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Galactic binaries, and notably double white dwarfs systems, will be a prominent source for the future
LISA and Einstein Telescope detectors. Contrary to the black holes observed by the current LIGO-Virgo-
KAGRA network, such objects bear intense magnetic fields that are naturally expected to leave some
imprints on the gravitational wave emission. The purpose of this work is thus to study those imprints within
the post-Newtonian (PN) framework, particularly adapted to double white dwarfs systems. To this end, we
construct an effective action that takes into account the whole electromagnetic structure of a star, and then
specify it to dipolar order. With this action at hand, we compute the acceleration and Noetherian quantities
for generic electric and magnetic dipoles, at a relative 2PN order. Finally, focusing on physically relevant
systems, we show that the magnetic effects on the orbital frequency, energy, and angular momentum is
significant, confirming the conclusions of previous works.
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I. INTRODUCTION

The first gravitational-wave event has been detected by
modeling the black hole binary as two spinning, isolated
points [1]. Nevertheless, the next generations of detectors,
such as the Laser Interferometer Space Antenna (LISA) [2]
or the Einstein Telescope (ET) [3], will require finer
modeling of their sources, as ten of thousands of galactic
binaries, composed primarily of white dwarfs (WD) and/or
neutron stars (NS), will be resolvable [4,5]. For such
sources, taking into account environmental effects beyond
the spinning point-particles approximation will be crucial.
Among those effects is the presence of strong magnetic
fields that can be as intense as 109G for white dwarfs and
1012G for neutron stars [6,7], which may for instance
modify the tidal response of the star [8] or alter the
electromagnetic signals emitted just before the merger [9].
But more importantly, those powerful magnetic fields can
induce an orbital decay and shift the frequency of the
gravitational wave emitted by the binary [10–14]. The
LISA experiment will resolve a large number of double
WD [15,16], and some of those systems will even be used
for the calibration of the instrument [17–19]. It seems
therefore important to incorporate the electromagnetic
structure of WD and NS in the templates used by LISA
and ET.

The templates that will be used for the detection and
characterization of the inspiral phase of galactic binaries are
mainly based on the post-Newtonian results [20], relying
on both weak-field and slow-motion approximations (see
e.g. [21–23] for reviews). Indeed, such a framework is
particularly adapted to the case of those sources, as LISA
will observe them deep within their inspiral phase (during
which the two bodies revolve around each other, far before
the merger, which happens outside the LISA frequency
band). As for ET, the galactic binaries are expected to
merge within its frequency band, but after a large number of
revolutions (as was the case for the binary of neutron stars
observed by the LIGO-Virgo network [24]). Therefore,
post-Newtonian templates will also be extensively used for
the detection and characterization of binaries of WD and/or
NS in ET.
A post-Newtonian treatment of electric charges on the

motion of celestial bodies widely exists in the literature (see
e.g. [25–30]). But, to the best of our knowledge, a proper
post-Newtonian study of magnetic effects has never been
achieved, even if, as argued previously, such a framework
will be important for future gravitational-wave detectors.
The aim of the present work is thus to fill this gap, by
building an action that consistently encompasses the full
electromagnetic structure of celestial bodies, and by work-
ing out explicitly the effects of dipolar electric and
magnetic fields. We will concentrate on the “conservative”
sector (i.e. our aim is to derive the energy, linear, and
angular momentum of the system), and we let the study of
the radiative sector for further work.
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The plan of this paper is as follows. In Sec. II we
construct a generic action describing the interplay between
gravitational interaction and electromagnetic structure for
spinless bodies, and we specify it to the dipolar case. Using
this dipolar action, we derive in Sec. III the acceleration and
Noetherian quantities, by using a post-Newtonian expan-
sion. Those expressions are then plugged on a quasicircular
orbit, and numerical estimates are given in Sec. IV, before
concluding in Sec. V. Lengthy expressions are displayed in
the Appendix and stored in Supplemental Material [31].

II. CONSTRUCTIONOF THE EFFECTIVE ACTION

A. General construction

The aim of this section is to construct an action,
describing the interplay between the gravitational and
electromagnetic (EM) interactions of two bodies (e.g.
two white dwarfs). In order to do so, we rely on an
effective description of the EM structure of each body, by
“dressing” them up with a set of multipole moments.
In this work, and for the sake of simplicity, we will

consider a point-particle description of the two bodies, i.e.
neglecting the effects of spin and internal structure. The
inclusion of those effects is left for future studies. We have
to consider two dynamical fields: a metric1 gμν and an EM
four-vector Aμ. The action can thus be decomposed as

S ¼ Sg½g� þ SEM½A; g� þ Smat; ð2:1Þ

where Sg and SEM are the kinetic terms for the metric and
EM field, and Smat encodes our description of the two
bodies.

1. Gravitational action

For the purely gravitational sector, it is natural to work
with the usual Landau-Lifschitz Lagrangian, together with
a gauge-fixing term (see e.g. [32])

Lg ¼
c4

16πG
ffiffiffiffiffiffi
−g

p h
gμν
�
Γλ
μρΓ

ρ
νλ − Γλ

μνΓ
ρ
ρλ

�
−
1

2
gμνΓμΓν

i
;

ð2:2Þ
where Γμ

νρ are the Christoffel symbols and the last term
enforces the gauge Γμ ≡ gαβΓμ

αβ ¼ 0. This action differs

from the usual gauge-fixed Einstein-Hilbert one only by an
irrelevant total derivative and has the advantage of containing
only first derivatives of the metric. In terms of the so-called
“gothic metric” gμν ≡ ffiffiffiffiffiffi−gp

gμν, this action becomes

Lg ¼
c4

32πG

h
gαβ
�
∂μgαν∂νgβμ − ∂μgαμ∂νgβν

�
−
1

2
gαβgμνgστ

�
∂αgμσ∂βgντ −

1

2
∂αgμν∂βgστ

�i
: ð2:3Þ

As usual when performing post-Newtonian (or post-
Minkowskian) expansions,2 we define the exact perturbation

hμν ≡ gμν − ημν: ð2:4Þ

It is easy to see that the gauge relation Γμ ¼ 0 translates into
the usual harmonic condition for hμν, i.e. ∂νhμν ¼ 0.

2. Electromagnetic action

As for the EM sector, it is natural to take the gauge-fixed
Maxwell Lagrangian

LEM ¼ −
1

4μ0

ffiffiffiffiffiffi
−g

p
gμρgνσ

h
FμνFρσ þ 2∇μAρ∇νAσ

i
; ð2:5Þ

where μ0 is the permeability of the vacuum, and we recall
that Fμν ≡ 2∇½μAν� ¼ 2∂½μAν� is related to the electric and
magnetic fields by

Ei ¼ −cF0i and Bi ¼
1

2
εijkFjk ¼ εijk∂jAk: ð2:6Þ

The last term of Eq. (2.5) is the gauge-fixing term, imposing
the Lorentz gauge on Aμ, namely ∇μAμ ¼ ∂

μAμ ¼ 0, where
we have used the harmonicity relation Γμ ¼ 0 to transform
the covariant derivative into a partial one.
If the EM action (2.5) and the gravitational one (2.2)

have the same structure, the main difference is that gμν is
dimensionless, when Aμ is not. This will be a problem when
performing post-Newtonian expansions, as the scaling of
hμν and Aμ cannot be compared. To remedy that, we work

with the dimensionless field Ãμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2G=c3ℏ

p
Aμ (with e

the electric charge and ℏ the reduced Planck constant), such
that the Lagrangian becomes

LEM ¼ −
c4

16πGαEM

ffiffiffiffiffiffi
−g

p
gμρgνσ

h
F̃μνF̃ρσ þ 2∇μÃρ∇νÃσ

i
;

ð2:7Þ

where αEM ¼ μ0e2c
4πℏ is the fine-structure constant, i.e. a dimen-

sionless number, and naturally F̃μν ¼ 2∂½μÃν�. Looking at the

1The conventions employed throughout this work are as follows:
we use a mostly plus signature, the Minkowski metric being
ημν ¼ ð−;þ;þ;þÞ; greek letters denote spacetime indices
μ; ν;… ¼ ð0; 1; 2; 3Þ and latin ones denote purely spatial indices
i; j;… ¼ ð1; 2; 3Þ; the bold font denotes three-dimensional vectors,
e.g. yA ¼ yiA; we use multi-index notations, i.e. IL ¼ Ii1i2…il ; the
d’Alembertian operator is definedwith respect to the flatMinkowski
metric □≡ ημν∂μν ¼ Δ − c−2∂2t ; (anti)symmetrizations are
weighted, e.g. AðijÞ ¼ ðAij þ AjiÞ=2; the Lagrangian and Lagran-
gian density are denoted as S ¼ R dtL ¼ R dtd3xL, and we will
refer to “Lagrangian” for “Lagrangian density” henceforth. 2As usual, we dubb “nPN” a quantity of order Oðc−2nÞ.
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prefactor of Eq. (2.7), it is clear that we can now perform
consistent joint post-Newtonian expansions. For the sake of
clarity, we will henceforth drop the tildes, working only with
dimensionless quantities, unless specified (when performing
the matching in Sec. II B, and naturally, when performing
numerical estimates in Sec. IV B).

3. Matter action

As advertised, we consider two spinless stars, having
some electromagnetic structure. In order to model those
structures, we rely on an effective approach: as seen by a
distant observer, those stars can be described by point
particles,“dressed” with a set of EM moments.
Without any EM structure, the action of a point-particle

A is simply given by its proper time τA, the coupling
constant being its mass mA:

Spp ¼ −c
X
A

mA

Z
dτA: ð2:8Þ

As for the EM sector, it is described by the interaction
between the EM field and a conserved current jμA

SEM;inter ¼
X
A

Z
d4x

ffiffiffiffiffiffi
−g

p
jμAAμ: ð2:9Þ

The current jμA encompasses the whole physics of the EM
structure of the star, and thus its knowledge requires stellar
physics that is largely beyond the scope of this work.
Therefore, we seek for an effective description of this
interaction. To this purpose, we assume that the source jμA is
compact supported and that we are in the long wavelength
approximation, i.e. that the typical scale of variation of Aμ

is much larger than the size of the source (as will be the case
when dealing with a binary of stars). In such a configu-
ration, we can perform a derivative expansion around a
point within the source, following the derivation of [33].
We thus expand the action (2.9) as

SEM;eff ¼
X
A

Z
dτA

�
qAA0 þ

X
l≥1

ð−Þl
l!

�
ILA
c
∇⊥

L−1Eil

þ lJLA
lþ 1

∇⊥
L−1Bil

��
; ð2:10Þ

where ∇⊥ is the covariant derivative projected onto a set of
spatial vielbein and ðEi; BiÞ are the electric and magnetic
fields defined in Eq. (2.6). The information contained in jμA
is now dispatched onto two infinite sets of time-dependent
moments: electric ones fILAg and magnetic ones fJLAg, as
well as a conserved charge qA, corresponding to the electric
monopole. As usual when dealing with effective actions,
the moments ðILA; JLAÞ are not determined here, but require
some matching to reveal the physical information they bear.

The main advantage of such an action is that we can focus
on the physical effect we want to consider. As we are
interested in the effect of the EM dipolar structure of the
stars, we will hereafter select only the l ¼ 1 terms.
Adding Eqs. (2.3), (2.7), (2.8) and (2.10), we obtain a

consistent action describing the interplay between gravi-
tational and EM interactions of two stars, thus fulfilling the
goal of this section.

B. Matching of the dipolar order

Having properly defined an action toworkwith, let us now
focus on the aim of this work: the dipolar order l ¼ 1. As
clear fromEq. (2.10), the dipoles couple to single derivatives
of Aμ; thus we can collect them into an antisymmetric four-
tensor Dμν that enters the action through a coupling
∝ FμνDμν. As we seek to extract physical information from
our computation, we need to link the two sets of dipoles
fIiA; JiAg (or equivalentlyDμν) to the observable electric and
magneticmoments of the starsfqiA; μiAg. To do thismatching,
we work with dimensionful quantities and set the gravita-
tional interaction and the masses to zero. We thus consider
the Lagrangian

Lmatch ¼−
1

4μ0

h
FμνFμνþ 2

�
∂μAμ

�
2
i
þ
X
A

δA
2
ðFμνÞADμν

A ;

ð2:11Þ

where δA ≡ δ½xi − yiAðtÞ� is the three-dimensional Dirac
delta distribution, locating the interaction on the worldline
of the particle, yAðtÞ, and the subscript A means that the
quantity is regularized in the worldline of particle A.
Performing a 3þ 1 decomposition (which is trivial since
wehave nogravitational interaction), the equations ofmotion
for the field Aμ read

□A0 ¼ −μ0D0k∂kδA and

□Ai ¼
μ0
c

d
dt

h
D0iδA

i
− μ0Dik∂kδA: ð2:12Þ

Integrating them and denoting r ¼ jy1ðtÞ − y2ðtÞj and
ni ¼ ½yi1ðtÞ − yi2ðtÞ�=r, they become

A0 ¼ −
μ0
4πr2

nkD0k and

Ai ¼ −
μ0
4πr2

nkDik −
μ0
4πc

d
dt

�
D0i

r

�
: ð2:13Þ

Comparing this result to the usual formula for constant
dipoles [34]

A0 ¼ −
μ0cqk

4π

nk

r2
and Ai ¼ −

μ0Jik

4π

nk

r2
ð2:14Þ
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allows one to fix

Dμν
A ¼

�
0 −cqiA

cqiA JijA

�
; ð2:15Þ

where we have shortened JijA ≡ εijkμ
k
A. In the following, we

will thus use the matter action

Smat ¼ −
X
A

Z
dτA

�
mAc2 −

1

2
ðFμνÞADμν

A

�

¼ −
X
A

Z
dt d3x

δA
u0A

h
mAc2 − cqkAð∂kA0ÞA

þ qkAð∂tAkÞA − JijA ð∂iAjÞA
i
; ð2:16Þ

where u0A ¼ ½−ðgμνÞAvμAvνA=c2�−1=2 is the Lorentz factor,
vμA ¼ ðc; viAÞ (with viA the usual three-dimensional velocity).
To obtain the second line of (2.16), we performed a 3þ 1
decomposition by using the relation

dτA ¼ dt
Z

d3x
δA
u0A

: ð2:17Þ

In Eq. (2.16), the moments have naturally been renormalized

by ðqiA; JijA Þ →
ffiffiffiffiffiffi
c3ℏ
Ge2

q
ðqiA; JijA Þ, following the normalization

of Aμ.
Another, fully equivalent, way to obtain the matter action

is to consider that linearity and parity allow us to write two
and only two interactions: cEqiAEi and cBμiABi, where cE
and cB are yet unknown coefficients. Solving for Aμ and
matching the result to the usual values allows one to fix
them and, writing the electric and magnetic fields in terms
of Aμ, one recovers Eq. (2.16).

III. POST-NEWTONIAN COMPUTATION OF THE
ELECTROMAGNETIC DIPOLAR EFFECTS

In a perturbative problem, one can use the Fokker
method to build a Lagrangian equivalent to the original
one. The idea of this method is to vary the Lagrangian with
respect to the fields first (in our case, hμν and Aμ), solve the
field equations in terms of the matter degrees of freedom
(position velocities, etc.), and then inject the solutions into
the original Lagrangian. The resulting (Fokker) Lagrangian
only depends on the matter degrees of freedom, and solving
the associated equations of motion is totally equivalent to
solving for the initial Lagrangian. This procedure is
analogous to the method of integrating out the fields,
commonly used in the effective field theory framework.
We are interested in computing the next-to-leading order

(NLO) of the magnetic dipole effects, which appear at
Oðc−4Þ in the action (as proven below). However, the
electric dipole arises at Oðc−2Þ in the action, so we need to
take into account the next-to-next-to-leading order (NNLO)

electric contributions to be consistent for the NLO mag-
netic effects. This means that we have to push the usual
point-particle sector up to the 2 post-Newtonian order
(2PN) to be coherent with this NNLO computation.3

A. Field equations

Let us start the Fokker procedure and derive the field
equations of the problem. To do so, we vary the total
Lagrangian, composed of Eqs. (2.3), (2.7) and (2.16) with
respect to both the metric gμν (or equivalently, the gothic
metric gμν) and the EM field Aμ. By imposing the
cancellation of the variations with respect to the two fields
δL=δgμν ¼ 0 ¼ δL=δAμ, one finds the following wave
equations verified by the perturbed metric and the EM field:

□hμν ¼ T μν þ Λμν; ð3:1aÞ

□Aμ ¼ Vμ þΦμ: ð3:1bÞ

We have split the source of the wave equations into a
compact part (T μν;Vμ, located on the worldline of the
particles) and a noncompact part (Λμν;Φμ, extending in the
whole space). The compact contributions of the sources of
the d’Alembert equations read

T μν ¼ 16πG
c4

X
A

ffiffiffiffiffiffiffiffi
jgjA

p
u0Av

μ
Av

ν
A

�
mA −

1

2c2
ðFμνÞADμν

A

�
δA;

ð3:2aÞ

Vμ ¼ −
4πGαEM

c4
gμν
X
A

∂λ

�
Dνλ

A

u0A
δA

�
: ð3:2bÞ

We recall that the subscript A indicates that the quantities
are regularized on the location of body A, which means that
they are functions of the time parameter t only. Regarding
the noncompact quantities, one can split Λμν ¼ Λμν

g þ Λμν
EM

into a sum of the purely gravitational contribution Λμν
g and

terms containing EM effects Λμν
EM. The expression of Λμν

g

can be found in e.g. Eq. (24) of [21]. The rest reads

Λμν
EM ¼ 4jgj

αEM

�
FμλFν

λ −
gμν

4
FαβFαβ

�
; ð3:3aÞ

Φμ ¼ −hαβ∂αβAμ − ∂μgαβ∂αAβ − gμνgαλFαβ∂λgβν

þ 1

2
gαβgλρFαμ∂βgλρ: ð3:3bÞ

We recover for Λμν
EM the usual expression of the EM stress-

energy tensor. Note that these expressions are exact in the

3All the computations presented in this section and in the next
one were performed with the use of the xAct library from the
Mathematica software [35].
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sense that we did not perform any truncation in powers of the
perturbed metric. However, we extensively used the gauge
conditions ∂νhμν ¼ 0 and∇μAμ ¼ ∂

μAμ ¼ 0 to derive them.
Inorder to solveEq. (3.1)within thePNapproach,weneed

to perform a 3þ 1 decomposition, i.e. differentiate spatial
from temporal indices so that the factors in c are explicit.
Thus, we express Eq. (3.1) in terms of the perturbed metric
hμν, then truncate the expressions to the cubic order in hμν.
Finally, we separate spatial and temporal indices. Plugging
the expression of Dμν (2.15) into the compact source for Aμ

(3.2b), it appears that V0 starts at Oðc−3Þ and Vi at Oðc−4Þ.
As the d’Alembertian operator does not change the leading
PN order, Aμ will also start at Oðc−3; c−4Þ. Injecting those
orders back into the action, it is clear that the electric effects
start atOðc−2Þ in the action, and themagnetic ones atOðc−4Þ
[see e.g. Eq. (2.16)]. Therefore, we truncate the expressions
toOðc−4Þ for the point-particle part and toOðc−6Þ for theEM
part, which represents the NNLO for both point-particle and
EM effects.

B. Solving the field equations

1. Metric and EM field parametrizations

Once the field equations (3.1) are derived, we have to
solve them in terms of the matter variables. To simplify the
procedure, we expand the metric and EM field in PN
orders, and we parametrize each order with some PN
potentials. Solving for the fields thus turns out to be
equivalent to solving for those elementary potentials. In
order to be able to efficiently check our computation
against the known point-particle derivation, we have
chosen our parametrization in such a way that if one sets
EM effects to zero, we recover the usual PN metric at the
2PN order [36]. The parametrized metric reads

h00 ¼ −
4V
c2

−
4

c4

�
2V2 þWkk

2

�

−
4

c6

�
4X þ 2Zkk þ

8V3

3
þ 2VWkk −

φ2

2

�

þ 6

c8
φ2V þOðc−10Þ; ð3:4aÞ

h0i ¼ −
4Vi

c3
−

8

c5

h
Ri þ VVi

i
þOðc−7Þ; ð3:4bÞ

hij¼−
4

c4

�
Wij−

δij
2
Wkk

�
−
16

c6

�
Zij−

δij
2
Zkk

�
þOðc−8Þ:

ð3:4cÞ

In this parametrization, we find the usual PN potentials
fV; Vi;Wij; X; Ri; Zijg to which we added a new, purely
EM, potential φ. We then chose the parametrization of the
EM field as

A0 ¼
φ

c3
−
Vφ
c5

þ 1

c7

h
σ þ V2φ

i
þOðc−9Þ; ð3:5aÞ

Ai ¼
χi
c4

þ 1

c6

h
ψ i þ 4φVi

i
þOðc−8Þ; ð3:5bÞ

where we introduced the additional EM potentials
fχi; σ;ψ ig. The gauge conditions on the metric and EM
fields ∂νhμν ¼ 0 and ∂

μAμ ¼ 0 induce some relations
between the potentials. At the required order, it becomes

∂tV þ ∂iVi ¼ Oðc−2Þ; ð3:6aÞ

∂tVi þ ∂kWik −
1

2
∂iWkk ¼ Oðc−2Þ; ð3:6bÞ

∂tφ − ∂iχi þ
1

c2

h
3V∂tφþ 3φ∂tV − ∂iψ i

i
¼ Oðc−4Þ:

ð3:6cÞ

2. Computation of the potentials

Inserting the parametrized metric (3.4) and EM field
(3.5) into the field equations (3.1), we obtain a set of wave
equations, to be satisfied by the potentials. Naturally, the
sources for the usual “point-particle” potentials include
now EM contributions. Moreover, regarding the purely EM
potentials fφ; χi; σ;ψ ig, we exploit the freedom on the
definitions of the sources to include all compact terms in
the leading order potentials φ and χi, and the noncompact
terms into the sources of ψ i and σ. The wave equations read

□V ¼ −4πG
X
A

h
ξiAδA þ ξ̄iA∂iδA

i
; ð3:7aÞ

□Vi ¼ −4πG
X
A

ζAviAδA −
ð∂iχj − ∂jχiÞ∂jφ

αEMc4
; ð3:7bÞ

□Wij ¼ −4πG
X
A

λAðvijA − v2Aδ
ijÞδA − ∂iV∂jV þ ∂iφ∂jφ

αEMc2
;

ð3:7cÞ

□φ ¼ −4πGαEM
X
A

ðωAδA þ ω̄i
A∂iδAÞ; ð3:7dÞ

□χi ¼ −4πGαEM
X
A

ðθiAδA þ θ̄ijA∂jδAÞ; ð3:7eÞ

□σ ¼ 4Wij∂ijφ − 4ð∂iχj − ∂jχiÞ∂iVj þ 2∂tχi∂iV

þ 8Vi∂t∂iφ − 2V∂iV∂iφþ 2∂tV∂tφþ 4V∂2tφ;

ð3:7fÞ

□ψ i ¼ 4ð∂iVj − ∂jViÞ∂jφ − 2ð∂iχj − ∂jχiÞ∂jV
þ 4∂tφ∂iV þ 2∂tV∂iφ; ð3:7gÞ
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where the quantities entering the definitions of the sources
are given in Eq. (A1). The sources of the potentials X, Ri,
and Zij entering the metric (3.4) are not displayed here, as
those potentials will play no role hereafter; cf. next section
(nevertheless, the curious reader can refer e.g. toAppendixA
of [37] for their point-particle expressions). The reason why
we chose to put all complicated, noncompact terms into the
sources of ψ i and σ (instead of including them in φ and χi)
is because, as we expect from the Fokker method and
will see in Sec. III C, we do not need to compute all the
potentials in order to derive the Fokker Lagrangian. Notably
those two potentials will play no role, as is clear from
Table I, showing the potentials and their order required
to control the Fokker Lagrangian to NNLO.
The method used to integrate the wave equations (3.7) to

the required PN order with Hadamard partie-finie regu-
larization are well-known and described in e.g. [38]. The
lengthy expressions of the potentials are not very enlight-
ening per se and thus will not be displayed here. Note,
however, that we have explicitly checked that the gauge
conditions (3.6) are satisfied by the computed potentials.

C. Fokker Lagrangian and equations of motion

As mentioned above, the idea of the Fokker method is to
insert the explicit expression of the fields back into the
action. This defines a new Lagrangian, equivalent to the
original one. To do so, we start from the 3þ 1 decomposed
and PN expanded Lagrangian resulting from Sec. III A and
insert the metric (3.4) and EM field (3.5) without (yet)
replacing the potentials by their values. This gives a
Lagrangian, written in terms of potentials, which we
simplify by performing integrations by parts, making use
of the gauge relations and replacing d’Alembertian oper-
ators acting on potentials by the expression of the corre-
sponding sources. Those manipulations result in the
disappearance of the potentials X, Ri, Zij, ψ i, and σ, as
well as the EM parts of the potentials V, Vi, andWij. In the
end, the only potentials required are displayed in Table I.
One can then replace the remaining potentials by their

explicit expressions, and the only step remaining is to
perform integrals of the form

R
d3x Sðx; tÞ. Two types

of integrals appear: compact ones, proportional to (deriv-
atives) of Dirac distributions, and noncompact ones,

extending over all space. The compact sector of the
Lagrangian is computed by regularizing the integrand
using the Hadamard partie-finie regularization [39]. On
the other hand, the noncompact part of the Lagrangian is
treated with the method described e.g. in [40]. However, the
computations have to be performed in the sense of
distributions, and the noncompact terms also induce com-
pact supported integrals, through distributional derivatives.
The simplest example is ∂abð1=r1Þ ¼ 3n̂ab1 r−31 − 4π

3
δabδ1

(see Sec. IV C of [37] and references therein for a
discussion on the computation of those terms). While this
does not appear in the purely point-particle case, it is crucial
to take them into account for the EM part. For instance, the
distributional part of the spatial derivative of φ reads at
leading order ð∂iφÞdistr ¼ − 4π

3
αEMGqi1δ1 þ ð1 ↔ 2Þ. As

those distributional derivatives are proportional to (deriv-
atives) of Dirac distributions, they are computed as the
regular compact-supported integrals.
After computing all the integrals constituting the Fokker

Lagrangian, we obtain a generalized Lagrangian depending
on the dynamical variables of the system. This Lagrangian
depends on positions, velocities, and accelerations, as well
as derivatives of accelerations. We can now apply the
generalized Euler-Lagrange equation which allows us to
derive the accelerations of bodies 1 and 2. Once the
equations of motion are known, we apply some reduction
methods, described in e.g. [41] to obtain a reduced Fokker
Lagrangian L that only depends on positions, velocities,
accelerations, and that is linear in accelerations. As for the
EM moments, the reduced Fokker Lagrangian depends on
(at most) second derivatives of qiA and (at most) first
derivatives of JijA . Both generalized and reduced Fokker
Lagrangians are naturally equivalent, in the sense that they
give the same acceleration and Noetherian quantities.

D. Invariance of the action and Noetherian quantities

Once the Fokker Lagrangian L has been computed, it is
important to verify that it is a scalar under the Poincaré
group. Let us recall the way it has to behave under the ten
Poincaré transformations

spatial translation xi→xiþϵi ⇒ δϵL¼0; ð3:8aÞ
spatial rotation xi→Ri

jðωÞxj ⇒ δωL¼0; ð3:8bÞ

temporal translation t→ tþτ ⇒ δτL¼dL
dt

τ; ð3:8cÞ

Lorentz boost xμ→Λμ
νðβÞxν ⇒ δβL¼dZi

dt
βi; ð3:8dÞ

where Ri
jðωÞ is a rotation matrix of parameter ωi, Λμ

νðβÞ is
a boost matrix of parameter βi, and Zi is an unconstrained
quantity. Using the fact that Dμν, defined in Eq. (2.15), is a
Lorentz tensor (as FμνDμν is a Lorentz scalar), and thus
transforms under a boost as

TABLE I. Required potentials and their absolute PN order
needed to compute the Fokker Lagrangian. The potentials X, Ri,
and Zij entering the metric (3.4) play no role in the following
computation, and thus are not displayed here. Note in particular
that we do not need to derive the EM part of the potentials V, Vi,
and Wij, as they enter at higher than needed PN orders.

V Vi Wij φ σ χi ψ i

0PN ✗ ✗ ✗ ✗ ✗
1PN ✗ ✗ ✗
2PN ✗
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Dμν → Λμ
ρΛν

σDρσ where Λμ
ν ¼

 
1 − βi

c

− βi

c δij

!
þOðβ2Þ;

ð3:9Þ

the quantities entering the Lagrangian behave under infini-
tesimal transformations as

δϵyiA ¼ ϵi; δϵqiA ¼ 0; δϵJ
ij
A ¼ 0; ð3:10aÞ

δωyiA ¼ εijkyjAω
k; δωqiA ¼ εijkqjAω

k;

δωJ
ij
A ¼ ðεiakJajA − εjakJaiA Þωk; ð3:10bÞ

δτyiA ¼ viAτ; δτqiA ¼ _qiAτ; δτJ
ij
A ¼ _JijA τ; ð3:10cÞ

δβyiA ¼ −βitþ βkykA
c2

viA;

δβqiA ¼ −JijA
βj

c2
þ βkykA

c2
_qiA;

δβJ
ij
A ¼ βiqjA − βjqiA þ βkykA

c2
_JijA ; ð3:10dÞ

where the variations under the boost have been evaluated at
the original time t [42]. Injecting thevariations (3.10) into the
expression of the Lagrangian, one recovers indeed the
expected behavior (3.8), with Zi displayed in Eq. (A2).
Now that we have checked that the Lagrangian behaves

nicely under the Poincaré group, one can extract the ten
Noetherian quantities, corresponding to the ten transforma-
tions: the Hamiltonian H, associated with the temporal
translation, the linear and angular momenta Pi and J i,
associated, respectively, with the spatial translation and
rotation, and the center-of-mass integral Gi, associated with
the Lorentz boost. Following [41], we define the generalized
moments4

πiA ≡ ∂L
∂viA

−
d
dt

�
∂L
∂aiA

�
and θiA ≡ ∂L

∂aiA
; ð3:11Þ

where the acceleration is to be replaced by its on-shell value.
The Noetherian quantities are then defined as [41]

H≡X
A

½πkAvkA þ θkAa
k
A� − L; ð3:12aÞ

Pi ≡X
A

πiA; ð3:12bÞ

J i ≡ εijk
X
A

½yjAπkA þ vjAθ
k
A�; ð3:12cÞ

Gi ≡ −Zi −
X
A

�
θiA −

1

c2
ðyiAπkAvkA þ yiAθ

k
Aa

k
A þ viAθ

k
Av

k
AÞ
�
:

ð3:12dÞ

Note here an important point: we dubbed those quantities as
“Noetherian” and not as “conserved.” Indeed, due to the
presence of the nondynamical moments fqiA; JijAg, they are
not conserved. If the dynamics of the EM moments were to be
fixed (for instance, by setting the magnetic moment to be
proportional to the spin of the star, as done in [11]), the
definitions of the Noetherian quantities (3.12) would bear extra
pieces, corresponding to this additional dynamics. In this case,
those newlydefined quantitieswould be conserved.However, in
our case, the EM moments are totally free, but obey nontrivial
transformations under the Poincaré group (except under spatial
translations), as is clear fromEq. (3.10).Therefore (except for the
linear momentum Pi), the Noetherian quantities are not con-
served but rather obey flux-balance equations, namely

dH
dt

≡ −F ;
dPi

dt
≡ 0; ð3:13aÞ

dJ i

dt
≡ −ϒi;

dGi

dt
≡ Pi −Ψi; ð3:13bÞ

where the fluxes are given by (we recall thatL contains at most
second derivatives of qiA and first derivatives of JijA )

F ¼ ∂L
∂t

¼
X
A

�
_qiA

∂L
∂qiA

þ q̈iA
∂L
∂ _qiA

þ ⃛qiA
∂L
∂q̈iA

þ _JijA
∂L

∂JijA
þ ̈JijA

∂L

∂_JijA

�
; ð3:14aÞ

ϒi ¼ −δEMω L ¼ εijk
X
A

�
qjA

∂L
∂qkA

þ _qjA
∂L
∂ _qkA

þ q̈jA
∂L
∂q̈kA

þ 2JjaA
∂L
∂JkaA

þ 2_JjaA
∂L

∂_JkaA

�
; ð3:14bÞ

Ψi ¼ δEMβ L ¼ 1

c2
X
A

�
∂L
∂qkA

ð _qkAyiA − JkiA Þ þ
∂L
∂ _qkA

dð _qkAyiA − JkiA Þ
dt

þ ∂L
∂q̈kA

d2ð _qkAyiA − JkiA Þ
dt2

�

þ
X
A

�
∂L
∂JabA

�
δiaqbA − δibqaA þ

_JabA yiA
c2

�
þ ∂L

∂_JabA

�
δia _qbA − δib _qaA þ

̈JabA yiA þ _JabA viA
c2

��
: ð3:14cÞ

4Recall that our Lagrangian depends on positions and velocities, but also on accelerations.
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Note that if we take the EMmoments to be constant in time,
then the Hamiltonian flux F vanishes, as expected.
Naturally, the flux-balance equations (3.13) have been
explicitly checked per se, but also retrieved from the
expression of the acceleration.5 Explicit expressions for
Pi and Gi are given in Eqs. (A4) and (A6) (the expressions
forH, J i and associated flux are given once reduced to the
center-of-mass frame).

E. Center-of-mass reduction

To reduce our expressions in the center-of-mass (CoM)
frame, we first have to properly define it, which is done by
finding an appropriate coordinate change ðyi1; yi2Þ →
ðxi; Xi

CoMÞ in which the position of the CoM, Xi
CoM,

can be set to vanish, and xi ≡ yi1 − yi2. We will use the
canonical combinations m ¼ m1 þm2, ν ¼ m1m2=m2,
δ ¼ ðm1 −m2Þ=m, r ¼ jxij, and ni ¼ xi=r, and keep the
EM moments untouched for simplicity. As the center-of-
mass integral Gi is not conserved, one cannot simply identify
as done usually mXi

CoM ¼ Gi, as setting Xi
CoM ¼ 0 would

violate the flux-balance equations (3.13). Instead, we have to
setmXi

CoM ¼ Gi þ R dtΨi, whose cancellation is compatible
with the flux-balance equations, together with the usual
condition Pi ¼ 0. This yields the coordinate change

yi1 ¼
m2

m
xi þ zipp þ ziEM −

Z
dt
Ψi

m
and

yi2 ¼ −
m1

m
xi þ zipp þ ziEM −

Z
dt
Ψi

m
; ð3:15Þ

where the point-particle sector, zipp, is to be found e.g. in
Eq. (B4) of [43] and the EM sector is given at the required
order by

ziEM ¼ αEMG
2mr3c4

h
δ
�
ðq1q2Þ − 3ðnq1Þðnq2Þ

�
xi

þ ðxq2Þqi1 − ðxq1Þqi2
i
; ð3:16aÞ

Ψi ¼ αEMG
r3c4

��
1þ δ

2
ð _q1q2Þ þ 3

1 − δ

2
ðn _q1Þðnq2Þ

þ 3δ

2r
ðq1q2ÞðnvÞ −

3

r
Jab1 naqb2

�
xi −

δ

2
ðq1q2Þvi

þ
�
ðx _q2Þ þ

1þ δ

2
ðvq2Þ − 3

1þ δ

2
ðnq2ÞðnvÞ

�
qi1

þ Jij1 q
j
2 þ ð1 ↔ 2Þ

�
; ð3:16bÞ

where parentheses are shortcuts for the scalar product, e.g.
ðq1q2Þ≡ qk1q

k
2. Let us note that, as expected, the center-of-

mass position can be locatedout of the ðxi; viÞplan, due to the
EM force.
Although it may seem dangerous, the nonlocality (in

time) present in Eq. (3.15) is harmless. Indeed, our theory
does not depend on y1 or y2 alone, but always on the
relative separation y1 − y2, which is purely local. Therefore
(and we have naturally explicitly checked it), all quantities
of interest (Lagrangian, acceleration, Noetherian quantities,
and associated flux) are purely local when expressed in the
CoM frame. Note also that, as a check, we have verified that
the quantities reduced in the CoM frame agree with those
computed from the Lagrangian reduced in the CoM frame.
The expressions for H, J i, and associated flux are
displayed in the Appendix A 2.

IV. TOY MODEL FOR CIRCULAR ORBITS
AND NUMERICAL APPLICATIONS

A. Constant and aligned moments: Quasicircular orbits

In this project, we are interested in the impact of the
magnetic dipoles on the motion of the two companions.
Since our computation does not constrain the dynamics of
the EM dipoles, we constrain the electric and magnetic
dipoles in the following way: we set qi1 ¼ qi2 ¼ 0 and
assume that the magnetic dipoles are constant dJijA=dt ¼ 0

and both perpendicular to ni and vi at a given initial time.
By doing so, the motion is planar at all time since ϒi

vanishes, and thus J i ∝ ðn × vÞi is conserved. This allows
us to define the dimensionless constant magnetic dipole
directed along the normal to the orbital plane l

μ̃iA ≡Gm2ϵijkJ
jk
A ¼ μ̃Ali: ð4:1Þ

In this configuration, the EM sector of the relative accel-
eration reads to NLO

aEM ¼ 3G3m3αEMμ̃1μ̃2
c4νr4

	
1þ 1

c2

�
ð2ν − 1Þv2 þ 5ν

2
ðnvÞ2

−
�
8

3
þ 2ν

�
Gm
r

�

n: ð4:2Þ

Now we further simplify the model by assuming a
quasicircular motion. In this case, the relative acceleration
and all relevant quantities of our system can be expressed
uniquely in terms of the orbital frequencyω, acirc ¼ −rω2n,
where at the NLO, after posing γ ¼ Gm=ðrc2Þ, we find

ω2 ¼ Gm
r3

	
1þ ð−3þ νÞγ þ

�
6þ 41

4
νþ ν2

�
γ2

−
3αEMμ̃1μ̃2

ν
γ2
�
1þ

�
−
8

3
þ 3ν

�
γ

�

: ð4:3Þ5For instance, one is able to reconstruct the Hamiltonian flux-

balance equation from the expression of m1vi1a
i
1 þm2vi2a

i
2.
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Next, we introduce the gauge invariant PN variable

x ¼
�
Gmω

c3

�
2=3

ð4:4Þ

and invert the relation (4.3) to obtain the value of γ in terms
of x. To the NLO, this relation reads

γ ¼ x

	
1þ

�
1 −

ν

3

�
xþ

�
1 −

65

12
ν

�
x2 þ αEMμ̃1μ̃2

ν

× x2
�
1þ

�
13

3
þ 2ν

3

�
x

�

: ð4:5Þ

Finally, we express the conserved energy and angular
momentum as functions of x

Ecirc ¼−
mνc2x

2

	
1þ

�
−
3

4
−

ν

12

�
xþ

�
−
27

8
þ 19

8
ν−

ν2

24

�

× x2þ 2αEMμ̃1μ̃2
ν

x2
�
1þ

�
25

6
þ 5ν

6

�
x

�

; ð4:6aÞ

J circ
i ¼ Gm2ν

c
ffiffiffi
x

p li

	
1þ

�
3

2
þ ν

6

�
xþ

�
27

8
−
19

8
νþ ν2

24

�
x2

−
2αEMμ̃1μ̃2

ν
x2
�
1þ

�
10

3
þ 2ν

3

�
x

�

: ð4:6bÞ

Of course, we recover the well-known expressions for the
circular energy and angular momentum to the 2PN order
for point particles.
In order to define proper orbits beyond our simple

approximation, one should fix the dynamical evolution
of the EM moments. For instance, one can follow the spirit
of [10] and set the magnetic dipole to be directed along the
spin of the stars, which seems to be the case in physically
relevant scenarii. As the dynamics of the spins is fully
fixed, this would allow one to properly define the trajecto-
ries of the system. Fixing the dynamics of the EMmoments
could bear interesting and nontrivial phenomenological
implications. For instance, in the case where the magnetic
dipoles are constant but not aligned, ϒi is nonzero which
means that J i is no longer conserved and thus the motion is
no longer planar. In such a configuration, the 1PN coupling
between the EM and gravitational interactions could also
lead to orbital decay, with strong imprints on the gravita-
tional waveform. Fixing the dynamics of the EM dipoles is
left for future work.

B. Numerical applications

In order to estimate the relative impact of the EM effects
with respect to the usual gravitational ones, let us focus
in more detail on the quasicircular ansatz developed in
the previous section. To do so, we consider a system of
two white dwarfs, with physical properties given in Table I

of [11], that we partially reproduce in Table II. As for the
magnitude of the (dimensionful) magnetic dipole, we
follow [44] and take

jμiAj ¼
2π

μ0
BAR3

A; ð4:7Þ

where RA is the equatorial radius of the star and BA is the
magnitude of the magnetic field at its surface.
One can first compare the leading EM effect to the purely

2PN contribution in the frequency (4.3), in a gauge-
independent manner. With the numerical values of
Table II, we find

jω2
EMj ≃ 9jω2

2PNj; ð4:8Þ

indicating that the leading EM effect contributes more to
the dynamics than the purely 2PN contribution. Pushing
our model further, we have considered three configurations
with gravitational frequencies of, respectively, 10−1, 10−2,
and 10−3 Hz (as we specified to circular orbits, those
correspond to twice the orbital frequencies of the systems
considered). Those configurations have been chosen fol-
lowing [11] and probe the LISA frequency range. For each
of the configurations, we computed the magnitude of the
purely EM effect in the energy (4.6a) and angular momen-
tum (4.6b), and compared it to the point-particle 1PN and
2PN coefficients. The results, displayed in Table III, show
that, for all configurations, the purely EM effects is weaker
than the 1PN point-particle one, but stronger than the 2PN

TABLE III. Comparison between the EM effects and the usual
PN corrections for point particles, for the three configurations
studied. Here, we contrast the EM to the purely 1PN and 2PN
coefficients entering the energy and angular momentum (4.6).

Configuration 1 Configuration 2 Configuration 3

jEEM=E1PNj 3.2 × 10−3 6.8 × 10−4 1.5 × 10−4

jEEM=E2PNj 16 16 16
jJ i

EM=J
i
1PNj 1.6 × 10−3 3.4 × 10−4 7.4 × 10−5

jJ i
EM=J

i
2PNj 16 16 16

TABLE II. Numerical values taken for the physical parameters
of each star, reproduced from [11]. mA is the mass of the star A,
RA its equatorial radius, and BA the magnitude of the magnetic
field at its surface.

Parameter Unit
Value for the
first star

Value for the
second star

mA M⊙ 1.2 0.3
RA km 6.0 × 103 15 × 103

BA G 1.0 × 109 1.0 × 109

ELECTROMAGNETIC FIELDS IN COMPACT BINARIES: A … PHYS. REV. D 108, 024020 (2023)

024020-9



one, corroborating the numerical results for the frequency
(4.8). This clearly indicates that taking into account the EM
effect will be important for both the calibration of the LISA
instrument6 and the characterization of galactic binaries.
Note that those numbers are in agreement with the con-
clusions of [11] and reinforce the motivation for a proper
inclusion of the dynamics of the EM moments.

V. SUMMARY AND CONCLUSION

The inclusion of environmental effects is of prime
importance for the detection and characterization of sources
that will be resolvable by a future gravitational-wave
detector, such as LISA or ET. Among those effects, the
intense magnetic fields born by white dwarfs play a major
role, as double white dwarfs will be used for calibrating
LISA. But, to our knowledge, there existed no proper post-
Newtonian treatment including electromagnetic effects
beyond electric charges. This work filled this gap by
constructing an action describing the full electromagnetic
structure of a celestial body. The kinetic sector of this action
is given by the usual gauged Einstein-Hilbert and Maxwell
terms, respectively, Eqs. (2.3) and (2.7), and the matter
action is constructed in the spirit of effective theories: it
consists of a point-particle ansatz Eq. (2.8), dressed up with
a set of electromagnetic moments Eq. (2.10).
Specifying it to the dipolar order by matching the

effective matter action as Eq. (2.16), we obtained a
Fokker Lagrangian at the NNLO order, from which we
derived the acceleration and Noetherian quantities and
reduced them in the center-of-mass frame. However, as
the dynamics of the EM moments is unconstrained, the
Noetherian quantities are not conserved, but obey the flux-
balance equations (3.13). In order to have an idea of the
relative strength of the EM effect for realistic systems of
double white dwarfs, we imposed a toy-model quasicircular
orbit with constant magnetic moments normal to the orbital
plane and used values displayed in Table II. In this
configuration, the Noetherian quantities are conserved
and the motion is planar. We found that the magnetic
correction to the frequency, energy, and angular momentum
are smaller than the 1PN effect for point particles, but larger
than the 2PN one; see Table III. It may thus be important to
take magnetic effects into account for the detection and
characterization of sources by LISA.
This work focused on the Noetherian quantities, and the

natural next step would thus be to study the dissipative
sector and to derive the EM corrections to the gravitational
phase and amplitude. Nevertheless, the toy-model we used

for the orbit is valid only in the restrictive case where the
magnetic dipoles are normal to the orbital plane. If the
ansatz we used is fine enough to provide numerical
estimates, extracting physical behavior naturally calls for
a finer modeling of the orbit, allowing for any possible
direction of the moments. In such a generic configuration,
we can expect both orbital decay and precession happening
at a relative 1PN order (as the leading order magnetic force
is conservative). This would require the knowledge of the
dynamics for the EM moments, which can be done by
including the spins of the two stars. This implementation
that needs to be achieved before turning to the dissipative
sector is left for future work.
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APPENDIX: LENGTHY EXPRESSIONS

1. Potential definitions

The explicit expressions entering the wave equa-
tions (3.7) read to consistent order

ξA ¼ mA

�
1þ 3v2A − 2VA

2c2
þ φ2

A − 2ðWEM
kk ÞA

αEMc6

�
−
JabA ð∂aχbÞA

c6

þ qaA
c4

�
−ð∂aφÞA þ 1

c2

�
ð∂aφÞA

�
2VA −

3

2
v2A

�

þ ð∂tχaÞA þ ð∂aVÞAφA

��
; ðA1aÞ

ξ̄iA ¼ qiAφ
c4

�
1 −

ð4V þ 2VA þ v2AÞ
2c2

�
; ðA1bÞ

ζA ¼ mA −
qaAð∂aφÞA

c4
; ðA1cÞ

λA ¼ mA; ðA1dÞ

ωA ¼ mAφA

αEMc2

�
1þ 3v2A − 4VA

2c2

�
−
4Va

A _q
a
A

c4
; ðA1eÞ

6Note that the numerical estimate (4.8), as well as the second and fourth lines of Table III, is independent of the frequency, and thus
holds also for ET.
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ω̄i
A ¼ qiA

�
1−

2Vþ2VAþv2A
2c2

þv2Að4ðV−3VAÞ−v2AÞþ4ð2VVAþV2
Aþ8vaAV

a
A−4WkkÞ

8c4

�
þ 4

c4
ðviAqaAVaþ JiaA V

aÞ; ðA1fÞ

θiA ¼ _qiA

�
1þ 1

c2

�
VA −

v2A
2

��
−
qiA
c2

∂t

�
VA þ v2A

2

�
−
4mAviAφA

αEMc2
; ðA1gÞ

θ̄ijA ¼ ðJijA − qiAv
j
AÞ
�
1þ 4V − 2VA − v2A

2c2

�
; ðA1hÞ

where WEM
ij is defined by Wij ¼ Wpp

ij þWEM
ij =ðαEMc4Þ.

2. Noetherian quantities

The complete expressions of theNoetherian quantities and
associated fluxes at the required PN order are quite large and
not always very enlightening. Therefore,wewill only present
themhere below up to theOðc−4Þ order, and let the interested
reader refer to the Supplemental Material [31] for their

full-length expressions. We recall that in our notation,
parentheses denote the scalar product, e.g. ðv1v2Þ≡ vk1v

k
2.

The quantity Zi entering in the boosted Lagrangian (3.8)
is given by Zi ¼ Zi

1 þ Zi
2 where

Zi
1 ¼ Zi

1;pp þ
αEM
c4

Zi
1;EM;LO þ αEM

c6
Zi
1;EM;NLO; ðA2Þ

where

Zi
1;pp ¼ −m1yi1 þ

m1

2c2

�
v21 þ

Gm2

r12

�
yi1 þ

m1

c4

�
v41
8
yi1 þ

Gm2

4r12
ð2v21 − 7ðv1v2Þ þ ðv1n12Þ2 − ðv1n12Þðv2n12ÞÞyi1

þ Gm1

r12

�
v21 −

ðv1n12Þ2
4

�
yi1 −

G2m1m2

2r212
yi1 −

Gm2ðv1n12Þ
4

vi1

�
þ ð1 ↔ 2Þ; ðA3aÞ

Zi
1;EM;LO ¼ G

2r312

h
ðq2y1Þqi1 − ðq1y1Þqi2 − ðq1q2Þyi1 þ 3ðq1n12Þðq2n12Þyi1

i
; ðA3bÞ

and Zi
1;EM;NLO is too long to be displayed here, but can be found in the Supplemental Material [31]. The quantity Zi

2 is
naturally given by Zi

1 under the exchange of the particles.
The linear momentum Pi (3.12b) reads

Pi ¼ Pi
pp þ

αEM
c4

Pi
EM;LO þ αEM

c6
Pi

EM;NLO; ðA4Þ

where the point-particle sector, Pi
pp, is given e.g. in Eq. (4.3) of [41],

Pi
EM;LO ¼ G

r312

�
3

2

�
ðn12q1Þðv1q2Þ þ ðn12q2Þðv1q1Þ − ðn12v1Þðq1q2Þ − 5ðn12q1Þðn12q2Þðn12v1Þ

þ r12
3

ð _q1q2Þ þ ðy12 _q1Þðn12q2Þ þ 2Jab1 qa2n
b
12

�
ni12

−
3

2
ððq1q2Þ − ðn12q1Þðn12q2ÞÞvi1 −

1

2
ðy12q2Þ _qi1 þ Jia1 q

a
2

þ
�
ðy12 _q2Þ þ ð3ðn12q2Þna12 − qa2Þðva1 þ va2Þ

� qi1
2

�
þ ð1 ↔ 2Þ; ðA5Þ

and Pi
EM;NLO is displayed in the Supplemental Material [31]. We recall that no flux is associated with the linear momentum.
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Similarly, the center-of-mass integral Gi (3.12b) reads

Gi ¼ Gi
pp þ

αEM
c4

Gi
EM;LO þ αEM

c6
Gi
EM;NLO; ðA6Þ

where the point-particle sector, Gi
pp, is given e.g. in Eq. (4.5) of [41],

Gi
EM;LO ¼ G

2r312

h
ðq1q2Þyi1 − 3ðn12q1Þðn12q2Þyi1 − ðy12q2Þqi1

i
þ ð1 ↔ 2Þ; ðA7Þ

and Gi
EM;NLO is to be found in the Supplemental Material [31]. The associated flux, Ψi, is displayed at leading order in

Eq. (3.16b), and its NLO is stored in the Supplemental Material [31].
In the center-of-mass frame and a 2PN relative, the Hamiltonian (3.12a) is given by

H ¼ Hpp þ
αEM
c2

HEM;LO þ αEM
c4

HEM;NLO þ αEM
c6

HEM;NNLO; ðA8Þ

where Hpp is given e.g. in Eq. (3.1) of [43],

HEM;LO ¼ −
G
r3

h
3ðnq1Þðnq2Þ − ðq1q2Þ

i
; ðA9aÞ

HEM;NLO ¼ −
G
4r3

h
ð3ν − 1Þv2ðq1q2Þ þ 3ð1 − νÞv2ðnq1Þðnq2Þ − 2νðvq1Þðvq2Þ

− 3νðq1q2ÞðnvÞ2 − 15νðnq1Þðnq2ÞðnvÞ2 þ 12νðnq1Þðvq2ÞðnvÞ
þ ðx _q1Þðx _q2Þ þ r2ð _q1 _q2Þ þ 2Jab1 Jab2 þ 6Jab1 Jac2 nbnc − 4_Jab1 qa2x

b
i

þ G2m
2r4

�
7ðnq1Þðnq2Þ − 2ðq1q2Þ þ

1 − δ

2
ðnq1Þ2

�
þ ð1 ↔ 2Þ; ðA9bÞ

and HEM;NNLO is to be found in the Supplemental Material [31]. The associated flux reads

F ¼ αEM
c2

FLO þ αEM
c4

FNLO þ αEM
c6

FNNLO; ðA10Þ

with

FLO ¼ G
r3
½3nab − δab�

dðqa1qb2Þ
dt

; ðA11aÞ

FNLO ¼ G
4r3

��
2νvab þ 12νðnvÞnavb − 3ð1 − νÞv2nab þ ð1 − 3νÞv2δab

þ 3νðnvÞ2ð5nab þ δabÞ
� dðqa1qb2Þ

dt
þ
�
xab − r2δab

� dð _qa1 _qb2Þ
dt

þ ð1þ δÞðxavb þ xbva − 3ðxvÞnab − ðxvÞδabÞ
dð _qa1qb2Þ

dt

þ 3ð1 − δÞ
�
3ðnvÞna − va

� dðJak1 qk2Þ
dt

þ 4xa
dð_Jak1 qk2Þ

dt
− 2
�
3nab − δab

� dðJak1 Jbk2 Þ
dt

�

−
G2m
4r3

�
ð1 − δÞnab

dðqa1qb1Þ
dt

þ 2
�
7nab − 2δab

� dðqa1qb2Þ
dt

�
þ ð1 ↔ 2Þ; ðA11bÞ

and FNNLO is stored in the Supplemental Material [31].
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Last, the angular momentum is given in the center-of-mass frame by

J i ¼ J i
pp þ

αEM
c4

J i
EM;LO þ αEM

c6
J i

EM;NLO; ðA12Þ

where J i
pp is given e.g. in Eq. (3.2) of [43],

J i
EM;LO ¼ G

r2

��
1 − 3ν

2
ðq1q2Þ −

3ð1 − νÞ
2

ðnq1Þðnq2Þ
�
εijknjvk þ

�
νðvq2Þ − 3νðnq2ÞðnvÞ þ

1 − δ

4
ðx _q2Þ

�
εijknjqk1

þ 1þ δ

4
ðxq2Þεijknj _qk1 þ

1 − δ

2
εijknjμka1 qa2

�
þ ð1 ↔ 2Þ; ðA13Þ

and J i
EM;NLO is to be found in the Supplemental Material [31]. The associated flux reads

ϒi ¼ αEM
c2

ϒi
LO þ αEM

c4
ϒi

NLO þ αEM
c6

ϒi
NNLO; ðA14Þ

with

ϒi
LO ¼−

3G
r3

ðnq2Þεijknjqk1þð1↔ 2Þ; ðA15aÞ

ϒi
NLO ¼ G

r3

�
3

2

�
ð1 − νÞv2ðnq2Þ − 5νðnq2ÞðnvÞ2 þ 2νðvq2ÞðnvÞ þ

1 − δ

6
ð3ðx _q2ÞðnvÞ − rðv _q2ÞÞ

�
εijknjqk1

þ
�
3νðnq2ÞðnvÞ − νðvq2Þ −

1 − δ

4
ðx _q2Þ

�
εijkvjqk1 −

1þ δ

4
ðxq2Þεijkvj _qk1

þ r
2

�
1þ δ

2
ð3ðnq2ÞðnvÞ − ðvq2ÞÞ − ðx _q2Þ

�
εijknj _qk1

þ 3

�
1 − δ

2
ðnvÞqa2 − nbJab2

�
εijknjJka1 − rqa2εijkn

j_Jka1 −
1 − δ

2
qa2εijkv

jJka1

�
ðA15bÞ

þG2m
2r4

½14ðnq2Þ þ ð1 − δÞðnq1Þ�εijknjqk1 þ ð1 ↔ 2Þ; ðA15cÞ

and ϒi
NNLO is stored in the Supplemental Material [31].

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna arXiv:1702.00786.

[3] The ET Collaboration (2022), https://www.et-gw.eu/.
[4] D. Hils, P. L. Bender, and R. F. Webbink, Gravitational

radiation from the galaxy, Astrophys. J. 360, 75 (1990).
[5] S. E. Timpano, L. J. Rubbo, and N. J. Cornish, Character-

izing the galactic gravitational wave background with LISA,
Phys. Rev. D 73, 122001 (2006).

[6] L. Ferrario and D. Wickramasinghe, Modelling of isolated
radio pulsars and magnetars on the fossil field hypothesis,
Mon. Not. R. Astron. Soc. 367, 1323 (2006).

[7] L. Ferrario, D. Wickramasinghe, and A. Kawka, Magnetic
fields in isolated and interacting white dwarfs, Adv. Space
Res. 66, 1025 (2020).

[8] Z. Zhu, A. Li, and L. Rezzolla, Tidal deformability and
gravitational-wave phase evolution of magnetized compact-
star binaries, Phys. Rev. D 102, 084058 (2020).

[9] J.-S. Wang, F.-K. Peng, K. Wu, and Z.-G. Dai, Pre-merger
electromagnetic counterparts of binary compact stars,
Astrophys. J. 868, 19 (2018).

[10] A. Bourgoin, C. Le Poncin-Lafitte, S. Mathis, and M.-C.
Angonin, Dipolar magnetic fields in binaries and gravita-
tional waves, in Semaine de l’astrophysique Française 2021
(2021), arXiv:2109.06611.

[11] A. Bourgoin, C. Le Poncin-Lafitte, S. Mathis, and M.-C.
Angonin, Impact of dipolar magnetic fields on gravitational
wave strain by galactic binaries, Phys. Rev. D 105, 124042
(2022).

[12] A. Bourgoin, E. Savalle, C. Le Poncin-Lafitte, S. Mathis,
M.-C. Angonin, and A. Strugarek, Impact of magnetism on
gravitational waves emitted by compact galactic binaries in

ELECTROMAGNETIC FIELDS IN COMPACT BINARIES: A … PHYS. REV. D 108, 024020 (2023)

024020-13

https://doi.org/10.1103/PhysRevLett.116.061102
https://arXiv.org/abs/1702.00786
https://www.et-gw.eu/
https://www.et-gw.eu/
https://www.et-gw.eu/
https://doi.org/10.1086/169098
https://doi.org/10.1103/PhysRevD.73.122001
https://doi.org/10.1111/j.1365-2966.2006.10058.x
https://doi.org/10.1016/j.asr.2019.11.012
https://doi.org/10.1016/j.asr.2019.11.012
https://doi.org/10.1103/PhysRevD.102.084058
https://doi.org/10.3847/1538-4357/aae531
https://arXiv.org/abs/2109.06611
https://doi.org/10.1103/PhysRevD.105.124042
https://doi.org/10.1103/PhysRevD.105.124042


quasi-circular orbits, in Journées 2022 de la Société
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