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We compare numerical self-force results and analytical fourth-order post-Minkowskian (PM) calcu-
lations for hyperbolic-type scattering of a pointlike particle carrying a scalar charge Q off a Schwarzschild
black hole, showing a remarkably good agreement. Specifically, we numerically compute the scattering
angle including the full OðQ2Þ scalar-field self-force term (but ignoring the gravitational self-force), and
we compare with analytical expressions obtained in a PM framework using scattering-amplitude methods.
This example provides a nontrivial, high-precision test of both calculation methods and illustrates the
complementarity of the two approaches in the context of the program to provide high-precision models of
gravitational two-body dynamics. Our PM calculation is carried out through 4PM order, i.e., including all
terms throughOðQ2G3Þ. At the fourth post-Minkowskian order the point-particle description involves two
a priori undetermined coefficients, due to contributions from tidal effects in the model under consideration.
These coefficients are chosen to align the post-Minkowskian results with the self-force ones.
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I. INTRODUCTION

The landmark detection of gravitational waves by the
LIGO and Virgo collaborations [1,2] has opened an era of
scientific exploration promising new and unexpected dis-
coveries in astronomy, cosmology, and particle physics.
To make full use of the anticipated vast improvements in
the precision of new planned detectors [3–5] requires a
commensurate improvement in theoretical waveform pre-
dictions. Achieving this will require input from multiple
complementary approaches, including numerical relativity
[6–9], the self-force (SF) approach [10–13], effective field

theory (EFT) [14], as well as weak-field perturbative
treatments based on the post-Newtonian (PN) [15–18] or
post-Minkowskian (PM) [19–24] frameworks. These
inputs can then be combined into accurate waveform
models such as those based on the effective-one-body
(EOB) approach [25,26].
Recent years have witnessed a renewed interest in the

scattering regime of the binary black-hole problem, a process
that provides a clean theoretical probe of the two-body
dynamics. In the scattering setup, the initial and final states
are at large separations, where the background spacetime is
asymptotically Minkowskian, allowing an unambiguous
definition of physical observables such as the momentum
impulse and the scattering angle. This, in turn, facilitates the
comparison of results obtained using different approaches;
see Fig. 1. In this paper, we carry out a proof-of-principle
high-precision comparison of the post-Minkowskian (PM)
and self-force (SF) approaches in their overlap region, in
the context of a scalar-charge toy model [27,28].
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We cross-confirm the consistency of results and illustrate
how each approach informs and complements the other.
The PM framework is a natural perturbative approach to

the scattering problem at large minimum separation. In this
framework, the two black holes are treated as point particles
in a scattering process on a fixed flat background. The
gravitational interaction between the two particles is
accounted for order by order in Newton’s constant G, with
the velocity kept arbitrary in a format that respects special
relativity. In this framework, finite size effects, such as tidal
deformability and horizon dissipation can be included
perturbatively in terms of higher dimension interactions
in an effective field theory.
A new approach within the PM framework is the

scattering-amplitudes method, which leverages enormous
advances in computing and understanding scattering
amplitudes. These advances include generalized unitarity
[29–33], the double-copy construction [34–37] and power-
ful integration methods [38–43]. They have enabled
explicit gauge and gravity calculations at remarkably high
orders of perturbation theory (see e.g. [29,44–48]). The
double copy expresses gravitational scattering amplitudes
in terms of simpler corresponding gauge-theory ampli-
tudes, while generalized unitarity gives a means for build-
ing loop amplitudes from simpler tree amplitudes. More
recently they have been applied in the context of gravita-
tional-wave physics [49–55], where they led to rapid
progress in the development of PM theory for binary
systems in general relativity (GR). In the classical limit,

the scattering amplitudes are directly useful objects,
because they are simply related to the Hamilton-Jacobi
radial action [54].
A basic premise of the quantum scattering-amplitude

approach to gravity is that, in the weak-field regime,
gravitational forces are mediated bymassless spin-2 particles
[56], which are identified as the fluctuations of the
space-time metric around a flat Minkowski background.
This perspective realizes the PN and PM frameworks as
quantum field theory perturbation theory around flat space.
Remarkably, even in the presence of their interactions arising
from matter-coupled Einstein-Hilbert action, the spin-2
particles can be thought of as two copies of spin-1 particles
[34–37], emphasizing the close connection of gravitational
and gauge theories. Although the starting point is rather
different from the classic one based on Einstein’s equations,
the final physical predictions are identical.
The SF approach [13] is also perturbative, but it does not

rely on a weak-field approximation. Instead, it is based
on an expansion in the mass ratio of the binary, assumed
small. At leading order, the lighter object traces a timelike
geodesic in the exact spacetime geometry of the larger
object (e.g. Kerr geometry). One then systematically
incorporates postgeodesic terms order by order in the mass
ratio. This approach is “exact” in the strength of the
gravitational interaction and thus applicable in the
strong-field regime, as long as the mass ratio is small.
The self-force program has been primarily motivated by the
prospect of observing gravitational waves from the inspiral

FIG. 1. Domains of the two-body scattering problem in GR. The diagram schematically shows the main calculation techniques in their
respective natural domains. Overlap regions provide arenas for comparison and exchange of complementary information. In this paper
we explore the overlap region at the top right of the plot, i.e. the domain of weak-field scattering at a large mass ratio.
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of compact objects into a massive black hole with planned
observatories in space. For that reason, much of the focus
has been on bound-orbit configurations. There has been
significant progress over the past few years, culminating
in the recent milestone (numerical) calculation of a full
quasicircular inspiral orbit and its emitted gravitational
waveform, which necessitated the inclusion of second-
order gravitational SF terms [57]. SF calculations have also
been useful in setting accurate strong-field benchmarks to
inform other modeling approaches, primarily PN methods
and EOB. In particular, they have been utilized to calibrate
a priori unknown terms in the EOB potentials [58,59],
to resolve initial ambiguities in PN results [60–63], and
are key to the “Tutti-Frutti” approach [64–68]. Very recent
work has started applying the SF method to scattering
orbits [28,69–73].
The SF and PM approaches are complementary, see

Fig. 1: for strong-field scattering, the PM approximation
breaks down, while for weak-field scattering numerical SF
calculations become less tractable for a variety of technical
reasons to be explained later. Nevertheless, one can make
detailed comparisons in an intermediate regime where both
approaches remain controllable. As noted by Damour,
simple mass dependence in the PM approach implies
simple rules for the overlap of PM and SF orders [74].
The comparisons carried out here are meant as a proof-of-
principle demonstration. Wewill discuss planned follow-on
improvements, which include, on the SF side, an improved
methodology for the numerical integration of the relevant
field equations; and, on the PM side, the implementation of
resummation techniques à la EOB, where they have been
shown to remarkably improve the agreement with numeri-
cal relativity computations when 4PM contributions are
incorporated [75,76].
For this initial study, we adopt the scalar-charge toy

model described in detail in Ref. [73], and we also use
the time-domain computational infrastructure developed
in that work for numerically calculating the scattering
angle including SF effects from the scalar-field backreac-
tion. Here we introduce various code optimizations
and several new tricks to enable evaluation in the PM
domain, which is computationally more demanding. Our
analytical post-Minkowskian calculations follow those of
Refs. [51,52,54,55] for the conservative part and those of
Refs. [77–81] for the radiative contributions, except that,
instead of pure gravity, an additional massless scalar field is
incorporated, amounting to the evaluation of additional
diagrams in the same setup. Since the foundations of our
method are described elsewhere, we will review them only
briefly here, instead focusing on new features of the current
calculation.
Here we are interested in demonstrating the ability to

carry out precision comparisons between self-force and
post-Minkowskian calculations in an overlap region where
both approaches are valid. To carry out a comparison we

analyze black hole scattering in the region where one object
is much lighter than the other, the scalar charge is “small,”
and the minimum separation distance is sufficiently large.
The smallness of the charge is expressed as a condition on a
certain dimensionless combination qs of the charge and the
masses [see Eq. (2.5) below], which guarantees that the
scattering orbit of the small object deviates only slightly
from a geodesic in the background spacetime of the larger
object, assumed to be a Schwarzschild black hole.
Geodesic motion is recovered in the limit qs → 0, and in
our calculation of the scattering angle we keep only terms
through qs), i.e. we account for (only) the first-order
backreaction effect from the scalar-field SF. The gravita-
tional SF is altogether neglected. To align the PM calcu-
lation with the SF one, we similarly truncate the PM
contributions, keeping only terms up to qs), and dropping
all gravitational SF terms. Note that, in this approximation,
the mass dependence of the PM expansion terms is trivial
at all orders: the Nth-order PM term of the self-force
correction to the scattering angle depends on the masses
through a factor qsmN

2 , where m2 is the mass of the large
black hole.
The leading-order scalar-field SF correction to the

geodesic scattering angle, which is a 2PM effect, has been
derived analytically by Gralla and Lobo in [28], using SF
methods. Here we extend this through to 4PM order, using
effective-field methods. Our calculation includes both
conservative and dissipative terms, and it is complete
through 3PM order.
The point-particle framework used in both the PN and

PM expansions must be extended by the inclusion of tidal
operators to describe all details of compact objects of finite
size. This is an ubiquitous feature of effective field theory,
see e.g. Sec. 2.6 of the review [82], whose action includes
operators of increasingly higher dimension as one probes
distances close to the size of the object. Quite generally, at
sufficiently high order in perturbation theory, point-particle
and finite-size effects are not cleanly separated. This is
familiar in quantum field theory and leads to the need for
renormalization. Power counting dictates the order at which
this occurs and the general structure of the required
(counter)terms. The classical limit delays the appearance
of tidal operators compared to the quantum case; for
example, together with diffeomorphism invariance, it
implies that in the classical limit of gravitational theories
the first tidal (two-curvature) operator is first required at
6PM (five-loop) order while in the quantum theory they are
already required at one-loop. The power counting in the
scalar-charge model is different from that of gravity
because, unlike the graviton field, the scalar field does
not need to be dressed with additional derivatives to
preserve gauge invariance. This difference implies that,
already at 4PM (three-loop) order, two-massive-two-
massless-scalar operators are required for the model to
be well defined. At this order a short-distance divergence
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appears in the classical regime, indicating that the objects
cannot be assumed to be pointlike. Tidal operators are
needed to absorb this divergence via the standard
renormalization process. The value of the corresponding
renormalized coupling—the scalar Love numbers—are
among the parameters characterizing compact objects
with scalar charge.1

In contrast, in the SF formalism, the system is exactly
described by a finite-sized central black hole with a point-
particle companion at leading order, with finite-size effects
of the secondary being incorporated at higher orders in
the mass ratio. The net effect of the tidal operators is to
introduce additional parameters that can be fixed by
matching to calculations in black hole perturbation theory
[83–94]. Matching is a standard procedure in effective
field theory and leads to well-defined results. Here we will
not carry out such a calculation but instead will use the
comparison to the corresponding SF calculation in an
attempt to (numerically) determine the values of these
parameters. While this reduces our ability to carry out a
precision comparison of the two approaches at 4PM order,
it also illustrates how one approach can aid the other to
resolve ambiguities.
This paper is organized as follows. In Sec. II we briefly

review the foundations of the SF approach as applied to
the scattering problem, and in Sec. III we give a
similar overview of the amplitudes-inspired approach of
Refs. [54,55,81] used here to carry out the PM calculation
through 4PM order. Section IV reviews the numerical
method developed in Refs. [72,73] and the various
improvements that were introduced to facilitate our com-
parison with PM results. In Sec. V we present analytic
results for the conservative and dissipative scattering angle
through 4PM order, and we also explain the appearance of
scalar tidal operators. The results from the two approaches
are then compared in the overlap region in Sec. VI.
Section VII contains a summary and a road map for future
perusal of our program. An Apendix clarifies that the effect
of center-of-mass (COM) boost from the net loss of linear
momentum in radiated scalar waves is negligible within our
working assumptions.
We use units where c ¼ 1. The gravitational constant G

is usually set to 1, but we restore factors of G when
counting PM interaction orders, for clarity. Similarly, we
usually set ℏ ¼ 1 but restore it as a counting parameter for

the classical limit. We work in mostly plus metric signature
and reserve boldface symbols for spatial components of
four-vectors.

II. SELF-FORCE DESCRIPTION

A. Overview of self-force approach

Anticipating a readership of mixed expertise, we start
with a brief general overview of the self-force approach
to the two-body dynamics in GR. The topic has been
reviewed thoroughly in recent literature. We can especially
refer nonexpert readers to [13] for an introductory-level
exposition.
SF theory sits at the intersection between two funda-

mental problems in classical GR: the problem of motion
(“how do objects move in a curved spacetime?”) and the
two-body problem (“what is the spacetime of a binary
system of gravitationally interacting compact objects?”).
Work on both problems goes back a century to the early
days of GR, but the advent of gravitational-wave astronomy
has given them renewed relevance and an important
modern context. The SF program deals with the modeling
of the inspiral dynamics in compact-object binaries with
extreme mass ratios, and the prediction of the gravitational-
wave signature of such systems. In its modern incarnation,
the program took off in the 1990s when concrete plans
began for the design of a space-based observatory—LISA,
the laser interferometer space antenna—that would give
access to the milliHertz band of the gravitational-wave
spectrum. A prime target for LISA (now scheduled for
launch in the mid-2030s) will be the radiative inspiral of
compact stars and stellar-mass black holes into massive
black holes in galactic centers: so-called EMRIs (extreme
mass ratio inspirals). Due to the large mass ratio, the
inspiral is slow, with a typical LISA EMRI giving off some
∼105 gravitational-wave cycles all while in a tight orbit
right outside the massive black hole. EMRI signals will
thus be excellent probes of black-hole geometry, and of GR
theory itself, in its most extreme regime. But, for that same
reason, their modeling cannot rely on traditional weak-field
approaches such as the PN or PM frameworks. Full
numerical-relativity simulations are also unsuitable because
the large-scale disparity makes EMRI simulations compu-
tationally intractable.
SF theory provides a natural approach to EMRI model-

ing. Like PN and PM theories, it is based on a systematic
perturbative treatment of the Einstein equations. But
instead of perturbing in the strength of the gravitational
coupling (G) or in the velocity (v=c), in SF theory one
perturbs in the mass ratio

qm ≔ m1=m2 ≪ 1; ð2:1Þ

keeping the strength of gravity and the velocities arbitrary.
In the formulation of the SF equations of motion, there is no

1Such divergences also appear if one computed the scattering
angle of two delta-function sources by solving perturbatively
Einstein’s equations and it can be cured by using instead an
extended source. From this perspective, the Love numbers
encode characteristics the renormalized source. See e.g. Sec. 8
of Ref. [37] for a simple related illustration, in which the total
mass of the pointlike source is renormalized. The Love numbers
may be determined by matching an observable with the response
of the finite-size object to massless-scalar perturbations in the
scalar-charge model and gravitational perturbations in GR.
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a priori reduction of field degrees of freedom to particle
degrees of freedom. Rather, there is a systematic solution of
the Einstein field equations for the EMRI system order by
order in qm, using a procedure of matched asymptotic
expansions that takes advantage of the disparate scales
in the problem. One assumes only the validity of the
vacuum Einstein equations, local conservation of energy-
momentum, and the existence of certain formal limits that
arise in the matched-expansions procedure. The end result
is a description of the EMRI dynamics in terms of a point-
like particle that moves along some accelerated worldline in
the background geometry of the massive black hole. But
the notions of a point particle, point-particle worldline, or
point-particle momentum are all derived (not assumed)
notions in the theory.
The SF description of an EMRI starts with a formal

expansion of the full spacetime metric gαβ in powers of qm
about the exact metric gαβ of the large black hole when in
isolation:

gαβ ¼ gαβ þ qmh
ð1Þ
αβ þ q2mh

ð2Þ
αβ þ � � � : ð2:2Þ

Here gαβ is usually taken to be the Kerr metric (or its

nonspinning reduction, Schwarzschild), and hðnÞαβ are
qm-independent metric perturbations. This description
breaks down close to the small body, where its gravitational
field can no longer be considered a perturbation. Instead,
near the small object, at distances d ≪ m2 from it, one
introduces a different expansion of the full metric, in
powers of d=m2 this time, where the zeroth order is now
the exact metric of the small object, and higher-order terms
describe weak tidal-type perturbations from the external
geometry associated with the large black hole. The
assumed scale disparity m1 ≪ m2 means that there is a
buffer zone m1 ≪ d ≪ m2 where both asymptotic descrip-
tions apply. One proceeds by matching the two expansions
in the buffer zone, term by term in qm, at the end taking the
limit qm → 0 where both mass and size of the small object
shrink to zero commensurately. This procedure produces a
reference worldline in the exact background geometry gαβ,
whose acceleration in that geometry is determined by the
matching. This is the inspiral trajectory. The matching also

determines the perturbation fields hðnÞαβ (and hence the
gravitational waveforms), once physical boundary condi-
tions are supplied.2

At leading order in qm, the matching tells us that the
worldline representing the small object’s trajectory is a
geodesic of the Kerr geometry. This is a derivation of the

familiar “test particles move on geodesics” maxim. The

matching also tells us that the perturbation field hð1Þαβ is a
(retarded) solution of the linearized Einstein equations
with a delta-function source of stress-energy moving along
the geodesic. This provides an effective notion of “point-
particle stress-energy” in GR. At the next order in qm,
the particle’s worldline picks up a small, OðqmÞ acceler-
ation, interpreted as an effect of a backreaction

force—“self-force”—from hð1Þαβ . This SF drives the inspiral
motion, sending off orbital energy and angular momentum
in gravitational waves. One can continue in this fashion to

obtain the second-order perturbation hð2Þαβ , which is made of
a nonlinear piece of the metric together with a correction to
the linear piece due to the worldline’s acceleration. From

hð2Þαβ one can calculate the Oðq2mÞ backreaction to the
particle’s acceleration, and so on.
Restricting to the first-order SF effect, as in the rest of

this paper, the particle’s equation of motion (in the frame of
the large black hole) has the form

m1uβ∇βuα ¼ Fα; ð2:3Þ
where uα is the particle’s four-velocity, ∇α is a covariant
derivative compatible with the (Kerr) background metric
gαβ, and Fαð∝ q2mÞ is the first-order SF. This Fα (a function
along the worldline) represents the backreaction force from

the (retarded) linear perturbation hð1Þαβ . More precisely, it is
constructed from the gradient of a certain “regular” piece of

hð1Þαβ , denoted hð1ÞRαβ , evaluated at the particle’s location. The

identification of the correct regular piece hð1ÞRαβ comes out
automatically out of the matched asymptotic expansions
procedure, and does not involve any ad hoc regularization.
A great deal of effort has gone into the formulation of

practical methods for (1) solving the linearized field

equations for hð1Þαβ in an EMRI scenario, and (2) extracting

the regular piece hð1ÞRαβ from that solution. For general
EMRI orbits there are no known analytical solutions for

hð1Þαβ , so this part of the calculation has to be done numeri-
cally. However, since the relevant field equations are linear,
this can be done with relatively high numerical precision.

To construct the SF Fα from hð1Þαβ , many calculations use the
mode-sum method, also to be used in our work. In this

method, the perturbation hð1Þαβ is first decomposed into

multipole modes hð1Þlαβ (spherical-harmonic modes or sim-
ilar) on spheres around the central black hole, and the
extraction of the regular piece is then conveniently done
mode by mode, using a formula of the form

Fα ¼
X∞
l¼0

ð∇αβγhð1Þlβγ − Aαl − Bα − Cα=lÞ: ð2:4Þ

2Of course, we are glossing here many crucial details,
including the need to gauge-fix diffeomorphism invariance/
covariance so that the field equations manifestly admit a well-
posed initial-value formulation, or the need to account for gauge
mismatch in the matching procedure.

COMPARISON OF POST-MINKOWSKIAN AND SELF-FORCE … PHYS. REV. D 108, 024025 (2023)

024025-5



Here ∇αβγ is a certain derivative operator, and Aα, Bα and
Cα are certain “regularization parameters,” which are

known analytically. While the full perturbation hð1Þαβ is

singular at the particle, its individual modes hð1Þlαβ and their
derivatives are finite there, so the mode-sum procedure
circumvents having to deal with infinities in the calculation.
We stress that there is no ad hoc regularization involved
in the formulation of the mode-sum procedure. Rather,
Eq. (2.4) is simply a mode-sum recasting of the extraction

formula for hð1ÞRαβ , itself a result of the rigorous matched
expansion method.
A preliminary task in SF calculations for EMRIs is the

evaluation of Fα along fixed geodesic orbits of the Kerr
geometry. The actual long-term inspiral evolution of the
orbit under the SF effect is computed as a second step,
usually using methods from multiple-scale perturbation
theory, exploiting the two disparate timescales in the
problem: the radiation-reaction timescale is much longer
than the orbital timescale. The situation is different in the
scattering problem to be considered in this paper, where the
slow timescale is lost. Here, in order to consider the OðqmÞ
correction to the geodesic scattering angle, it will suffice to
integrate the first-order SF Fα along a fixed scattering
geodesic, without actually incorporating the acceleration
due to the SF; such a correction to the orbit would only
contribute to the scattering angle at Oðq2mÞ, which is
neglected in our calculation.

B. Scalar-field self-force

Historically, the black-hole scattering scenario has not
been given much attention within the SF program, due to its
limited direct astrophysical relevance. So while there are
today powerful tools for computing EMRI orbits in inspiral
scenarios, there are to date no calculations of the full
gravitational SF on scattering orbits. Work so far has been
restricted to numerical energy flux calculations [69,70], and
analytical SF calculations at leading PM order [28]. In
Ref. [73] two of us started the development of a complete SF
computational infrastructure for scattering orbit, working
with a scalar-field toy model as a development platform. The
scalar-field model has been employed extensively in SF
studies, because it allows to tackle many of the challenging
aspects of SF calculations in a simpler environment, without
having to solve the full set of linearized Einstein equations
or having to deal with complications related to gauge
dependence of the perturbation field. At the same time,
the scalar-field model shares many technical similarities with
the pure-gravity case, which makes it an excellent laboratory
for test and development.
Our scalar-charge model is described in detail in

Sec. VII of Ref. [73]. The larger object is taken to be a
Schwarzschild black-hole with mass parameter m2. The
smaller object (of mass m1) is endowed with a scalar
charge Q, such that

qs ≔
Q2

m1m2

≪ G ¼ 1: ð2:5Þ

The small parameter qs is analogous to qm in the pure-
gravity problem, and the condition in (2.5) ensures (see
below) that the SF exerted by the scalar field causes only a
small perturbation to the geodesic motion of the charged
particle. The charge sources a massless, minimally coupled
Klein-Gordon field Ψ, according to

∇α∇αΨ ¼ −4πQ
Z

∞

−∞

δ4ðx − xpðτÞÞffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp dτ: ð2:6Þ

Here g is the determinant of the background Schwarzschild
metric gαβ, ∇α are covariant derivatives compatible with
gαβ, and xpðτÞ describes the timelike worldline of the
pointlike charge in the background geometry, parametrized
with proper-time τ. In our work, this worldline is taken to
be a scattering geodesic of gαβ. The relevant solution of
Eq. (2.6) is the one satisfying retarded boundary condition,
i.e. no incoming radiation from past null infinity, and no
outgoing radiation from the past event horizon. We call that
solution (which is unique) the “retarded field.”
In our model, we completely ignore the gravitational

effect of m1, and in particular we ignore the gravitational
SF acting on the charge. This is formally achieved by taking
the limit m1 → 0 at a fixed qs. We only take into account
the backreaction from the scalar field Ψ, which exerts a SF
given by

Q∇αΨR ∝ Q2: ð2:7Þ

Here ΨR is the “regular” piece of the retarded field,

analogous to hð1ÞRαβ , whose construction has been prescribed
using matched asymptotic expansions [27]. The scalar-field
SF can be obtained using a mode-sum formula as in (2.4),
with analytically known regularization parameters [95].
The charge’s equation of motion is then given by

uβ∇βðm1uαÞ ¼ Q∇αΨR; ð2:8Þ

where uα ¼ dxαp=dτ is the four-velocity.
The self-acceleration of the charge’s worldline is given

by the component of Eq. (2.8) orthogonal to uα, while the
tangent component describes an exchange of rest mass m1

with scalar-field energy:

uβ∇βuα ¼ ðδαβ þ uαuβÞðQ=m1Þ∇βΨR ≕Fα; ð2:9Þ

dm1

dτ
¼ −Quα∇αΨR: ð2:10Þ

Equation (2.10) can be immediately integrated to give

m1ðτÞ ¼ mð0Þ
1 −QΨRðτÞ (where mð0Þ

1 is an integration
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constant), which describes the variation of m1 along the
worldline. There is no net variation in the scattering case,
since ΨRð−∞Þ ¼ ΨRðþ∞Þ. Moreover, the effect of evolv-
ing mass m1 enters the acceleration in Eq. (2.9) only at
OðQ4Þ, to be neglected in our analysis. We therefore
henceforth ignore the variation in m1, and assume m1 is
constant.
We note that the self-acceleration in Eq. (2.9) is propor-

tional toQ2=m1 ≪ m2, by our assumption (2.5). Therefore,
it drives a very small change in the trajectory of the charge
over the length and timescales set by the central black hole.
The change this self-acceleration causes to the scattering
angle (say, at fixed initial velocity and impact parameters;
see below) is of OðqsÞ and hence also very small. For the
purpose of deriving this OðqsÞ change, it is therefore
justified to integrate the SF Fα along the baseline geodesic
itself, without correcting for the small change.

C. Self-force correction to the scattering angle

A description of scattering orbits through OðqsÞ is given
in detail in Ref. [73]. Here we review the essential results.
We work in the background spacetime of the black hole
of mass m2, where we use standard Schwarzschild coor-
dinates in which the scattering orbit is described by
ðtpðτÞ; rpðτÞ; θpðτÞ;φpðτÞÞ; without loss of generality we
set τ ¼ 0 at the periastron, i.e. urjτ¼0 ¼ drp=dτjτ¼0 ¼ 0.
Also without loss of generality, we let the orbit lie in the
equatorial plane, θp ≡ π=2, which the symmetry of the
setup allows us to do even with the SF effect included.
Scattering orbits in Schwarzschild spacetime constitute a

2-parameter family. We choose as parameters the magni-
tude of the 3-velocity at infinity,

v ≔
1

utp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðurÞ2 þ ðrpuφÞ2

q ����
τ→−∞

; ð2:11Þ

and the “impact parameter”

b ≔ lim
τ→−∞

rp sin jφpðτÞ − φpð∞Þj: ð2:12Þ

We also introduce the parameters

σ ¼ ð1 − v2Þ−1=2 and J=m1 ¼ bvσ; ð2:13Þ

which, in the geodesic limit qs → 0, coincide with the
conserved (specific) energy and angular momentum of the
scattering orbit in the black-hole frame (usually denoted E
and L in SF literature). Note that both v and b are defined
from the asymptotic behavior of the orbit at infinity, which
will help us identify orbits across the SF-PM descriptions.
The scattering angle is defined as

χðv; bÞ ≔
Z

∞

−∞
uφðτ; v; bÞdτ − π: ð2:14Þ

In the SF description, we split χðv; bÞ into a “geodesic”
term and a “SF” term, in the form

χðv; bÞ ¼ χð0Þðv; bÞ þ qsδχðv; bÞ þOðq2sÞ; ð2:15Þ

where χð0Þðv; pÞ represents the scattering angle for a
geodesic orbit with the same v, b as the full orbit. (This
is a point of subtlety: fixing other parameters may result in a
different split between a “geodesic term” and a “SF term”;
we insist on fixing v, b in our split, for the reason just
mentioned.) The geodesic term can be written analytically
in terms of an elliptic function:

χð0Þ ¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p−6−2e

r
El1

�
1

2
arccosð−1=eÞ;− 4e

p−6−2e

�
−π:

ð2:16Þ

Here El1 is the incomplete elliptic integral of the first kind,

El1ðφ; kÞ ≔
Z

φ

0

ð1 − k sin2 xÞ−1=2dx; ð2:17Þ

and e (“eccentricity”) and p (“semilatus rectum”) are
related to σ and J (and thus to v and b) via

σ2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; ðJ=m1Þ2 ¼
p2m2

2

p − 3 − e2
: ð2:18Þ

An explicit expression for the SF correction term δχ, in
terms of an integral of the SF along the geodesic scattering
orbit, was derived in Ref. [73]. It has the form

δχ ¼
Z

∞

−∞
½GEðτÞFtðτÞ þ GLðτÞFφðτÞ�dτ; ð2:19Þ

where GE and GL are (complicated, but analytically given)
functions of τ and the geodesic parameters alone, given in
Eq. (110) of Ref. [73].
Equation (2.19) describes the full SF effect, including

both conservative and dissipative terms: δχ¼ δχconsþδχdiss.
For the sake of our comparison with PM results it is useful to
compute these two pieces separately. At OðqsÞ the split
between δχcons and δχdiss is defined unambiguously, as
follows. First, we define the conservative and dissipative
pieces of the SF, using

Fcons
α ≔

1

2
ðFret

α þ Fadv
α Þ; Fdiss

α ≔
1

2
ðFret

α − Fadv
α Þ; ð2:20Þ

where Fret
α ≡ Fα is the SF discussed so far, i.e., the one

attributed to backreaction from the retarded scalar field, and
Fadv
α is an “advanced” SF, constructed in just the same way

from the advanced scalar field, i.e. the (unique) solution to
the field equation satisfying advanced boundary conditions.
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We have Fα ¼ Fcons
α þ Fdiss

α . Then δχcons=diss are defined by

replacing Fα → Fcons=diss
α in Eq. (2.19), respectively.

Thanks to the time symmetry of geodesics in
Schwarzschild spacetime, it is not necessary to compute
Fadv
α in practice. It can be shown (see e.g. [96]) that Fcons

α

and Fdiss
α can be more readily extracted by combining

information from the inbound and outbound legs of
the orbit:

Fcons
α ðτÞ ¼ 1

2
ðFαðτÞ − Fαð−τÞÞ;

Fdiss
α ðτÞ ¼ 1

2
ðFαðτÞ þ Fαð−τÞÞ; ð2:21Þ

for the α ¼ ft;φg components. Explicit, simplified integral
expressions for δχcons and δχdiss are given in Eqs. (112)
and (115) of Ref. [73].
It should be noted that our δχ is computed in a frame

attached to m2. In our scalar-charge model, however, this
coincides with the center-of-mass frame of the binary
system, since we are ignoring the gravitational effect of
the test mass m1.
In Sec. IV we shall review our numerical implementation

of Eq. (2.19) to compute δχ given v and b.

III. AMPLITUDES-BASED METHODS
FOR PM EXPANSION

A. General setup

The relative velocity of two massive classical bodies on
hyperbolic orbits can be close to the speed of light, not
being bounded by the virial theorem. Thus, in the weak-
field regime, the relevant framework for generic classical
scattering events is the post-Minkowskian expansion, in
which physical quantities are evaluated as a series expan-
sion in Newton’s gravitational constantG while keeping all
orders in the bodies’ velocities compatible with Lorentz
symmetry. This mirrors the usual expansion of scattering
amplitudes in relativistic quantum field theory. By
extracting the classical limit of quantum scattering ampli-
tudes, the major advances in this field provide an efficient
route to study the classical scattering problem to high
orders in G [49,51,52,97].
Scattering amplitudes are basic quantities in quantum

field theory. Following a well-defined procedure for iden-
tifying and extracting their classical part, they can then be
used to calculate classical observables. Here we will not
describe the procedure in detail but will refer the reader to
the literature [50,52]. Several amplitudes-based approaches
have been proposed: matching of amplitudes to those
of an effective field theory leading to the two-body
classical Hamiltonian [49,51,52], eikonal methods [98],
the relation between amplitude and the radial action
[54,55], and the observable-based approach pioneered by
Kosower, Maybee and O’Connell [50]. Heavy-particle

effective theories [99,100] provide possible shortcuts to
the derivation of the requisite scattering amplitudes. In
addition, there are also worldline approaches [101,102],
extending to the post-Mikowskian regime the NRGR
framework of Goldberger and Rothstein [14]. Classical
quantities extracted from hyperbolic scattering can, in
certain cases, be straightforwardly analytically continued
to the phenomenologically relevant case of bound-orbit
dynamics [52,103,104].3

A quantum mechanical approach to observables makes
use of notions, such as unitarity, that are not directly used
in classical calculations. Harnessing the constraints they
impose may render such calculations easier, as noted long
ago by Kovacs and Thorne [107]: “Any classical problem
can be solved quantum-mechanically; and sometimes the
quantum solution is easier than the classical.” The same
authors commented on possible applications of Feynman
diagrammatic methods to problems concerning gravita-
tional radiation and that for classical macroscopic objects
the naive dimensionless perturbative expansion parameter,

g ¼ Gm1m2

ℏc
≈

m1m2

ð10−8 kGÞ2 ; ð3:1Þ

is much larger than unity. The classical limit has,
however, a different effective coupling. Bohr’s correspon-
dence principle states that classical physics emerges from
the quantum theory in the limit of macroscopic conserved
charges such as masses, electric charges, spins, orbital
angular momenta, etc. In this limit the effective expansion
parameter depends on the angular momentum J of the
two-body system,

geff ¼
Gm1m2

Jc
; ð3:2Þ

which on the one hand is independent of Planck’s constant
and on the other can be small. Without further specifica-
tions on the magnitude of the velocity relative to the speed
of light, this sets the expansion in the post-Minkowskian
(relativistic weak field) regime. That is, two classical
objects of typical Schwarzschild radii,

Rs ¼ 2Gm; ð3:3Þ

are widely separated in impact parameter space b at a fixed
velocity, i.e. Rs ≪ b.4 This in turn implies that, in the
classical limit, the Fourier conjugate of the separation of the
two particles—the momentum transfer—is much smaller

3At OðG4Þ in general relativity, the tail effect makes it
nontrivial to analytically continue between unbound and bound
cases [105,106].

4More generally, the minimal distance between the two bodies
is governed by bv2 ∼ Jv=m, which should be much larger than Rs
in the weak field regime.
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than the characteristic incoming and outgoing momenta,
corresponding to a soft expansion.
With the goal of identifying the classical part of quantum

scattering amplitudes (and constructing only that part), let
us briefly review the dependence of four-point amplitudes
on the impact parameter and on the Compton wavelength
λc ∼ ℏ. As has been explained in e.g. Ref. [50], amplitudes
are ever more singular in the classical limit ℏ → 0 at higher
orders in perturbation theory. This may be understood
intuitively by recalling that in nonrelativistic quantum
mechanics, the nth order correction to scattering ampli-
tudes contains contributions from n insertions of the
leading-order interaction potential. Thus, if the tree-level
scattering amplitude is classical Oðℏ−1Þ, then the com-
plete L-loop classical amplitude contains classically
singular terms up to Oðℏ−ðLþ1ÞÞ, as dictated by the
semiclassical approximation:

iM∼eiS=ℏ−1∼
1

ℏ

X
L

�
Gm1m2

J

�
Lþ1X

l≥−L
Cl

�
λc
b

�
l
; ð3:4Þ

where Cl are some coefficients; recall that the Compton
wavelength is λc ∼OðℏÞ.
As in nonrelativistic quantum mechanics, all these

classically singular terms, Cl with l < 0, are determined
by lower-loop amplitudes and are subtracted out by various
means in order to identify the classical part of scattering
amplitudes. Up to terms depending on the details of the
subtraction procedure, this classical amplitude is deter-
mined by C0. The terms containing positive powers of the
Compton wavelength are quantum mechanical, and there-
fore not immediately relevant to classical physics.
From a practical computational point of view, it is

convenient to realize the expansion (3.4) in the momentum
space form of the 2 → 2 scattering process of two pointlike
heavy objects exchanging massless mediators, as shown at
lowest order in Fig. 2. We use an all-outgoing convention
for external momenta in amplitudes in this paper. As
discussed above, the momentum transfer q ¼ p4 þ p1 ¼
−p2 − p3, which is the Fourier conjugate of the impact
parameter, is much smaller than the Oð1Þ external
momenta, so taken to be OðℏÞ. Beyond tree level, we
need to understand the scaling of mediator momenta in loop
integrals. We do not expect macroscopic bodies to fluctuate
far off shell, so every massless mediator must also have
momentum with the same ℏ scaling as the momentum

transfer, i.e. OðℏÞ. With this scaling one can show that
closed loops of mediators can generate only quantum
terms; this is in agreement with the intuitive picture that
loops of mediators are quantum mechanical. Furthermore,
the classical part of the amplitudeMclass, related to l ¼ 0 in
Eq. (3.4), depends on the momentum transfer q as

∼
GLþ1

jqj2−L ðln jqjÞ
x; x ¼

�
0 L odd

1 L even; L > 0
: ð3:5Þ

The procedure described here is implemented by the so-
called soft expansion in the method of regions pioneered
by Beneke and Smirnov [108]. It is sometimes advanta-
geous to split the classical region further into instanta-
neous exchanges of “potential modes” that are relevant to
conservative dynamics, and “radiation modes” with rel-
evance to both conservative and dissipative effects. For
more details on the kinematic definitions of the regions,
see e.g. Refs. [14,52,55,108,109].
Equations (3.4) and (3.5) emphasize that determination

of higher PM orders of classical amplitudes requires the
evaluation of multiloop scattering amplitudes in the
classical limit and therefore profits from the extensive
developments in this field, including the construction
of amplitude integrands using unitarity-based methods
[29–33], efficient integral reduction methods using
integration-by-parts relations [38,39] implemented in
automated programs (we use Refs. [110,111]), and the
evaluation of the resulting ‘master’ integrals via differ-
ential equations methods [40–43].
In subsequent sections, we leverage these advances and

target the classical scattering angle in the PM expansion in
a quantum field theory model of massive scalars, with
forces mediated by a massless scalar and gravity. Its
Lagrangian is given in Eq. (3.6) below, and it mirrors
the model used in the SF calculations described in the
previous section. We present results for the scattering angle
through order G3qs and compare them with the results of
the self-force calculations. In our discussion we consider
separately the conservative and radiative dynamics; to this
end, it is useful to separate the soft mediator modes into
potential modes, whose four-momenta scale as k ∼ ðqv; qÞ,
and radiation modes whose momenta scale as k ∼ ðqv; qvÞ,
where the two entries in each represent the energy and
three-momentum scalings. Conservative dynamics contains
the effect of potential modes, which are off shell and thus
cannot be radiated, and the tail effect from radiation modes
which are emitted and reabsorbed by the system and do not
escape to infinity. Dissipative dynamics is due only to
radiation. In the language of the method of regions [108]
for loop integrals, oddness under time reversal is a
diagnostic of dissipative effects due to the presence of
radiation modes. Restricting to 1SF but all orders in PM
[73], the conservative and dissipative parts of the scattering
angle directly correspond to the terms that are even and odd

FIG. 2. The lowest order Feynman diagram describing the
scattering of two point particles.
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in velocity.5 Beyond 1SF order, however, there is no unique
separation between the conservative and dissipative parts;
only the complete results are well defined. See Eq. (12.32)
of Ref. [115] and the complete calculation at 4PM in
Ref. [116,117]. But this subtlety is beyond the scope of the
present paper.
We follow the amplitudes-based approach of Refs. [54,55]

to conservative dynamics and construct the radial action. As
in Ref. [55], we identify the radiation-mode contribution to
the conservative dynamics as the real part of the correspond-
ing amplitude with the Feynman-iε prescription for the
radiation modes of the messengers. This is equivalent to the
prescription of Ref. [80] using principal-value propagators,
which in turn corresponds to time-symmetric propagators
[118–120]. We find the dissipative contributions to the
scattering angle, for the model in Eq. (3.6) below, using
the linear response approach of Refs. [77,121] which takes
as input the total energy and angular momentum loss at 3PM
order. Wewill discuss aspects of these methods in Secs. III C
and III D, respectively.

B. EFT description and tidal effects

Underlying the scattering amplitudes approach is an
effective field theory description of two black holes
interacting via gravity. In this approach, the two black
holes, which we assume to be spinless, are described by
point particles created by massive scalar fields ϕ1 and ϕ2.
This mimics the standard approach to dynamics in both the
PN and PM frameworks, where a separation of scales is
assumed allowing us to treat the black holes as point
particles. Any internal structure is described by a set of tidal
operators whose coefficients can be fixed by matching EFT
amplitudes with amplitudes computed e.g. using black hole
perturbation theory. Furthermore, to match results from the
self-force approach we take m1 ≪ m2 and expand in the
ratio of masses. Furthermore, we take the scalar fields
corresponding to the lighter black hole, ϕ1, to carry a
charge, Q, which interacts with a massless long-range
scalar field, ψ .
Our minimal model ignoring any tidal effects is defined

by the effective field theory action

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R

16πG
þ 1

2
ϕ1ð□ −m2

1Þϕ1

þ 1

2
ϕ2ð□ −m2

2Þϕ2 þ
1

2
ψ□ψ − 2

ffiffiffi
π

p
m1Qψϕ2

1

�
: ð3:6Þ

Here gμν is a weak-field metric expanded in perturbations

around flat space gμν ¼ ημν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν, g is its deter-

minant and R is the corresponding Ricci scalar. In dimen-
sional regularization, D ¼ 4 − 2ϵ is the spacetime
dimension, and the normalization of the scalar charge Q
has been chosen to match the conventions in Refs. [28,73].
Here the massless Klein-Gordon scalar ψ couples mini-
mally to gravity and also couples directly to the light black
hole field ϕ1 but only gravitationally to the heavy black
hole field ϕ2. The three-point Feynman vertices following
from the Lagrangian (3.6) are shown in Fig. 3.
The massless scalar field ψ is related to Ψ of Sec. II by a

generically nontrivial field redefinition. Nonetheless, scat-
tering amplitudes and other classical observables are field-
redefinition invariant, so we will not need to be concerned
about the precise mapping between Ψ and ψ .
The EFT above is only valid at distances much

larger than the Schwarzschild radii of the black holes,
r ≫ Rs;i ¼ 2Gmi, also known as the far zone, where
the point-particle approximation is valid. Equivalently,
the EFT describes the scattering of long-wavelength, i.e.
Gmiω ≪ 1, waves off the black holes. The physics in the
near zone, r ∼ 1=ω≲ Gmi, includes the tidal properties of
the black holes. In particular, the black holes’ response to
the massless scalar ψ is encoded in nonminimal couplings
beyond the terms already present in Eq. (3.6), which take
the schematic form6

Otidal ∼ cabð∂aϕ2Þ2ð∂bψÞ2; ð3:7Þ

FIG. 3. The three-point interaction vertices of the model defined by the action in Eq. (3.6). The double line represents the heavy black
hole field ϕ2, the single solid line denotes the light charged scalar field ϕ1. The wavy line represents gravitons, and the dashed line
denotes the self-force scalar ψ.

5It can be shown that the conservative force at 1SF has a
Hamiltonian description [112–114].

6All independent operators (i.e. operators with distinct matrix
elements) describing the relevant physics should be present in the
EFT action. Since we are interested in the 1SF order, operators
with ϕ1 and ψ cannot be present, while on dimensional grounds
operators with either of the massive scalars and two curvature
tensors are of too high a dimension to contribute to contribute to
the orders we will be evaluating [14]. We are thus left with
operators involving ϕ2 and ψ . In the absence of ϕ1, constant shifts
of the scalar ψ in the action (3.6) are a symmetry; the nonminimal
couplings of ϕ2 to ψ are expected to respect this symmetry and
therefore should involve only derivatives of ψ , thereby ruling out
operators such as ϕ2

2ψ
2.
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where the cab are Wilson coefficients (closely related to
Love numbers) labeled by a and b. The power counting
of such tidal effects can be determined by considering
classical gravitational scattering of ψ off a massive black
hole (represented by ϕ2) in full general relativity. The
corresponding amplitude can be computed by solving the
Regge-Wheeler equation with appropriate boundary con-
ditions at r → ∞ and the horizon; it schematically reads

MGR ∼Gm2
2½1þ Gm2ωþ ðGm2ωÞ2 þ � � ��: ð3:8Þ

The minimal EFT in (3.6) cannot reproduce the full
expansion in powers of Gm2ω, but the mismatch can be
accounted for by the contribution of the tidal operators in
Eq. (3.7) which lead to amplitudes of the form

Mtidal
EFT ∼ cabm2a

2 ω2b: ð3:9Þ

This leads to the power counting

cab ∼ G1þ2bm2ð1−aþbÞ
2 : ð3:10Þ

Hence the leading tidal effects are captured by adding to the
effective action

Stidal ¼ G3

Z
dDx

ffiffiffiffiffiffi
−g

p ½ð4πc1Þ½m2
2ð∂μϕ2∂

μψÞ2

−m4
2ϕ

2
2ð∂μψÞð∂μψÞ� þ ð4πcbare2 Þm2

2ð∂μϕ2∂
μψÞ2�

þOðG4Þ; ð3:11Þ

where c1 and cbare2 are dimensionless Wilson coefficients
[122,123] and OðG4Þ denotes additional higher dimen-
sional tidal operators with more derivatives on ψ and, at
higher orders G, also for gravitational tidal operators. A
novel feature of the scalar model is that the finite-size effect
appears at a lower order than in standard GR, where the
leading tidal operators scale schematically as G5ϕ2

2R
2 [14]

and the gravitons take the place of the derivatively coupled
scalar field ψ here. Following standard EFT procedures, the
dimensionless Wilson coefficients need to be determined
by a matching calculation akin to the one performed by
e.g. Refs. [86,89–94]. As we shall see, the second operator
in Eq. (3.11), with coefficient cbare2 , is necessary for the
consistency of the EFT, because it is required to absorb an

ultraviolet divergence, thereby also explaining the super-
script “bare” introduced above. The first operator, with
coefficient c1, does not cancel a divergence of the minimal
amplitude but it is allowed by the symmetries of the theory
and therefore its coefficient should be determined through a
matching computation. We have written the operators in
Eq. (3.11) in a basis that explicitly decomposes them into
the analogs of static and dynamic QFT Love numbers,
respectively. References [86,89–94] carried out such a
matching in a worldline EFT version of the scalar model
and found that the static Love number, which should be
equivalent to our c1, vanishes. This result has also been
confirmed through the GR calculation of the deformation of
a spherical body by an external tidal field [85]. To confirm
that our c1 indeed vanishes we would need to carry out a
similar matching in the context of our formalism, as it
can in principle differ from others by scheme choices and
field redefinitions that might lead to finite shifts of Wilson
coefficients. Such a computation requires a nontrivial
extension of Refs. [86,89–94] beyond the static sector
and is left as interesting future work. In this work, instead of
performing a proper matching calculation, we will estimate
the coefficients by comparing them to the numerical self-
force computation. Below we shall see that within the
relatively large uncertainties that occur as we push the
comparison between SF and PM to its limits, the result is
compatible with the expectation that the scalar model static
Love number vanishes.

C. Conservative dynamics

Following standard procedures, the Lagrangian gener-
ates a set of Feynman rules, with the three-point vertices of
the model shown in Fig. 3. The resulting expressions for the
terms proportional to qs, see sample diagrams in Fig. 4, are
much simpler than for the corresponding purely gravita-
tional case and can be straightforwardly evaluated via
the Feynman rules to give an integrand for the terms in
the scattering amplitude proportional to qs. Following the
simple scaling rules discussed in Sec. III A, the quantum
terms are removed leaving an integrand which is then
integrated using the standard tools of integration by parts
[38,39] and differential equations [40–43]. This process is
enormously simplified in the classical limit with the
important observation that a good set of variables effec-
tively leaves only single-scale integrals to all orders of

(a) (b) (c)

FIG. 4. Representative diagrams at OðQ2Þ and at (a) 2PM, (b) 3PM and (c) 4PM orders.
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perturbation theory [53]. The resulting amplitude can then
be matched to a two-body effective field theory that extracts
the potential and Hamiltonian [49] from which observables
can be found by solving Hamilton’s equations.
Here we follow a more direct route to the scattering angle

using an identification between the scattering amplitudes
and the radial action [54]. The radial action is a basic object
in classical mechanics. In impact-parameter space it is
given by the integral of the radial momentum pr along the
scattering trajectory (with appropriate regularization of the
long-distance contribution),

IrðJÞ ¼
Z
traj

prdr: ð3:12Þ

The conservative scattering angle is obtained via

χcons ¼ −
∂IrðJÞ
∂J

; ð3:13Þ

similar thermodynamiclike relations exist for other observ-
ables. To state the relationship between the scattering
amplitude and the radial action we define the momentum-
space radial action IrðqÞ as Fourier transform of the radial
action in impact parameter space,

IrðqÞ ¼ 4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p Z
dD−2bμ−2ϵeiq·bIrðJÞ: ð3:14Þ

As before, ϵ is the dimensional-regularization parameter,
q is the spacelike part of the transferred momentum
q, b≡ jbj ¼ J=ðm1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
Þ is the impact parameter in

the COM frame, and μ is the usual scale that appears in
dimensional regularization.
With this definition, the amplitude through classical

order and the momentum-space radial action are related
by [54]

M1ðqÞ ¼ Ir;1ðqÞ;

M2ðqÞ ¼ Ir;2ðqÞ þ
Z
l

nð1Þ2

Z1

;

M3ðqÞ ¼ Ir;3ðqÞ þ
Z
l

nð2Þ3

Z1Z2

þ
Z
l

nð1Þ3

Z1

;

M4ðqÞ ¼ Ir;4ðqÞ þ
Z
l

nð3Þ4

Z1Z2Z3

þ
Z
l

nð2Þ4

Z1Z2

þ
Z
l

nð1Þ4

Z1

;

ð3:15Þ

where MnðqÞ is the OðGnÞ semiclassical amplitude, and
Ir;nðqÞ is the momentum-space radial action at the same
order. The l integration in Eq. (3.15) is defined as

Z
l
≡
Z Yn

i¼1

dD−1li

ð2πÞD−1 ð2πÞD−1δ

�Xn
j¼1

lj − q

�
: ð3:16Þ

MnðqÞ is computed following Ref. [54], by expanding the
matter poles about the momentum component in the
direction of the spatial component of p̄1 ≔ ðp4 − p1Þ=2,
which we take to be along the ẑ unit vector, resulting in a
direct relationship between the real part of the classical
scattering amplitude and the radial action. The terms
containing the denominator factors

Zj ≔ −4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
ððl1 þ l2 þ � � � þ ljÞ · ẑþ iεÞ;

ð3:17Þ

tag the iteration terms, which are uninteresting because they
contain only lower-order information. The Feynman iε
prescription is included to specify the boundary condition
and is inherited from that of the matter propagators prior to
the expansion. Further details on these iteration terms and

the structure of the numerators nðjÞi are given in Ref. [54].
This organization of the amplitude is inspired by the well-
known eikonal expansion [98,124–131], with an important
difference that this prescription manifests the pole structure
in Zj of the amplitude’s integrand and therefore each term
has definite scaling in the soft expansion so the classical
part can be isolated. The net effect is that iteration terms can
be dropped without explicitly evaluating them [54].
The direct relationship between the classical part of the

amplitude and the radial action relies on the specific treat-
ment of the poles and differs from the earlier treatment
[49,51,52]. Reference [54] explicitly verified Eq. (3.15)
through OðG4Þ by comparing the amplitude calculation in
EFT to the radial action from classical mechanics. Implicitly,
we keep only the real part of the scattering amplitudes.

D. Radiative dynamics

We use the Bini-Damour linear response formula [77,121]

χdiss ¼ ∂χcons

∂J

�
−
1

2
Jrad

�
þ ∂χcons

∂E

�
−
1

2
Erad

�
; ð3:18Þ

which is valid to linear order in dissipation. Here the radiated
angular momentum Jrad and energy Erad are expanded into a
scalar-field self-force contribution and others from gravita-
tional self-force

Jrad ¼ qsδJrad þOðq2s ; qmÞ; ð3:19Þ

Erad ¼ qsδErad þOðq2s ; qmÞ: ð3:20Þ

Since we are only interested in the first-order SF, we only
need δJrad and δErad emitted by the charge on a geodesic
scattering orbit. This linear order in dissipation captures the
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odd-in-velocity sector of the scattering angle. Note that this
linear response formula gives the scattering angle in the
initial center-of-mass frame. However, since the backreac-
tion on the heavy black hole is suppressed by a factor of the
small mass ratio, the effect on the scattering angle is of the
same order as that of the gravitational self-force, which we
anyway neglect in our analysis. Thus, in our approximation,
the scattering angle in the center-of-mass frame is the same
as it is in the rest frame of the heavy object. See the
Appendix for a more complete discussion of this point.
To calculate the angular momentum and energy carried

away in the scalar-field waves, we start with the scalar
waveform in the asymptotic region, evaluated at xμ ¼ ðt; rr̂Þ:

ψðxÞ ¼
Z fdkðiJðkÞe−ik·x − iJ�ðkÞeik·xÞ;

¼ 1

4πr

Z
dω
2π

ðJðkÞe−iωðt−rÞ þ c:c:Þjk¼ωð1;r̂Þ þOðr−2Þ:

ð3:21Þ

Here fdk ¼ d3k=ðð2πÞ32ωÞ is the Lorentz-invariant on-shell
phase spacemeasure and JðkÞ is the classical scalar current in
momentum space.7 The first line is the scalar field written
in on-shell momentum space, and, in the second line, we
expand in the asymptotic region at a large distance r but
with finite t − r and momentum kμ is evaluated at
kμ ¼ ωð1; r̂Þ. Given the stress-energy tensor of the scalar
Tμν ¼ ∂

μψ∂νψ − 1
2
gμνð∂ψÞ2, we obtain the radiated linear

and angular momentum following the procedure in Ref. [81]:

Pμ
rad ¼

Z fdkkμJ�ðkÞJðkÞ; ð3:22Þ

Jμνrad ¼
Z fdkJðkÞ��ikμ ∂

∂kν
− ikν

∂

∂kμ

�
JðkÞ: ð3:23Þ

In our frame choice, Erad ¼ P0
rad and Jrad ≡ J12rad. Following

Refs. [78,79] we recast the phase-space integrals into multi-
loop integrals by reverse unitarity [132]. Both the radiated

energy [78,79] and angular momentum [81] have been
calculated to 3PM order in GR.
While the energy can only be emitted by ω ≠ 0

scalar waves, the radiated angular momentum receives
contributions from both the finite frequency and the
zero-frequency limit. In this limit, we can approximate
the particle trajectory as8

xμðτÞ ¼ uμi τ þ θðτÞðuμf − uμi Þτ; ð3:24Þ

where uμi and uμf are the initial and final velocity of the
particle. In an all-outgoing convention, m1u

μ
i ¼ −pμ

1 ¼
ðE1; p1Þ and m1u

μ
f ¼ pμ

4 ¼ ðE4; p4Þ are the 4-momenta
of ϕ1. This leads to

JðkÞjω→0þ ¼ −2i
ffiffiffi
π

p
Qm1

�
δ̂ðωÞ

2ðE1 − p1 · k̂Þ

þ i
ωþ iε

�
1

E4 − p4 · k̂
−

1

E1 − p1 · k̂

��
;

ð3:25Þ

where we insert a factor of 1=2 in the δ̂ðωÞ to account for
the splitting of delta function into the positive frequency
domain. To absorb factors of 2π, we define

d̂x ¼ dx
2π

; δ̂ðxÞ ¼ 2πδðxÞ: ð3:26Þ

The interference between δ̂ðωÞ and 1=ðωþ iεÞ leads to
nontrivial radiated angular momentum in the zero-
frequency limit. The radiated angular momentum
starting at 2PM is entirely due to this interference. At
higher orders, δJrad receives contributions from both the
zero-frequency limit and finite frequency waveform.
δErad also arises from the finite frequency waveform. We
obtain the finite-frequency waveform from the amplitude
Mðϕ1;ϕ2;ϕ1;ϕ2;ψÞ using the observable-based formal-
ism [50]. To leading order, the relation between the
amplitude (in all-outgoing momentum convention) and
the classical scalar current reads

ð3:27Þ

8The kink at τ ¼ 0 can be chosen as the time at the periastron, but the result is independent from this choice since we integrate the full
trajectory from τ ¼ −∞ to τ ¼ ∞.

7The field equation in position space reads ∇α∇αψðxÞ ¼ −JðxÞ.

COMPARISON OF POST-MINKOWSKIAN AND SELF-FORCE … PHYS. REV. D 108, 024025 (2023)

024025-13



See Fig. 5 for sample diagrams that are needed to
evaluate the dissipative contribution through the 4PM
scattering angle.
Starting at 4PM, the dissipative angle has both odd-in-

velocity and even-in-velocity contributions. The latter only
arises when the radiation reaction force is even under time
reversal or applied beyond the linear order. As we reviewed
in Sec. III A, none of these occurs at 1SF order. Therefore
the linear response approach is sufficient to capture all the
dissipative contributions needed for this paper. The com-
plete contribution beyond 1SF requires the full calculation
in the observable-based formalism [50] or in an in-in-type
approach [116,117,133].

IV. NUMERICAL SELF-FORCE CALCULATION

Our numerical calculation of the SF correction to the
scattering angle is performed using an adaptation of the
code developed in Ref. [73]. The details of the numerical
method are described in Sec. VIII and Appendix B of
that work. Here we give a brief review of the method
and then describe the adaptations made to enable the
production of data suitable for our precision PM com-
parison. These were mostly incorporated as postprocess-
ing steps.

A. Numerical integration of the
scalar-field equations

The main numerical task is the construction of a
retarded solution to the sourced Klein-Gordon equa-
tion (2.6), for a given sourcing scattering geodesic. We
take advantage of the separability of the equation into
multipole (spherical-harmonic) modes defined on spheres
r ¼ const around the Schwarzschild black hole, in order
to reduce the equation to a set of hyperbolic evolution
equations in 1þ 1 dimensions (timeþ radius), one for
each multipolar mode. Specifically, we expand the fieldΨ
in the form

Ψ ¼ 2πQ
r

X∞
l¼0

Xl
m¼−l

ψlmðt; rÞYlmðθ;φÞ; ð4:1Þ

where Ylm are standard spherical harmonics. Each of the
modal time-radial functions ψlmðt; rÞ then satisfies

∂
2ψlm

∂u∂v
þ VðrÞψlm

¼ 1

2σrpðtÞ
�
1 −

2m2

rpðtÞ
�

2

δðr − rpðtÞÞȲlmðπ=2;φpðtÞÞ;

ð4:2Þ

where v≡ tþ rþ 2m2 ln½r=ð2m2Þ − 1� and u≡ t − r −
2m2 ln½r=ð2m2Þ − 1� are the Eddington-Finkelstein
advanced and retarded time coordinates, an overbar
denotes complex conjugation, and

VðrÞ≡ 1

4r2

�
1 −

2m2

r

��
lðlþ 1Þ þ 2m2

r

�
: ð4:3Þ

We solve Eq. (4.2) in the time domain using a finite-
difference scheme in null coordinates u, v, starting with
characteristic initial data on two initial rays in the far past.
Our finite difference scheme is described in detail in
Appendix B of Ref. [73]. The structure of the numerical
grid is illustrated in Fig. 6 here. It is set up so that the
particle enters the numerical domain at the lower vertex,
at r ¼ rinit ≫ m2, and leaves it (after being scattered) at
the upper vertex, where r ¼ rfin ≫ m2. As initial data, we
simply set ψlm ≡ 0 on the two initial rays, u ¼ u0 and
v ¼ v0. This unphysical set of initial data produces a burst
of spurious (“junk”) radiation, which, however, dies off
with a rapid power law in t. The values of rinit and rfin are
chosen such that the junk data has sufficiently radiated
away by r ¼ rfin on the ingoing leg and thus we have
clean orbital data for all rp ≤ rfin, on both legs. The junk-
contaminated data for rfin < rp ≤ rinit is discarded.
We evolve the fields ψlm for −l ≤ m ≤ l with

0 ≤ l ≤ 15, and record the value of the fields and their
first derivatives along the scattering worldline. The results
are then inputted into the (scalar-field version of the) mode-
sum formula (2.4) to obtain the full scalar-field SF.
Section VII D of Ref. [73] provides the values of the
regularization parameters featured in the mode-sum for-
mula. High-order parameters, representing higher-order
terms in the 1=l expansion down to l−6), are known
analytically and are incorporated in the mode sum to
improve its convergence and control the error from the
large-l truncation.

(a) (b)

FIG. 5. Representative diagrams at OðQÞ and (a) 0PM and (b) 1PM order.
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In the next step, the self-acceleration Fα is constructed
via Eq. (2.9), and then split into its conservative and
dissipative pieces using Eq. (2.21). Finally, we obtain
the corresponding pieces of the SF correction to the
scattering angle, δχcons and δχdiss, by numerically integrat-
ing the SF along the scattering geodesic using the appro-
priate versions of Eq. (2.19).
For the calculations reported here we took rfin¼1100m2,

with rinit in the range 3750m2 ≤ rinit ≤ 6600m2 as needed
(larger b or larger v require larger rinit). With these choices,
a typical calculation of δχ for a single weak-field scattering
orbit took ∼ 100 days of CPU time split across 72 cores
of the IRIDIS 5 cluster at the University of Southampton.
The code is parallelized such that each independent ψlm
mode is computed simultaneously.

B. Postprocessing and error control

The various sources of numerical error in our method are
listed and analyzed in Sec. VIII B of Ref. [73]. For the
purpose of our current calculation, we have implemented
several new postprocessing algorithms to mitigate the two
most dominant forms of error in the scattering-orbit case.
We describe them in turn now.

1. Large-r truncation

By far the most dominant numerical error comes
from the truncation of the orbital integral at a finite
r ¼ rfin. Increasing rfin is highly punitive computationally
since the runtime is proportional to r2fin. In practice, the
requirement of run times of day) per orbit restricted
us to rfin ¼ 1000m2). The orbital integral (2.19) for δχ,
when truncated at rfin, converges like ∼ r−2fin , suggesting
that neglecting the r > rfin part of the integral produces
a relative error of order ∼ ðrfin=rminÞ−2, where rmin is
the periastron distance. In our runs rmin ∼ 100m2

(cf. Tables I–IV below), and so the expected relative error
from the truncation is ∼ð1000=100Þ−2 ¼ 1%. This level of
error is more than we are willing to tolerate.
To overcome this difficulty we fit an analytical poly-

nomial model (a sum of powers of 1=rp) to a section of the
large-rp SF data. We then use this to analytically extrapo-
late the SF to rp → ∞ on both legs of the orbit, which
finally allows us to evaluate the integral in (2.19) over the
full scattering trajectory.
We determine the residual error from applying this

procedure by looking at the variation in the integral values
when using models with differing polynomial orders and
different spans of data used for fitting. The results are
typically reliable to within ∼ 1% of the tail contribution,
leading to a residual error in δχ of order ≲ 0.01%. This
remains the dominant contribution to the error budget in
our calculation, and therefore it sets the overall precision of
our result for δχ at about one part in 104.
It may be possible to obtain a large-rp approximation for

the SF analytically, which would help reduce this source of
error further. We plan to explore this route in future work.

2. Finite resolution

The second most significant error is due to the finite
resolution of the numerical grid used to evolve the fields
ψlm. Decreasing h (the stepping interval in u and in v) is
also highly punitive, since the runtime is proportional to
h−2. Given our resources, we were limited to grid dimen-
sions h × h with h not much smaller than ∼m2=100. At
such resolutions, the finiteness of h turns out to cause an
error of ∼ 0.1% in the final computed value of δχ (this error
was estimated by varying over h). This would have become
the dominant source of error if left unattended.
Fortunately, it is possible to significantly reduce this

source of error through a Richardson-type extrapolation,
since the convergence properties of our finite-difference
scheme are known. Consider an exact value αexact described
by a discretized numerical model αðhÞ, such that

αðhÞ ¼ αexact þ Chn þOðhnþ1Þ; ð4:4Þ

where C is a constant and h is the model resolution. Then,
we can write

FIG. 6. Illustration of the ð1þ 1ÞD characteristic grid used in
our numerical evolution of the scalar-field modes ψlmðt; rÞ. The
curve S represents the scalar charge’s fixed scattering geodesic
worldline. Grid cells have uniform dimensionsΔv×Δu ¼ h× h,
where h is typically taken to be of order ∼m2=100. Our finite-
difference scheme has a quartic local convergence in h, and a
demonstrated quadratic convergence globally. Finite-h errors are
controlled by running the code with a sequence of different h
values.
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αexact ¼
cnαðh=cÞ − αðhÞ

cn − 1
þOðhnþ1Þ: ð4:5Þ

It follows that, by evaluating the model with two different
resolutions, h and h=c, we can effectively increase the
convergence rate of the model by one power of h.

Our finite-difference algorithm has a global quadratic
convergence, i.e. n ¼ 2 in the above expressions. By using
the above extrapolation method with two different reso-
lutions, we have obtained an effective cubic convergence.
This reduces the error accumulated from the numerical
integration such that the postextrapolation finite-difference

TABLE II. Same as in Table I, for orbits with b ¼ 80m2 and varying v.

v rmin=m2 χ0 δχ δχcons δχdiss

0.525 76.3610 0.12186508 −1.3591ð1Þ × 10−4 −1.5655ð1Þ × 10−4 2.0638ð1Þ × 10−5

0.55 76.6777 0.11327894 −1.3477ð1Þ × 10−4 −1.5358ð1Þ × 10−4 1.8808ð2Þ × 10−5

0.575 76.9550 0.10578972 −1.3371ð1Þ × 10−4 −1.5103ð1Þ × 10−4 1.7316ð2Þ × 10−5

0.6 77.1992 0.09921831 −1.3274ð1Þ × 10−4 −1.4884ð1Þ × 10−4 1.6091ð2Þ × 10−5

0.625 77.4153 0.09342069 −1.3184ð1Þ × 10−4 −1.46933ð9Þ × 10−4 1.5089ð2Þ × 10−5

0.65 77.6074 0.08828002 −1.3102ð1Þ × 10−4 −1.45291ð8Þ × 10−4 1.4272ð2Þ × 10−5

0.675 77.7790 0.083700676 −1.30254ð8Þ × 10−4 −1.43867ð5Þ × 10−4 1.3614ð2Þ × 10−5

0.7 77.9328 0.079603825 −1.29542ð4Þ × 10−4 −1.42633ð3Þ × 10−4 1.3090ð1Þ × 10−5

TABLE III. Same as in Table I, for orbits with b ¼ 100m2 and varying v.

v rmin=m2 χ0 δχ δχcons δχdiss

0.525 96.3636 0.09644429 −8.532ð2Þ × 10−5 −9.551ð2Þ × 10−5 1.01836ð5Þ × 10−5

0.55 96.6813 0.08966728 −8.474ð2Þ × 10−5 −9.405ð1Þ × 10−5 9.3077ð7Þ × 10−6

0.575 96.9594 0.08375559 −8.420ð1Þ × 10−5 −9.279ð1Þ × 10−5 8.5923ð9Þ × 10−6

0.6 97.2041 0.07856798 −8.370ð1Þ × 10−5 −9.171ð1Þ × 10−5 8.004ð1Þ × 10−6

0.625 97.4205 0.07399089 −8.325ð1Þ × 10−5 −9.077ð1Þ × 10−5 7.523ð1Þ × 10−6

0.65 97.6128 0.06993216 −8.283ð1Þ × 10−5 −8.996ð1Þ × 10−5 7.132ð1Þ × 10−6

0.675 97.7845 0.06631638 −8.244ð1Þ × 10−5 −8.9256ð9Þ × 10−5 6.8172ð8Þ × 10−6

0.7 97.9383 0.063081378 −8.2079ð7Þ × 10−5 −8.8649ð7Þ × 10−5 6.5695ð2Þ × 10−6

TABLE I. SF numerical data for geodesic scattering orbits with v ¼ 0.5. For each orbit, the table displays the
impact parameter b, the periastron distance rmin, the geodesic scattering angle χ0 (per qs), the total SF correction δχ
(per qs), and its conservative and dissipative pieces in separate. Parenthetical figures indicate the estimated
numerical uncertainty in the last quoted decimal: e.g. −2.5214ð1Þ × 10−4 means −2.5214 × 10−4 � 1 × 10−8.

b=m2 rmin=m2 χ0 δχ δχcons δχdiss

60 55.9951 0.17905234 −2.5214ð1Þ × 10−4 −3.10227ð7Þ × 10−4 5.8086ð3Þ × 10−5

65 60.9958 0.16430723 −2.1266ð1Þ × 10−4 −2.5740ð1Þ × 10−4 4.4735ð2Þ × 10−5

70 65.9964 0.15181012 −1.8177ð2Þ × 10−4 −2.1695ð1Þ × 10−4 3.5181ð2Þ × 10−5

75 70.9969 0.14108256 −1.5712ð2Þ × 10−4 −1.8529ð2Þ × 10−4 2.8164ð1Þ × 10−5

80 75.9973 0.13177306 −1.3717ð2Þ × 10−4 −1.6006ð2Þ × 10−4 2.2896ð1Þ × 10−5

85 80.9976 0.12361754 −1.2077ð2Þ × 10−4 −1.3963ð2Þ × 10−4 1.88633ð9Þ × 10−5

90 85.9979 0.11641374 −1.0715ð2Þ × 10−4 −1.2287ð2Þ × 10−4 1.57248ð7Þ × 10−5

95 90.9981 0.11000409 −9.568ð2Þ × 10−5 −1.0892ð2Þ × 10−4 1.32453ð6Þ × 10−5

100 95.9983 0.10426402 −8.597ð2Þ × 10−5 −9.723ð2Þ × 10−5 1.12607ð5Þ × 10−5

105 100.998 0.09909373 −7.766ð2Þ × 10−5 −8.731ð2Þ × 10−5 9.6538ð4Þ × 10−6

110 105.999 0.09441235 −7.050ð2Þ × 10−5 −7.884ð2Þ × 10−5 8.3384ð3Þ × 10−6

115 110.999 0.09015361 −6.428ð2Þ × 10−5 −7.154ð2Þ × 10−5 7.2515ð3Þ × 10−6

120 115.999 0.08626271 −5.885ð2Þ × 10−5 −6.520ð2Þ × 10−5 6.3456ð2Þ × 10−6

125 120.999 0.08269395 −5.408ð2Þ × 10−5 −5.967ð2Þ × 10−5 5.5844ð2Þ × 10−6
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error is negligible compared to the error due to the large-rp
analytic fit.

C. Sample SF results

For this work we considered a large sample of weak-field
scattering orbits, sampling the large-b portion of the
parameter space accessible to our SF code. Figure 7 depicts
a subset of our orbits, with v ¼ 0.5 (corresponding to
σ ≃ 1.1547) and impact parameters in the range
60m2 ≤ b ≤ 125m2. We have also sampled at fixed v
intervals in the range 0.5 ≤ v ≤ 0.7 for fixed b ¼ 80m2,
fixed b ¼ 100m2 and fixed b ¼ 125m2.
The full set of numerical results obtained for this work is

displayed in Tables I–IV. For each of the orbits in our
sample, the table shows the value of the periastron distance
rmin and the corresponding geodesic scattering angle χ0,
alongside the SF corrections (per qs) δχcons and δχdiss

and the total correction δχ ¼ δχcons þ δχdiss. We also give
estimated error bars.

V. POST-MINKOWSKIAN RESULTS

Following the amplitude-based methods of
Refs. [49,51–55] outlined in Sec. III, we compute the terms
proportional to qs in the scattering angle. We compute
contributions through OðqsG3Þ, keeping only those terms
that are of first order in the SF expansion, in order to match
the self-force calculation described in Sec. IV.

A. Conservative dynamics

1. Conservative amplitudes

We start by decomposing the scattering amplitude into a
geodesic piece and a first-order SF contribution (at fixed v
and b):

M ¼ Mð0Þ þ qsδMþOðq2s ; qmÞ: ð5:1Þ

In turn, δM is decomposed into minimal-coupling and tidal
contributions:

δM ¼ δMmin þ δMtidal: ð5:2Þ

Computing minimal-coupling amplitudes as described in
Sec. III C up to fourth PM order, we find

δMmin
1 ðqÞ ¼ 0; ð5:3Þ

δMmin
2 ðqÞ ¼ −2π2Gm2

1m
3
2

1

jqj ðσ
2 − 1Þ; ð5:4Þ

δMmin
3 ðqÞ¼8π

3
G2m2

1m
4
2 log

�
μ̄2

jqj2
�
σð1þ2σ2Þþ iteration;

ð5:5Þ

δMmin
4 ðqÞ ¼ G3π2m2

1m
5
2jqj

�
41=3μ̄2

jqj2
�

3ϵ

×

��
4Mt

4 log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

2

�
þMπ2

4 þMrem
4

�

−
ðσ2 − 1Þ

ϵ

	
þ iteration; ð5:6Þ
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FIG. 7. A subset of the sample of geodesic orbits used for
our comparison. These scattering orbits all have v ¼ 0.5, with
varying values of the impact parameter b (indicated in the
legend). The orbits are depicted in the equatorial plane of the
Schwarzschild black hole (black disk at the bottom) using
Cartesian coordinates constructed from the Schwarzschild coor-
dinates r;φ. The location of the innermost stable circular orbit
(ISCO) is shown in the dashed line for reference.

TABLE IV. Same as in Table I, for orbits with b ¼ 125m2 and varying v.

v rmin=m2 χ0 δχ δχcons δχdiss

0.525 121.366 0.07650367 −5.375ð1Þ × 10−5 −5.882ð1Þ × 10−5 5.0634ð2Þ × 10−6

0.55 121.684 0.07113856 −5.345ð1Þ × 10−5 −5.809ð1Þ × 10−5 4.6386ð3Þ × 10−6

0.575 121.963 0.06645828 −5.318ð1Þ × 10−5 −5.747ð1Þ × 10−5 4.2912ð4Þ × 10−6

0.6 122.208 0.06235107 −5.293ð1Þ × 10−5 −5.693ð1Þ × 10−5 4.0054ð5Þ × 10−6

0.625 122.425 0.05872706 −5.270ð1Þ × 10−5 −5.647ð1Þ × 10−5 3.7714ð7Þ × 10−6

0.65 122.617 0.05551334 −5.248ð1Þ × 10−5 −5.606ð1Þ × 10−5 3.5814ð7Þ × 10−6

0.675 122.789 0.05265023 −5.229ð1Þ × 10−5 −5.571ð1Þ × 10−5 3.4290ð7Þ × 10−6

0.7 122.943 0.05008854 −5.210ð1Þ × 10−5 −5.541ð1Þ × 10−5 3.3102ð6Þ × 10−6
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where we have suppressed iteration terms of lower-order quantities, and μ̄2 ¼ μ2eγE=ð4πÞ denotes the MS scheme
dimensional regularization scale and γE is the Euler-Mascheroni constant. Notice that the arccoshðσÞ function found in
Ref. [51] is absent in the expression for δM3ðqÞ, similar to scalar electrodynamics [134,135]. In δMmin

4 ðqÞ we introduced
the short-hand notion

Mt
4 ¼ r1 þ r2 log

�
σ þ 1

2

�
þ r3

arccoshðσÞffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

Mπ2
4 ¼ r5K

�
σ − 1

σ þ 1

�
E

�
σ − 1

σ þ 1

�
þ r6K2

�
σ − 1

σ þ 1

�
þ r7E2

�
σ − 1

σ þ 1

�
;

Mrem
4 ¼ r8 þ r9 log

�
σ þ 1

2

�
þ r10

arccoshðσÞffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p þ r12log2
�
σ þ 1

2

�
þ r14

arccosh2ðσÞ
σ2 − 1

: ð5:7Þ

The ri are rational functions of σ; they are detailed in Eq. (5.8) and their numbering follows that of the functions in Ref. [55].
In Eq. (5.7) E and K are the complete elliptic integrals of the first and second kinds that appear in the analogous results in
general relativity. Compared to the corresponding result in general relativity, it is also noteworthy that the higher-weight
polylogarithmic functions do not appear in the scalar model and six rational coefficients vanish.

r1 ¼
3σ4

2
− σ3 þ 3σ2

4
þ σ −

19

12
; r2 ¼ −

3

2
ðσ2 − 1Þ2;

r3 ¼
3

4
σðσ2 − 1Þð2σ2 − 3Þ; r5 ¼ −

1

2

100σ2 þ 177σ þ 79

σ2 − 1
;

r6 ¼
95σ þ 82

2ðσ2 − 1Þ ; r7 ¼
100σ2 þ 79

4ðσ − 1Þ ;

r8 ¼
18σ6 þ 252σ5 − 347σ4 − 216σ3 þ 711σ2 − 348σ − 14

12ðσ2 − 1Þ ; r9 ¼
1

2
ð3σ4 þ 8σ3 − 22σ2 − 8σ þ 27Þ;

r10 ¼ −
σð2σ2 − 3Þð45σ4 − 29Þ

12ðσ2 − 1Þ ; r12 ¼ 3ðσ2 − 1Þ2;

r14 ¼ −
3

4
σ2ð3 − 2σ2Þ2; r4 ¼ r11 ¼ r13 ¼ r15 ¼ r16 ¼ r17 ¼ 0: ð5:8Þ

2. Finite-size effects

In comparison to general relativity at the loop orders considered here, the scalar model shows a new nontrivial feature.
The UV divergence in Eq. (5.6) reminds us that, in addition to the minimal-coupling contributions of Eq. (3.6), we need to
consistently take into account the nonminimal tidal operators of Eq. (3.11). The nonminimal tidal action of Eq. (3.11) gives
rise to the following tree-level amplitude (all out-going momentum convention):

ð5:9Þ

In writing Eq. (5.9) we have already expanded the tree amplitude in the classical limit relevant for the problem of interest,
where we take the momenta of the scalar field ψ to be of order l1;l4 ≪ m2u2. From the scaling analysis described
in Sec. III B, the tidal operators add to the minimal coupling amplitude at OðG3qsÞ through the operator insertion into a
one-loop diagram:
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ð5:10Þ

where we performed the tensor reduction and evaluated the
resulting scalar triangle Feynman integral in the soft limit.
Requiring the absence of a UV divergence in the full EFT
amplitude yields a constraint on the divergent part of the
bare Wilson coefficient cbare2 as can be seen by comparing
Eqs. (5.6) and (5.10):

cbare2 ¼
�
−
1

ϵ
þ c2ðμ̄Þ

�
: ð5:11Þ

A standard effect in quantum field theory is the “running”
of the finite part of the Wilson coefficient, c2ðμ̄Þ, with

dimensional regularization scale μ̄. On a technical level,
this arises from the fact that the OðϵÞ powers of the jqj2
scaling do not match between the minimal three-loop
amplitude in Eq. (5.6) and the one-loop amplitude with
counterterm insertion in Eq. (5.10). Conceptually, it
means that the coupling depends on the energy scale of
observation. As an additional consistency check, the same
divergent value for cbare2 also cancels the divergence in the
two-loop ϕϕψψ amplitude. Finally, we combine the part of
the amplitude generated from the tidal contributions and the
minimal amplitude, to give

δM4 ¼ δMmin
4 þ δMtidal

4 ;

¼ G3π2m2
1m

5
2jqj

��
4Mt

4 log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

2

�
þMπ2

4 þMrem
4

�
− 4c1 − ðc1 þ c2ðμ̄Þ − 1Þðσ2 − 1Þ

þ 2ðσ2 − 1Þ log
�

μ̄2

2jqj2
�	

þ iteration: ð5:12Þ

We have checked and confirmed that the coefficient of
logð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
=2Þ in Eq. (5.12) is proportional to the energy

loss at order OðG2qsÞ in the scalar model as expected
[54,105,136,137]. We will present results for the energy
loss later, when we describe the radiative dynamics of the
scalar-field model. As one can see, canceling the UV
divergence leads to a finite logarithm that depends on the
scale μ̄. The full result is of course invariant under this
choice. Therefore the coefficient c2ðμ̄Þ must cancel this
scale dependence through the well-known renormalization-
group equation, dc2ðμ̄Þ=d log μ̄ ¼ 4. This equation allows
us to change the choice of scale from one to another without
changing the physics. For practical convenience, we can
pick μ̄ to be the inverse of the Schwarzschild radius of the
heavy black hole. The coefficient c2 we fit later with SF
numerical result is measure at this scale.

3. Radial action

We decompose the radial action for the full theory into a
purely gravitational piece Ir and a scalar-field SF correction
δIr (at fixed v and b), in the form

IrðbÞ ¼ Ið0Þr ðbÞ þ qsδIrðbÞ þOðq2s ; qmÞ: ð5:13Þ

Computing the amplitudes as described in Sec. III C and
using the amplitude-action relation detailed in Eq. (3.15),
we find, up to third PM order,

δIr;1ðbÞ ¼ 0; ð5:14Þ

δIr;2ðbÞ ¼ −
πGm1m2

2

4b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
; ð5:15Þ

δIr;3ðbÞ ¼ −
2G2m1m3

2

3b2
σð1þ 2σ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p ; ð5:16Þ

δIr;4ðbÞ ¼
πG3m1m4

2

8b3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
�
−
�
4Mt

4 log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

2

�

þMπ2
4 þMrem

4

�
þ c1ðσ2 − 5Þ þ ðc2ðμ̄Þ − 9

þ 2 log½2b2e2γE μ̄2�Þðσ2 − 1Þ
	
; ð5:17Þ
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where we use the notation of Eq. (5.7) and the ri detailed in
Eq. (5.8). These results have been verified up to 3PM by an
independent worldline EFT calculation [138].

4. Scattering angles

Equipped with the explicit results for the SF corrections
to radial action in Eq. (5.14), we obtain the conservative SF
corrections to the scattering angle up to 4PM order:

δχcons ¼ −
1

m1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ∂δIrðbÞ
∂b

; ð5:18Þ

with

δχcons1 ¼ 0; ð5:19Þ

δχcons2 ¼ −
π

4
G
m2

2

b2
; ð5:20Þ

δχcons3 ¼ −
4

3
G2

σð1þ 2σ2Þ
ðσ2 − 1Þ

m3
2

b3
; ð5:21Þ

δχcons4 ¼ πG3
3m4

2

8ðσ2 − 1Þb4
�
−
�
4Mt

4 log
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p

2

�

þMπ2
4 þMrem

4

�
þ c1ðσ2 − 5Þ

þ
�
c2ðμ̄Þ −

31

3
þ 2 log½2b2e2γE μ̄2�

�
ðσ2 − 1Þ

	
:

ð5:22Þ

The 2PM contributions have already been worked out in
Ref. [28] and compared to self-force results in Ref. [73]. In
our setup these contributions are described by the single
Feynman diagram in Fig. 4(a).
As a nontrivial check of our results we have verified that

the angles satisfy the predicted iteration structure when
expanded in the limit v → 0. In particular, we have [52]

δχcons3 ¼ 2G2δP3

m2
1ðσ2 − 1Þb3 þ 2

δχcons2 χð0Þ1

π
¼ Oðv−2Þ; ð5:23Þ

δχcons4 ¼ 3π

4

G3δP4

m2
1ðσ2 − 1Þb4 þ

3π

8
δχcons3 χð0Þ1 −

3

4
δχcons2



χð0Þ1

�
2

þ 3

π
δχcons2 χð0Þ2 ;

¼ −
9π

4

G3m4
2

ðσ2 − 1Þ2b4 þOðv−2Þ; ð5:24Þ

where p∞ ¼ m1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
and the δPk ¼ Oðv0Þ is defined

through the expansion of the radial momentum pr [52],

p2
rðrÞ ¼ p2

∞ −
J2

r2
þ
X
k



Pð0Þ
k þ q2sδPk

� 1

rk
þOðq2s ; qmÞ:

ð5:25Þ

In Eqs. (5.23) and (5.24) we have used the values of the
geodesic scattering angle, expanded in G:

χð0Þ ¼ χð0Þ1 þ χð0Þ2 þOðG3Þ

¼ Gm2

b
2
2σ2 − 1

σ2 − 1
þ G2m2

2

b2
3π

4

5σ2 − 1

σ2 − 1
þOðG3Þ:

ð5:26Þ

B. Radiative dynamics

As explained in Sec. III D, we need the radiated angular
momentum and energy at 2PM and 3PM orders for the
4PM dissipative scattering angle. At 2PM, only the radiated
angular momentum is nonvanishing due to the waveform in
the zero-frequency limit. We obtain the scalar current using
Eq. (3.25) with the geodesic scattering angle at 1PM in
Eq. (5.26). Plugging the current into Eq. (3.23), we obtain
the radiated angular momentum at 2PM:

δJrad;2 ¼
2m1m2

3

�
Gm2

b

�
ð2σ2 − 1Þ: ð5:27Þ

Together with δErad;2 ¼ 0, the linear response formula
yields the 3PM dissipative angle

δχdiss3 ¼ 2m2

3b

�
Gm2

b

�
2 ð2σ2 − 1Þ2
ðσ2 − 1Þ3=2 : ð5:28Þ

One can see that the full scattering angle at 3PM has a
milder high-energy behavior than the conservative or
dissipative ones alone,

δχcons3 þ δχdiss3 ¼ 0þOðσ−1Þ: ð5:29Þ

At 3PM, we first calculate the tree-level amplitude of
Mðϕ1;ϕ2;ϕ1;ϕ2;ψÞ and then obtain the scalar waveform
from Eq. (3.27). Plugging the waveform into Eq. (3.23)
yields the radiated energy and angular momentum follow-
ing the procedure in Ref. [78,79]:

δErad;3 ¼
πm1m2

b

�
Gm2

b

�
2
�
3

16
σð2σ2 − 3ÞarccoshðσÞ

−
3

8
ðσ2 − 1Þ3=2 log

�
σ þ 1

2

�

þ 18σ4 − 12σ3 þ 9σ2 þ 12σ − 19

48
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
�
: ð5:30Þ
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As mentioned above, we see that the coefficient of a
particular logarithm in the scattering amplitude (5.3)–(5.6)
is proportional to the energy loss

δErad;3 ¼
G2m1m3

2π

4b3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p Mt
4: ð5:31Þ

The radiated angular momentum at this order receives
contributions from both the finite frequency and the zero-
frequency limit. The contribution from the latter is similar
to the 2PM radiated angular momentum. Using the pro-
cedure in Ref. [81], the full answer reads

δJrad;3 ¼ πm1m2

�
Gm2

b

�
2
�
−
3σ2ð2σ2 − 3Þ
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p arccoshðσÞ

þ 3

4
ðσ2 − 1Þσ log

�
σ þ 1

2

�

þ 9σ5 − 3σ4 − 3σ3 þ 6σ2 þ 2σ − 3

24ðσ2 − 1Þ
�
: ð5:32Þ

Given both the radiated energy and angular momentum and
the scattering angle in the geodesic limit, we obtain the
scattering angle using the linear response formula. It reads

δχdiss4 ¼ πm2

b

�
Gm2

b

�
3
�
−
3σ2ð12σ4 − 28σ2 þ 15Þ

16ðσ2 − 1Þ2 arccoshðσÞ þ 3σð6σ2 − 5Þ
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p log

�
σ þ 1

2

�

þ 252σ6 þ 6σ5 − 438σ4 þ 79σ3 þ 204σ2 − 61σ − 18

48ðσ2 − 1Þ52
�
: ð5:33Þ

VI. SF-PM COMPARISON AND FITTING

We now turn to the comparison between the numerical
SF results and the analytical PM expressions for the
conservative and dissipative SF corrections to the scattering
angle. Figures 8 and 9 show the behavior of δχcons and
δχdiss (respectively) as functions of impact parameter b
(lower scale) and the corresponding minimal separation
rmin (upper scale), at a fixed v ¼ 0.5. In each plot, the upper
(blue) data points show the base numerical values for δχ, as

compared to the leading-order (LO) analytical PM terms
(dashed blue curve), i.e. δχcons2 and δχdiss3 . A close agree-
ment is evident. The numerical-data curve appears to fall
off slightly faster than b−2 (conservative) or b−3 (dissipa-
tive). This may be attributed to the fact that next-to-leading-
order (NLO) PM terms have significant contribution in this
part of the parameter space.
Removing the LO contribution from the numerical data

(orange) gives a slope that closely resembles the analytical
NLO term. In particular, the slope of the difference appears

60 80 100 120
5. 10�7
1. 10�6

5. 10�6
1. 10�5

5. 10�5
1. 10�4

40 50 60 70 80 90 100

FIG. 8. The conservative SF correction to the scattering angle (per qs) for the values shown in Table I, with v ¼ 0.5. The results are
shown as a function of the impact parameter (lower scale) and corresponding minimal separation (upper scale). Error bars on the
numerical data are too small to be seen on this scale. The upper curve (data points connected by a solid blue line) represents the
numerical SF data for δχcons, and the adjacent dashed blue line shows the leading-order analytical PM term, δχcons2 . The solid and dashed
orange curves in the middle show, respectively, the difference δχcons − δχcons2 and the next-to-leading-order term δχcons3 . Finally, the solid
green curve at the bottom displays the difference δχcons − δχcons2 − δχcons3 . We do not have the δχcons4 term analytically for comparison, so
instead we present (long dashed green line) a reference line ∼ b−4 with an arbitrary amplitude, showing the numerical data agree well
with the analytical PM expressions through 3PM order.
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to be very close to b−3 (conservative) or b−4 (dissipative),
confirming the good agreement between the data and LO
PM term.
Finally, subtracting both LO and NLO PM terms from

the numerical data (green) we find a falloff consistent with
∼b−4 (conservative) and ∼b−5 (dissipative), confirming the
good agreement between the data and the NLO PM term.
Notably, even after subtracting the two leading PM

terms, the residual still shows a clear, smooth, power-
law falloff with b, suggesting our data has sufficient
accuracy to encode information about subsequent terms
in the PM expansion. In what follows we explore this
possibility. By fitting the residual data to a model, we will
attempt to extract information about the yet-unknown
pieces δχcons>3 , and δχdiss>4 .
Our goal here is not a precise determination of the high-

order PM terms (this we will not do), but rather to provide a
proof of concept, explore the limits of what can be done
with the current data, and illustrate how such a fitting
procedure might work in practice once a more accurate and
exhaustive dataset is at hand. For our fitting we employ
Mathematica’s function NonlinearModelFit, weight-
ing each data point by the inverse of the square of the
estimated numerical error.

A. Conservative sector: Fitting for δχ cons>3

Let us write

δχconsðv; bÞ ¼
X̄n
n¼2

anðvÞ
bn

þOðb−n̄−1Þ; ð6:1Þ

where, for simplicity, we ignore (for now) logarithmic
terms that occur at 4PM order and higher orders. The
coefficients a2 ≡ δχcons2 and a3 ≡ δχcons3 are fully known:
They are given in Eqs. (5.20) and (5.21), respectively. The
coefficient a4 ≡ δχcons4 is known up to two constant

coefficients, c1 and c2—see Eq. (5.22). The coefficients
a>4ðvÞ are completely unknown. The truncation order n̄
can be used as a control parameter to monitor the quality of
the fit. One hopes to find a range of n̄ for which the fitted
values of the coefficients an are relatively stable under
variation of n̄. We expect the quality of the fit to deteriorate
if n̄ is taken too large (because of degeneracy) or too low (to
the extent that the model fails to capture important higher-
order terms).
As a test of this procedure, we first use the data to fit for

the known PM terms, and then compare with the known
results. An example is shown in the first four rows of
Table V, where no analytical knowledge is assumed, and we
try fit the data (at fixed v ¼ 0.5) to the model (6.1) with
varying values of n̄ (n̄ ¼ 2 in the first row, n̄ ¼ 3 in the
second row, etc.). We see that the fitted value of a2 settles to
within a fraction of a percent of its analytically predicted
value, a2 ∼ −0.785398. The fitted value of the NLO
coefficient, a3, is less stable, but still varies within a few

60 80 100 120
5. 10�8
1. 10�7

5. 10�7
1. 10�6

5. 10�6
1. 10�5

5. 10�5
40 50 60 70 80 90 100

FIG. 9. Similar to Fig. 8 but for the dissipative correction δχdiss. A good agreement between the SF data and the analytical PM results is
manifest through 4PM order.

TABLE V. Values of the PM coefficients an obtained by fitting
the numerical data for δχcons to the PM model (6.1) for the orbits
in Table I, i.e. ones with v ¼ 0.5 and 60 ≤ b ≤ 125. In each row,
nonempty entries represent terms fitted for, except entries in bold,
which are fixed at their known PM values, given by Eqs. (5.28)
and (5.33) for a3 and a4, respectively.

a2 a3 a4 a5

−1.0886 � � � � � � � � �
−0.7535 −21.77 � � � � � �
−0.7899 −16.17 −206.5 � � �
−0.7803 −18.49 −25.0 −4620
−0.785398 −19.18 � � � � � �
−0.785398 −16.93 −176.2 � � �
−0.785398 −17.20 −131.1 −1793
−0.785398 −16.9356 −175.9 � � �
−0.785398 −16.9356 −174.4 −107
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percents of the known analytical value, a3 ∼ −16.9356.
The agreement gets better when the fit is performed with
the analytical value of a2 fixed in the model (fifth to seventh
rows). These experiments provide further reassurance about
the validity of our analytical results at 2PM and 3PM.
Next consider the fitted values for the unknown terms a4

and a5. Table V shows the different values obtained with
different choices of n̄ and of whether a2 and a3 are fitted for
or fixed at their known values (bold entries in the table
denote fixed analytical values). The 4PM coefficient a4
appears to settle at around ∼ − 175 (for v ¼ 0.5), but the
results for 5PM are manifestly unstable, suggesting our
data are insufficient for estimating the 5PM term. (Recall
that, for simplicity, we are not accounting here for logðbÞ-
running terms, which, at any rate, produce a very small
variation over the range of b values in our sample.)
Focusing now on the 4PM term, and recalling Eq. (5.22),

we write it in the form

δχcons4 ¼ δχknown4 þ Δ4ðvÞ=b4; ð6:2Þ

where

Δ4ðvÞ ≔
3

8

πG3m4
2

ðσ2 − 1Þ ðc1ðσ
2 − 5Þ þ c2ðμ̄Þðσ2 − 1ÞÞ;

¼ 3

8
πG3m4

2½c2ðμ̄Þ þ c1ð5 − 4=v2Þ� ð6:3Þ

is the Wilson-coefficients contribution to δχcons4 , divided
by b4. The parameters c1 and c2ðμ̄Þ are a priori unknown.
As mentioned previously we expect c1 ¼ 0, but leave it
for comparison to the SF results. As commented above,
in quantum field theory, the process of renormalization
introduces a running scale μ̄ for the c2 coefficient, which
we choose μ̄ ¼ ð2Gm2Þ−1. For brevity, we suppress the
scale dependence below. Thus we have

Δ4ðv;c1; c2Þ ¼ b4ðδχcons − δχcons2 − δχcons3 − δχcons4 jc1¼c2¼0Þ
þOð1=bÞ: ð6:4Þ

We can construct the right-hand side of (6.4) by subtracting
the known PM terms from the numerical data, and then
attempt to fit the residual with the expected form shown in
Eq. (6.3), in order to find c1 and c2.
For that purpose, we have prepared three sets of data,

each with fixed b½¼ ð80; 100; 125ÞM� and varying v.
Figure 10 shows our fitted functions Δ4ðvÞ, superposed
on the numerical data, for each of the three fixed values of b.
We note immediately the relatively large numerical error
bars on Δ4 in the plot (which, recall, constitutes the very
small residual left after subtracting all known PM terms).
The noisiness of the data is clearly visible, especially at
b ¼ 125M, and we expect it to restrict the accuracy of our
fit. Also of notice is the larger-than-expected variation in

Δ4ðvÞ as a function of b. We expect Δ4ðvÞ to converge as
∼1=b for b → ∞, but the results suggest we are not quite yet
in a convergent regime—possibly due to large contributions
from omitted 5PM terms. This too warns us that our fitted
values for c1 and c2 might not be as reliable as we might
have hoped.
Our best-fit results for c1 and c2 are presented in the first

three lines of Table VI. In the table, error bars are (least-
squares) model fitting errors, and do not directly take into
account the data error bars displayed in Fig. 10. As
expected, the fitted values of c1 and c2 carry sizable error
bars, especially at larger b where the quality of Δ4ðvÞ data
is poorer. Moreover, the values obtained with each of the
three fits do not appear to be consistent with each other, not
even within their large error bars. We must conclude that
we have insufficient data to extract the two unknown
coefficients c1 and c2 individually. To enable this, we
need more accurate data sampled at larger values of b.

0.50 0.55 0.60 0.65 0.70

30

35

40

45

50

FIG. 10. The 4PM residue Δ4 as a function of velocity for three
constant values of impact parameters b½¼ ð80; 100; 125Þm2�. The
data points are the values (and error bars) of Δ4 as determined
from the numerics via Eq. (6.4). The solid lines are least-squares
fits to the model described in the second line of Eq. (6.3). The
dashed lines are similar fits where we have fixed c1 ¼ 0.

TABLE VI. Values of the coefficients for c1 and c2 for the fits
shown in Fig. 10. Entries in bold are fixed to c1 ¼ 0, hypoth-
esized based on some theoretical evidence. Statistical fitting
errors are significantly smaller than the data errors shown in
Fig. 10, so we do not display them here. However, it is worth
noting the large fitting error in the value of c1 in the third row,
c1 ¼ 0.31� 0.38, making this coefficient statistically consistent
with zero.

b=m2 c1 c2

80 0.94 −21.2
100 0.68 −25.9
125 0.31 −33.6
80 0 −25.1
100 0 −29.4
125 0 −35.5
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As discussed in Sec. III B, there are compelling theoretical
reasons to expect c1 ¼ 0. Taking this value, Δ4 becomes a
(v-independent) constant number. Unfortunately, it remains
unclear whether our data supports this expectation. In
Fig. 10, the data for b ¼ 80M and b ¼ 100M shows a
variation of Δ4 with v, although a leveling off is evident at
large v (corresponding to weaker-field orbits). We suspect
the smaller-v portion of these two datasets contains a large
5PM contribution, which diminishes as v is increased (hence
also increasing rmin). The data for our weakest-field set, with
b ¼ 125M, shows a greater consistency with c1 ¼ 0, but
also suffers from larger numerical error. The last three rows
of Table VI display the outcome of fitting for c2 while
holding c1 fixed at zero, and the corresponding (constant)
values of Δ4 are also shown in Fig. 10.
Finally, Fig. 11 summarizes our findings for the

conservative sector. It shows the numerical data points
(as a function of b at fixed v ¼ 0.5) together with the
various PM approximations up to 4PM. In the 4PM case we
present three variations: (1) The 4PM result with c1 and c2
both set to zero; (2) the 4PM result with best-fit values for
c1 and c2 from the third line of Table VI; and (3) the 4PM
result with c1 ¼ 0 and the best-fit value for c2 from the
sixth line of Table VI. It is striking to observe that, with the
best-fit value for the unknown parameters (and especially
when forcing c1 ¼ 0), the 4PM model agrees with the full

SF data to within a few parts in 104 over the entire range of
orbital parameters in our sample.

B. Dissipative sector: Fitting for δχ diss>4

We have obtained δχdiss through 4PM order, but no terms
are currently known at 5PM or beyond. Here we will
attempt to extract information about higher-order terms by
fitting our numerical data to a power series of the form

δχdissðv; bÞ ¼
X̄n
n¼3

αnðvÞ
bn

þOðb−n̄−1Þ: ð6:5Þ

The coefficients α3 ≡ δχdiss3 and α4 ≡ δχdiss4 are the known
ones: they are given in Eqs. (5.28) and (5.33), respectively.
The coefficients αn>4 are not known. Once again, wewill fit
with a range of truncation orders n̄ to provide some control
over the quality of the fit, and we will first use the data to fit
for the known PM terms as a test.
The results are shown in Table VII, which is arranged in

the style of Table V. In the first four rows, no analytical
knowledge is assumed, and we try to fit the data (at fixed
v ¼ 0.5) to the model (6.5) with n̄ ¼ 3 (first row), n̄ ¼ 4
(second row), n̄ ¼ 5 (third row) and n̄ ¼ 6 (fourth row). We
see that the fitted value of α3 settles to a value within a
fraction of a percent of its analytically predicted value,
α3 ∼ 9.6225. The fitted value of the NLO coefficient, α4, is
less stable, but varies within a few percent of the analytical
value, α4 ∼ 143. This remains the case also when the fit is
performed with the analytical value of α3 fixed (fifth to
seventh rows). These experiments provide further reassur-
ance about the validity of our analytical results at 3PM
and 4PM.
We next consider the fitted values for the unknown terms

α5 and α6. Table VII shows the different values obtained
with different choices of n̄ and of whether α3 and α4 are
fitted for or fixed at their known values (recall bold entries
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FIG. 11. The conservative self-force correction to the scattering
angle for the values shown in Table I, with v ¼ 0.5. The
numerical data points are marked in blue. The various analytical
PM approximations are shown in solid lines: In the main plot we
show the 2PM result (orange), 3PM result (green) and 4PM result
(red), whereas in the latter we have used the best-fit values of the
a-priori unknown 4PM coefficients c1 and c2 from the third row
of Table VI. The inset shows the relative difference between the
numerical data and the various PM approximations. For the 4PM
approximation we show three alternative models, corresponding
to (1) the best-fit values of c1 and c2 (red line, as in the main plot);
(2) forcing c1 ¼ 0 and using the best-fit value for c2 from the
sixth row of Table VI (purple); and (3) setting c1 ¼ 0 ¼ c2 (light
blue, as a reference).

TABLE VII. Values of the PM coefficients αn obtained by
fitting the numerical data for δχdiss to the PM model (6.5) for the
orbits shown in Fig. 7, i.e. ones with v ¼ 0.5 and 60 ≤ b ≤ 125.
In each row, nonempty entries represent terms fitted for, except
entries in bold, which are fixed at their known PM values, given
by Eqs. (5.28) and (5.33) for α3 and α4, respectively.

α3 α4 α5 α6

11.19 � � � � � � � � �
9.44 188 � � � � � �
9.64 142 1900 � � �
9.61 154 920 26615
9.6225 169 � � � � � �
9.6225 147 1720 � � �
9.6225 149 1321 15859
9.6225 143.344 1965 � � �
9.6225 143.344 2248 −20216
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denote fixed analytical values). The 5PM coefficient a5
appears to vary around ∼2000 (for v ¼ 0.5), with an
uncertainty of several hundred. The results for 6PM appear
to be completely unstable, implying our data is insufficient
for estimating the 6PM term.

VII. CONCLUSIONS AND OUTLOOK

Recent years have seen a major effort to produce new
results in both the SF and the PM approaches to the two-
body problem. In particular, results for the second-order
SF are now available for the bound systems [57], and the
first results for scattering processes are now becoming
available [72,73]. There have also been analogous strides
in the PM expansion, with results available through
OðG4Þ [54,55,81,116,117,139,140].
In this paper, we carried out an initial precision com-

parison between SF and PM scattering angles. We did so in
the context of a scalar-field model [28,73] as a proof of
principle for the analogous comparison in the purely
gravitational problem. Scattering processes facilitate com-
parisons between different approaches because they
involve physical observables defined at infinity. Such
cross-checks between different frameworks in overlap
regions will be crucial in the future, not only to help
demonstrate the reliability of each approach but also to
synthesize improved approximation schemes valid beyond
the reach of each approach alone. This is especially
important for extreme mass-ratio systems which are diffi-
cult to analyze with numerical relativity methods. The
semianalytical nature of the SF approach allows for the
separation of contributions from scalar and gravitational
backreactions and of conservative and dissipative effects,
providing a means for detailed comparisons.
We considered a two-body scattering process and com-

pared the scattering angle throughOðG3qsÞ and leading SF
order, leaving for future studies comparisons of other
interesting quantities, such as the energy and angular
momentum fluxes. The SF results used in our analysis
were obtained using the methods from Ref. [72] together
with improvements in error mitigation and analysis. The
corresponding PM results were obtained via the methods of
Refs. [49,51,52,54,55,81]. We directly compared the per-
turbative PM and SF results finding excellent agreement of
a few parts in 104 in the regime where we expect that both
SF and PM calculations are valid.
A feature encountered in the PM expansion of the scalar

model is the appearance of an operator with tidal effects
resulting in an ultraviolet divergence if the operator is
ignored. This phenomenon occurs at three loops in the
scalar-field model, but it is delayed until five loops in the
purely gravitational problem, due to additional derivatives
present in gravitational couplings compared to scalar
interactions. The extra derivatives raise the dimension of
corresponding tidal operators, pushing their appearance to
higher orders. The main consequence of this operator,

which foreshadows the analogous one in the purely
gravitational problem, is that there are two (counterterm)
coefficients that must be determined through a matching
calculation. One of these coefficients is expected to be
zero [83–94], compatible also with our comparison to SF,
but some care is needed before concluding this since
coefficients can in principle be shifted from other evalu-
ations by scheme choices and field redefinitions. Here, we
did not carry out the required matching calculation; instead,
we allowed these parameters to float freely when aligning
the 1SF and 4PM results for the scattering angle. It would
also be useful to carry out the matching calculation to
determine the coefficients c1 and c2 as preparation for
future 6PM calculations in the purely gravitational case, for
which contributions of tidal operators to the scattering
angle are delayed until that order.
Various subtleties arise at high orders in both the SF

and PM approach. While scattering processes simplify the
definition of gauge invariant asymptotic observables (e.g.
scattering angles or impulses) similar comparisons should
be carried out for the bound state problems. However, at
the 4PM order and beyond, analytic continuations from
unbounded to bound systems in general relativity are no
longer straightforward [105,140–142], due to non-local-in-
time effects; this issue needs to be resolved for precision
bound-state comparisons to be carried out between PM and
SF calculations. Another subtlety is that at higher orders in
SF the separation of conservative and dissipative effects
becomes definition dependent, so direct comparisons
across formalisms could help shed light on this. Another
important direction is to incorporate any PM scattering
results into an EOB framework which greatly enhances its
region of validity, as carried out in general relativity at 4PM
in Refs. [75,76].
A key goal is to carry out similar comparisons for two

black holes interacting purely gravitationally, instead of the
scalar model used here, using EOB-improved PM calcu-
lations. We look forward to future SF and PM calculations
that will allow detailed comparisons and the construction of
EOB and other models valid for extreme mass ratios and to
higher precision than currently possible.
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APPENDIX: LORENTZ FRAMES

In this appendix, we show that the scalar-field SF
calculation yields the same result in several common
choices of inertial frame. For instance, one can set up
the calculation in the initial rest frame of the heavy black
hole (scalar ϕ2), which is common in PM calculations. But
the SF calculation is often done in the final rest frame of the
black hole. Alternatively, one can also choose the center-of-
mass frame of the initial or final state. As we will see, these
choices all lead to the same scalar-field SF results atOðqsÞ.
Note, however, they would lead to different gravitational
SF corrections, which are of order OðqmÞ ¼ Oðm1=m2Þ.
Let us begin by recalling the structure of the scattering

angle under PM expansion,

χ ∼
X
n¼1

�
Gm2

b

�
n
ðcn;0 þ dn;1qmÞ

þ
X
n¼1

�
Gm2

b

�
n−1

qscn;1 þ � � � ; ðA1Þ

where cn;0 and cn;1 are coefficients at nPM order describing
the geodesic and first-order SF effects. For completeness,
we also include the first-order gravitational SF correction,
whose coefficients are dn;1. Recall the definitions of qm and
qs in Eqs. (2.1) and (2.5). The ellipsis stands for higher
orders in qs and/or qm.
Since we consider SF corrections, we expect the

heavy black hole remains nonrelativistic in all the inertial
frames mentioned earlier, i.e. the rest/center-of-mass frame
in the initial or final state. Therefore we can estimate the
effect by a nonrelativistic boost. First, consider boosting
from the center-of-mass frames to the rest frame of the
heavy black hole, either in the initial or final states. The
boost parameter is the same order as the velocity of
the heavy black hole, jp2j=m2.

v ∼
jp2j
m2

∼
jp1j
m2

∼
m1

m2

¼ OðqmÞ; ðA2Þ

where we use jp2j ∼ jp1j in the center-of-mass frame and
jp1j is approximately m1 times a numerical factor that
depends on the boost factor σ. Applying the boost to the
scattering angle yields the correction ∼v × χ. Combining
Eqs. (A1) and (A2), we see that the boost only changes
the coefficients dn;1, and does not affect the geodesic or
scalar-field SF results, cn;0 and cn;1, respectively. One can
consider the SF correction to jp1j, but this only results in
higher orders in qs or q. We conclude that the first-order
scalar-field SF correction to the scattering angle is the
same in the rest frame on m2 as it is in the center-of-
mass frame.
We consider next the difference between the initial

and the final rest frames of the black hole. The difference
is due to the recoil on the black hole. We can estimate the
velocity by

v ∼
jΔp2j
m2

: ðA3Þ

In the conservative case, we can use Δp2 ¼ −Δp1 from
momentum conservation. Combining with jΔp1j ∼ jp1jχ
yields

v ∼
jΔp2j
m2

∼
jΔp1j
m2

∼
m1

m2

χ ¼ OðqmÞ: ðA4Þ

Again, applying this boost only affects angles as v × χ,
so the scalar-field SF effect remains the same.
In the presence of dissipation, the impulse Δp2 receives

contributions from the radiated momentum and, as far as
the SF counting is concerned, it obeys jΔp2j ∼ jPradj ∼ Erad.
We observe that

Erad ∼
m1m2

b

�
Gm2

b

�
2

qse3;1 þm1

�
Gm2

b

�
3

qmẽ3;1 þ � � � ;

ðA5Þ

which can come from scalar-field and gravitational radi-
ation, respectively. We can see that Erad=m1 is suppressed
by qs or qm, since there is no energy loss in the geodesic
limit. The corresponding boost velocity is

v ∼
jΔp2j
m2

∼
Erad

m2

∼OðqmÞ: ðA6Þ

We, therefore, conclude that, when passing from the rest
frame to the center-of-mass frame, the scalar-field SF
correction to the scattering angle is unchanged by passing
from the initial rest frame to the final one.
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