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We develop approximate “analytic-kludge” waveforms to describe the inspiral of a stellar-mass compact
object into a supermassive compact object in an extreme mass ratio inspiral (EMRI) scenario. The
deformability of the supermassive compact object is characterized by a dimensionless quantity called
the tidal Love number (TLN). Our analysis shows that, up to the leading order of the mass ratio, the
conservative dynamics of the EMRI are not affected by tidal interaction, and the tidal effect is only present
in the induced quadrupole moment. We calculate the energy and angular momentum fluxes and obtain
leading order corrections to the orbital evolution equations. By comparing the waveforms with and without
tidal interaction, we demonstrate that even a small TLN can produce significant differences in the
waveforms, which can be detected by space-borne detector LISA. Finally, using the Fisher information
matrix method, we perform parameter estimation for the TLN and find that the precision can reach the level
of 10−4 in suitable scenarios.
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I. INTRODUCTION

The inspiral of stellar-mass compact objects (COs) into
supermassive compact objects (SMCOs) at the center of
galaxies presents an especially interesting gravitational-
wave (GW) source for future space-based GW detectors
such as LISA [1], TainQin [2], and Taiji [3]. These events
are commonly known as extreme-mass-ratio inspirals
(EMRIs) since the ratio of CO mass to SMCO mass is
typically 10−4 − 10−7. Due to the emission of GWs and the
extreme mass ratio, these systems inspiral slowly, complet-
ing 104–105 cycles in the frequency band of those space-
based detectors. As a result, the GW signals from EMRIs
contain a wealth of information about the surroundings of
the SMCOs. Detection of these signals would not only help
answer key astrophysical questions [4,5], but also provide
new insights into fundamental physics, such as tests of
general relativity (GR), the nature of black holes (BHs), and
more [6–9].
An efficient way to distinguish between BHs and exotic

compact objects (ECOs) [10] and test GR is to measure the
effect of tidal deformability on the GWs emitted by
compact binaries. In a compact binary, each object expe-
riences a tidal field generated by the gravitational field of its
companion, which modifies the dynamical evolution of the
system and the GWemission [11]. In the adiabatic limit, the

imprint of the tidal interaction on the GW waveform is
encoded by the tidal Love numbers (TLNs) [12], which are
constant quantities sensitive to the internal structure of the
object. So far, TLN measurements have successfully con-
strained the equation of state of neutron stars [13,14].
A crucial fact concerning GW observations is that the

TLNs of a BH in GR are precisely zero. This was first shown
for Schwarzschild BHs [15–17], the same result was then
shown to apply to Kerr BHs with slow rotation [18–20] and
finally with arbitrary spin by different groups [21–26].
However, the TLNs are generically not zero for ECOs and
for BHs in gravities alterative to GR [10,27–29]. Thus, if one
measures a nonvanishing TLN in GWs from compact
binaries, which may indicate the existence of ECO or the
deviation of GR. At present, the measurements of the TLNs
have been employed to analyze the GWevents observed by
LIGO and Virgo [30,31], and the measurement capability by
LISA for comparable-mass binaries has also been stud-
ied [27,32].
Recently, by working within the post-Newtonian (PN)

approximation, Pani et al. [33] (and also [34]) found that
the TLN of the central object of EMRIs affects the
gravitational waveform at the leading order of the mass
ratio, which has the equal contribution to the phase as the
ordinary radiation-reaction term. This means the space-
based GW detectors such as LISA could place very
stringent constraints on the TLNs of the central object.
Furthermore, Ref. [35] conducted a more in-depth analysis
for the estimation of the measurement of the tidal deform-
ability of a SMCO through an EMRI detection by LISA.
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The authors considered a hybrid “Teukolskyþ PN” wave-
form where tidal corrections to the energy flux are
introduced with their corresponding PN terms and the
authors found the TLN of the central SMCO can be
measured at the level of 10−3 if the central object is highly
spinning.
It is well established that accurately detecting and

analyzing extreme mass-ratio inspirals (EMRIs) requires
the construction of precise waveform models, which are
typically generated using strong-field perturbation theory.
However, such models can be computationally expensive
[36–38]. To expedite the process, many EMRI parameter
estimation studies utilize “kludge” models [39–41]. The
first kludge model proposed by Barack and Cutler is known
as the “analytic kludge” (AK) model. In this model, the
compact object moves in a quasi-Keplerian ellipse, with its
orbital parameters slowly evolving due to radiation reac-
tion. The waveform is then generated using the well-known
Peter-Mathews formula under the quadrupole approxima-
tion [42,43]. Although the calculation is done under the PN
approximation, the AK model can still capture important
features of accurate EMRI waveforms, including the
relativistic precession of the orbital plane and pericenter.
In this paper, we would like to study the tidal deform-

ability of the SMCO of an EMRI within the framework of
AK model [39]. We will study how the tidal deformability
of the SMCO caused by the CO modifies the evolution
equations of various orbital parameters. As we will show
that in the extreme-mass-ratio case, this is reflected only in
the modification to the fluxes of energy and angular
momentum of the gravitational radiation. Furthermore, to
quantify the effects of the TLN on the waveforms, we will
compute the mismatches between waveforms from EMRIs
with and without the tidal interaction. Finally, we will
perform parameter estimation of the TLN for the SMCO
with space-borne GW detectors LISA using the Fisher
information matrix method.
The paper is organized as follows. InSec. II,wepresent the

derivation of the modified AK waveforms when taking the
tidal interaction between the CO and SMCO into account. In
Sec. III, we study the comparison of waveforms with and
without the tidal interaction and obtain the constraint on the
TLN of the SMCO through the detection of the EMRIs by
LISA. Finally,wegive a brief summary inSec. IV.The details
of the Fourier decomposition of the tidal-induced inertial
tensor is given inAppendixA. Throughout this paper, we use
the geometric units, where c ¼ 1 ¼ G.

II. EMRI WAVEFORMS

A. Conservative dynamics in the adiabatic limit

For an EMRI system consists of a CO with massm and a
SMCO with mass M, satisfying M ≫ m, up to the leading
order of the mass ratio q ¼ m=M, we have the total mass
mtot ¼ M þm ≃M, the reduced mass μ ¼ mM

mþM ≃m and

the symmetric mass ratio η ¼ mM=ðmþMÞ2 ≃ q.
According to the analysis in [33], due to the extreme mass
ratio only the TLN of the central object of the EMRI affects
the waveform and the one of the CO can be neglected. Thus,
in this work we only consider the SMCO is deformable.
In Newtonian gravity, the tidal field felt by the SMCO is

characterized by the tidal moment, which is defined as
coefficients in the Taylor expansion of the external poten-
tial about the center-of-mass position [44]. Up to quadru-
pole order we have the tidal moment

Gij
2 ¼ −∂i∂jUext ¼

3m
r3

�
ninj −

1

3
δij

�
; ð1Þ

whereUext is the external potential felt by the SMCO and is
sourced by the CO. Moreover, xi is the relative position

vector between the SMCO and the CO, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
and

ni ¼ xi=r. The tidal deformation of the SMCO is described
at leading order by the mass quadrupole moment

Qij
2 ¼

Z
d3yρ

�
yiyj −

1

3
δijykyk

�
; ð2Þ

where ρðt; yiÞ is the mass density and yi is the displacement
from the SMCO’s center-of-mass position. In the absence
of the nonuniform gravitational field from the companion,
viz., the CO, the SMCO would be spherical and its
quadrupole moment would vanish. In the adiabatic limit,
when the response timescale of the SMCO is much less
than the timescale on which the tidal field changes, the
induced quadrupole moment will be given [44]

Qij
2 ¼ λGij

2 ; ð3Þ

where the constant λ is called the tidal deformability. This is
related to a dimensionless constant by [33],

λ ¼ 2

3
M5k; ð4Þ

where k is the well-known TLN.1

Working in the center-of-mass frame and up to the
quadrupole-tidal interaction, the Lagrangian describing the
evolution of the EMRI is given by

L ¼ μv2

2
þ μM

r
− UQ þ Lint

2 ; ð5Þ

where v2 ¼ δij _xi _xj with dot denoting derivatives with
respect the coordinate time t, UQ is the potential energy
of the quadrupole-tidal interaction

1The TLN is more often defined by λ ¼ 2
3
R5k, where R is the

body’s radius [45].
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UQ ¼ −
1

2
Qij

2G
ij
2 ; ð6Þ

and Lint
2 is the internal Lagrangian for the SMCO, which in

the adiabatic limit can be taken as

Lint
2 ¼ −

1

4λ
Qij

2 Q
ij
2 : ð7Þ

Plugging Eq. (3) into above expressions and from the
Euler-Lagrangian equation, we obtain the orbital equation
of motion

ẍi ¼ −
Mni

r2

�
1þ 9

r5
λq

�
: ð8Þ

The orbital equation of motion admits circular orbits as
solutions. However, the more general quasi-Keplerian
orbits are needed for the EMRIs. To our knowledge, this
problem has only been addressed to some extent [46]. The
second term on the right-hand side of above equation can
be treated as a perturbative term, since the tidal force is in
general weaker than the Newtonian force, and more
importantly, because the strength of the second term is
suppressed by the mass ratio q. This fact allows us to
employ the method of osculating orbital elements [12] to
solve the problem of perturbed Keplerian orbits. The basic
ideal behind this method is that there always exists a
Keplerian orbit with time-dependent orbital elements that is
tangent to the perturbed orbit at that time. Thus, we can still
write the distance between the SMCO and the CO as

r ¼ p
1þ e cosψ

; ð9Þ

where p is the semilatus rectum, e is the eccentricity and ψ
is the true anomaly of the orbits. However, in general both
p and e and other orbital elements are functions of time and
not constants anymore. Since the osculating equations for a
general perturbative force can be found in [12], here we
directly apply them to our problem where the tidal force is
along the radial direction. Then the osculating equations are
given by

dp
dt

¼ 0; ð10Þ

de
dt

¼ −
9qλ
r7

ffiffiffiffiffiffiffiffi
pM

p
sinψ ; ð11Þ

dω
dt

¼ 9qλ
r7

ffiffiffiffiffiffiffiffi
pM

p
e

cosψ ; ð12Þ

dψ
dt

¼
ffiffiffiffiffi
M
p3

s
ð1þ e cosψÞ2 − 9qλ

r7

ffiffiffiffiffiffiffiffi
pM

p
e

cosψ ; ð13Þ

where ω is the longitude of pericenter defined specifically
as the angle between the line of nodes and the direction to
the pericenter, as measured in the orbital plane. So the tidal
force will cause the precession of the pericenter.
Due to the presence of tidal terms, the last three

equations must be solved numerically, which makes it
difficult to calculate the energy and angular momentum
fluxes of GWs. However, we can observe that the correc-
tions resulting from tidal terms are proportional to the mass
ratio q. This means that the contribution of these correc-
tions to the energy and angular momentum fluxes of GWs
can be neglected. Consequently, both the semilatus rectum
and the eccentricity can be treated as constants during flux
calculations. Alternatively, since the corrections are heavily
suppressed by the mass ratio, they act on a much longer
timescale than the orbital period, similar to the case of
radiation reaction. Thus, we can compute the average
values of _e and _ω over the orbital period, which are known
as secular changes. At leading order of the mass ratio, the
average of _e is zero. In contrast, the secular change of _ω is
not vanishing. This precession phenomenon is called
apsidal advance in astronomy [12]. However, the preces-
sion of the pericenter caused by relativistic effect is of the
order Oðq0Þ so is dominant than the apsidal advance.
Therefore, we can conclude that, up to leading order of the
mass ratio, the tidal interaction between the SMCO and the
CO does not affect the conservative dynamics of EMRIs.
The method of osculating orbital elements allows the

orbital energy and the angular momentum to have the same
form as in the Keplerian case, thus

E ¼ −
μM
2p

ð1 − e2Þ; ð14Þ

and

Lz ¼ μ
ffiffiffiffiffiffiffiffi
Mp

p
: ð15Þ

The osculating equations reveal that the tidal force has no
effect on the orbital momentum, but it does affect the orbital
energy through the eccentricity of the orbit. Thus, in the
presence of the tidal interaction, the orbital angular
momentum remains conserved while the orbital energy
is not. However, since the tidal corrections are suppressed
by the mass ratio, the orbital energy is the same as the
Keplerian one up to leading order of the mass ratio.

B. Fluxes

Now we consider the dissipative dynamics of the EMRIs
in the presence of tidal interaction. We would like to
calculate the change rates of the eccentricity e and the radial
orbital frequency ν with respect to the coordinate time, due
to the energy flux and the angular momentum flux from the
gravitational radiation.
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For the gravitational radiation, the standard quadrupole
formulas of the energy flux and the angular momentum flux
are given by [42,43]

dE
dt

¼ 1

5

�
d3Qij

dt3
d3Qij

dt3

�
; ð16Þ

and

dLi

dt
¼ 2

5
ϵijk

�
d2Qjm

dt2
d3Qkm

dt3

�
; ð17Þ

where the quadrupole moment is now given by [47]

Qij ¼ μr2
�
ninj −

1

3
δij

�
þQij

2 ; ð18Þ

whereQij
2 is the quadrupole moment Eq. (3) induced by the

tidal field. Besides, the angle-brackets denote the average
over one cyclic motion in r, which via Eq. (9) can be turned
into the integral for ψ, e.g.,

hXi ¼ 1

T

Z
T

0

XðtÞdt ¼ 1

T

Z
2π

0

XðψÞ dψ
_ψ
; ð19Þ

where the period T is given by

T ¼
Z

2π

0

dψ
_ψ
: ð20Þ

To perform the calculation of the energy and angular
momentum fluxes, we should first notice that the induced
quadrupole moment in Eq. (18) is not suppressed by the
mass ratio. This can be seen as follows:

λ 3m
r3

μr2
¼ 2k

�
M
r

�
5 m
μ
≃ 2k

�
M
r

�
5

: ð21Þ

As a result, when computing the derivatives of the quadru-
pole moment with respect to time, the contribution from the
tidal correction in Eq. (11) will be suppressed by the mass
ratio. Moreover, when averaging over the orbital period, the
influence of the second term in Eq. (13) will also be
suppressed by the mass ratio. Therefore, in the calculation
of energy and angular momentum fluxes, the orbits can be
approximated as Keplerian orbits, with the effect of tidal
interaction encoded only in the induced quadrupole
moment. This significant simplification arises from the
tiny mass ratio of the EMRIs and will not occur for inspirals
of binaries with comparable masses.
Direct calculations lead to

dE
dt

¼ f1ðeÞ
�
M
p

�
5

q2 þ f2ðeÞ
�
M
p

�
10

kq2; ð22Þ

dLz

dt
¼ g1ðeÞM

�
M
p

�
7=2

q2 þ g2ðeÞM
�
M
p

�
17=2

kq2; ð23Þ

where the related coefficients are all functions of the
eccentricity only

f1ðeÞ ¼
ð1 − e2Þ3=2

15
ð37e4 þ 292e2 þ 96Þ; ð24Þ

f2ðeÞ ¼
ð1 − e2Þ3=2

20
ð225e10 þ 10355e8

þ 50200e6 þ 53904e4 þ 13504e2 þ 512Þ; ð25Þ

g1ðeÞ ¼
4ð1 − e2Þ3=2

5
ð7e2 þ 8Þ; ð26Þ

and

g2ðeÞ ¼
ð1 − e2Þ3=2

20
ð165e8 þ 5080e6

þ 14640e4 þ 7488e2 þ 512Þ: ð27Þ
One can observe that f1ðeÞ and g1ðeÞ match the results in
the case without the tidal interaction [42,43]. Additionally,
when e ¼ 0 and the leading order of the mass ratio is
retained, the results are the same as the Newtonian ones
presented in [48,49].
From Eqs. (14) and (15), we can obtain the rates of

change in the orbital energy and angular momentum with
respect to time,

dE
dt

¼ μMe
p

de
dt

þ μMð1 − e2Þ
2p2

dp
dt

; ð28Þ

and

dLz

dt
¼ μ

2

ffiffiffiffiffi
M
p

s
dp
dt

: ð29Þ

Due to the balance condition, the gravitational radiation
will cause the loss of the orbital energy and angular
momentum, as a consequence both p and e will decay
with the coordinate time. Combine above two equations
with Eqs. (22) and (23), we obtain

dp
dt

¼ −2g1ðeÞ
�
M
p

�
3

q − 2g2ðeÞ
�
M
p

�
8

kq; ð30Þ

and

de
dt

¼ −
q
Me

½f1ðeÞ − ð1 − e2Þg1ðeÞ�
�
M
p

�
4

−
kq
Me

½f2ðeÞ − ð1 − e2Þg2ðeÞ�
�
M
p

�
9

: ð31Þ

Remember that e is also affected by the tidal force, so we
should combine these equations with Eq. (11) since the
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contribution from the tidal force occurs at linear order of q
as well, then we have

de
dt

¼ −
q
Me

½f1ðeÞ − ð1 − e2Þg1ðeÞ�
�
M
p

�
4

−
kq
Me

½f2ðeÞ − ð1 − e2Þg2ðeÞ�
�
M
p

�
9

−
6kq
M

sinψð1þ e cosψÞ7
�
M
p

�
13=2

: ð32Þ

For a Keplerian orbit, it is often express the semi-latus
rectum p with the radial orbital frequency, which has a
linear connection with the change rate of the mean anomaly
to time. Due to the method of osculating orbital elements,
similar to the Kepler’s third law, for the perturbed orbits the
semilatus rectum can still be written as

p ¼ Mð1 − e2Þ
ð2πMνÞ2=3 ; ð33Þ

where ν is the radial orbital frequency. Then we can obtain

dν
dt

¼ 3q
2πM2

ð2πMνÞ11=3ð1 − e2Þ−5f1ðeÞ

þ 3kq
2πM2

ð2πMνÞ7ð1 − e2Þ−10f2ðeÞ

þ 9kqe
πM2

sinψð1þ e cosψÞ7ð2πMνÞ16=3ð1 − e2Þ−15=2;
ð34Þ

and

de
dt

¼ −
q
Me

½f1ðeÞ − ð1 − e2Þg1ðeÞ�ð2πMνÞ8=3ð1 − e2Þ−4

−
kq
Me

½f2ðeÞ − ð1 − e2Þg2ðeÞ�ð2πMνÞ6ð1 − e2Þ−9

−
6kq
M

sinψð1þ e cosψÞ7ð2πMνÞ13=3ð1 − e2Þ−13=2:
ð35Þ

Obviously, the last terms in the two equations above stem
from the effect of the tidal force on the conservative
dynamics Eq. (11). They are indeed of the same order
as the results from the radiation reaction, with both
appearing at the linear order of the mass ratio.
Therefore, we can also perform the average over the period
time as we have done for the energy and the angular
momentum fluxes. A simple calculation shows that aver-
ages of the last terms in the two equations above are zero.

C. AK waveforms

In this subsection, we provide a brief review of the AK
waveforms [39] and the necessary modifications due to the
presence of the tidal interaction. In the AK model, EMRIs
are approximated as a Keplerian binary at any given time
emitting a lowest order, quadrupolewaveform. Furthermore,
the orbital parameters are governed by PN equations, which
include orbital decay from radiation reaction, pericenter
precession, and Lense-Thirring precession of the orbital
plane.
In the previous subsection, we have obtained the leading

order equations describing the evolution of the radial
orbital frequency and the eccentricity in the presence of
the tidal interaction. We combine these leading order
corrected equations with those higher-order PN equations
in the original AK model. Then the complete orbital
evolution equations are given by

_Φ ¼ 2πν; ð36Þ

_ν ¼ 3q
2πM2

ð2πMνÞ11=3ð1 − e2Þ−5f1ðeÞ

þ 3kq
2πM2

ð2πMνÞ7ð1 − e2Þ−10f2ðeÞ

þ
�
1273

336
−
2561

224
e2 −

3885

128
e4 −

13147

5376
e6
�
ð2πMνÞ2=3

− ð2πMνÞa cos λð1 − e2Þ−1=2
�
73

12
þ 1211

24
e2

þ 3143

96
e4 þ 65

64
e6
�
; ð37Þ

_e ¼ −
eq
15M

ð1 − e2Þ−7=2ð2πMνÞ8=3
�
ð304þ 121e2Þð1 − e2Þ × ð1þ 12ð2πMνÞ2=3Þ

−
1

56
ð2πMνÞ2=3ð133640þ 108984e2 − 25211e4Þ

�
−

kq
Me

½f2ðeÞ − ð1 − e2Þg2ðeÞ�ð2πMνÞ6ð1 − e2Þ−9

þ e
q
M

a cos λð2πMνÞ11=3ð1 − e2Þ−4 ×
�
1364

5
þ 5032

15
e2 þ 263

10
e4
�

ð38Þ
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_α ¼ 2a
M

ð2πMνÞ2ð1 − e2Þ−3=2; ð39Þ

_̃γ ¼ 6πνð2πMνÞ2=3ð1 − e2Þ−1

×

�
1þ 1

4
ð2πMνÞ2=3ð1 − e2Þ−1ð26 − 15e2Þ

�
− 12πνa cos λð2πMνÞð1 − e2Þ−3=2: ð40Þ

The equation for _ν and _e are given accurately through 3.5
PN order, the equations for _̃γ and _α are accurate through 2
PN order. Here Φ is known as the mean anomaly, λ is the
inclination angle of the orbital plane with respect to the spin
direction of the SMCO and a is the dimensionless spin
parameter of the SMCO. Moreover, α is the azimuthal
direction of the orbital angular momentum in the spin-
equatorial plane and γ̃ is the angle between L̂ × Ŝ and
pericenter, where L̂ is the unit vector of the orbital angular
momentum and Ŝ is the unit vector of the SMCO’s spin. So
_α describes the Lense-Thirring precession of the orbital
plane and _̃γ describes the pericenter precession. From
Eq. (40) we can see that although the tidal force can cause
the precession of the pericenter, the effect only appears at
the linear order of the mass ratio, which is significantly
suppressed when compared with the relativistic precession
of the pericenter.
To work within the framework of Barack and Cutler [39],

where the orbital evolution equations involve the mean
anomaly instead of the true ananomy, in the following we
need to study the Fourier decomposition of the quadrupole
radiation in the presence of the tidal interaction. In the
quadrupole approximation and taking the transverse and
traceless gauge, the GW strain in the weak field regime is
given by

hij ¼
2

D

�
PikPjl −

1

2
PijPkl

�̈
Ikl; ð41Þ

whereD is the distance to the source, Pij ¼ δij − n̂in̂j is the
projection tensor with n̂ being the unit vector pointing from
the detector to the source, and Iij is the inertia tensor. In the
center-of-mass frame, we have

Iij ¼ Iij þ Jij; ð42Þ
with

Iij ¼ μr2ninj; ð43Þ

being the inertia tensor in the case without the tidal
interaction and

Jij ¼ 2M6kq
ninj

r3
; ð44Þ

being the inertia tensor induced by the tidal field.

In the original AK mode, the inertia tensor is decom-
posed as a sum of harmonics of the radial orbital frequency
Iij ¼ P

n I
ij
n , with

að0Þn ¼ 1

2
ðÏ11n − Ï22n Þ; ð45Þ

bð0Þn ¼ Ï12n ; ð46Þ

cð0Þn ¼ 1

2
ðÏ11n þ Ï22n Þ; ð47Þ

where

að0Þn ¼ n
2
μð2πMνÞ2=3½ðe2−2ÞJn−2ðneÞþ2eJn−1ðneÞ

−2eJnþ1ðneÞþð2−e2ÞJnþ2ðneÞ�cos½nΦðtÞ�; ð48Þ

bð0Þn ¼ −μnð2πMνÞ2=3ð1 − e2Þ1=2½Jn−1ðneÞ
− eðJnþ1ðneÞ þ Jn−2ðneÞ þ Jnþ2ðneÞÞ� sin½nΦðtÞ�;

ð49Þ

cð0Þn ¼ −
n
2
eμð2πMνÞ2=3ðeJn−2ðneÞ − 2Jn−1ðneÞ

þ 2Jnþ1ðneÞ − eJnþ2ðneÞÞ cos½nΦðtÞ�: ð50Þ

where Jn are Bessel functions of the first kind. The detailed
derivation of above formulas can be found in [50] and one
can check that above expressions are equivalent to the ones
in [42].
Similarly, the tidal-induced inertia tensor can also be

decomposed as Jij ¼ P
n J

ij
n , with

aðTÞn ¼ 1

2
ðJ̈11n − J̈22n Þ; ð51Þ

bðTÞn ¼ J̈12n ; ð52Þ

cðTÞn ¼ 1

2
ðJ̈11n þ J̈22n Þ: ð53Þ

where

aðTÞn ¼ kð−n2μÞð2πMνÞ4ðX−3;2
n þ X−3;0

−n Þ cos½nΦ�;
bðTÞn ¼ kð−n2μÞð2πMνÞ4ðX−3;2

n − X−3;2
−n Þ sin½nΦ�;

cðTÞn ¼ kð−n2μÞð2πMνÞ4ðX−3;0
n þ X−3;0

−n Þ cos½nΦ�: ð54Þ
The complete derivation of these expressions is lengthy so
is presented in Appendix A. Here Xij

k are Hansen coef-
ficients [51] which are useful in celestial mechanics when
handling the Fourier decomposition involving Keplerian
orbits, e.g., [52]. The Hansen coefficients can be expressed
in terms of Bessel function series (see Eq. (A2) for explicit
expressions) and the related ones appearing in above
formulas truncated at finite orders are given by
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X−3;0
k

ð1 − β2Þ3
ð1þ β2Þ2 ¼ ð1þ β2ÞJkðkeÞ þ 2βJk−1ðkeÞ þ β2ð3 − β2ÞJk−2ðkeÞ þ 2β3ð2 − β2ÞJk−3ðkeÞ

þ β4ð5 − 3β2ÞJk−4ðkeÞ þ 2β5ð3 − 2β2ÞJk−5ðkeÞ þ β6ð7 − 5β2ÞJk−6ðkeÞ
þ 2β7ð4 − 3β2ÞJk−7ðkeÞ þ β8ð9 − 7β2ÞJk−8ðkeÞ þ 2β9ð5 − 4β2ÞJk−9ðkeÞ
þ β10ð11 − 9β2ÞJk−10ðkeÞ þ 2β11ð6 − 5β2ÞJk−11ðkeÞ þ β12ð13 − 11β2ÞJk−12ðkeÞ
þ 2βJkþ1ðkeÞ þ β2ð3 − β2ÞJkþ2ðkeÞ þ 2β3ð2 − β2ÞJkþ3ðkeÞ; ð55Þ

X−3;0
−k ¼ X−3;0

k ; ð56Þ

X−3;2
k

ð1þ β2Þ2 ¼ Jk−2ðkeÞ þ 4βJk−3ðkeÞ þ 10β2Jk−4ðkeÞ þ 20β3Jk−5ðkeÞ þ 35β4Jk−6ðkeÞ þ 56β5Jk−7ðkeÞ

þ 84β6Jk−8ðkeÞ þ 120β7Jk−9ðkeÞ þ 165β8Jk−10ðkeÞ þ 220β9Jk−11ðkeÞ þ 286β10Jk−12ðkeÞ
þ 364β11Jk−13ðkeÞ þ 455β12Jk−14ðkeÞ þ 560β13Jk−15ðkeÞ þ 680β14J−k−16ðkeÞ þ 816β15J−k−17ðkeÞ; ð57Þ

X−3;2
−k

ð1þ β2Þ2 ¼ J−k−2ð−keÞ þ 4βJ−k−3ð−keÞ þ 10β2J−k−4ð−keÞ þ 20β3J−k−5ð−keÞ þ 35β4J−k−6ð−keÞ

þ 56β5J−k−7ð−keÞ þ 84β6J−k−8ð−keÞ þ 120β7J−k−9ð−keÞ þ 165β8J−k−10ð−keÞ
þ 220β9J−k−11ð−keÞ þ 286β10J−k−12ð−keÞ þ 364β11J−k−13ð−keÞ
þ 455β12J−k−14ð−keÞ þ 560β13J−k−15ð−keÞ; ð58Þ

where

β ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ

e
: ð59Þ

We have confirmed that the above formulas yield a relative
error of less than 0.1% when compared to the exact values
of the Hansen coefficients for e ≤ 0.75 and k ≤ 20. To see
this, let us define the relative error as

ϵijk ¼
				X

ij
k jexa − Xij

k japp
Xij
k jexa

				; ð60Þ

where Xij
k jexa means the exact value of the Hansen

coefficient and Xij
k japp denotes the above expression trun-

cated at finite orders. As shown in Table I, for a given
e ¼ 0.75, the relative error is always smaller than 10−3 for
k ≤ 20. Particularly, the relative error of X−3;2

−k is always

smaller 10−10 in this case. When e is small, the above
formulas behave not very well at large k but very well at
small k. As shown in Table II, for X−3;0

k with e ¼ 0.1, the
Hansen coefficients with k > 10 can be safely neglected
since they are too small to be effective. In this case, the
Hansen coefficients with lower k are dominant and the ones
with higher k become irrelevant. Therefore, from a practical
point of view, the above formulas work very well in the
small e case.
Using above harmonic decomposition of the inertia

tensor, we can express the GW strain at the detector
position as a sum of harmonics of the radial orbital
frequency as well. The GW strain at the detector can be
decomposed as

hijðtÞ ¼ AþðtÞHþ
ijðtÞ þ A×ðtÞH×

ijðtÞ; ð61Þ

TABLE I. The relative error between the exact and approximate values of the Hansen coefficients are listed, where
the eccentricity is taken as 0.75.

k 1 5 10 15 20

ϵ−3;0k 0.1 × 10−4 1.5 × 10−4 4.4 × 10−4 2.3 × 10−4 6.7 × 10−4

ϵ−3;2k <10−9 1.7 × 10−9 2.4 × 10−4 3 × 10−4 2.4 × 10−4

ϵ−3;2−k <10−15 5.7 × 10−15 0.14 × 10−11 1.8 × 10−11 8.4 × 10−11

PROBING THE TIDAL DEFORMABILITY OF THE CENTRAL … PHYS. REV. D 108, 024018 (2023)

024018-7



where Hþ
ij and H×

ij are the two polarization basis tensors
constructed with the unit vector pointing from the detector
to the source n̂ and the unit vector L̂,

Hþ
ijðtÞ ¼ p̂ip̂j − q̂iq̂j; H×

ijðtÞ ¼ p̂iq̂j þ q̂ip̂j; ð62Þ

with

p̂ ¼ n̂ × L̂

jn̂ × L̂j ; q̂ ¼ p̂ × n̂; ð63Þ

and Aþ and A× are the amplitudes of the two polarizations.
The amplitudes of the two polarizations can be further
expressed as n-harmonics of the radial orbital frequency as
well, i.e., Aþ ≡ 1

D

P
n A

þ
n and A× ≡P

n A
×
n , with

Aþ
n ¼ −½1þ ðL̂ · n̂Þ2�½an cos 2γ − bn sin 2γ�

þ cn½1 − ðL̂ · n̂Þ2�; ð64Þ

A×
n ¼ 2ðL̂ · n̂Þ½bn cos 2γ þ an sin 2γ�; ð65Þ

where in the presence of the tidal interaction we have

an ¼ að0Þn þ aðTÞn ; ð66Þ

bn ¼ bð0Þn þ bðTÞn ; ð67Þ

cn ¼ cð0Þn þ cðTÞn : ð68Þ

In above expressions, γ is an azimuthal angle measuring the
direction of pericenter with respect to the orthogonal
projection of n̂ onto the orbital plane, which further
depends on γ̃ and α (see [39] for more details). So far
we have seen how the relevant parameters of the orbital
evolution equations enter into the GW strain. In fact, if we
neglect the spin of the CO, an EMRI event can be
completely characterized by 14 degrees of freedom.
However, in the present case, an additional parameter,
namely the TLN, must be included. These parameters are
listed as follows:

fm;M; a; e0; γ̃0;Φ0; λ; k; cos θS;ϕS; α0; cos θK;ϕK;D; t0g:
ð69Þ

Here, t0 is a time parameter at which the radial orbital
frequency equates some fiducial frequency ν0. Since the

orbital evolution equations are solved in the reverse time
direction, all quantities with subscript 0 can be understood
as initial values. Moreover, the angles ðθS;ϕSÞ are the
direction to the source and ðθK;ϕKÞ represent the direction
of the SMCO’s spin. The first eight parameters are intrinsic
[53], in the sense that they describe the system without
reference to the location or orientation of the observer. In
contrast, the remaining seven are extrinsic parameters.
To perform data analysis, we need to know the detector’s

response to the GW signal. Since the equilateral triangle
detectors such as LISA can be used to construct two
independent Michelson interferometers, the signal
responded by such two interferometers can be decomposed
into n-harmonics as well, so

hI;II ¼
ffiffiffi
3

p

2
ðFþ

I;IIA
þ þ F×

I;IIA
×Þ; ð70Þ

where Fþ;×
I;II are antenna pattern function of the detector [54].

III. RESULTS

In this section, we will first introduce the method of
analyzing the GW waveforms and evaluating the measure-
ment of the tidal deformability of the SMCOusing the future
space-based interferometer LISA. Then we show the explicit
results of the comparisonof the twokindwaveformswith and
without the tidal interaction, and the constraint on the TLNof
the SMCO for events detectable by LISA.

A. Method of GW analysis

To assess the strength of the effect of the tidal deform-
ability of the SMCO on the EMRI waveforms to be
measurable by a space-based GW detector, it is convenient
to introduce the overlap O between two waveforms h1ðtÞ
and h2ðtÞ,

Oðh1jh2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð71Þ

where the noise-weighted inner product hh1jh2i is
defined by

hh1jh2i ¼ 2

Z
∞

0

df
h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ

SnðfÞ
; ð72Þ

where the quantities with tilde stand for the Fourier
transform, the star means complex conjugation, and

TABLE II. The relative error and the exact value of X−3;0
k with e ¼ 0.1.

k 1 5 10 15 20

ϵ−3;0k 5.5 × 10−13 4.8 × 10−12 8.6 × 10−10 2.3 × 10−14 4.6 × 10−3

X−3;0
k

0.15 6.9 × 10−5 3.9 × 10−9 2.0 × 10−13 1.0 × 10−17
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SnðfÞ is noise power spectral density of a space-borne GW
detector, such as LISA [1]. The explicit expression of SnðfÞ
for LISA is presented in Appendix C. It is more often use
the mismatch M to quantify the difference between two
waveforms, with the definition given by

M≡ 1 −Oðh1jh2Þ: ð73Þ

If the two waveforms are identical, then the overlap
between them equates unity and so their mismatch is zero.
A criterion to distinguish two waveforms by a GW detector
is that their mismatch has to be larger than D=2ρ2 [55,56],
where ρ is the signal-to-noise ratio (SNR) of the detected
signal andD denotes the number of the intrinsic parameters
of an EMRI system. Including the TLN of the SMCO, there
are eight intrinsic parameters in the present case. The SNR
threshold for EMRI that can be detected is usually chosen
to be 20 [6]. Then two waveforms with mismatch larger
than 0.01 can be resolved by space-based detectors.
To quantify the capability of space-based GW detectors

to constrain the parameters of the EMRIs, we adopt the
fisher informational matrix (FIM) method [57]. In the high
SNR limit, the FIM can capture the lowest-order expansion
of the posteriors. The FIM is defined by

Γab ¼
�
∂h
∂λa

				 ∂h
∂λb

�
; ð74Þ

where λa, a ¼ 1; 2;…, are the parameters appearing in the
waveform and the inner product ðjÞ is defined by Eq. (72).
When the SNR of the GW signal is large, the variance-
covariance matrix can be obtained as the inverse of the FIM

Σab ≡ hΔλaΔλbi ¼ ðΓ−1Þab: ð75Þ

From the variance-covariance matrix, the uncertainty of the
ath parameter λa can be obtained as

δλa ¼ Σ1=2
aa : ð76Þ

Note that the applicability of the FIM method requires the
linear signal approximation to be valid. For EMRI events
with SNR ρ ¼ 20 detected by LISA, the FIM is adoptable,
which has been illustrated in [58]. Moreover, the numerical
stability of the inverse FIM is also required. This is
discussed in Appendix B.

B. Waveforms and mismatch

Solving the orbital evolution equations and plugging the
time-varying orbital parameters into the expression of the
GWstrain at the detector,we can obtain theAKwaveforms in
the time domain numerically. In Fig. 1 we show the plus
polarization hþ of the AK waveforms with and without the
tidal interaction. Since we are interested in the impact of the
tidal deformability of the SMCO on the waveforms, we only
let the TLN free and keep other parameters fixed as follows:
t0¼1years,D¼ 1Gpc,m¼ 10M⊙,M ¼ 106M⊙, e0 ¼ 0.1,
λ ¼ π=3, γ̃0 ¼ 5π=6, α0 ¼ 4π=5, θS ¼ π=5, ϕS ¼ π=4,
θK ¼ 2π=3, ϕK ¼ 3π=4, Φ0 ¼ π=3, and ν0 ¼ 1 mHz. To
better illustrate the comparison of waveforms with and
without tidal interaction, we will deviate from the original
AK waveform procedure, where the orbital evolution equa-
tions were solved in the reverse time direction. Instead, we
will solve the equations in the forward time direction.
Therefore, in this context, t0 represents the length of the
waveforms, and all quantitieswith subscript 0 indicate values
at t ¼ 0, not t ¼ t0. From Fig. 1 we can observe that the AK
waveform is significantly affected by the tidal deformability
of the SMCO. Even the TLN is as small as 0.05, the phase
difference between the twowaveforms becomes noticeable if
the signal lasts for one year.
To assess the imprint of tidal deformability of the SMCO

on the EMRI waveforms quantitatively, we calculate the
mismatches between the original AK waveform and the

FIG. 1. Comparison among plus polarization hþ of AK waveforms from EMRIs in the case of spin a ¼ 0.8 for k ¼ 0 and 0.05, where
the initial frequency is set as ν0 ¼ 1 mHz. The length of the waveform is 1 year, and the left panels represent the waveform for the first
30000 seconds, while the right panels for the last 30000 seconds.
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ones with different values of the TLN k. As shown in Fig. 2,
the mismatches as functions of the observation time are
plotted. The source parameters are set as M ¼ 106M⊙ and
a ¼ 0.4. For 1 year observation of LISA and with SNR
ρ ¼ 20, the mismatches can exceed the threshold value
Mmin ¼ 0.01 as long as the TLN is Oð10−3Þ.
To further study the impacts of the mass and the spin of

the SMCO on the mismatches, in Fig. 3 we plot the
mismatch as functions of k and M or a.The black dotted
lines represent the contour of mismatch equal to the
thresholdM ¼ 0.01, it indicates that LISA can distinguish
whether the SMCO in an EMRI has k ≠ 0 if the system is
located beyond this curve. We can see that for SMCO
masses close to 106.5M⊙, the TLN of SMCO that can be
resolved by LISA is the smallest. This indicates that the
mass of SMCO has a significant impact on the TLN
detected by the LISA detector. Moreover, the value of
the TLN on the threshold line decreases with the spin of the
SMCO. When the spin is larger than 0.6, the TLN that can

FIG. 2. The mismatch M of different values of the TLN k as a
function of observation time for LISA is plotted, the dashed lines
represent the threshold for SNR ¼ 20. The source parameters are
set asM ¼ 106M⊙, a ¼ 0.4, the other parameters keep same with
the previous configurations in Fig. 1.

FIG. 3. The contour plot of the mismatch M as functions of log10 k and log10 M (left), or a (right) with respect to LISA. In the left
panel a ¼ 0.8 and in the right panel M ¼ 106M⊙. The black dashed line denotes to the threshold value for SNR ¼ 20 and the other
parameters keep same with the previous configurations in Fig. 1.

FIG. 4. The contour plot of the parameter estimation accuracy as functions of log10 k and log10 M (left), or a (right) with respect to
LISA. In the left panel a ¼ 0.8 and in the right panelM ¼ 106M⊙. The other parameters keep same with the previous configurations in
Fig. 1.

TIEGUANG ZI and PENG-CHENG LI PHYS. REV. D 108, 024018 (2023)

024018-10



be resolved by LISA is smaller than 10−3. Therefore, under
suitable scenarios, the LISA is able to distinguish SMCO
with TLN as small as 10−3.

C. Constraint on TLN

In this subsection, we perform the parameter estimation
for the TLN using the FIM method. In the original AK
waveform, the cutoff for the inspiral is determined by the
last stable orbit of a Schwarzschild or Kerr BH. However, in
the present case, the length of the waveforms is fixed to
1 year to avoid the unknown effects of the tidal interaction
on the cutoff. By taking the central values of the TLN to a
given value, we can study the effects of various parameters
on the constraints for the TLN. Here we only focus on the
effects from the mass M, the spin parameter a and the
TLN k.
As depicted in Fig. 4, when the spin parameter is fixed at

a ¼ 0.8, the impact of the SMCO mass on the uncertainty
of the TLN is not a monotonous function. Interestingly, we
observe that the most stringent constraint on the TLN can
be achieved when the SMCO mass is close to 106.5M⊙,
with a potential resolution of 10−4. This is because the
EMRI system with a more massive SMCO produces GWs
with lower frequencies. The sensitivity of the GW detector
is closely tied to the GW frequency and, additionally, to the
mass of the SMCO, as indicated by the sensitivity curve.
Moreover, for a fixed massM ¼ 106M⊙, the uncertainty of
the TLN decreases with the spin parameter a, so the SMCO
with largest spin has the best constraint on the TLN. This is
consistent with the study in [35]. We can find that when
a > 0.8, the constraint on TLN can reach the level of 10−4.
From both panels and Table III, we can see that the effects
of the TLN values on the uncertainty of the TLN are not
prominent. The reason for this phenomenon could be
attributed to the fact that the phase of the waveform is
depended linearly on the TLN. The calculation of the FIM
involves the derivation of the waveform with respect to the
TLN. As a consequence, the effect of the TLN may
disappear in the constraint of itself.

IV. SUMMARY

In this paper, we investigated the effect of tidal deform-
ability of a SMCO in an EMRI on the gravitational
waveforms. Our study was carried out within the frame-
work of the AK waveforms. First, as the tidal interaction
between the SMCO and the CO is proportional to the mass
ratio, the known results of perturbed Keplerian orbits,

obtained using the method of osculating orbital elements
[12], can be naturally applied in this scenario. Given that
the mass ratio is very small, the conservative dynamics of
the EMRI remain unaffected by tidal interaction up to
leading order of the mass ratio. Consequently, the orbits can
be approximated as Keplerian orbits, with the effect of tidal
interaction being encoded only in the induced quadrupole
moment.
We further calculated the energy and angular momentum

fluxes using the quadrupole formulas in the presence of the
tidal interaction. Then we derived the leading order
equations describing the evolution of the radial orbital
frequency and the eccentricity. On the other hand, the other
orbital evolution equations in the AK model remain
unchanged. Combine these leading order corrected equa-
tions with those higher-order PN equations in the original
AK model, the complete orbital evolution equations were
obtained. Moreover, to express the GW strain as a sum of
the harmonics of the radial orbital frequency, as was done
in the original AK model. We used the Hansen coefficients
method to perform the Fourier decomposition of the tidal-
induced inertia tensor.
We found that the tidal deformability of the SMCO has a

prominent effect on the AK waveforms. By calculating the
mismatches between the AK waveforms with and without
the tidal interaction, we showed that LISA can detect the
deformed SMCO even if the parameter TLN is as small as
10−3, with just one year of observation. We then performed
the parameter estimation precision for the TLN and found
that with one year observation LISA can measure them with
accuracy to the level of 10−4 under suitable scenarios.
In this paper, the tidal interaction was investigated in the

post-Newtonian framework, so the results are not accurate
in the strong-field regime. It would be intriguing to explore
in the full relativistic regime to derive more compelling
conclusions regarding the limits on the tidal deformability
of the SMCO through the observations of space-based GW
detectors. On the other hand, there are many more
interesting tidal effects can be explored using the EMRI
GWs. For example, as discussed in [12], the Newtonian
tidal interaction also has the dissipative effect on the
dynamics due to the presence of viscosity in the SMCO.
The tidal dissipation introduces an additional perturbing
force in the orbital equation of motion and is proportional
to the mass ratio, thus can be handled with the method of
the osculating orbital elements. The special case of circular
orbits discussed [12] showed that the tidal dissipation
indeed affects the orbital element after the average over
the orbital period has been performed. Besides, the explicit
dependence of the waveform on the tidal interaction could
be used to explore the properties of the environment around
the central BH in an EMRI. This is because the environ-
ment around a BH could also give a nonzero TLN, see,
e.g., [59,60]. Moreover, the tidal field of a nearby astro-
physical object or dark matter distribution of the EMRI

TABLE III. Constraints on different tidal love numbers k of
SMCO with mass M ¼ 106M⊙ and spin a ¼ 0.8 are listed.

k 10−4 10−3 10−2 0.05 0.1 0.5 1.0 5 10

Δk=10−4 6.66 6.51 5.99 6.09 6.29 7.87 7.91 8.94 9.87
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could modify the orbital motion and induce an interesting
phenomenon named tidal resonances [61–64]. This occurs
when the linear combination of the fundamental frequen-
cies of the orbits are commensurate. All these tidal effects
must be considered in order to unravel the physics derived
from the observations of the EMRI GWs.
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APPENDIX A: THE FOURIER DECOMPOSITION
OF THE TIDAL-INDUCED INERTIA TENSOR

It is known that the Hansen coefficients are defined as the
Fourier amplitudes in the series

�
r
ar

�
γ

eimψ ¼
X∞
k¼−∞

Xγ;m
k eikΦ; ðA1Þ

where ψ is the true anomaly,Φ is means anomaly, and r, ar
the radial distance and semimajor axis. ar is related to the
semilatus rectum by p ¼ arð1 − e2Þ.
There are various forms of Hansen coefficients expressed

in terms of Bessel function series. In the following, we refer
to the one in [51],

Xγ;j
k ¼ 1

ð1þ β2Þγþ1

X∞
s¼−∞

Eγ;j
k−sJsðkeÞ; ðA2Þ

where β is given by Eq. (59) and JsðzÞ is the Bessel
function of the first kind. Moreover, for p ≥ j

Eγ;j
p ¼ ð−βÞp−jCγ−jþ1

p−j

× 2Fð−γ − j − 1; p − γ − 1;p − jþ 1; β2Þ; ðA3Þ

and for p < j,

Eγ;j
p ¼ Eγ;−j

−p ; ðA4Þ

where Cn
k denotes the binomial coefficient n!=k!ðn − kÞ!

and 2Fða; b; c; dÞ is the hypergeometric function.
First, setting γ ¼ −3 and m ¼ 0, Eq. (A2) gives

r−3 ¼
X∞
k¼0

RT
k cos kΦ; ðA5Þ

where

RT
0 ¼ a−3r X−3;0

0 ; ðA6Þ

RT
k ¼ a−3r ðX−3;0

k þ X−3;0
−k Þ: ðA7Þ

Second, setting γ ¼ −3 and m ¼ 2, the real part of the
Eq. (A2) gives

r−3 cos 2ψ ¼
X∞
k¼0

Pk cos kΦ; ðA8Þ

where

P0 ¼ a−3r X−3;2
0 ; ðA9Þ

Pk ¼ a−3r ðX−3;2
k þ X−3;2

−k Þ; ðA10Þ

and the imaginary part of the Eq. (A2) gives

r−3 sin 2ψ ¼
X∞
k¼1

QT
k sin kΦ; ðA11Þ

where

QT
k ¼ a−3r ðX−3;2

k − X−3;2
−k Þ: ðA12Þ

From these results, we obtain directly

r−3 cos2 ψ ¼
X∞
k¼0

AT
k cos kΦ; ðA13Þ

where

AT
0 ¼ 1

2
ðRT

0 þ PT
0 Þ

¼ 1

2
a−3r ð1 − e2Þ−3=2; ðA14Þ

and for k > 0

AT
k ¼ 1

2
ðRk þPkÞ

¼ 1

2
a−3r ðX−3;0

k þX−3;0
−k Þ þ 1

2
a−3r ðX−3;2

k þX−3;2
−k Þ: ðA15Þ

Next, it is easy to find

r−3 sin2 ψ ¼
X∞
k¼0

BT
k cos kΦ; ðA16Þ

where
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BT
0 ¼ 1

2
ðRT

0 − PT
0 Þ

¼ 1

2
a−3r ð1 − e2Þ−3=2; ðA17Þ

and for k > 0

BT
k ¼ 1

2
ðRT

k −PT
k Þ

¼ 1

2
a−3ðX−3;0

k þX−3;0
−k Þ− 1

2
a−3ðX−3;2

k þX−3;2
−k Þ: ðA18Þ

Moreover, we have

r−3 cosψ sinψ ¼
X∞
k¼1

Ck sin kΦ; ðA19Þ

where

CT
k ¼ 1

2
QT

k

¼ 1

2
a−3ðX−3;2

k − X−3;2
−k Þ: ðA20Þ

From Eq. (44), we obtain the components of the tidal-
induced inertia tensor

J11 ¼ 2M6kqr−3cos2ψ ; ðA21Þ

J12 ¼ 2M6kqr−3 cosψ sinψ ; ðA22Þ

J12 ¼ 2M6kqr−3sin2ψ : ðA23Þ

Then fromEqs. (A13), (A16), and (A19),we can decompose
above components into a sum of harmonics of the radial
orbital frequency and the results are just Eqs. (51)–(53). It is
worth noting that we can perform the Fourier decomposition
of the inertial tensor in the absence of tidal interaction by
setting γ ¼ 2 andm ¼ 0; 2 using a similar procedure. It can
be verified that the obtained results are identical to those
reported in [39].

APPENDIX B: STABILITY OF
THE FISHER MATRIX

In this appendix we assess the stability of the covariance
matrix for the EMRI signals by following the procedure in
Ref. [65,66]. The basic idea is to observe the behavior of
the covariance matrices when small perturbations in the

components in Fisher matrices are imposed. This is
characterized quantitatively by

δstability ≡maxij

�ððΓþ FÞ−1 − Γ−1Þij
ðΓ−1Þij

�
ðB1Þ

with a deviation matrix Fij, whose elements is a uniform
distribution U ∈ ½a; b�. We calculate the stability of the
Fisher matrix using Eq. (B1), the result is listed in the
following Table IV.

APPENDIX C: SENSITIVITY CURVE

The sky-averaged detector sensitivity for LISA can be
give by in [1,6]

SnðfÞ ¼
20

3

4Saccn ðfÞ þ 2Slocn þ Ssnn þ Somn
n

L2

×

�
1þ

�
2Lf
0.41c

�
2
�
; ðC1Þ

where L ¼ 2.5 × 109m is the arm length among satellites,
and the noise Saccn ðfÞ, Slocn , Ssnn , and Somn

n result from the low-
frequency acceleration, local interferometer noise, shot noise
and other measurement noise, respectively. They can be
written as the following according to LISA Pathfinder [67]

Saccn ðfÞ ¼


9 × 10−30 þ 3.24 × 10−28

��
3 × 10−5 Hz

f

�
10

þ
�
10−4 Hz

f

�
2
��

1

ð2πfÞ4 m2Hz−1; ðC2Þ

and the other noise expression are of the following

Ssnn ¼ 7.92 × 10−23 m2 Hz−1;
Somn
n ¼ 4.00 × 10−24 m2 Hz−1;
Slocn ¼ 2.89 × 10−24 m2 Hz−1: ðC3Þ

TABLE IV. δstability for different spins of the SMCO with mass
M ¼ 106M⊙ is listed.

U

Spin a

0.1 0.3 0.5 0.7 0.9

∈ ½−10−7; 10−7� 0.049 0.044 0.049 0.048 0.029
∈ ½−10−9; 10−9� 0.032 0.031 0.036 0.039 0.014
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