the ADM mass of the BH, which in the
coordinates we are using coincides with the parameter
M in the metric potentials, can be read off from the
asymptotic behavior at large distances, for example

lim
r̃→∞

gBGr̃ r̃ ¼ 1þ 2GM
r̃c2

þOðr̃−2Þ: ð76cÞ

The next step is to match these asymptotic results from
the fully strong-field description above to the coefficients
m0 and α0 in the skeletonized action for a single body. This
action is expressed in terms of the harmonic radial
coordinate r, which differs from the Schwarzschild coor-
dinate by the transformation r̃ ¼ rþ rS=2. Asymptotically
near spatial infinity these coordinates coincide up to
corrections of order r−1, which do not contribute to the
leading-order falloffs we are interested in. From the
skeletonized description (14) we have for a single body

grr ∼ 1þ 2Gm0
A

r
þOðr−2Þ; ð77aÞ

φ ∼ φ0 −
Gm0

Aα
0
A

rc2
þOðr−2Þ: ð77bÞ

Making the identification between (77) and (76)
shows that

m0
A ¼ MA; ð78Þ

that the sensitivity is related to the scalar charge by

α0A ¼ −2α̂f0ðφ∞Þ ¼ −
αf0ðφ∞Þc4
2G2M2

A
; ð79Þ

and that the asymptotic values of the field at spatial infinity
are identified φ0 ¼ φ∞. The additional parameter β0A can
then be determined from (13).

B. Scalar tidal Love numbers

We next perform a similar analysis as above to derive the
scalar tidal Love number in the small coupling approxi-
mation. In a patch of spacetime encompassing the BH and
its vicinity but excluding the companion, the configuration
is nearly that of an isolated BH and scalar condensate, with
the effect of the distant companion being a small source-
free tidal perturbation that causes the configuration to
change away from its equilibrium state in isolation.
Solving the equations of motion for the spacetime and
scalar field for linearized, static perturbations to the isolated
configuration and extracting the asymptotic behavior at
large distances from the BH leads to the identification of
the tidal Love numbers. We will focus here on the dipolar
scalar tidal Love number, which can be computed by
considering a scalar perturbation on a Schwarzschild
background metric rather than having to solve the coupled
system of metric and scalar perturbations.

1. Definition of the scalar tidal Love number

When considering linearized static perturbations of
dipolar l ¼ 1 order of the scalar condensate away from
its background configuration φB the asymptotic expansion
of the scalar field at large distances r̃ can be written in the
form

lim
r̃→∞

ðφ − φBÞ ∼
X1
m¼−1

Y1m

�
GQ1m

c2r̃2
þO

�
1

r̃3

�

−r̃E1m þOðr̃2Þ
	
þ…: ð80Þ

Here, the coefficients of r̃−2 and r̃ correspond to the
tidally induced dipole moment Q1m and the external
tidal field E1m. The tidal deformability is defined to be
the ratio

λs ¼ −
Qs

1m

Ẽs
1m

; ð81Þ

which holds for each m for l ¼ 1. To compute the tidal
deformability parameter (81) requires solving the vacuum
equations of motion for linearized perturbations to the
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background equilibrium configuration, and extracting the
multipole moments from the asymptotic falloff behavior of
the scalar field using (80).

2. Tidal expansions of the small-coupling approximation

We start by expanding each coefficient in (66) to linear
order in the tidal perturbations. We track the tidal pertur-
bations with a bookkeeping parameter εt

2 that we set to 1 at
the end of the calculation. This leads to the ansatz

φð0Þ ¼ φð0;0Þ þ εtφ
ð0;1Þ þOðε2t Þ;

φð1Þ ¼ φð1;0Þ þ εtφ
ð1;1Þ þOðε2t Þ; ð82Þ

where the coefficients φð0;0Þ and φð1;0Þ are given by (70) and
(72) respectively. Substituting (82) into (65) and collecting
orders of α̂ and εt leads to the following set of equations for
the tidal perturbations:

□Sφ
ð0;1Þ ¼ 0; ð83Þ

□Sφ
ð1;1Þ ¼ −

48G4m4

c8r6
f00ðφð0;0ÞÞφð0;1Þ: ð84Þ

3. Solutions at linear order in static tidal perturbations

Substituting the separation of variables ansatz (68) into
the equations of motion turns the Oðα̂0ε1t Þ equation into

ð1−uÞRð1;0Þ00
lm ðuÞ−Rð1;0Þ0

lm ðuÞ− lðlþ1Þ
u2

Rð1;0Þ
lm ðuÞ¼ 0: ð85Þ

As we are interested in the solutions for dipolar perturba-
tions we set l ¼ 1, which leads to the solution

Rð0;1Þ
1m ¼ ðu − 2Þc1 þ 4c2

u
−
ðu − 2Þc2 logð1 − uÞ

u
: ð86Þ

Enforcing regularity at the horizon and renaming c1 ¼ C
gives for the full expansion coefficient

φð1;0Þ ¼
X1
m¼−1

Rð0;1Þ
1m Y1m ¼

X1
m¼−1

C

�
1 −

2

u

�
Y1m: ð87Þ

This solution has a growing behavior at infinity and thus
lacks information about the tidal response. Therefore, we
continue to work out results at higher orders in the α̂
expansion. At Oðα̂1ε1t Þ we have for the dipolar sector

ð1 − uÞRð1;1Þ00
1m ðuÞ − Rð1;1Þ0

1m ðuÞ − 2

u2
Rð1;1Þ
1m

¼ −3u2f00ðφ∞ÞRð0;1Þ
1m ðuÞ: ð88Þ

Substituting the Oðα̂0ε1t Þ solution and enforcing regularity
at the horizon leads to

Rð1;1Þ
1m ¼ ½c1 − 14Cf00ðφ∞Þ�

�
1 −

2

u

�

þ 1

3
Cf00ðφ∞Þ

�
u3 −

7

2
u2
�
: ð89Þ

Here the first term has the same structure as the Oðα̂0ε1t Þ
solution corresponding to an external field.We are interested
here in the response to a generic external tidal perturbation,
for which we do not assume any scaling with α̂ in this
section. We thus focus on the solution (87) for the external
field and interpret the first term in (89) as itsOðα̂Þ correction,
which we consider to be subdominant. This leads to the
solution for the scalar field expansion coefficient

φð1;1Þ ¼
X1
m¼−1

Y1m
1

3
Cf00ðφ∞Þ

�
u3 −

7

2
u2
�
: ð90Þ

Thus, assembling the above results we obtain for the total
perturbed scalar field to linear order in α̂ and the tidal
perturbations and keeping only the terms of interest

ðφ − φBGÞ ¼
X
m

Y1mC

��
1 −

2

u

�

:þ 1

6
α̂f00ðφ∞Þu2ð2u − 7Þ

�
: ð91Þ

4. Extracting the Love number

The asymptotic expansion of (91) is given by

lim
r̃→∞

ðφ − φBÞ ¼
X1
m¼−1

Y1mC

�
−
7α̂r2Sf

00ðφ∞Þ
6r̃2

þOðr̃−3Þ þ c2

GM
r̃þOðr̃2Þ

	
: ð92Þ

Comparing (92) with (80) we can read off the induced
dipole and tidal field as the coefficients of the r̃−2 and r̃
terms

Q̃ðsÞ
1m ¼ −C

14α̂G2M2f00ðφ∞Þ
3c2

; ẼðsÞ
1m ¼ c2

GM
C: ð93Þ

This determines the tidal deformability (81) to be

λðsÞl¼1 ¼
7

6
Mαf00ðφ∞Þ: ð94Þ

2Note this parameter is not necessarily equal to εtid defined in
Sec. II B as now we are in the proximity of one BH experiencing
small tidal perturbations from its companion and not on the full
orbital scale.
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Note that for coupling functions whose second derivative
vanishes, the scalar Love number and thus the dipolar tidal
effects vanish.

5. Matching to the skeletonized action

The tidal deformability parameter appearing as a cou-
pling coefficient in the effective action can be matched to
the result (94) by considering the equations of motion (6c).
As discussed in more detail in Appendix A, without loss of
generality we can write (6c) in terms of the spatial pieces
Qi ¼ −λsEi. Multiplying both sides by a general unit
vector ni and using the identity [103]

Qini ¼
X1
m¼−1

Q1mY1m; ð95Þ

and similarly for Ei we see that the parameter λs in the
skeletonized action has a one-to-one relation with the
result (94).
From the above calculations we now have an explicit

connection between parameters in the action m0
A, α

0
A, β

0
A,

and λAs and the characteristic properties of a full description
of the BH and scalar condensate, i.e., the BH’s ADM mass
MA, the scalar charge DA, the GB coupling constant α and
coupling function fðφÞ and the boundary values of the field
at spatial infinity φ∞ in the small-coupling approximation.
We next use these results to quantify the impact of tidal
effects on the energy and GWs from binary inspirals.

VI. RESULTS AND CASE STUDIES

In this section, we present quantitative case studies on
the impact of tidal effects on various gauge-invariant
quantities. Ultimately, we are interested in assessing the
signatures in the GWs; however, this involves various
different contributions. To gain deeper insights, it is useful
to separately consider effects in the binding energy and the
fluxes, which we address below, before going on to the
analysis of the GW phasing effects. For the case studies in
this section we use the small-coupling results for the scalar
charge (79) and the tidal deformability (94) and consider an
exponential coupling function fðφÞ ¼ e2φ=4 as for a
dilatonic field, also referred to as EdGB gravity.

A. Analysis of the tidal effects in the binding energy

We start by analyzing the result for the binding energy
given in (26). As the dependence on the GB coupling
constant α and the masses is not manifestly explicit due to
the definitions of several composite parameters, we show in
Fig. 3 the regimes of parameter space where tidal effects are
most relevant. In particular, the plot shows the ratio
between the contribution to the binding energy coming
from tidal effects and the higher-curvature GB terms
(Etid=EGB) from (26c) and (26d). This is given at a fixed
total mass of m ¼ 15M⊙, as a function of the mass ratio q

and the dimensionless coupling parameter ϵ defined in (4c).
We analyze the parameter space for small values of the
coupling. There is a theoretical bound on the coupling of
ϵ ¼ 0.69 from requiring regularity of the scalar field at the
black hole horizon [36]; however from the current obser-
vational constraints the possible coupling parameter space
is already reduced to around

ffiffiffi
α

p ¼ 1.7 km [88] which for
this system corresponds to ϵ ¼ 0.006. Latest analyses even
constrain this value further down [89,90]. Therefore we
limit our analysis to the small coupling regime. The figure
shows an overall negative ratio between the contributions,
as the Gauss-Bonnet term contributes negative to the
energy while the tidal contributions come in with an overall
plus sign. This indicates decreased deviations from the GR
terms as compared to when only GB terms were computed.
Given that the ratio is always smaller than unity we
conclude that the tidal contributions to the dynamics are
subdominant as compared to the GB contributions. The
relative importance of the tidal contributions to the binding
energy is largest for large coupling and small mass ratios.

B. Tidal effects in the fluxes

The tidal contributions to the fluxes differ qualitatively
from those to the dynamics due to the fact that the tidally
induced dipole moment contributes together with the dipole
moment associated with the orbital motion of the scalarized
BHs. To gain insights into the consequences of this effect,
we separate our analysis between the scalar and tensor
fluxes. The left panel of Fig. 4 shows the ratio between the
tidal terms of the scalar flux F tid

S (36) and the GB terms of
the scalar flux FGB

S (35) with respect to the dimensionless
coupling (4c) and the mass ratio. The right panel of Fig. 4
shows the ratio between the tidal (41) and GB terms (42) of
the tensor flux, where, similar to the binding energy, the
tidal effects enter only through their contribution to the
dynamics.

FIG. 3. Contours of the ratio Etid=EGB with respect to the
mass ratio q and the dimensionless coupling ϵ for a system of
total mass m ¼ 15M⊙. The threshold for ϵ corresponds toffiffiffi
α

p ¼ 2.2 km.
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From the ratio of the tidal and GB contributions being
negative we see that the two effects have the opposite sign,
hence the tidal contributions partly cancel the additional
flux because of the higher curvature contribution.
Furthermore, for the scalar flux, the ratio is much larger
than unity, showing that tidal contributions to the scalar
radiation dominate over the GB terms. By contrast to the
trends in the binding energy shown in Fig. 3 and the tensor
flux shown in the right panel of Fig. 4, the relative size of
the tidal contributions over the GB terms in the scalar flux
becomes larger for smaller couplings, thus scaling in the
opposite way. To analyze the origin of this behavior we
performed a small-coupling expansion of the tidal and GB
contributions which also take into account the implicit
dependencies on the coupling related to the scalar charge
(79). We find that the contribution from the induced dipole
terms to the scalar radiation is proportional to α3, while its
contribution to the dynamics scales as α5. For comparison,
the dominant scaling of the GB terms is ∼α4 in this limit.
For small couplings, the ratio of tidal to GB contributions to
the scalar flux thus scales as 1=α, while it is ∼α for the
dynamics and tensor flux. This directly translates to the
scaling with ϵ via (4c) and corroborates the trends seen in
the plots.

C. Analysis of the Fourier phase evolution

From the expressions of the Fourier phase in both the
dipolar and quadrupolar driven domains [(53) and (61)] we
can see that the GB and tidal terms enter at the same PN
order. Their similar scaling with the frequency is clear from
the expressions; however, their dependence on the total
mass of the BHs, mass ratio and the coupling is less
straightforward. When analyzing these dependencies
one compares different BH systems, and consequently

comparisons at fixed dimensionful coupling parameter α
differ from those at fixed dimensionless parameter ϵ
defined in (4c), which rescales the coupling by the total
mass. For the analysis in this section we focus on
comparisons based on the dimensionless coupling ϵ to
better study the degeneracies with the mass terms.

1. Analysis of the tidal and Gauss-Bonnet contributions

First we analyze the contribution of the tidal and GB
terms in the phasing expressions of both the DD (53) and
QD (61) regimes, at different values of ϵ in the top left plot
of Fig. 5. The absolute phase contribution jψ j is given for a
system of m ¼ 15M⊙ and q ¼ 0.2 at the boundary fre-
quency (51) for the DD regime and the ISCO frequency
estimate f ¼ 2ð62=3c3=GmπÞ ∼ 585 Hz for the QD regime.
All contributions vanish in the zero coupling limit, in which
GR is recovered. Note that we show the absolute value of
the contributions however the Gauss-Bonnet contributions
are negative while the tidal contributions are positive.
Generally we find the GB contributions to be larger in
magnitude than the tidal contributions, except in the DD
regime for couplings below ϵ ¼ 0.03 shown in the inset,
which is the relevant allowed regime of GB coupling
strengths based on current bounds, when the tidal con-
tribution becomes dominant over the GB contribution. To
gain further insights into the behavior in the DD regime, the
top right panel of Fig. 5 shows the tidal contribution ψ tid
and the GB contribution ψGB to the DD phase evolution
(53) for a frequency of f ¼ 10−4 Hz, indicating that for
small couplings the tidal phase contributions also have a
strong inverse scaling with the coupling. This is also seen
from a small-coupling expansion of the terms in (53),
which shows that the radiative tidal contributions scale as
∼ − α−3, tidal contributions to the dynamics as ∼ − α−2,

FIG. 4. Contours of the ratio of the tidal and GB contributions to the fluxes for a system of total mass m ¼ 15M⊙ in the parameter
space of the dimensionless coupling ϵ and the mass ratio q. Ratio of the contributions to the scalar flux F tid

S =FGB
S (left panel) and tensor

flux F tid
T =FGB

T (right panel). The y axis is shared between the two panels, and the upper end of the range in ϵ corresponds toffiffiffi
α

p ¼ 2.2 km. Note that the contour values on the left figure are rescaled by a factor of 105.
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and the GB contributions as ∼ − α0 þ α2. Note that the
apparent divergence of the tidal contributions to the DD
phasing in the zero coupling limit is counteracted by a
vanishing extent of the DD regime, hence the phase
contribution at the boundary frequency goes to zero in
this limit, as expected. We also note that while the GB
contributions scale as even powers of the coupling param-
eter and are thus unaffected by its sign, the tidal terms
change sign for negative coupling. Negative values of α
thus lead to an additive contribution of the net tidal and
GB contributions, thus increasing the overall deviation
from GR.
The dependency of the tidal and GB contributions with

respect to the total mass and for different mass ratios is
depicted in the bottom plots of Fig. 5. Here we have fixed
ϵ ¼ 0.006 (which corresponds to

ffiffiffi
α

p ¼ 1.7 km for a m ¼
15M⊙ system). When fixing the value of ϵ we find that the
tidal and GB contributions to the phasing in the DD
regimes both increase with increasing mass ratio as a
consequence of the phasing analysis in the Fourier domain,
as mentioned in Sec. IV D 1. This trend is the opposite in
the QD regime, where both effects decrease with the mass

ratio. Irrespective of the regime, the magnitude of both
effects increases with increasing total mass. For the higher-
curvature GB corrections, this may seem counter intuitive,
as curvatures are higher for BHs with smaller mass. The
opposite trends seen in Fig. 5 are a consequence of fixing
the dimensionless coupling parameter. At fixed ϵ, a linear
increase in the total mass induces a quadratic increase in the
dimensionful coupling α, which enhances the GB contri-
butions. In Appendix D we show the dependencies of the
QD phasing on the total mass for fixed α, where the trends
are consistent with expectations. From the bottom panels in
Fig. 5, we also see that, regardless of the mass range and the
mass ratios, the tidal contributions dominates over the GB
contributions in the DD regime corresponding to the results
from the top left plot of Fig. 5 for a small coupling of
ϵ ¼ 0.006. However this is reversed in the QD regime
(black lines versus gray lines). The different trends and
parameter dependencies in the DD versus QD regimes has
important observational implications for GW tests of GR.
As dipolar tidal effects significantly dominate over higher-
curvature corrections in the DD regime, they must be
included in waveforms for such systems to obtain more

FIG. 5. Top panels: dependence of the tidal (solid lines) and GB (dashed lines) phase contributions on the coupling parameter for a
system of total mass 15M⊙ and mass ratio q ¼ 0.2. Top left panel: absolute phase contributions in the DD regime at the transition (51)
and 586 Hz for the QD regime. Top right panel: DD phasing at fixed frequency of 10−4 Hz. Bottom panels: absolute value of the
dependence of the tidal and GB phase contributions on the total mass for a fixed coupling of ε ¼ 0.006 for mass ratio q ¼ 0.2 (solid
lines) and q ¼ 0.5 (dashed lines). Bottom left panel: DD phasing at fixed frequency of 10−4 Hz; bottom right: QD regime at
frequency 586 Hz.
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realistic constraints and avoid biases. The different param-
eter dependencies of the GWs in the DD versus QD regimes
also open opportunities for breaking degeneracies and more
accurately measuring the GB parameters if GWs from both
regimes can be measured. For instance, as seen from (94)
and the expressions in Secs. III and IV, the GB effects
depend on the first derivative of the coupling function,
while the tidal terms involve the second derivative. A
consequence is that tidal effects may be absent for some
classes of coupling functions, which would also provide
useful information about the theory. Additionally note that
while our explicit results for the tidal GW signatures are
specialized to Gauss-Bonnet theories, scalar tidal effects
are likely to be an important phenomenon in broader
classes of theories involving BHs with scalar hair, which
motivates further studies of these effects, also going beyond
the dipolar adiabatic tides considered here.

2. Analysis of the full phasing expressions
in the DD and QD domains

For the analysis of the overall Fourier phase evolution in
both domains we focus specific binary BH systems. Based
on the analysis above, it would be particularly interesting to
detect both the DD and QD driven regimes of the early
inspiral. This could be possible with multiband detections
of LISA and ground-based detectors as illustrated in Fig. 2,
or with third-generation detectors such as ET. In Fig. 6 we
show the boundary frequency (51) for different total
masses and mass ratios and a coupling of

ffiffiffi
α

p ¼ 1.7 km
and

ffiffiffi
α

p ¼ 0.8 km also comparing to the lower bound
frequencies of the ET and LISA sensitivity bands. In
general, we see that the DD regime extends to higher
frequencies for smaller mass ratios. From the upper panel
of Fig. 6 we find that for the DD regime to fall within the
ET frequency band the total mass should be below 11M⊙
and q ∼ 0.2 which would make one of the BHs to have a
mass below the astrophysical BH mass range. However for
masses below 75M⊙ the DD regime falls in the LISA
frequency band. For a smaller coupling depicted in the
bottom panel of Fig. 6, this mass reduces to 42M⊙.
Comparing to Fig. 2 these systems would be well within
the LISA sensitivity band for a distance of around 150Mpc.
The prospects for detecting the DD signal with multiband
observations rely significantly on the coupling parameter
and the system properties, favoring small masses and mass
ratios yet larger couplings for the DD regime to reach up to
higher frequencies. However the smaller the total mass, the
smaller the strain, which requires closer distances to
the source for the possibility of detection. Next, we
consider systems with m ¼ 30M⊙ and m ¼ 18M⊙, for
which the DD evolution spans a substantial frequency
range in the sensitive band of LISA, while their evolution in
the LIGO/Virgo/KAGRA band is fully QD. We study the
large mass system for two different values of the coupling
of

ffiffiffi
α

p ¼ 1.7 km and
ffiffiffi
α

p ¼ 0.8 km, and consider a

coupling of
ffiffiffi
α

p ¼ 1.7 km for the smaller mass system.
First we focus on the m ¼ 30M⊙ system. We evaluate the
total Fourier phase evolution in the QD regime using (61) in
the frequency band of current ground-based detectors,
starting from 10 Hz up to the estimate for the ISCO
frequency of 293 Hz. For the DD evolution, which partly
overlaps with the LISA frequency band, we use (53) from a
lower frequency of 10−6 Hz up to the transition frequency
to the QD regime estimated from (51). As the transition
frequency also depends on the mass ratio, we truncate the
phase evolutions in the DD regime at their respective
transitions in Fig. 7. We compare these phasings with the
1PN GR case. Note that when comparing different phasing
evolutions, there is a remaining freedom to choose the
reference constants tc and ϕc. Here, we use this freedom to
set the difference to zero at the starting frequencies and let
their difference evolve to higher frequencies.
Figure 7 shows the difference of the phasing in sGB

including all effects we have calculated compared to the
1PN GR case. For the DD evolution shown in the top left
panel of Fig. 7 the differences to GR are very large, as there
is no dipolar radiation in GR. Additionally, the system stays
at nearly the same frequency for a long time during the

FIG. 6. Transition frequency (51) between the DD and QD
regimes versus total mass for couplings of

ffiffiffi
α

p ¼ 1.7 km (top
panel) and

ffiffiffi
α

p ¼ 0.8 km (bottom panel). The black curves with
different dashing illustrate different mass ratios. The blue and red
horizontal lines indicate the lower end of the sensitive frequency
band of the ET and LISA detectors, respectively.
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early inspiral. We find the green curves, corresponding to a
coupling of ϵ ¼ 0.0003, to lie above the black ones for
ϵ ¼ 0.0015, denoting larger deviations from GR for a
smaller value of the coupling. In the limit of q ⟶ 1, an
equal mass system, the dipolar contribution in the QD
phasing from (61) vanishes and the DD phasing (53)
diverges as S− vanishes, as a consequence of working in
the Fourier domain as described in Sec. IV D 1; however,
this is counteracted by a vanishing DD frequency regime
from (51). Note that in the equal mass case there still is a
tidal contribution proportional to ζ in the nondipolar part of
(61) related to the contribution from the dynamics. We see
that in the QD regime, shown in the top right panel of
Fig. 7, the deviations from GR increase for smaller mass
ratios, which corresponds with our analysis of the depend-
encies of the tidal and GB contributions in Fig. 5. In the QD
regime, the net phase differences from GR are small. For a
coupling of ϵ ¼ 0.0015 and mass ratio of q ¼ 0.2 we infer
from the results shown in the top right panel of Fig. 7 that
the phase differences reach a maximum of around

Oð10−2Þ GW cycles. We have also studied the comparisons
between the QD phase evolution and the 3.5PN GR
templates [105] and found that the phase difference
becomes negative and of order 102 GW cycles for the
same system as in Fig. 7.
We repeat this analysis for the smaller total mass system

of m ¼ 18M⊙ and
ffiffiffi
α

p ¼ 1.7 km, shown in the bottom
right panel of Fig. 7. The QD phasing differences for these
systems are larger, becoming of Oð1Þ GW cycles for mass
ratios of order q ∼ 0.2, starting to move to the detectable
range. Furthermore the DD differences are smaller com-
pared to the 30M⊙ system, which is due to the shift to
higher frequencies of the DD regime and the positive
relation with the total mass.

3. Analysis of the transition between DD
and QD domains

Finally we analyze the accuracy of the phase evolution in
the two domains and the regime at which the switch from

FIG. 7. Phase difference between the DD (left panels) and QD (right panels) phasing from the 1PN GR case for different mass ratios.
The curves in the DD regime terminate when the transition frequency (51) is reached. Top panels: systems ofm ¼ 30M⊙, with the black
curves corresponding to a coupling of

ffiffiffi
α

p ¼ 1.7 km or ϵ ¼ 0.0015 and the green curves to a coupling of
ffiffiffi
α

p ¼ 0.8 km or ϵ ¼ 0.0003.
Bottom panels: systems of m ¼ 18M⊙ and

ffiffiffi
α

p ¼ 1.7 km or ϵ ¼ 0.004.
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DD to QD driven happens for two different total mass
systems of 30M⊙ and 25M⊙ and two different mass ratios
q ¼ 0.2 and q ¼ 0.5. We compare the QD and DD phase
evolution by numerically solving (50), rather than using the
Taylor F2 approximation for phasings. Far in the QD
regime this solution should approximate the QD evolution,
and likewise for the DD evolution for small frequencies.
We expect the switch between the regimes to happen
around (51).
For this comparison we match the analytic expressions

with the numerical evolution. As this analysis is purely to
see how well our analytic phase expressions evolve with
respect to the numerical result we take a much larger value
for the coupling than given by the current constraints. With
this choice, the boundary frequency (51) is much larger and
therefore to consider a frequency far in the DD domain to
match with the numerical result we do not have to go to
very small values for the frequency where numerical
inaccuracies need to be dealt with. However this analysis
should take over to more realistic values of the coupling
e.g., for a system of 25M⊙, q ¼ 0.2 with coupling

ffiffiffi
α

p ¼
1.7 km we were able to match the DD evolution with the
numerical result starting at f ¼ 10−8 Hz. Our choice here
for the large coupling has the advantage to be able to match
up the DD evolution with the numerical evolution for all the
systems at the same frequency of f ¼ 10−3 which makes
the comparison more clear. Then the analytic boundary
frequency (51) for a system of 30M⊙, q ¼ 0.2 is given by
f ¼ 619 Hz, for 30M⊙, q ¼ 0.5 by f ¼ 27 Hz and for
25M⊙, q ¼ 0.2 by f ¼ 1289 Hz. As we have the freedom
to set the integration constants tc and ϕc of (53) and (61),
we match the DD phasing with the numerical phase
evolution around 10−3 Hz, which is far in the DD regime
for the three different systems we compare. For the QD
phasing we match with the numerical phase evolution
around 3000 Hz. Note that these frequencies are not
realistic for a stellar mass binary inspiral because of the
large choice for the coupling. The matching is done by
integrating over the absolute difference between the two
phasings and determine the constants tc and ϕc that
minimize the integral. These phasings are shown in the
top panel of Fig. 8.
We find that the DD phasing, starting from f ¼ 10−3 Hz

follows the numerical phasing over the whole frequency
domain as the curves for all the three systems overlap. The
QD phasing follows the numerical evolution also well
starting from f ¼ 3000 Hz until far beyond the analytic
estimates of the switch from QD to DD driven, which we
denoted with the vertical lines in Fig. 8. Where, as the
boundary frequency becomes lower for a larger mass ratio
or a larger mass, the frequency for which the QD evolution
starts to differ also shifts to lower frequency. In the DD
regime the QD evolution thus starts diverging strongly
compared to the numerical result which makes sense as it is
outside of the validity regime for quadrupolar radiation.

The DD phasing keeps following the numerical evolution
well far in the QD domain. The higher frequency where the
DD description breaks down lies outside the analyzed
range. From this first analysis it seems that the QD and DD
analytic expressions follow the total numerical result well
in there respective domains and even beyond the boundary
frequency estimate (51). Lastly we analyze the DD phase
evolution with respect to the numerical result for a nearly
equal mass system. As discussed in Sec. IV D 1 the DD
phase evolution in the Fourier domain is not well defined in
the limit of q ⟶ 1. By comparing its evolution with the
numerical result we try to find around which value for the
mass ratio the expression becomes inaccurate. We analyze a
range of values for the mass ratio in the limit of q ⟶ 1 for
a system of m ¼ 30M⊙ and

ffiffiffi
α

p ¼ 30 km. For q ¼ 0.999
we find that after matching the DD phase to the numerical
result the DD evolution quickly diverges after the starting
frequency. This indicates that around this value for the mass
ratio the DD analytic description becomes less accurate.

VII. CONCLUSION

In this article we studied signatures of scalar-induced
adiabatic dipolar tidal effects in the dynamics and GWs from
inspiraling BH binary systems in the sGB gravity. We used
the PN approximation, augmented by independent pertur-
bative expansions in the GB coupling and tidal effects, to
compute the leading-order tidal corrections to the scalar and
tensor waves and obtained expressions for the GW phase
evolution for circular orbits and nonspinning BHs. Our
approach was based on an effective action for finite size
effects adapted to the hierarchy of scales in the system. We
recovered parameterized results in terms of the scalar tidal

FIG. 8. Comparison of numerical and analytical phase evolu-
tion (53) and (61) for a coupling of

ffiffiffi
α

p ¼ 30 km for a system
with m ¼ 30M⊙ for q ¼ 0.2 and q ¼ 0.5 in black and green
respectively and for a smaller mass m ¼ 25M⊙ for q ¼ 0.2 in
pink. Note the numerical curves overlap with the DD and QD
lines. The vertical lines denote the analytical boundary frequen-
cies (51) of f ¼ 27 Hz, f ¼ 619 Hz and f ¼ 1289 Hz in
respectively green, black, and pink.
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deformability from previous studies in the context of scalar-
tensor theories [84,95] and, moreover, calculated the tidal
deformability parameter in terms of the BH mass, the GB
coupling strength, and the second derivative of the coupling
function. We obtained the tidal corrections to the dynamics
and to the fluxes, where the tidal contribution to the scalar
waveform from the induced dipole moment introduces a
difference dependence on the system parameters. We com-
bined our results for the tidal effects with those due to higher
curvature corrections from [19], which enter with the same
scaling with GW frequency as the dipolar tidal effects, and
derived a closed-form result for the GW phase in the Fourier
domain in the stationary phase approximation. These results
are tailored to two different regimes, the DD regime
dominated by the scalar flux, which is important for low
frequencies but also depends on the system parameters, and
the QD regime dominated by the tensor flux.
We performed several case studies of the implications of

our results for GW signals for a dilatonic coupling function,
which has nonvanishing derivatives at all orders when
evaluated for a zero-field configuration. This is important
since the GB and tidal corrections depend on the first and
second such derivatives respectively, and thus may be
absent for certain other choices of coupling function. By
comparing the GB and tidal contributions to the energetics
and phase evolution we found that for a positive value of
the coupling the two contributions come with opposite sign
for which the GB terms enlarge the difference with GR
which then gets partly canceled by the tidal contribution.
Our analysis showed that in the DD regime and for small
couplings, the tidal effects dominate over GB contributions
in magnitude. Moreover, the tidal effects in the GW
phasing become larger for smaller couplings in this regime,
though the cumulative contribution vanishes in the zero-
coupling limit, as expected. We also found that at fixed
dimensionless coupling, which rescales the fundamental
GB coupling by the total mass, the size of the tidal and GB
corrections increases for systems with larger total mass.
This trend is counterintuitive for the GB corrections, which
we expect to become larger for smaller masses correspond-
ing to higher curvatures. We show that this is a consequence
of fixing the dimensionless coupling and when considering
a fixed fundamental coupling, the behavior is as expected.
When including all effects of sGB gravity considered here
and comparing with the GR case we found that, as
expected, the differences in the DD regime are very large
as there is no dipolar energy loss in GR. Additionally we
highlighted that as a consequence of working in the Fourier
domain there is an opposite scaling with respect to the mass
ratio and coupling for the DD phase compared to the QD
phase. In the QD regime, we found that for a coupling offfiffiffi
α

p ¼ 1.7 km and systems with total mass masses below
18M⊙, the differences from GR are of the order of several
GW cycles. For smaller values of the coupling the
differences with GR in the QD regime decrease.

Based on estimates for the frequency regimes relevant
for the DD and QD evolution respectively, we analyzed the
prospects of measuring signals from the DD regime and the
crossover to the QD regime with multiband observations
with LISA and ground-based detectors. Our results indicate
that this is a possibility for part of the parameter space of
binary systems, and becomes more promising for smaller
masses and mass ratios, as estimated for a coupling in
agreement with the current observational constraints and a
distance to the binary of 150 Mpc. Measuring signals from
both regimes would be useful for breaking degeneracies, as
they involve different dependencies on the parameters. As
the additional GB contributions are partly cancelled by the
tidal terms for positive values of the coupling this would be
an interesting opportunity to be able to distinguish both
effects. To gain further insights into the crossover between
the DD and QD regimes we compare the analytical
estimates with numerical studies of the phase evolution.
Our analysis indicates that the accuracy of the DD and QD
regimes spans beyond the analytic estimate for the cross-
over and depends on the system parameters. Repeating the
same analysis for mass ratios close to an equal mass system
gave an indication for the accuracy of the DD phase
expressions in the limit to q ⟶ 1. Overall we highlight
that our analytical closed form results can be directly
implemented in data analysis studies for improved tests of
gravity.
As our work is an fist exploratory study of finite size

effects for BH binaries in sGB gravity, it was limited in
scope. Ongoing work focuses on including a scalar field
mass to the sGB framework [123]. Other pertinent advances
are to include higher-order corrections in our approxima-
tions and broadening our assumptions e.g., including
higher-order finite size, PN, coupling and spin effects and
considering eccentric orbits. In addition it would be inter-
esting to study different systems such as neutron star (NS)
BH or NS binaries or other gravity theories.
This work contributes an important step toward a more

accurate modeling of the inspiral of a comparable-mass BH
binary system in sGB gravity. Given that the tidal signa-
tures computed here enter in the GW signals with the same
frequency scaling as the higher curvature contributions and,
for couplings consistent with current constraints, even
dominate over the higher curvature contributions in the
DD regime, these effects will be important to incorporate in
further analyses of constraints inferred from GW measure-
ments. They will also be needed for future models of full
inspiral-merger-ringdown GW templates for sGB models.
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APPENDIX A: CONSTRUCTION OF THE
EFFECTIVE ACTION FOR DIPOLAR SCALAR

TIDAL EFFECTS

Several considerations dictate the kinds of terms that can
enter an effective action description. For the degrees of
freedom, we will work with the scalar multipole moments

QðsÞ
L and external fields EðsÞ

L associated to the worldline
skeleton. Here, L denotes a string of l spatial indices and in
this section, we omit the body labels on all the quantities.
We have written the moments in terms of three-dimensional
spatial tensors in the rest frame, where uμ ¼ ð1; 0; 0; 0Þ. We
expect the description in the rest frame to contain the
complete physical content of finite size effects. The tensors

QðsÞ
L and EðsÞ

L are additionally symmetric and trace-free
(STF), and transform irreducibly under rotations, which
follows from the spherical symmetry of the unperturbed

configuration. Specifically, the fields EðsÞ
L are given by

EðsÞ
L ¼ −FP

x→z
∂Lφ; ðA1Þ

where FP denotes the finite part. This is equivalent to using
only the portion of the field φ sourced by the companion.
The covariant version of these quantities can be obtained by
using the transverse projector

Pα
μ ¼ δαμ þ uμuα; ðA2Þ

which has the property that Pα
μuμ ¼ 0. Using this operator

we can write the covariant version of Es
I ¼ −FP

x→z
∂Iφ as

EðsÞ
μ ¼ −FP

x→z
Pα
μ∂αφ. The transformation to the covariant

formulation can equivalently be accomplished using a
tetrad, as discussed in Sec. III of Ref. [124].
We next consider the kinds of couplings involving these

degrees of freedom that could appear in the effective action.
For nonspinning configurations, whose unperturbed states
are spherically symmetric and static, and nondissipative
effects, the couplings in the effective action should be
invariant under time-reversal and parity transformations.
The next consideration is about the truncation of such
terms, which we base on considerations about the relevant
characteristic scales discussed in Sec. II B.
Based on these small parameters introduced in this

section, we truncate the terms in the effective action as
follows. Firstly, we include only terms up to second order in

a derivative expansion of the fields, as higher-order terms
are suppressed by powers of εtid defined in (4a). We also

omit higher nonlinearities involving QðsÞ
L . Furthermore, we

treat time derivatives of the external fields as suppressed
compared to spatial gradients as is standard in the PN
approximation on the orbital scale. We also work in the
adiabatic limit, where internal relaxation timescales associ-

ated to the scalar condensate and thusQðsÞ
L , which are of order

the quasinormal mode frequency of a BH for α̂ ≪ 1 [125],
are much faster than the variations of the external fields,
which change on the orbital timescale, so that the configu-
ration remains in equilibrium. Effective field theoretical
approaches generally rely on integrating out degrees of
freedom with frequencies higher than the scale under
consideration—here, the orbital scale—and we will ulti-
mately use this approach to express the finite size effects
solely in terms of quantities defined in the orbital zone.
The above considerations lead to the following leading-

order terms describing finite size (FS) effects in the rest
frame of one of the bodies as SFS ¼ c

R
dsLFS with

LFS¼c1Q
ðsÞ
I EI

ðsÞ þc2E
ðsÞ
I EI

ðsÞ þLintðQðsÞ
I ; _QðsÞ

I Þþ…; ðA3Þ

where _QðsÞ
I ¼ DQðsÞ

I =dτ ¼ uμ∇μQ
ðsÞ
I and Lint denotes the

internal dynamics of the scalar dipole. We have omitted
accelerations as they can be removed via field redefinitions.
Within our approximations, the only possible internal terms
are the quadratic combinations

Lint ¼ −
1

2λs
QI

ðsÞQ
ðsÞ
I þ c4 _Q

I
ðsÞ _Q

ðsÞ
I ; ðA4Þ

where we have chosen to label the first coefficient as
−1=ð2λsÞ instead of c3, which at this stage is merely a
choice. The coefficients in (A3) must still be matched to the
properties of the BH and scalar condensate. One of the
coefficients fixes the overall normalization of the quan-

tities, which we choose such that the coupling of QðsÞ
I with

the external field scales as −1=l!. For the dipole l ¼ 1 case

this implies that c1 ¼ 1. The equations of motion for QðsÞ
I

derived from the action (A3) in the adiabatic limit, where
we neglect any τ derivatives, are

QðsÞ
I ¼ −λsE

ðsÞ
I ; ðA5Þ

which makes the physical interpretation of the coefficient
λs as the dipolar tidal Love number of the configuration
explicit. The value of this coefficient cannot be determined
from the effective description; it must instead be computed
from a detailed study of the response of the scalar
condensate to a relativistic scalar tidal perturbation, as
we will analyze in Sec. V. Finally, using (A5) to integrate

out QðsÞ
I leads to the reduced action
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SFS ¼ c
Z

ds

�
λs
2
EðsÞ
I EI

ðsÞ þ c2E
ðsÞ
I EI

ðsÞ þ…

	
: ðA6Þ

Here, we note that a contribution to the last term involv-
ing c2 also arises from field redefinitions of curvature
quantities in the gravitational sector. This term describes
possible additional contributions not contained in the λs
terms, for example, from subdominant higher-frequency
degrees of freedom. We expect these contributions to be
small and will omit them in our final analysis. Using the
operator (A2) we can write (A6) in covariant form as

Stid ¼ c
Z

ds
�
λs
2
EðsÞ
μ Eμ

ðsÞ þ…

	
; ðA7Þ

and using the definition (A1), the fact that covariant
derivatives of a scalar are equivalent to partial derivatives,
and specializing to a binary system leads to the expression
given in (6d). This action describes the dipolar tidal effects
on the orbital scale, with the coefficient λs determined by
matching to the strong-field vicinity of each object, as
discussed in Sec. V.

APPENDIX B: POST-NEWTONIAN EXPANSION
OF FIELD EQUATIONS

In this appendix we show that the tidal corrections to the
field equations (7) do not affect the PN solutions at 1PN
order. Therefore we solve the field equations (7) and (9) up
to first order in the PN and tidal perturbations expansion.
Formally the PN expansion is carried out in the small
parameter εPN ¼ Rs

d ≈ v2

c2, in practice a consistent way to
track the PN orders is to expand in factors of 1=c2. For this
derivation on finding the near zone field solutions in the
presence of tidal perturbations we rely heavily on the
derivation and result in Appendix D of [17]. Compared to
this computation we adopt a slightly different way of
dealing with the PN expansion, namely by expanding
explicitly in 1=c2 and therefore having a different count-
ing of the orders; our superscript counting is one order
higher than theirs (e.g., ð1Þ corresponds to their ð0Þ). We
motivate this choice at the end of this appendix. The
expansion up to 1PN of the metric components and the
scalar field take the form of (11) explicit in the fieldsU, δφ,
and gi gives

U
c2

¼ Uð1Þ

c2
þ Uð2Þ

c4
þOð1=c6Þ;

gi
c3

¼ gð1.5Þi

c3
þOð1=c5Þ;

δφ ¼ δφð1Þ

c2
þ δφð2Þ

c4
þOð1=c6Þ: ðB1Þ

Additionally we expand for tidal perturbations in the small
parameter εtid, explicitly for the scalar field

δφð1Þ

c2
¼ δφð1;0Þ

c2
þ δφð1;1Þ

c4
εtid þOð1=c6Þ;

δφð2Þ

c4
¼ δφð2;0Þ

c4
þ δφð2;1Þ

c4
εtid þOð1=c6Þ: ðB2Þ

Expansion in the tidal perturbations at 0th order is trivial as
per definition the field equations are not sourced at this
order. Substituting the PN expanded metric (11) and
applying the harmonic gauge ∂β

ffiffiffiffiffiffi−gp
gαβ ¼ 0, one obtains

for the 00 and 0i components of the Ricci tensor the
following expressions up to 1PN

R00 ¼ ∂0∂
0
U
c2

− ∂i∂
i U
c2

¼ −□η
U
c2

þOð1=c4Þ;

R0i ¼ 2∂k∂
k gi
c3

¼ 2Δ
gi
c3

þOð1=c5Þ: ðB3Þ

And for the EM-tensor to lowest order in the expansion of
the metric components (11), one can write

T00 −
1

2
Tg00 ¼

1

2
ðT00 þ TiiÞ þOð1=c2Þ;

T0i −
1

2
Tg0i ¼ T0i þOð1=c2Þ: ðB4Þ

Substituting (B3) and (B4) in (7) gives together with (9) the
following set of differential equations up to 1PN

−□η
U
c2

¼ 2∂0
δφ

c2
∂0

δφ

c2
þ
�
1

2
g00gαβαϵλωραRλωσεϵ

σε
βξ

− αϵλωρ0Rλωσεϵ
σε
0ξ

�
∇ξ∇ρfðδφÞ þ 4πG

c4
ðT00

m þ Tii
mÞ

þ 4πG
c4

ðT00
tid þ Tii

tidÞ þOð1=c4Þ; ðB5Þ

2Δ
gi
c3

¼ 2∂0
δφ

c2
∂i
δφ

c2
þ
�
1

2
g0igαβαϵλωραRλωσεϵ

σε
βξ

−αϵλωρ0Rλωσεϵ
σε
iξ

�
∇ξ∇ρfðδφÞ

þ 8πG
c4

ðT0i
mÞ þ

8πG
c4

ðT0i
tidÞ þOð1=c5Þ; ðB6Þ

□η
δφ

c2
¼ −

1

4
α

ffiffiffiffiffiffi
−g

p
f0ðφÞR2

GB −
4πG
c4

�
δSm
δφ

þ δStid
δφ

�
þOð1=c4Þ: ðB7Þ
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The expressions Tμν
m , Tμν

tid,
δSm
δφ , and

δStid
δφ given by the variation of the matter and tidal action (6a) and (6d) respectively,

localizing these expressions at the location of the BH we consider as point particle at xA:

Tm
μν ¼ c

X
A

mAðφÞδð3Þðx − xAðtÞÞ
dxAμ
dt

dxAν
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ggαβ
dxαA
dt

dxβA
dt

q ;

T tid
μν ¼ c

X
A≠B

λðsÞA

2
64∂μφ∂νφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gAαβ

dxαA
dt

dxβA
dt

g

vuut þ gρσ∂ρφ∂σφ
dxAμ
dt

dxAν
dt

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gAgAαβ

dxαA
dt

dxβA
dt

q
3
75
B

δð3Þðx − xAðtÞÞ;

δSm
δφ

¼ −c
X
A

δð3Þðx − xAðtÞÞ
dmAðφÞ

dφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ

dxαA
dt

dxβA
dt

s
;

δStid
δφ

¼
X
A≠B

λðsÞA δð3Þðx − xAðtÞÞc

2
64gμν∂μ∂νφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gAαβ

dxαA
dt

dxβA
dt

s
þ ∂ν

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gAαβ

dxαA
dt

dxβA
dt

s
gμν

1
CA∂μφ

3
75
B

: ðB8Þ

We expand the expressions to the appropriate order in
factors of 1=c2. The expansion of the coupling function is
obtained via the Taylor expansion

f0ðφÞ ¼ f0ðφ0Þ þ f00ðφ0Þ
δφð1Þ

c2
þ f00ðφ0Þ

δφð2Þ

c4

þOð1=c6Þ; ðB9Þ

and the scalar field-dependent mass as given in (12). The
GB higher curvature terms up to 1PN contribute as

R2
GB ¼ 8

��
∂i∂j

Uð1Þ

c2

��
∂i∂j

Uð1Þ

c2

�
−△

Uð1Þ

c2
△
Uð1Þ

c2

�
þOð1=c6Þ; ðB10Þ

1

2
g00gαβαϵλωiα Rλωσεϵ

σε
βj − αϵλωi0 Rλωσεϵ

σε
0j

¼ −4α
�
δij∂i∂

i U
ð1Þ

c2
− ∂i∂j

Uð1Þ

c2

�
þOð1=c2Þ: ðB11Þ

With these results we expand the field equations up to
Oð1=c4Þ recovering the equations (6) in Appendix D
of [17]. Additionally we expand to first order in the tidal
perturbations by expanding the fields as (B2). The first-
order tidal contributions are not present at order Oð1=c2Þ,
and at order Oð1=c4Þ all the contributions depend on
the first-order tidal contributions to the fields, which are
zero. We find only one nontrivial contribution at order
Oð1=c4; ε1tidÞ

□η
δφð2;1Þ

c4
¼−

4πG
c4

X
A

λðsÞA δð3Þðx−xAðtÞÞ□δφð1;0Þ
B : ðB12Þ

To solve for the fields of D.(6) of [17] with tidal
contribution from (B12), we solve the differential equations
per order in 1=c2 and εtid. We follow thereby the approach
of [17] as well and for the details we refer to Appendix D of
this reference. We can make use of the half retarded half
advanced3 Green’s function and rewrite the expressions by
defining the separation rA ¼ xAðtÞ − x, rA ¼ jrAj and the
directional unit vector nA ¼ rA=rA and aA ¼ ∂tvA the
acceleration together with the definition

1

ρ̃A
≡ 1

rA
þ 1

c2
∂
2
t
rA
2
: ðB13Þ

We obtain for the Oð1=c2; εð0Þtid Þ equations from the fields

Uð1;0Þ ¼ G
X
A

m0
A

ρ̃A
; ðB14Þ

δφð1;0Þ
c ¼ −G

X
A

m0
Aα

0
A

ρ̃A
: ðB15Þ

With the solution of the three-dimensional Green’s func-

tion, the solution of order Oð1=c3; εð0Þtid Þ is given by

3In general the retarded solution is regarded as the most
physical solution as the solution can be seen as an initial value
problem with its evolution depending on sources in the past,
respecting causal structure. However here we chose the solution
resulting from a linear combination of the retarded and advanced
Green’s functions following [17]. This means that the solution is
given half by sources in the past and half by the same sources in
the future. The reason for selecting this solution is if the solution
is preferred to be energy conserving and therefore to be
symmetric in time, which is the case here.
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gð1.5;0Þi ¼ G
X
A

m0
Av

A
i

rA
: ðB16Þ

For the fields at order Oð1=c4; εð0Þtid Þ we use again the half-
retarded, half-advanced Green’s function in combination
with the definition (B13). The GB higher curvature con-
tribution can be rewritten with

△hAB ¼ ð∂iA∂A;i∂jB∂B;j − ∂A;i∂B;i∂A;j∂B;jÞ
1

rA

1

rB
; ðB17Þ

which reduces when specifying to a two-body system in
Sec. III to hAA ¼ hBB ¼ − 1

2r4 [17,126].
For the Oð1=c4; εð1Þtid Þ contribution (B12) we substitute

the Oð1=c2; εð0Þtid Þ equation for the scalar field (first-order
term of D.6c [17]), resulting in

□ηδφ
ð2;1Þ ¼ 4πG

�X
A

λðsÞA δð3Þðx − xAðtÞÞ□δφð1;0Þ
B

�

¼ 16π2G2

�X
A

λðsÞA δð3Þðx − xAðtÞ
�

×

�X
B≠A

δð3Þðx − xBðtÞÞα0Bm0
B

�
: ðB18Þ

When the product of delta functions is convoluted with the
Green’s function, this term will always give zero if xA ≠ xB,
which is the case for two black holes which are not at the
same position. Thus we can conclude that up to 1PN there
are no tidal corrections to the fields. Therefore we recover
for the total near zone field solutions at 1PN and first-order
tidal perturbations still the result of [17] in (D.15).
We now come back to the motivation on having a

different approach to the PN expansion as in [17]. We
found the explicit tracking of factors 1=c2 to be a more
consistent way of executing the PN expansion instead of
letting the fields U, gi, and δφ carry the PN orders as
adopted in this reference. The attractive part of this
approach is that it automatically makes the GB higher
curvature contributions order 1PN even though they con-
tain the product of two of the fields while the other 1PN
contributions are linear in the fields (see D.6 [17]), which
would make it in total a higher-order contribution. With the
explicit factor of 1=c counting—because of the 1=c
contributions in some of the prefactors in (B5) and (B7)
—all the 0PN contributions come at order 1=c2 and all the
1PN contributions, both the GR, GB, and tidal contribu-
tions as well, have an equal order 1=c4 automatically.
However the exact scaling of the GB and tidal contributions
is subtle; see our discussion in Sec. III C. As in practice we
were expanding in these factors instead of PN factors, we
adopted the notation of first order in 1=c2 to have the

superscript (1) even though this turned out to be 0PN order
in hindsight.

APPENDIX C: EXPLICIT EXPRESSIONS
FROM WAVEFORM AND PHASE
EVOLUTION CALCULATION

In this appendix we show the full expressions coming
from the scalar and part of the tensor waveform calculation.
As described in Sec. IVA, the scalar waveform can be
obtained via the DIRE approach constructing the different
scalar field moments from (30). The source term from (27)
and in the definition of the multipoles (29) is obtained from
the full field equation (9) and the PN expanded expression
related to (B7)

μs ¼ −
G
c4

δðSmÞ
δφ

−
1

16π
αf0ðφÞR2

GB þOð1=c4Þ

¼ G
c4

X
A

δð3Þðx − xAðtÞÞ
�
m0

Aα
0
A

�
c2 þ

�
α0A þ β0A

α0A

�
δφð1Þ

c

−Uð1Þ −
1

2
v2A

�	
; ðC1Þ

using in the last equality that the contributions of the R2
GB

term vanish in the integral of (29) as shown in [19]. The
tidal contribution is considered in Sec. IVA. Substituting
the lowest-order field solutions (B14), (B15) and perform-
ing the integration gives for the multipole moments

Is ¼ m0
Ac

−2α0A

�
1 −

v2A
2c2

−
Gm0

BαAB
rc2

þOðc−4Þ
�

þ ðA ↔ BÞ; ðC2aÞ

Iis ¼ xiAm
0
Ac

−2α0A

�
1 −

v2A
2c2

−
Gm0

BαAB
rc2

þOðc−4Þ
�

þ ðA ↔ BÞ; ðC2bÞ

Iijs ¼ xijAm
0
Ac

−2α0Af1þOðc−2Þg þ ðA ↔ BÞ; ðC2cÞ

Iijks ¼ xijkA m0
Ac

−2α0Af1þOðc−2Þg þ ðA ↔ BÞ: ðC2dÞ

Converting to the center-of-mass frame with expressions
(45) and (47) from [19] and substitution in (30) gives
for the expression of the scalar waveform up to a relative
0.5PN4

4Using the convention of setting the lowest-order GR wave-
form terms (can be extracted from the quadrupole formula) equal
to 0PN, which is proportional to 1=c4.
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Φ ¼ Gμ
ffiffiffī
α

p

Rc3

�
P−1=2Φ̃þ 1

c
Φ̃þ 1

c2
P1=2Φ̃þOðc−3Þ

�
; ðC3aÞ

with the components

P−1=2Φ̃ ¼ 2S−ðn · vÞ; ðC3bÞ

Φ̃ ¼
�
Sþ −

Δm
m

S−

��
−
Gᾱm
r

�
n · r
r

�
2

þ ðn · vÞ2 − 1

2
v2
	
þ Gᾱm

r

�
−2Sþ þ 8

γ̄
ðSþβþ þ S−β−Þ

	
; ðC3cÞ

P1=2Φ̃ ¼
�
−
Δm
m

Sþ þ ð1 − 2ηÞS−

��
3

2

Gᾱm
r4

_rðn · rÞ3 − 7

2

Gᾱm
r3

ðn · vÞðn · rÞ2 þ ðn · vÞ3
	

þ ðn · vÞ
��

Δm
m

Sþ − ηS−

�
v2 þGᾱm

r

�
1

2

Δm
m

Sþ þ
�
2η −

3

2

�
S−

−
4

γ̄

Δm
m

ðSþβþ þ S−β−Þ þ
4

γ̄
ðS−βþ þ Sþβ−Þ

	�

þ Gᾱm
r2

_rðn · rÞ
�
3

2
S− −

5

2

Δm
m

Sþ þ 4

γ̄

Δm
m

ðSþβþ þ S−β−Þ −
4

γ̄
ðS−βþ þ Sþβ−Þ

	

þ 2
Gᾱm
r

αf0ðφ0Þffiffiffī
α

p
r2

Sþ

�
Sþ þ Δm

m
S−

��
3
_r
r
ðn · rÞ − ðn · vÞ

	

−
ζ̄ffiffiffī
α

p
μr3

�
3
_r
r
ðn · rÞ − ðn · vÞ

	
: ðC3dÞ

Compared to (55) of [19] we find an overall factor of 2 difference in (C3a) and a slightly modified prefactor of the term
proportional to α. Integrating the square of the differentiated scalar wave function in (34) using the identities from [103]
gives for the scalar energy flux up to a relative 0PN

_ES ¼
η2

Gᾱc3

�
Gᾱm
r

�
4
�
4

3
S2
− þ 8

15c2

�
Gᾱm
r

��
−23þ η − 10γ̄ − 10βþ þ 10

Δm
m

β−

�
S2
− − 2

Δm
m

SþS−

	

þ v2
�
þ2S2þ þ 2

Δm
m

SþS− þ ð6 − ηþ 5γ̄ÞS2
− −

10

γ̄

Δm
m

S−ðSþβþ þ S−β−Þ þ
10

γ̄
S−ðS−βþ þ Sþβ−Þ

	

þ _r2
�
þ 23

2
S2þ − 8

Δm
m

SþS− þ
�
9η −

37

2
− 10γ̄

�
S2
− −

80

γ̄
SþðSþβþ þ S−β−Þ þ

30

γ̄

Δm
m

S−ðSþβþ þ S−β−Þ

−
10

γ̄
S−ðS−βþ þ Sþβ−Þ þ

120

γ̄2
ðSþβþ þ S−β−Þ2

	�
−

8

c2

�
αf0ðδφ0ÞS−Sþffiffiffī

α
p

r2

��
Sþ þ Δm

m
S−

��
−3_r2 þ v2 −

2Gᾱm
3r

	

−
16

c2

�
αf0ðδφ0ÞS2

−

ᾱ3=2r2

��
3Sþ þ Δm

m
S−

��
−
2Gmᾱ

3r

�
ðC4Þ

þ 4ζ̄S−
Gmμᾱ3=2c2r2

�
−3_r2 þ v2 −

2Gmᾱ

3r

	
þ 8ζS2−
mc2r2

�
−
2Gmᾱ

3r

�
þOðc−3Þ

	
: ðC5Þ

For the scalar flux compared to (61) of [19] we find an
additional factor 2 in the sixth line and a second term
proportional to the coupling. This term is sourced from the
relative acceleration (22), coming in from the product of the
−0.5 and 0.5PN terms of Eq. (C3a).

For the calculation of the tensor waveform we do not
repeat the calculation of the DIRE integral from the field
equations (7) from scratch. Instead we refer to [19] for the
definitions of the Epstein-Wagoner moments constructing
the multipole expansion of the near zone tensor waveform.
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We start from their result of the tensor waveform (21). The second-order time derivative results in the tensor waveform up to
a relative 1PN,

hijTT ¼ 2Gμ
Rc4

fQijgTT ¼ 2Gμ
Rc4

�
Q̃ij þ 1

c
P1=2Q̃ij þ 1

c2
ðPQ̃ij þ PQ̃ij

GB þ PQ̃ij
tidÞ þOðc−3Þ

�
TT
;

Q̃ij ¼ 2

�
vij −

Gmᾱrij

r3

	
;

P1=2Q̃ij ¼ Δm
m

�
3
Gmᾱ

r3
ðn̂ · rÞ

�
2vðirjÞ −

_rrij

r

�
− ðn̂ · vÞ

�
2vij −

Gmᾱrij

r3

�	
;

PQ̃ij ¼ 1 − 3η

3

�
ðr · n̂Þ2Gᾱm

r3

��
6Ē − 15_r2 þ 13

Gᾱm
r

�
rij

r2
þ 30_r

rðivjÞ

r
− 14vij

	

þ ðn̂ · vÞ2
�
6vij − 2

Gᾱm
r3

rij
	
þ 1

2
ðr · n̂Þðn̂ · vÞGᾱm

r2

�
12

_rrij

r2
− 32

rðivjÞ

r

	�

þ 1

3

��
3ð1 − 3ηÞv2 − 2ð2 − 3ηÞGᾱm

r

	
vij þ 4

Gᾱm
r

ð5þ 3ηþ 3γ̄Þ _r
r
rði;vjÞ

þ Gᾱm
r3

rij
�
3ð1 − 3ηÞ_r2 − ð10þ 3ηþ 6γ̄Þv2 þ

�
29þ 12γ̄ þ 12βþ − 12

Δm
m

β−

�
Gᾱm
r

	�
ðC6aÞ

PQ̃ij
GB¼4

Gᾱm
r

αf0ðϕ0Þffiffiffī
α

p
r2

�
−
�
Sþþ

Δm
m

S−

��
12_rrðivjÞ

r
þrij

r2

�
6Ẽþ5Gᾱm

r
−15_r2

�
−2vij

�

−2
Gm
r

rij

r2

�
3Sþþ

Δm
m

S−

�	
þ3

Gᾱm
r

αf0ðϕ0Þffiffiffī
α

p
r4

�
Sþð1−2ηÞþS−

Δm
m

�

×

�
ðr ·n̂Þ2

�
rij

r2

�
10Ẽ−35_r2þ9Gᾱm

r

�
þ10_r2rðivjÞ

r
−2vij

	
−2ðn̂ ·vÞ2rijþ1

2
ðr ·n̂Þðn̂ ·vÞ

�
20

_rrij

r
−4rðivjÞ

	�
; ðC6bÞ

PQ̃ij
tid ¼

4G2ᾱ2m
r6

ζrij: ðC6cÞ

We correct additional factors 2 in front of the terms in the
symmetric brackets notation, two factors 1=2 in front of
the ðr · n̂Þðv · n̂Þ terms, and a factor of ᾱ in the first termof the
second line in the PQ̃ij

GB expression. In our case we obtain a

tidal contribution from the tidal term in the relative accel-
eration (22). We integrate this expression over the angular
dependencies in (40), again using the identities in [103].With
this we obtain the tensor energy loss up to a a relative 1PN,

_ET ¼ 8

15

η2

Gᾱ2c5

�
Gᾱm
r

�
4
�
ð12v2 − 11_r2Þ þ 1

28c2

�
−16

�
170 − 10ηþ 63γ̄ þ 84βþ − 84

Δm
m

β−

�
v2

Gᾱm
r

þ ð785 − 852ηþ 336γ̄Þv4 − 2ð1487 − 1392ηþ 616γ̄Þv2 _r2 þ 3ð687 − 620ηþ 280γ̄Þ_r4

þ8

�
367 − 15ηþ 140γ̄ þ 168βþ − 168

Δm
m

β−

�
_r2
Gᾱm
r
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We find our terms proportional to α to differ with the
expression (59) in [19]. In Sec. IV D the scalar (C4) and
tensor (C7) energy loss are used to obtain the total energy
flux and phase evolution. For deriving the Fourier phase

evolution we specialize the flux expressions to circular
orbits and rewriting the terms to PN parameter x (24) as
presented in (37) and (43). The missing S4, S5, T5, and T6
contributions are

S4 ¼ 4η2S2−
3ᾱG

;

S5 ¼
�
8η2S−
45ᾱG

��
−
30ΔmðS−β− þ SþβþÞ

γ̄m
þ 30ðS−βþ þ Sþβ−Þ

γ̄
þ 10

Δm
m

S−β− − S−ð5γ̄ þ 10βþ þ 10ηþ 21Þ þ 6S2þ
S−

�
;

T5 ¼ 32η2

5ᾱ2G
;

T6 ¼
�

2η2

105ᾱ2G

��
−1247 − 448γ̄ þ 896

Δm
m

β− − 896βþ − 980η

�
: ðC8Þ

Then for the coefficients in the expansion E0=F in the DD regime (52) we find

E0
0 ¼ −

3

2
−
η

6
−
4γ̄

3
þ 4

3

�
βþ −

Δm
m

β−

�
−
40c4

3G2

αf0ðδφ0Þ
m2ᾱ7=2

v̄4
�
3Sþ þ Δm

m
S−

�
þ 20c4

3ᾱ2G2m3
ζv̄4; ðC9aÞ

fDD
2 ¼ 24

5ᾱS2−
þ 4S2þ
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−
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3
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−
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5
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4η

3
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3
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And in the QD regime splitting the contributions in the nondipolar and dipolar parts (57)

fnd2 ¼ 1
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ᾱ5=2G2m2

�
Sþ

�
1þ 6

25
η

�
50

7
þ Sþ

16

ᾱ
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The expressions in this appendix supplement the dis-
cussion in Sec. IV.

APPENDIX D: ANALYSIS OF TIDAL
AND GAUSS-BONNET PHASE

CONTRIBUTIONS WITH RESPECT TO
THE DIMENSIONFUL COUPLING

In this appendix we present the plots related to Fig. 5 but
regarding the dimensionful coupling α. For the dependen-
cies of the contributions with respect to varying the
coupling, we find the same characteristics as a dominating

tidal contribution in the DD regime for small coupling and a
negative scaling of the tidal contributions. Only the
evolution is different because of the rescaling via
ϵ ¼ αc4

G2m2. The contributions for the different total masses
significantly differ comparing the bottom plots of Fig. 9
with Fig. 5. In Fig. 9 we see purely the change in phase
from varying the mass; the coupling input is fixed. We find
still a positive scaling with the total mass in the DD regime
but a negative scaling in the QD regime, which is expected
as for smaller separations, the higher-order curvature terms
in the GB contributions become dominant and curvature
effects are larger for smaller BH mass.
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