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Traditionally, gravitational waves are detected with techniques such as matched filtering or unmodeled
searches based on wavelets. However, in the case of generic black hole binaries with nonaligned spins, if
one wants to explore the whole parameter space, matched filtering can become impractical, which sets
severe restrictions on the sensitivity and computational efficiency of gravitational-wave searches. Here, we
use a novel combination of machine-learning algorithms and arrive at sensitive distances that surpass
traditional techniques in a specific setting. Moreover, the computational cost is only a small fraction of the
computational cost of matched filtering. The main ingredients are a 54-layer deep residual network
(ResNet), a deep adaptive input normalization (DAIN), a dynamic dataset augmentation, and curriculum
learning, based on an empirical relation for the signal-to-noise ratio. We compare the algorithm’s sensitivity
with two traditional algorithms on a dataset consisting of a large number of injected waveforms of
nonaligned binary black hole mergers in real LIGO O3a noise samples. Our machine-learning algorithm
can be used in upcoming rapid online searches of gravitational-wave events in a sizeable portion of the
astrophysically interesting parameter space. We make our code, AResGW, and detailed results publicly
available at https://github.com/vivinousi/gw-detection-deep-learning.
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I. INTRODUCTION

In the first three observing runs (O1-O3) of the LIGO-
Virgo Collaboration [1,2] (recently joined by Kagra [3]) a
number of Oð90Þ confident gravitational wave (GW)
detections were found in the data, including mostly binary
black holes (BBH), but also a few binary neutron stars
(BNS) and neutron star black hole systems (NSBH) [4–6].
The anticipated significant increase in the number of
detections during the fourth observing run (O4), which
is scheduled to start in spring of 2023 and even more so
during O5 and the observing runs of the planned 3rd-
generation detectors (e.g. Cosmic Explorer [7] and Einstein
Telescope [8]) will make the application of traditional
matched-filtering techniques increasingly costly or imprac-
tical [9]. This is both for reasons of computational
efficiency, as the goal is to obtain near real-time detection
triggers, as well as for reasons of accuracy, since the
confident detection of near-threshold systems with random
spin directions requires a much larger parameter space than
the aligned-spin case. The situation will become even more
challenging, if template banks with departures from general
relativity (GR) will be included. Unmodeled search algo-
rithms, on the other hand, naturally have a limited sensi-
tivity, depending on the particular GW source.
An attractive solution to the above problem that has been

investigated in the last few years is the implementation of

machine-learning (ML) methods, such as convolutional
neural networks (CNN) or auto-encoders, see, e.g., [10–30]
and [31] for a review, but it has been difficult to evaluate the
effectiveness of such efforts in a realistic setting. Recently,
the first Machine-Learning Gravitational-Wave Mock Data
Challenge (MLGWSC-1) was completed [32], defining an
objective framework for testing the sensitivity and effi-
ciency of ML algorithms on modeled injections in both
Gaussian and real O3a detector noise, in comparison to
traditional algorithms. Here, we present the leading ML
algorithm in the case of injections of BBH template
waveforms in real O3a noise and show that with further
improvements it surpasses, for the first time, the results
obtained with standard configurations of traditional algo-
rithms in this specific setting. This is achieved for a
component mass range between 7–50M⊙ (which corre-
sponds to 70% of the announced events in the cumulative
GWTC catalog [6]) and a relatively low false-alarm rate
(FAR) as small as one per month. We thus demonstrate that
our ML algorithm is sufficiently mature to be implemented
in GW search pipelines.
A key indicator for the effectiveness of a GW search

algorithm is the sensitive distance it can achieve at a given
FAR [14]. Our ML algorithm is a novel combination of
several key ingredients, each of which boosts the sensitive
distance to higher values. The base algorithm is a 54-layer
one-dimensional (1D) deep residual network (ResNet) [33],
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which allows for training of a much deeper network, in
comparison to the simpler CNN. The second important
ingredient that allowed the algorithm to work well at small
FAR is the addition of a deep adaptive input normalization
(DAIN) [34], to deal with the nonstationary nature of real
O3a noise. Next, we obtained improvements by dynami-
cally augmenting the dataset during training. The execution
speed was significantly increased with the implementation
of a framework-specific, module-based whitening layer,
which computes the power spectral density (PSD) over a
period of a few seconds in batched tensor format. Finally,
we saw a large boost in sensitive distance employing
curriculum learning, in which the network was learning
the injected waveforms with highest signal-to-noise ratio
(SNR) first.
The network was implemented in PYTORCH [35] and its

training (including validation) on 12 days of training data
was achieved within 31 hours on an A6000 GPU with
tensor cores (for 14 epochs). The runtime for the evaluation
of one month of test data on the same hardware was less
than 2 hours.

II. TRAINING AND TEST DATASETS

The training dataset had a duration of 12 days and
comprised real noise from the O3a LIGO run and injections
of non-aligned BBH waveforms (corresponding to the
assumptions of dataset 4 in [32]). The noise was sampled
from parts of O3a that are available from the Gravitational
Wave Open Science Center (GWOSC). Only segments
with a minimum duration of 2h, where both LIGO detectors
registered good quality data, excluding 10s around detec-
tions listed in GWTC-2 were included (see Ref. [32] fore
more details). Applying these criteria, leaves a dataset with
noise for each of the two aLIGO detectors, Hanford (H1)
and Livingston (L1), with a total duration of 11 weeks, with
a sampling rate of 2048 Hz.
The injected BBH waveforms were generated using

the waveform model IMRPhenomXPHM [36], in which
a lower-frequency cutoff of 20 Hz was applied. The
masses m1, m2 of individual components were in the

range 7M⊙ − 50M⊙ (corresponding to a maximum signal
duration of 20s). The signals were uniformly distributed in
coalescence phase, polarization, inclination, declination
and right ascension (see Ref. [32] for details). The wave-
forms were not injected uniform in volume, but the chirp
distance dc was sampled (instead of the luminosity
distance d). This choice increases the number of low-mass
systems which can be detected. The chirp distance is
defined as

dc ¼ d

�
Mc;0

Mc

�
5=6

; ð1Þ

where Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass
and Mc;0 ¼ 1.4=21=5M⊙ is a fiducial value. The spins of
the individual components had an isotropically distributed
orientation with a magnitude between 0 and 0.99 (hence,
precession effects are present). All higher-order modes up
to ð4;−4Þ available in IMRPhenomXPHM are included. A
taper window was applied to the start of each waveform.
Figure 1 illustrates a representative data segment of the
training set.
The training dataset comprised the first 12 days of the

11-week dataset, resulting in 740k noise segments (for each
of the two detectors) of duration 1.25s, which constituted
the background noise. We then generated a set of 38k
waveforms and each one was injected randomly into about
19 different background segments, resulting in 740k fore-
ground segments that contain injections, leading to a
balanced training set. The time of coalescence is chosen
to randomly fall within the 0.625s and 0.825s mark in each
segment. This means that, regardless of the actual duration
of the injected signal, only the last cycles corresponding to
less than 1s duration are kept for training for any choice of
parameters.
Similarly, we created a validation set, based on weeks 4

to 7 of the 11-week dataset, with a total duration of one
month, comprising 1850k background noise samples and
1850k foreground samples containing injections (generated
from 96k different injections, each injected randomly
into about 19 different segments). The injections in the

FIG. 1. A representative 2-channel data segment of the training set containing an injection in real O3a noise from the Hanford (H1)
detector (left panel) and the Livingston (L1) detector (right panel). The whitened strain of a 1 s segment around the time of coalescence
is shown. The coalescence times in the detector frames are within the 0.5s–0.7s range (shown as a shaded area). The injected waveform
is shown scaled to match the difference between the whitened foreground and background segments. In this example, the component
masses are m1 ¼ 27.74M⊙, m2 ¼ 11.50M⊙ and the luminosity distance is d ¼ 1497 Mpc. The non-aligned spins have magnitudes of
0.624 and 0.008, respectively.
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validation set were generated with a different random seed
in comparison to the training set.
The main test dataset comprises noise from weeks 8-11

of the 11-week dataset, with a duration of one month1 and
injections with merger times separated by a random time
between 24 s to 30 s (which translates to about 96k
injections over the whole duration). The code for creating
the different datasets was provided by the organizers of
MLGWSC-1 and is publicly available. For the main test
dataset we used the same random seed of 2514409456 and
offset of 0 (first 4 weeks) as in [32]. We created additional
test datasets with the same total duration, but different
random seeds and offset, in order to assess the variance of
our main results.

III. COMPUTATIONAL METHODS

A. Data preprocessing and normalization

Following approaches from traditional matched filtering
as applied in GW detections, we first whiten the training
data [10,37]. As is common in deep learning (DL) methods,
we then use an input normalization layer [34,38], before
feeding the data to the neural network for classification.
Whitening. The data segments were whitened using the

Welch method [39] for computing the PSD and an inverse-
spectrum truncation method [40] for smoothing. Both
methods were implemented in PYTORCH [35], to allow
for batch processing of multiple input segments in a single
forward pass, which gave a significant speed up with
respect to a CPU implementation. First, we crop 4.25s
segments from the original timeseries, for both the training
and validation sets, with a stride of 1.4s. An injection is
done in a random quarter segment (of 1.25s duration),
which is whitened using the 4.25s noise segment surround-
ing it. After whitening, the first and last 0.125s (0.25s in
total) are removed from each sample, leaving a 1 s sample
as input for the neural network.
Adaptive normalization. As the real noise of the H1

and L1 detectors is nonstationary and affected by a
multitude of factors, we opted for an adaptive input
normalization method, specifically deep adaptive input
normalization (DAIN) [34], which is applied before feeding
the data to the network. DAIN has been successfully used in
tasks that involve non-stationary timeseries, such as finan-
cial timeseries forecasting [41].
The goal of this normalization layer is to learn how the

input timeseries should be normalized. DAIN is used before
feeding the input to the subsequent layers and it is trained
by back-propagating the network’s gradients to its param-
eters, as shown in Fig. 2. Furthermore, DAIN differs from
other normalization schemes, since it can dynamically

adjust the applied normalization scheme based on the input
at inference time, allowing for handling nonstationary data.
More specifically, DAIN aims to learn how the measure-
ments x ∈ R2048×2 fed to the neural network should be
normalized by appropriately shifting and scaling them:

x̃j ¼ ðxj − αÞ⊘ β; ð2Þ

where xj ∈ R2 refers to the jth observation (out of 2048
included in the current window), ⊘ is the Hadamard
(entrywise) division operator and β is a scaling operator.
To this end, we first build a summary representation of the
current window as:

a ¼ 1

2048

X2048
j¼1

xj ∈ R2: ð3Þ

This average is used to estimate the mode of the distribution
that generated the observed data. Then, DAIN learns how to
appropriate shift the data based on the observed mode by
estimating the value for the shifting operator α as:

α ¼ Waa ∈ R2; ð4Þ

where Wa ∈ R2×2 are the trainable parameters of the
shifting operator.
After this shifting process, the data are also scaled by

employing the scaling operator β, as shown in (2). Again,
we calculate a summary representation as:

bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2048

X2048
j¼1

ðxj;k − αkÞ2
vuut ; k ¼ 1; 2; ð5Þ

and then define the scaling operator as:

β ¼ Wbb ∈ R2; ð6Þ

where Wb ∈ R2×2 are its parameters.

Input Data

Summary
Extractor

Adaptive
Shifting
Layer 

Summary
Extractor

Adaptive
Scaling
Layer 

Normalized
Data

DL Model

Adaptive
Gating
Layer 

Summary
Extractor

FIG. 2. Deep adaptive normalization (DAIN) is applied before
feeding the data to the employed DL model. DAIN involves three
adaptive normalization steps, i.e., adaptive shifting, adaptive
scaling and adaptive gating, increasing the ability of DL models
to handle nonstationary data.

1A smaller test set of one day duration was generated to
facilitate a faster comparison of different augmentation and
training strategies.
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Finally, the shifted and scaled observations are fed to an
adaptive gating layer which aims to appropriately modulate
the features according to their usefulness for the task at
hand as:

˜̃xj ¼ x̃j ⊙ γ; ð7Þ

where ⊙ is the Hadamard (entrywise) multiplication oper-
ator and

γ ¼ sigmðWccþ dÞ ∈ R2; ð8Þ

sigmðxÞ ¼ 1=ð1þ expð−xÞÞ is the sigmoid function,Wc ∈
R2×2 and d ∈ R2 are the parameters of the gating layer that
are learned through back-propagation. The updated sum-
mary representation c is calculated as:

c ¼ 1

2048

X2048
j¼1

x̃j ∈ R2: ð9Þ

The nonlinearity introduced by this layer allows for the
suppression of the normalized features during inference. This
can help to reduce the effect of features that could harm the
generalization abilities of the network. The parameters
introduced by the DAIN layer are fitted using gradient
descent:

ΔðWa;Wb;Wc;d;WÞ

¼ −η
�
ηa

∂L
∂Wa

; ηb
∂L
∂Wb

; ηc
∂L
∂Wc

; ηc
∂L
∂d

;
∂L
∂W

�
ð10Þ

whereL denotes the final loss function of the network andW
its weights. Separate learning rates can be used for the
parameters of each sublayer, i.e., ηa, ηb, and ηc, if necessary,
to ensure the stability of the training process.

B. Deep residual networks

Residual neural networks [33] use so-called skip
connections to improve training, by allowing gradients to
better reach the earliest layers of a neural network archi-
tecture, effectively solving the vanishing gradient problem
[42] and leading to more effective training as the number of
layers increases, especially when paired with carefully
designed training methods [43]. This allows for much
deeper networks to be trained, in comparison to simple
CNN. Depth in neural networks has been linked to higher
levels of semantic information, and better performance in
tasks like image recognition [44], detection [45], etc.
We designed a deep residual network, based on 1D

convolutions, for the purpose of the binary classification of
1s long (i.e. 2 × 2048-dimensional)2 segments into positive

(containing an injection) or negative (pure noise) segments.
Our network has a depth of 54 layers, grouped into 27
blocks comprising two convolutional layers with a varying
number of filters. The network’s backbone (except for the
final two convolutional layers) is summarized in Table I,
where D denotes the dimensionality of the input tensor.
Blocks 5, 8, 11, 14 and 17 are 2-strided, meaning that
dimensionality is halved and an additional layer is used in
the residual connection.
A graphical depiction of the network architecture is

displayed in Fig. 3. The output of a residual block of layers
can be written schematically as:

g ¼ fðxÞ þ hðxÞ; ð11Þ

where fðxÞ is a block of two convolutional layers, and x the
input (i.e. the 2 × 2048-dimensional timeseries) to its first
layer. The residual function hðxÞ is either the identity
function, hðxÞ ¼ x, or a strided convolutional layer. Each
convolutional layer is followed by batch normalization and
a ReLU activation function. Two final individual convolu-
tional layers gradually reduce the output to a binary
outcome (noise plus injected waveform vs. noise only).

C. Training

The network is fed with the training dataset (925k 1s
segments of noise and an equal number of 1s segments
containing injections) using a minibatch size of 400 (each
minibatch also contains an equal number of only noise and
noise plus injection segments, randomly chosen from the
whole dataset). The Adam optimizer [46] was used during

TABLE I. Feature extraction backbone of our ResNet54-like
architecture. The first column lists the number of residual blocks,
totalling 27, each consisting of two convolutional layers. The
second column lists the number of filters in each corresponding
block. The third column indicates those blocks that are 2-strided
(see text for details) and the last column displays the dimension-
ality D of the input tensor for each block.

Residual blocks Filters Strided Input D

4 8 2 × 2048
1 16 ✓ 8 × 2048
2 16 16 × 1024
1 32 ✓ 16 × 1024
2 32 32 × 512
1 64 ✓ 32 × 512
2 64 64 × 256
1 64 ✓ 64 × 256
2 64 64 × 128
1 64 ✓ 64 × 128
2 64 64 × 64
5 32 64 × 64
3 16 32 × 64

2We remind that the sampling rate was 2048 Hz and there are
two channels, one for each of the aLIGO detectors.
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backpropagation3 and the regularized binary cross entropy
(a variant of the cross entropy loss function that is designed
to be finite [27]) was used as the objective function.
Dynamic augmentation. During training, we also

employed dynamic augmentation, by randomly replacing
a noise segment for the L1 channel, by another segment.
This augmentation is performed with a random probability
of 40% and virtually increases the total number of samples
that the network sees during training.
SNR-based curriculum learning. We implemented a

learning strategy, so that the network is first trained on the
loudest injections and only at later epochs it is trained on
weaker injections. To achieve this, we used the optimal
signal-to-noise ratio (SNR) of the injected signal

SNR ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
∞

0

df
jh̃ðfÞj2
SnðfÞ

s
; ð12Þ

where h̃ðfÞ is the amplitude of the Fourier transform of the
injected signal and SnðfÞ is the PSD of the detector’s noise.
An accurate computation of the SNR of each segment
during training would add some computational overhead,
so we chose to construct an empirical relation that gives an
approximate prediction of the SNR. Specifically, by
varying only the chirp mass, the distance and the inclina-
tion ι (and setting all other parameters to some fixed
values), we arrived at the following approximate empirical
relation:

SNR ¼ 1261 Mpc
D

�
Mc

M⊙

�
5=7

½0.7þ 0.3 cosð2ιÞ�: ð13Þ

Figure 4 shows a comparison of the distribution of the
optimal SNR (obtained through Eq. (12) using the PSD of
the Hanford detector) for a subset of 10000 randomly

FIG. 4. Comparison of the SNR histogram computed with the
empirical relation Eq. (13) to the optimal SNR of the injections
(using a random subset of 10000 injections). A similar distribu-
tion is obtained. The shaded areas correspond to the restricted
values of the SNR used in the first eight epochs of the learning
strategy (from right to left, see Table II).

x g5+x g1+
w
hi
te
ni
ng

xg27+g26 y...

f1(x)

h1(x)

f5(x)

h5(x)

f27(x)

h27(x)

xw

D
AI
N g4...

FIG. 3. Description of our residual network architecture. The input x is 2 × 2048-dimensional. There are 27 blocks comprising two
convolutional layers. In five of these blocks, the dimensionality is halved (stride 2, shown in purple) and an additional layer is used in the
residual connection. Finally, there are two individual convolutional layers which gradually decrease the number of channels down to
two, corresponding to the binary classification targets (noise plus injected waveform vs. noise only) in the output.

FIG. 5. Histogram of the errors between the SNR computed
with the empirical relation Eq. (13) to the optimal SNR of the
same injections as in Fig. 4. The errors follow a normal
distribution with standard deviation σ ¼ 1.1.

3Note that the first two training epochs are a warm up period,
during which the learning rate is annealed from 10−8 to
4.5 × 10−3.
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chosen injections to the approximate distribution as
obtained through Eq. (13). The two distributions are similar,
their difference stemming from the fact that the actual SNR
depends on many more parameters (sky location, spins etc.).
To quantify their similarity, in Fig. 5 we show the histogram
of the errors between the two distributions (actual and
empirical SNR) of Fig. 4. The errors follow a normal
distribution with a standard deviation of σ ¼ 1.1, which we
found to be adequate for our purpose.
We start the training with easily recognizable signals

with large estimated SNR, for the first four epochs. Next,
the network is trained on gradually weaker signals and after
the tenth period it learns all signals in the training set. The
detailed SNR-based training strategy is shown in Table II
and the first eight epochs are also depicted in Fig. 4 in
relation to the distribution of the SNR.
Fig. 6 shows the evolution of the loss function as a

function of the training epoch. Due to the adopted learning
strategy, initial losses are small. When the network is
finally learning all signals (after ten epochs), the loss of
the training set converges with that of the validation set.
The corresponding evolution of the accuracy as a function
of the training epoch is shown in Fig. 7.

IV. DETECTION OF BBH INJECTIONS
IN REAL NOISE

The trained network is run on segments of the test dataset
described in Sec. II and produces a binary output, corre-
sponding to the probabilities that the waveform is present or
that the segment contains only noise. The first output
(waveform present) serves as a ranking statistic R with
values between 0 and 1 for each 1s segment. When
R > 0.5, a positive outcome is recorded.
During deployment on the test dataset, we crop an

amount of 4.25 seconds of data, from which we compute
the PSD in real time. To increase speed, the Welch method
for computing the PSD was implemented in PYTORCH

[35], whereas whitening is implemented as the first layer
of the final detection module. Then, the input is reorgan-
ized as a batch of 1.25s segments with a stride of 0.1s, i.e.,
with an overlap of 1.15s. This batch is whitened with a
single forward pass of the implemented whitening mod-
ule. The last valid segment starts at the 3s mark, which
leads to 31 segments of duration 1.25s. After whitening,
the 1.25s whitened segments are cropped unilaterally to 1s
total duration. Notice that when an injection is present,
multiple overlapping segments can have R > 0.5.
Because of this, we cluster positives and report any
positives that are detected within a time span of 0.3s as
a single detection (see Fig. 8 for a representative example).
After the deployment, the output is evaluated every 0.1s

comparing it to the known injection times in the test
dataset. If a positive output differs less than 0.3s from
the nominal merger time for a particular injection, then it is
classified as a true positive, otherwise as a false positive.
To evaluate the effectiveness of the search algorithm, we

first need to determine the false alarm rate F as a function
of the ranking statistic, i.e., the function F ðRÞ. Next, the
sensitive distance of the search is determined as a function
of the ranking statistic, which finally produces a relation

TABLE II. Learning strategy: During the first 4 epochs the
network learns only strong signals with estimated optimal SNR
larger than 7.63. Next, the network gradually learns weaker
signals (for the subsequent epochs the estimated SNR range is
shown). After the tenth epoch, the network learns all signals.

Epochs Min(SNR) Max(SNR)

4 7.63 100
2 3.63 100
2 1 3.63
2 1 7.63
Remaining 0 ∞

FIG. 6. Loss as a function of epoch. Due to the adopted learning
strategy (strong signals first), initial losses are small. After ten
epochs, when the network is learning all signals, the loss of the
training set converges with that of the validation set.

FIG. 7. Accuracy as a function of epoch. Due to the
adopted learning strategy (strong signals first), initial accuracy
is high. After ten epochs, when the network is learning all signals,
the accuracy of the training set converges with that of the
validation set.
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between the sensitive distance and the F (see Ref. [32] for
definitions and the detailed methodology).
In Fig. 9 we demonstrate the importance of using DAIN

[34] as the input normalization, by comparing the sensitive
distance at different FAR (for a shorter test dataset of
duration of one day) to the corresponding results obtained
with either batch normalization (BN) [38] or adaptive batch
normalization (ADA) [47]. Whereas the three methods
achieve similar sensitive distances at FAR > 30/d, the
performance of BN and ADA deteriorates, dropping to 0
at FAR of several per day. In contrast, the input normali-
zation with DAIN allows the network to maintain a good
sensitive distance down to the lowest FAR (notice that for
the comparison shown in Fig. 5 we did not activate the
SNR-based curriculum learning, to isolate the effect of the
input normalization).
Fig. 10 displays the sensitive distance as a function

of FAR for our best model (ResNet54dþ SNR), in

comparison with a simpler setup (ResNet544) and two
widely used algorithms for GW detection, coherent wave-
burst (cWB), a waveform model-agnostic search pipeline
for GW signals based on the constrained likelihood
method [48–50] and PYCBC [51], based on a standard
configuration of the archival search for compact-binary
mergers [52]. The results of cWB and PYCBC shown in
Fig. 10 are taken from [32] (where they were obtained on
the same test dataset). cWB uses wavelets instead of
specific models of the waveforms it searches for, which
naturally does not allow it to reach ideal fitting factors.
It was recently enhanced with machine-learning tech-
niques [53] (for details on the particular cWB setup used
on the test dataset, see Ref. [32]). PYCBC implements
matched filtering of waveform templates, but in [32,52]
only aligned-spin templates were used (for more general
waveforms, the method could become computationally too
costly). Since the injections in the test dataset are based on
more general waveforms, this particular PYCBC search
cannot reach ideal fitting factors, leaving room for other
algorithms to surpass it.
As seen in Fig. 10, our best model, which includes the

SNR-based curriculum learning, surpasses the PYCBC

results at all FAR. The sensitive distance as a function
of FAR is nearly level at the lowest FAR of 1 per month,
indicating that our algorithm may maintain good perfor-
mance even when extended to lower FAR. Our best model
also significantly exceeds the sensitivity of the unmodeled
cWB search.

FIG. 8. Representative example of the ranking statistic for
overlapping segments (with a stride of 0.1s). Segments withR <
0.5 are classified as negatives. Segments with R > 0.5 that
cluster within 0.3s of a known injection at time t0 are reported as a
single true positive.

FIG. 9. Sensitive distance vs. false alarm rate for three different
input normalizations: DAIN [34], batch normalization (BN) [38]
and adaptive batch normalization (ADA) [47] (for a shorter test
dataset of duration of one day). In contrast to BN and ADA, DAIN
maintains a good sensitive distance down to the lowest FAR.

FIG. 10. Sensitive distance vs. false alarm rate for our best
model (ResNet54dþ SNR), in comparison with the simpler
setup (ResNet54) used in [32] and two widely used algorithms
for GW detection, coherent waveburst (cWB) and PYCBC (the
latter using algned-spin templates only, see text for details). All
codes were run on the same test dataset established in [32]. Our
best model surpasses the performance of the other algorithms at
all FAR in this setting (notice that the PYCBC run was based on a
template bank with only aligned-spin waveforms).

4This setup has half the number of filters, as was the case in
[32], and does not include the SNR-based curriculum learning.
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V. SUMMARY AND DISCUSSION

We used a novel combination of ML algorithms and
arrived at sensitive distances for injected BBH GW signals
that surpass traditional algorithms, even at small false alarm
rates. The main ingredients are a 54-layer deep residual
network (ResNet), a deep adaptive input normalization
(DAIN), a dynamic dataset augmentation, and curriculum
learning, based on an empirical relation for the signal-to-
noise ratio. Our best ML model surpasses the sensitive
distance achieved with traditional algorithms in a specific
setting that uses a dataset consisting of a large number of
injected nonaligned spin waveforms in real LIGO O3a
noise samples. The matched-filtering PYCBC run on the
same dataset included only aligned-spin templates and
could therefore not reach optimal sensitivity.
We examined the variance of our main result using

additional test datasets with different offsets and starting
times, see Fig. 11. The different sensitivity curves we
obtain are within a few percent from the average, demon-
strating that our trained neural network runs robustly on
differently datasets, with consistent sensitivity.
Our ML model operates at a fraction of the computa-

tional cost of matched filtering (see Ref. [32] for detailed
comparisons) and it can thus be deployed in upcoming
rapid online searches of gravitational-wave events in a
sizeable portion of the astrophysically interesting param-
eter space.
The performance of our ML model could be further

improved using a more accurate empirical relation for the

signal-to-noise ratio and a more fine-tuned curriculum
learning. We are planning to extend the training dataset
to include lower or higher black hole masses. It is likely that
dedicated networks will need to be trained to cover the
edges of the parameter space. Furthermore, we are planning
to include additional channels for the operating advanced
Virgo [2] and Kagra [3] detectors. In the future, additional
detectors, such as the planned LIGO-India [54] detector
could be included in the training of the network.

Our code, AResGW, and detailed results are publicly
available at [55].
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FIG. 11. Variance of the sensitive distance vs. false alarm rate
for our best model, using various test datasets of one month
duration, that differ by the random seed used for the injections
and the offset in the starting time. The first curve (seed
2514409456 and offset 0) corresponds to the case of the test
dataset of the MLGWSC-1 challenge (blue curve in Fig. 10). At a
FAR of 1/month, the variance is only �3% of the average.
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