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I. INTRODUCTION

Scalar-tensor (ST) theories of gravity are a class of
modified gravity theories that were introduced in the hope
of finding a remedy for certain shortcomings of general
relativity (GR) [1–3], such as the difficulty in explaining
currently observed accelerated expansion of the Universe
[4–8]. ST theories are motivated not only by observational
discrepancies between the theory and the empirical data,
but there are also some arguments coming from theories
considered as fundamental, such as the string theory, which
reproduce ST theory in their low-energy limit rather than
GR [9].
ST theories are realized by an addition of a scalar field

into the theory. Historically, the first ST theory was
formulated by Brans and Dicke [10]; their approach was
later generalized to include self-interaction potential of the
scalar field, yielding the so-called Wagoner parametrization
[11,12], in which the scalar field enters the action in a
nontrivial way: in the most general case, it can be coupled
to spacetime curvature and to the matter fields. Such a way
of introducing a new mediator of gravitational interaction
results in many changes gravity manifests itself. For
example, a nonminimal (anomalous) coupling between
the field and matter part of the action can produce a fifth
force acting on the test particles, causing them to deviate
from geodesics (however, this effect can be hidden by
various screening mechanisms, which are for this reason an
essential part of extended gravity models [13–17]). On the
other hand, a scalar field coupled to the curvature acts as an
effective gravitational constant, whose value might depend

on spacetime position and matter distribution in the
Universe (in agreement with Mach’s principle).
The field equations that are derived from the action

considered by Brans and Dicke are of second order for the
metric components and the scalar field. It is possible,
however, to construct an even more general action func-
tional that produces second-order field equations, allowing
one to avoid the fatal Ostrogradsky instability that can be
present when higher-order theories are considered—
so-called Horndeski theory [18]. Furthermore, it was
demonstrated that Horndeski theories are not the most
general healthy ST theories: it is possible to construct
higher-order theories avoiding the Ostrogradsky instability
by being degenerate (so-called DHOST) [19,20]. It was
discovered that the degeneracy of Lagrangian is an essential
part of theories with one scalar degree of freedom allowing
one to avoid the mentioned problem.
Horndeski andDHOST theories have beenwidely studied

in cosmology (see for a nice review and references therein
[21–23]). Interestingly, in those theories the screening
mechanism turns out to be partially broken in the case of
astrophysical objects [24], such that theweak field equations
are modified by the presence of terms with a numerical
parameter, which encodes the information about the scalar
field. This allows one thus to study deviations from the
Newtonianmodel of gravity,which iswidely used todescribe
stellar and substellar objects. Similar to other modified
theories of gravity, the Poisson and hydrostatic equilibrium
equations in such theories acquire additional terms (see
[25–27]; for review, [28–30]), allowing one to test such
theories [31,32]. Because of that, there have been a few
studies undertaken which demonstrated that the
Chandrasekhar mass for white dwarf stars [33–40] may
differ in modified gravity; the same happens with the
minimum masses for hydrogen and deuterium burning
[41–45], as well as Jeans and opacity masses [46,47].
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Apart from those, the evolutionary pictures of stars and
planets are also distinct with respect to Newtonian gravity
[48–54]. Those theories also modify the light elements’
abundances in atmospheres [55] and internal structures of
terrestrial planets [56–58].
In the following work we are going to reexamine simple

cooling models of brown dwarfs and Jovian planets in the
framework of DHOST theories of gravity. It was demon-
strated that both classes of these substellar objects can be a
remarkable laboratory to test theoretical models of exotic
particles as well as modified gravity [59].1 Although brown
dwarfs were discovered barely 30 years ago (but theorized
already in the 1960s), during the past years we have
experienced a rapidly increasing number of their discov-
eries; therefore an expected number of the giant exoplanets
and brown dwarfs is estimated to be in the billions. This
provides a huge advantage with respect to neutron stars—
they are easier to find, and we understand the physics of the
processes inside of those objects much better since we deal
with low temperatures and much lower densities. As it will
be clearer later on, we should pay special attention to the
old objects as the electron degeneracy evolution makes the
modified gravity effects accumulate over time, overcoming
the matter description uncertainties. Moreover, there are no
effects resulting from the nuclear fusions as it happens in
active stars. By this, one deals with additional reducing
uncertainties that are caused by energy generation rates,
being very sensitive to any changes in stellar cores’
conditions, and by heat transport processes. As it will be
demonstrated, DHOST theories introduce extra terms to the
structural equations, which can be interpreted as an addi-
tional heating or cooling process that can not only be
detected but also could explain the internal heat of the Solar
System Jovian planets which have not been understood
well yet [61–63]. Apart for the future constraining of the
models of gravity, these objects, because of better under-
stood physics behind their internal processes, can be an
indicative tool to figure out how gravity interacts with the
other forces and what is the nature of such an interplay
between them.
The paper is organized as follows: first, we will outline

the basics of spherically symmetric objects analysis within
the paradigm of DHOST theories of gravity. This part will
consist of obtaining the Lane-Emden equation, which
originates from the hydrostatic equilibrium equation, and
discussing the way matter is introduced into the theory. In
our model, we will make use of the polytropic equation of
state. The main part of the paper will be dedicated to the
analysis of brown dwarfs and Jovian planets. Our aim is to
study the cooling processes of those objects in the
considered model of gravity, where the nonrelativistic
hydrostatic equilibrium equation is supplemented with

an extra term. In the part dedicated to brown dwarfs, we
compute time evolution of the luminosity and degeneracy
parameter for different values of ϒ. In the case of the
Jupiter, we present a modified Hertzsprung-Russell (H-R)
diagram for the planet, showing how the luminosity
depends on temperature for various values of the
DHOST parameter. We will also briefly discuss the age
of Jupiter-like planets in modified gravity. We conclude the
paper with a short discussion.

II. BASIC STRUCTURAL AND MATTER
EQUATIONS FOR SCALAR-TENSOR GRAVITY

As promised, first we will provide the basic equations to
describe the stellar structure in a nonrelativistic case for
DHOST gravity. This will familiarize the reader with the
most important formalism used to characterize the sub-
stellar objects.

A. Hydrostatic equilibrium equation

In what follows, we assume that the objects analyzed in
the paper are static, spherically symmetric, and fully
convective, which allows us to make further assumptions
about their matter composition. Apart from this, the
substellar objects are surrounded by a radiative atmosphere
with a simplified opacity model.
The DHOST theories can be, in general, described by the

Lagrangian [24]

L ¼ M2
pl

X
i

Li

Λ2ði−2Þ
i

þ αϕT þ Tμν
∂μϕ∂νϕ

M4
; ð1Þ

where

L2 ¼ X; ð2aÞ

L3 ¼ X□ϕ − ϕμϕ
μνϕν; ð2bÞ

L4 ¼ −X½ð□ϕÞ2 − ϕμνϕ
μν�

− ðϕμϕνϕμν□ϕ − ϕμϕμνϕρϕ
ρν; ð2cÞ

L5 ¼ −2X½ð□ϕÞ3 − 3ϕμνϕ
μν
□ϕþ 2ϕμνϕ

νρϕμ
ρ�

−
3

2
ðð□ϕÞ2ϕμϕνϕμν − 2ϕμϕ

μνϕνρϕ
ρ

− ϕμνϕ
μνϕρϕρσϕσ þ 2ϕμϕ

μνϕνρϕ
ρσϕσÞ ð2dÞ

with Λi being the mass scale, Tμν is the stress-energy tensor
for matter, X ¼ − 1

2
∂μϕ∂

μϕ, and ϕμ1���μn ¼ ∇μ1 � � �∇μnϕ. A
special subclass of these theories, called G3-Galileon,
where the terms L2 and L3 vanish, is of some interest
because it yields a spherically symmetric solution stable to
perturbations [24]. This subclass is described by

1Let us also notice that dark matter can also be modeled as a
(pseudo)scalar field [60].
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L ¼ ffiffiffiffiffiffi
−g

p
M2

pl

�
R
2
þ X þ L4

Λ4

�
: ð3Þ

In the investigations of the nonrelativistic limit, one
introduces the metric

ds2 ¼ −½1þ 2Φðr; tÞ�dt2 þ a2ðtÞ½1 − 2Ψðr; tÞ�δijdxidxj;
ð4Þ

perturbed about the Friedmann-Lemaître-Robertson-
Walker metric. One also assumes that the scalar field
can be decomposed as ϕðr; tÞ ¼ ϕ0ðtÞ þ δϕðr; tÞ. Then,
introducing the new parameter [24]

ϒ ¼
�
_ϕ0

Λ

�4

; ð5Þ

one can write

dΦ
dr

¼ GmðrÞ
r2

þϒ
4
Gm00ðrÞ; ð6aÞ

dΦ
dr

¼ GmðrÞ
r2

−
5ϒ
4

Gm0ðrÞ
r

: ð6bÞ

It is the first quantity, (6a), that is related to the motion of
nonrelativistic particles, and for this reason, we will focus
on it. Then, we have

1

ρ

dp
dr

¼ −
dΦ
dr

; ð7Þ

so the nonrelativistic hydrostatic equilibrium equation in
the DHOST theories can be written as [24]

dp
dr

¼ −
GmðrÞ
r2

ρðrÞ −ϒ
4
GρðrÞ d

2mðrÞ
dr2

; ð8Þ

where ϒ denotes a parameter characterizing the theory. In
what follows, we will consider its values from the range
− 2

3
< ϒ≲ 1.4 [41] and also a much tighter range, provided

by helioseismology: −10−3 < ϒ≲ 5 × 10−4 [32]. The first
range was obtained from analyzing brown dwarf stars
physics and the observational properties, taking into
account a description of the electron degeneracy properties
which we need in our studies even more detailed. To obtain
the second range, the authors were using a simplified
description of the Sun, although they provided a very
rigorous uncertainties analysis that the first one was
lacking. Because of that reason, we will focus on those
two ranges, and at the end we will also perform the
uncertainties analysis.
The mass function in the considered theory has the

following, well-known relation:

dm
dr

¼ 4πr2ρðrÞ: ð9Þ

To model the interior and the atmosphere of an astro-
physical object, one also needs to specify the type of heat
transport. Usually, one uses the Schwarzschild criterion
[64,65] to determine whether one deals either with a
diffusive/conductive transport or with an adiabatic con-
vection present locally. One introduces the temperature
gradient

∇rad ¼
�
d lnT
d lnp

�
rad
; ð10Þ

which, for our theory, can be written as [54]

∂T
∂p

¼ 3κrcL
16πGMācT3

�
1þϒ

2

�
−1
; ð11Þ

where we have used the fact that the surface gravity g can
be treated as a constant [see Eq. (36)], such that

∇rad ¼
3κrcLp

16πGMācT4

�
1þϒ

2

�
−1
: ð12Þ

The constant ā ¼ 7.57 × 10−15 erg
cm3K4, the radiative and/or

conductive opacity is denoted by κrc, and L is the
luminosity. To determine the kind of the heat transport
we are dealing with

∇rad ≤∇ad pure diffusive radiative or conductive transport;

∇rad >∇ad adiabatic convection is present locally;

one compares it with the adiabatic gradient, ∇ad, whose
value depends on the properties of the gas. For an ideal gas,
the adiabatic gradient becomes ∇ad ¼ 0.4.
To solve the set of differential equations, we need to

impose an additional relation between the pressure and the
energy density. We will work with (analytical) barotropic
equations of state

p ¼ pðρÞ; ð13Þ

whose polytropic form p ¼ Kρ
nþ1
n will be discussed in more

detail in the upcoming subsection. For the polytropic
equation of state, it is convenient to use the Lane-Emden
(LE) approach, allowing one to write the equations with
dimensionless quantities θ and ξ. For the DHOST theories,
the LE equation reads as [24,41,42]

1

ξ2
d
dξ

��
1þ n

4
ϒξ2θn−1

�
ξ2

dθ
dξ

þϒ
2
ξ3θn

�
¼ −θn; ð14Þ

with the following definitions:
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r¼ rcξ; ρ¼ρcθ
n; p¼pcθ

nþ1; r2c¼
ðnþ1Þpc

4πGρ2c
; ð15Þ

where pc and ρc are the values of pressure and density at
the core of the object, respectively. One can solve the
equation numerically and get the star’s radius, mass,
temperature, and central density:

R ¼ γn

�
K
G

� n
3−n
M

n−1
n−3; M ¼ 4πr3cρcωn; ð16aÞ

T ¼ Kμ
kB

ρ
1
n
cθc; ρc ¼ δn

3M
4πR3

; ð16bÞ

where μ denotes the mean molecular mass and kB is the
Boltzmann constant. The parameters fωn; γn; δng depend
on the theory of gravity and are defined as follows:

ωn ¼ −ξ2
dθ
dξ

����
ξ¼ξR

; δn ¼ −
ξR

3dθ=dξjξ¼ξR

; ð17Þ

γn ¼ ð4πÞ 1
n−3ðnþ 1Þ n

3−nω
n−1
3−n
n ξR; ð18Þ

where θðξÞ is a solution of (14), while ξR is a value for
which θðξRÞ ¼ 0; that is, the first zero indicates the radius
of the object. In the further part, we will skip the index n in
the Lane-Emden parameters ω, γ, and δ.
The luminosity of a substellar object is given by the

Stefan-Boltzmann law

L ¼ 4πR2σT4
eff ; ð19Þ

where R is given by the solution of the structural equation
given by (16a) while the effective temperature Teff , in our
assumption being also the photosphere temperature, must
be determined by other meanings, discussed briefly in the
brown dwarfs’ section and derived in the Jovian planets’ one.

B. Matter description

To describe the matter our substellar object is made of,
we make use of the polytropic equation of state given in the
following form:

p ¼ Kρ1þ
1
n; ð20Þ

where n is a constant, polytropic index, whose value
depends on a type of an object while K provides the
information on the composition of matter and its properties,
for instance, interactions between particles and electron
degeneracy. In the simplest case, K is a constant depending
on n, such that in our case it is given for n ¼ 3

2
by2

K ¼ 1

20

�
3

π

�2
3 h2

me

1

ðμemuÞ53
; ð21Þ

whereme is the electron mass, μe is related to the number of
baryons per electron: 1

μe
¼ X þ Y=2, withX and Y being the

mass fractions of hydrogen and helium, respectively, and
mu is the mass of a nucleon. We will use a mixture of this
simplified equation of state with ideal gas in order to model
a Jupiter-like planet.
On the other hand, when brown dwarf stars are consid-

ered, one needs to take into account the additional effects
arising when a mixture of the degenerate Fermi gas of
electrons at a finite temperature with a gas of ionized
hydrogen and helium is considered. It turns out that the
resulting equation of state can also be written in the form of
a polytrope with the polytropic index n ¼ 3=2 [66];
however, the polytropic parameter K takes the form

K ¼ Cμ−5=3e ð1þ bþ aΨÞ; ð22Þ

where

b ¼ −
5

16
Ψ ln ð1þ e−

1
ΨÞ þ 15

8
Ψ2

�
π2

3
þ Li2ð−e−1

ΨÞ
	
;

ð23Þ

a ¼ 5μe
2μ1

;
1

μ1
¼ ð1þ xHþÞX þ Y

4
; ð24Þ

where μ1 is the mean molar mass for an ionized hydrogen
and helium mixture with xHþ being the ionization fraction
of hydrogen, Li2ðxÞ is a polylogarithmic function, while
the constant C ¼ 1013 cm4 g−2=3 s−2. The quantity Ψ is the
degeneracy parameter, which is defined as

Ψ ¼ kBT
μF

¼ 2mekBT

ð3π2ℏ3Þ2=3
�
μe
ρNA

�
2=3

; ð25Þ

where NA is the Avogadro number while the other con-
stants have the standard meaning.
Another thermodynamic quantity is the internal entropy.

It was showed that in the case of brown dwarfs with the
interior described by the above equation of state is given by

Sinterior ¼
3

2

kBNA

μ1mod
ðlnΨþ 12.7065Þ þ C1; ð26Þ

where C1 is an integration constant of the first law of
thermodynamics and

1

μ1mod
¼ 1

μ1
þ 3

2

xHþð1 − xHþÞ
2 − xHþ

; ð27Þ
2The polytropic parameter n ¼ 3=2 describes a nonrelativistic

electron gas which is good enough to model fully convective
objects.
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with xHþ being the ionization fraction of hydrogen. In the
further part, we will consider a specified metallic-molecular
phase transition model with xHþ ¼ 0.255, given in [66].
When analyzing the atmosphere of substellar objects, it

is convenient to introduce the so-called optical depth:

τðrÞ ¼
Z

∞

r
κ̄ρdr; ð28Þ

where κ̄ denotes the mean opacity. To describe objects
whose surface temperature is low, one can use Rosseland
mean opacities given by Kramer’s law:

κ̄ ¼ κ0puTw ð29Þ

with κ0, u, and w being constants whose values depend on
the opacity regime. Regarding the composition of the
atmosphere, we assume that it can be modeled as an ideal
gas with the equation of state:

ρ ¼ μp
NAkBT

: ð30Þ

III. BROWN DWARF STARS

Before going to the theoretical description of the brown
dwarf stars, let us briefly recall the basic notions related to
those failed stars. According to the current models based on
Newtonian gravity, they are objects with masses from the
range ð∼0.08– ∼ 0.003M⊙Þ [67,68]; the upper limit cor-
responds to the minimum mass for hydrogen burning3

[69,70] while the lower one is related to the so-called
opacity mass [71]. The opacity mass limit is the smallest
mass bounded gravitationally which cools via radiation
processes. Using other words, it is the smallest mass of a
gas cloud that will not crumble into smaller pieces caused
only by gravitational instabilities. It is believed that stars
and brown dwarfs form via such a fragmentation process,
which is limited by the opacity mass, while gaseous giant
planets are made from the gas and rocks of the proto-
planetary disk surrounding just a formed parent star.
Let us notice that the above boundary masses as well as

mentioned processes related to the substellar formation
depend on the interior structure, first-order phase transition,
opacity, and atmosphere model [66], as well as modified
gravity [41–48,51,53,54]. Moreover, massive brown
dwarfs can burn deuterium as well as lithium and even
hydrogen in their cores; however, those processes are
neither stable nor energetic enough to stop the gravitational
contraction. Therefore, they continue shrinking, radiating

the stored energy away and cooling down with time. The
contraction stops on the onset of the electron degeneracy.
In what follows, we will model our brown dwarf star

as a ball with two layers: the interior that is described by
the equation of state (20) with K given by (22), and the
atmosphere whose matter properties are given by the ideal
gas relation (30) and opacity (29).

A. Theoretical framework

With the use of the Lane-Emden formalism presented in
Sec. II we may write down the radius’, central density’s,
and pressure’s dependence on the brown dwarf’s mass and
electron degeneracy:

R ¼ 1.19138 × 109γ

�
M⊙

M

�
1=3

μ−5=3e ðaΨþ bþ 1Þ½cm�;

ð31Þ

ρc ¼ 2.808007 × 105
δ

γ3

�
M
M⊙

�
2 μ5e
ðaΨþ bþ 1Þ3 ½g=cm

3�

ð32Þ

pc¼1.204103×1010
δ5=3

γ5

�
M
M⊙

�
10=3 μ20=3e

ðaΨþbþ1Þ4 ½Mbar�;

ð33Þ

while the central temperature is given by combining
Eqs. (25) and (32):

Tc ¼ 1.294057 × 109
δ2=3

γ2

�
M
M⊙

�
4=3 Ψμ8=3e

ðaΨþ bþ 1Þ2 ½K�:

ð34Þ

On the other hand, modeling the surface properties of those
objects requires knowledge on a first-order phase transition
between the interior, characterized by a mixture of metallic
hydrogen and helium, and photopshere, with molecular
hydrogen and helium composition. Following the result
given by [66,72,73], the effective temperature can be
expressed as

Teff ¼ b1 × 106ρ0.4e ψν½K�; ð35Þ

where b1 and ν are numerical values4 depending on the
phase transition.
To follow further, we assume that the photosphere’s

radius is approximately equal to the radius of the brown

3That is, roughly speaking, the mass an object needs to have in
order to star hydrogen fusion in its core which results as a
counterbalance process to the gravitational contraction. Such a
star enters then the main sequence phase.

4Their values, together with the values for the ionization
fraction of hydrogen xHþ , can be found in [53,66]. In the further
part, as an example, we will focus on the model D, so b1 ¼ 2 and
ν ¼ 1.6, while xHþ ¼ 0.255.
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dwarf star; moreover, the surface gravity g can also be taken
as a constant value,

g ¼ GmðrÞ
r2

¼ const ð36Þ

such that the hydrostatic equilibrium equation (8) at the
photosphere can be written as [41,42]

p0 ¼ −gρ
�
1þϒ

2

�
: ð37Þ

The photosphere is defined at the radius when the optical
depth given by (28) is equal to 2=3,

τðrÞ ¼ κR

Z
∞

r
ρdr ¼ 2

3
; ð38Þ

with Rosseland’s mean opacity κR ¼ 0.01 cm2=g. Using
this definition and the photospheric hydrostatic equilibrium
given by (37), one can find the photospheric pressure

pph ¼
2GM
3κRR2

�
1þϒ

2

�
: ð39Þ

Inserting the radius relation (31) into above yields (in [bar])

pph ¼
62.352023

κRγ
2

�
M
M⊙

�
5=3 μ10=3e

ðaΨþ bþ 1Þ2
�
1þϒ

2

�
:

ð40Þ

Since in our model the photosphere’s equation of state is
given by the ideal gas (30), the photospheric density can be
easily obtained and inserted in (35), such that the effective
temperature is now written as

Teff ¼
2.557879 × 104

κ2=7R γ4=7

�
M
M⊙

�
10=21

×
b5=71 Ψν·5=7

ðaΨþ bþ 1Þ4=7
�
1þϒ

2

�
2=7

½K�: ð41Þ

Finally, the luminosity of the brown dwarf stars is obtained
as a function of its mass and electron degeneracy Ψ by
inserting the above effective temperature together with (31)

L¼0.072233L⊙

κ8=7R γ2=7

�
M
M⊙

�
26=21 b20=71 Ψν·20=7

ðaΨþbþ1Þ2=7
�
1þϒ

2

�
8=7

:

ð42Þ

This is the main result related to the modeling of brown
dwarf stars in DHOST, where the modification with respect
to the Newtonian model is given by the presence of the
parameters ϒ and γ. Let us, however, notice that those

objects undergo the gravitational contraction, since there is
no energy source whose pressure could counterbalance the
attraction, apart from the initial unstable hydrogen burning
in the case of the very massive brown dwarfs. Depletion of
lithium and deuterium in massive brown dwarfs is not
sufficient to stop the contraction, and in our approximation
the energy generated by these nuclear processes can be
ignored; therefore, those bodies will cool down with time.
The electron degeneracy is, however, the non-negligible
effect in the cooling process, and its evolution while a
brown dwarf contracts should also be taken into account.
To find the time dependency of the electron degeneracy

Ψ, let us consider the energy equation, given by

dE
dt

þ p
dV
dt

¼ T
dS
dt

¼ _ϵ −
∂L
∂M

; ð43Þ

where E is the energy of the system, V the volume, S the
entropy per unit mass, and L the surface luminosity. As
mentioned, we may neglect the energy generation term _ϵ,
such that integrating over mass the last two terms from the
above equation one finds

ds
dt

�Z
NAkBTdM

�
¼ −L; ð44Þ

where we have defined s ¼ S=kBNA. The polytropic
equation of state (20) inserted into (25) allows one to
get rid of the temperature from the previous expression,
such that

ds
dt

NAAμeΨ
Cð1þ bþ aΨÞ

Z
pdV ¼ −L; ð45Þ

where the constant was defined as A ¼ ð3NAπ
2ℏ3Þ2=3

2me
while the

integral is given by

Z
pdV ¼ 2

7
G
M2

R
: ð46Þ

The entropy rate can be obtained from the relation (26)

ds
dt

¼ 1.5
μ1 mod

1

Ψ
dΨ
dt

; ð47Þ

which inserted together with (46) and luminosity (42) to
(45) provides the degeneracy’s evolution

dΨ
dt

¼ −1.018097 × 10−18μ1mod

κ8=7R

�
M⊙

M

�
23=21

×
b20=71 Ψν·20=7ðaΨþ bþ 1Þ12=7

μ8=3e

�
1þϒ

2

�
8=7

; ð48Þ

which clearly also depends on the theory parameter.

KOZAK, SOIEVA, and WOJNAR PHYS. REV. D 108, 024016 (2023)

024016-6



B. Numerical solutions

Equation (48) is numerically solved with the initial
condition Ψ ¼ 1 at t ¼ 0 for the theory parameter ϒ from
the range ½−0.6; 1.4� (see Fig. 1), whereϒ ¼ 0 provides the

Newtonian model, and for a much tighter range ½−10−3;
5 × 10−4� (see Fig. 2), as suggested by [32]. The choice of
the initial value of the degeneracy parameter comes from
the assumption that, at the beginning, when the object is
large, there is no degeneracy [one needs to remember that
smaller values of the parameter ψ correspond to a bigger
extent of degeneracy; see the definition (25)]. When inte-
grating the equations, we assumed that u ¼ 0.5 andw ¼ 1 in
(29), as suggested by the work [74]. The value of κ0 ¼ 1075

in (29) was selected in such a way that the model reproduced
cooling time of Jupiter in the case of Newtonian gravity, that
is, when ϒ ¼ 0. The mass fractions of hydrogen and helium
are set to be X ¼ 0.75 and Y ¼ 0.25, respectively, so
μe ¼ 1.14. The solutions are given by Figs. 1 and 2.
Using these results in (42), one finally gets the luminosity
as a function of time, given by Fig. 3.

IV. JOVIAN PLANETS

There is no doubt that Jovian planets possess a compli-
cated internal structure, as indicated by theoretical models
and Juno mission collecting data on Jupiter [75–84]. It
seems that the internal model which goes well with the
current observational data must have at least three layers: a
diffusive core built of heavier elements, a mantle mainly
composed of metallic hydrogen with admixtures of helium
and heavier elements. The outer layer mainly consists of

FIG. 1. The time evolution of the degeneracy parameter Ψ for
M ¼ 0.05M⊙ and different values of the ϒ parameter. The
bottom panel shows the ratio of the time evolution in the
scalar-tensor gravity with respect to ϒ ¼ 0.

FIG. 2. The time evolution of the degeneracy parameter Ψ and
the luminosity (as compared to the Sun’s luminosity) for M ¼
0.05M⊙ and different values of the ϒ parameter. Clearly, the
effect of modified gravity is negligible for such a range of the
parameter ϒ.

FIG. 3. The time evolution of a M ¼ 0.05M⊙ brown dwarf’s
luminosity. The bottom panel shows the ratio of the time
evolution in the scalar-tensor gravity with respect to ϒ ¼ 0.
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molecular hydrogen with helium rain and silicate droplets
[85]. Apart from such a complex structure, there is still no
consistent equation of state describing a mixture of hydro-
gen and helium in the pressure range approaching megabar,
while the temperature can reach even a few thousand
kelvins [84,86,87]. Despite this, we can still model a
Jupiter-like planet with the use of a simplified and
analytical equation of state, as presented further, because
it was demonstrated that it can produce a cooling model
with the nowadays’ surface temperature close enough to the
actual value [74,88]. Since the model is simple, it also
allows us to trace differences provided by the scalar-tensor
gravity with respect to the Newtonian one. Therefore, we
will follow the derivation of the atmospheric, boundary,
and convective interior given by [74] and further studied
by [47].

A. Atmosphere quantities for the Jovian planets

The planet’s luminosity is described by the Stefan-
Boltzmann law. In general, there can be various energy
sources contributing to the total radiation energy of the
planet. To simplify our considerations, we assume here that
the only relevant energy source of energy for a given planet
is the energy flux from the nearest star:

Lreceived ¼
�

Rp

2Rsp

�
2

Ls; ð49Þ

where Rp denotes the planet’s radius, Ls is the luminosity
of the star, and Rsp is the distance between the planet and
the star. Some part of the energy is directly reflected by the
planet, and the absorbed energy is given by the formula

Labs ¼ ð1 − ApÞ
�

Rp

2Rsp

�
2

Ls; ð50Þ

where Ap is the plant’s albedo. Making the assumption that
the distribution of the energy absorbed is uniform, we can
obtain the equilibrium temperature Teq by using the Stefan-
Boltzmann law:

ð1 − ApÞ
�

Rp

2Rsp

�
2

Ls ¼ 4πfσT4
eqR2

p; ð51Þ

with f < 1 being a factor that allows one to take into
account the fact that the planet radiates less energy than the
blackbody with the same effective temperature. The ther-
mal equilibrium is achieved when the energy received from
the star becomes equal to the energy the planet radiates
away from its surface. This allows one to write Teff ¼ Teq.
Taking into account the fact that the star’s luminosity is
given by

Ls ¼ 4πσT4
sR2

s ; ð52Þ

we are able to relate the equilibrium temperature to the
star’s surface temperature Ts:

Teq ¼ ð1 − ApÞ14
�

Rs

2Rsp

�
1

2
Ts: ð53Þ

Interestingly, Teq does not depend on the planet’s size in
this case. These considerations are not true for more general
cases when one needs to take into account internal sources
of energy, such as gravitational contraction, tidal forces, or
ohmic heating. With these additional sources, the planet’s
temperature is higher than Teq, and the planet radiates away
more energy than it receives from the star. To find the relation
between the effective and equilibrium temperatures, one can
use the standard equation describing radiative transfer in gray
atmosphere [89–91] and Eddington’s approximation. One
can show that [74]

4T4 ¼ 3τðT4
eff − T4

eqÞ þ 2ðT4
eff þ T4

eqÞ: ð54Þ

Here, T denotes the stratification temperature in the atmos-
phere, described by

dT
dr

¼ 3κ̄Lρ
64πσr2T3

; ð55Þ

and τ is the optical depth. Zero value of the depth is achieved
at the planet’s surface. The equation can be rewritten in a
simpler form if one introduced the following quantities:

T− ≔ T4
eff − T4

eq; Tþ ≔ T4
eff þ T4

eq

so that Eq. (54) reads now

4T4 ¼ 3τT− þ 2Tþ: ð56Þ

We can use the fact that the atmosphere is in hydrostatic
equilibrium with gravitational pressure to find the pressure
in the atmosphere. The optical depth definition can be used
in the hydrostatic equilibrium equation to relate the pressure
to the density and gravitational interaction:

dp
dr

¼ −κρ
dp
dτ

¼ −gρ
�
1þϒ

2

�
: ð57Þ

The opacity is given by Eq. (29) with u and w unspecified to
make our considerations more general. Now, using (29), we
can rewrite (57) as

pu dp
dτ

¼ g
κ0T4w

�
1þϒ

2

�
; ð58Þ

which can be plugged into (54) to give
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Z
p

0

pudp ¼ 4wg
κ0

�
1þϒ

2

�Z
τ

0

dτ
ð3τT− þ 2TþÞw

: ð59Þ

We integrate it for w ≠ 1 and w ¼ 1, respectively, to get the
pressure in the atmosphere:

puþ1 ¼ 4wg
3κ0

uþ 1

1 − w

�
1þϒ

2

�
T−1
− ðð3τT− þ 2TþÞ1−w

− ð2TþÞ1−wÞ; ð60Þ

puþ1 ¼ 4g
3κ0

ðuþ 1Þ
�
1þϒ

2

�
T−1
− ln½3τT− þ 2Tþ�; ð61Þ

where we have used the boundary condition p ¼ 0 at τ ¼ 0.

B. Boundary between the radiative atmosphere
and convective interior

Inside the gaseous planets, the transport of energy can be
attributed to convective processes. Between the atmosphere
and the interior of the planet, the transport of energy is
replaced by the radiative one. The change of the type of
energy transport can be described by the Schwarzschild
criterion (12). The behavior of the convective interior can
be modeled with a polytropic equation of state (20) with
n ¼ 3=2, so that the stratification d lnT=d lnp ¼ ∇ad is
adiabatic and equal to 2=5 for a fully ionized gas [92].
Using (58) together with the Schwarzschild condition,
we get

15

32
puþ1T−4T− ¼ g

κ0T4w

�
1þϒ

2

�
; ð62Þ

which, upon substituting the temperature of the atmosphere
(56) and its pressure (60), gives the critical depth:

τc ¼
2

3

Tþ
T−

��
1þ 8

5

�
w − 1

uþ 1

�� 1
w−1

− 1

�
; w ≠ 1; ð63Þ

τc ¼
2

3

Tþ
T−

ðe16
15 − 1Þ; w ¼ 1: ð64Þ

At this optical depth, the radiative transport is replaced by
the convective one. To find the temperature and pressure
at the radiative-convective boundary, one substitutes the
relations given above to (56) and (60):

puþ1
conv ¼

8g
15κ0

4wð1þ ϒ
2
Þ

T−ð2TþÞw−1
�

5ðuþ 1Þ
5uþ 8w − 3

�
; ð65Þ

T4
conv ¼

Tþ
2

�
5uþ 8w − 3

5ðuþ 1Þ
�

w−1
ð66Þ

for w ≠ 1. For w ¼ 1, those equations give

puþ1
conv ¼

32g
15κ0

ð1þ ϒ
2
Þ

T−
; ð67Þ

T4
conv ¼

1

2
Tþe

16
15: ð68Þ

C. Convective interior of the Jovian planets

In the following parts of the paper, when modeling the
interior pressure of Jovian planets, we will assume it can be
split into two parts:

p ¼ p1 þ p2; ð69Þ

where p1 comes from the electron degeneracy and is given
by the polytropic equation of state (EoS) (20) with
n ¼ 3=2, and p2 is simply the pressure of an ideal gas:

p2 ¼
kBρT
μ

; ð70Þ

where μ denotes the mean molecular weight. It can be
shown that such a combination of pressures can be
described by a single polytropic EoS:

p ¼ Aρ
5
3; ð71Þ

where A ¼ pc=ρ
5
3
c (index denotes values at the core of the

object). We can then substitute it in (69) and make use of
the Lane-Emden relations (32) and (33) to obtain

A ¼ γ−1GM
1
3
pRp: ð72Þ

The interior pressure (69) can now be written as

pconv ¼
GM1=3

p Rp

γ

�
kTconv

μðGγ−1M1=3
p Rp − KÞ

�5
2

: ð73Þ

This pressure must be equal to the pressure at the radiative-
convective boundary (66):

T
5
8
uþw−3

8þ T− ¼ C̄G−uM
1
3
ð2−uÞ
p R−ðuþ3Þ

p μ
5
2
ðuþ1Þk−

5
2
ðuþ1Þ

B γuþ1

× ðGγ−1M1
3
pRp − KÞ52ðuþ1Þ

�
1þϒ

2

�
: ð74Þ

Using this condition, one can relate the effective temper-
ature Teff to the radius of the planet Rp. In the equation
above, C̄ is a constant whose value depends on the opacity
constants u and w, w > 1:

C̄w≠1 ¼
16

15κ0
2

5
8
ð1þuÞþw

�
5uþ 8w − 3

5ðuþ 1Þ
�

1þ5
8
ð1þuÞðw−1Þ

; ð75Þ
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C̄w¼1 ¼
32

15κ0
2
5
8
ðuþ1Þe−

2
3
ðuþ1Þ: ð76Þ

The final radius of the planet can be obtained from
Eq. (74) after setting T− ¼ 0; this condition means that the
effective planet’s temperature reached an equilibrium value
so that the only source of energy for the fully contracted
planet is the parent star. The radius of a contracted planet is
given by

RF ¼ Kγ

GM
1
3
p

: ð77Þ

The effect of the nonrelativistic limit of DHOST theories
is contained within the γ parameter. For different values of
the theory parameterϒ, the final radius will be either larger
or smaller than the one predicted by Newtonian gravity.

D. Jovian planets’ evolution

We assume that the process of contraction is quasi-
equilibrium, which allows us to write the planet’s lumi-
nosity as a sum of the internal gravitational energy and the
total energy absorbed by the planet, Labs. For a polytrope
with the polytropic index n ¼ 3=2, we can write [53]

Lp ¼ Labs −
3

7

GM2
p

R2
p

dRp

dt
: ð78Þ

Using the Stefan-Boltzmann law (19) and Eq. (50), the
evolution equation given above can be written as

πācR2
pT− ¼ −

3

7

GM2
p

R2
p

dRp

dt
: ð79Þ

To obtain the contraction time, one needs to integrate this
equation from the initial radius R0 to the final one RF:

t ¼ −
3

7

GM2
p

πāc

Z
Rp

R0

dRp

R4
pT−

: ð80Þ

Here, T− can be thought of as a function of Rp and Teff
[cf. (74)]. Thus, we can write the integral in the following
way:

t ¼ −
3

7

GM
4
3
pk

5
2
ðuþ1Þ
B κ0

πācγμ
5
2
ðuþ1ÞK3

2
uþ5

2C̄

�
1þϒ

2

�
−1

×
Z

1

x0

ðT4
eff þ T4

eqÞ58uþw−3
8dx

x1−uðx − 1Þ52ðuþ1Þ ; ð81Þ

remembering that Teff also depends on the radius. Here, we
rescaled the variable over which we integrate, so now x ¼
Rp=RF and x0 ¼ R0=RF. Let us notice that it takes an

infinite amount of time for the planet to contract fully; this
result is independent of the theory of gravity.

E. Numerical solutions

The solution was obtained by solving numerically
Eq. (74) (using the bisection method) for a range of
possible radii of a planet of mass equal to Jupiter’s mass.
Each solution gave us a direct relationship between the
effective temperature and other parameters characterizing
the system, which was then used to compute the luminosity.
When computing the equilibrium temperature Teq, we
assumed that the planet’s mass was equal to Jupiter’s,
and also its distance from the parent star was ≈5 AU. The
procedure was repeated for different values of the param-
eter ϒ. The results of this procedure can be seen in Fig. 7,
where on the y axis we put the scaled luminosity of the
object (L0 ¼ 1029 erg=s). The black dots represent differ-
ent moments of time: the uppermost is for t ¼ 106 years,
the middle one for t ¼ 108 years, and the lowest for
t ¼ 5 × 109 years. Different times were obtained by inte-
grating numerically the integral (81) for appropriate radii. As
one can see, bigger values of the parameterϒ correspond to
lower temperatures for the same range of the planet’s radii,
but also the cooling rate is slightly lower, as the final dot for
the time t ¼ 5 × 109 years lies above the lineL=L0 ¼ 10−3,
whereas the other dots are located beneath that line.
We repeated the calculations for a tighter range of the

parameter ϒ ∈ ½−10−3; 5 × 10−4� to illustrate how minus-
cule the effect might be for very small values of ϒ
(see Fig. 8).

V. UNCERTAINTIES ANALYSIS

In this section, we obtain analytical formulas allowing us
to quantify the variation in observable quantities with
respect to certain parameters assumed in our calculations.
Since, as obtained by our numerical analysis, we expect that
the modified gravity effects are crucial in the late times of the
substellar objects’ evolution, we will determine whether any
alternation of the rate of change of degeneracy due to the
presence of Horndeski’s parameter ϒ could be overshad-
owed by uncertainties in other theory parameters, i.e.,
ionization fraction xHþ or different mass fractions of hydro-
gen and helium. In what follows, all quantities computed for
ϒ ¼ 0 and the ionization and mass fractions assumed in the
part of the article preceding this section are denoted with the
subscript 0. For each quantity Q, δQ is to be understood as

δQ ≔ Qðmodified values of xHþ ; X; Y;ϒ ≠ 0Þ
−QðxHþ ¼ 0.255; X ¼ 0.75; Y ¼ 0.25;ϒ ¼ 0Þ

≡Q −Q0: ð82Þ

First, let us compute the relative change in the degeneracy
using Eq. (25):
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δψ

ψ0

¼ δT
T0

−
2

3

δρ

ρ0
: ð83Þ

Variation in the temperature is calculated using Eqs. (16a)
and (15):

δT
T0

¼ δμ

μ0
þ 1

3

δρ

ρ0
ð84Þ

so that

δψ

ψ0

¼ δμ

μ0
−
1

3

δρ

ρ0
: ð85Þ

At the end, we compute the variation in the rate of
change in time of the degeneracy parameter:

_ðδψÞ
_ψ0

¼ 4ϒ
7

þ δμ1mod

μ1mod;0
−
8

3

δμe
μe;0

þ 12ψ0δa
7ð1þ a0ψ0 þ b0Þ

þ δψ

w0

;

ð86Þ

where ϒ ≪ 1 and

w0 ¼
F 0

G0

; ð87Þ

where

F 0 ¼ 21ð1þ e
1
ψ0Þψ0ð2ð8þ 8a0ψ0 þ 5π2ψ2

0

− 5ψ0Logð1þ e−
1
ψ0Þ þ 30ψ2Li2ð−e−

1
ψ0ÞÞ ð88Þ

and

G0 ¼ 2ð−10þ 80e
1
ψ0 þ ð1þ e

1
ψ0Þð368a0ψ0 þ 410π2ψ2

0

− 655ψ0Logð1þ e−
1
ψ0Þ þ 1230ψ2

0Li2ð−e−
1
ψ0ÞÞÞ: ð89Þ

Taking into account the formulas above and the defi-
nition of a0, we can write

δa
a0

¼ −
δμ1
μ1;0

ð90Þ

and, finally,

_ðδψÞ
_ψ0

¼ 4ϒ
7

þ δμ1mod

μ1mod ;0
−
8

3

δμe
μe;0

−
12ψ0δμ1

7μ1;0ð1þ a0ψ0 þ b0Þ

þ ψ0

w0

�
δμ

μ0
−
1

3

δρ

ρ0

�
: ð91Þ

The density variation for r ≈ R takes the following form
(expanded around r ¼ 0.99R) [32,54]:

δρ

ρ0
¼ −0.21ϒ − 10.1ϒ

�
r − Rcz

R

�
; ð92Þ

where Rcz is the radius of the convective zone. Putting this
altogether, we get

_ðδψÞ
_ψ0

¼
�
4

7
þψ0ð0.21þ 10.1ðr−Rcz

R ÞÞ
3w0

�
ϒþ δμ1mod

μ1mod ;0
−
8

3

δμe
μe;0

−
12ψ0δμ1

7μ1;0ð1þ a0ψ0 þ b0Þ
þ ψ0

w0

δμ

μ0
: ð93Þ

In Fig. 4, we present how ψ0

w0
changes as a function of the

degeneracy parameter. We can see that this parameter
decreases as time progresses (we remind the reader that
the value of the degeneracy parameter goes down with
time), going to the constant value of ∼ 1

2
. In Fig. 4 we also

plotted the dependence of the parameter multiplying δμ1; as
one can see, at a certain moment it reaches maximum value
but then drops to zero at later times.
For large times and r ¼ R, we obtain the following:

_ðδψÞ
_ψ0

≈ 0.727ϒþ δμ1mod

μ1mod ;0
−
8

3

δμe
μe;0

þ 1

2

δμ

μ0

¼ 0.727ϒþ δμ1mod

μ1mod ;0
−
13

6

δμe
μe;0

; ð94Þ

where in the last equality we have used the assumption on
the zero metallicity, so μ ¼ μe.

A. Varying with respect to xH +

In this part, we want to investigate how a simultaneous
change in xHþ and X will influence the evolution of the
electron degeneracy. We neglect the possible change in
other theory parameters, such as b1 and ν, since in Fig. 5
we plot regions of values of deviations from X ¼ 0.75,

FIG. 4. Change of ψ0

w0
and ψ0

1þa0ψ0þb0
parameters with respect

to degeneracy value. The numerical value of a0 is a0 ¼ 2.8679.
The value Ψ0 ¼ 1 denotes the nondegenerated case (early times);
see Figs. 1 and 2.
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Y ¼ 0.25, xHþ ¼ 0.255, resulting in smaller joint variations
than the ones coming from modified gravity alone, i.e.,

����
_ðδψÞ
_ψ0

ðX ¼ 0.75; Y ¼ 0.25; xHþ ¼ 0.255;ϒ ≠ 0Þ
����

>

����
_ðδψÞ
_ψ0

ðX; Y; xHþ ;ϒ ¼ 0Þ
����: ð95Þ

As one can see, the regions shrink down to a single line for
very small values of the parameter ϒ, representing possible
values of X and xHþ resulting in δμ1mod

μ1mod ;0
− 13

6
δμe
μe;0

¼ 0. We

impose additional constraints on X and xHþ , coming from
theories considered in [53].
To get some idea about the order of variations coming

from either modified gravity or changed parameters X and

xHþ , let us compute the value j _ðδψÞ
_ψ0
j for extreme values of

these parameters. The results of these calculations are
shown in Table I.
On the other hand, j _ðδψÞ

_ψ0
j for unchanged X and xHþ

and ϒ ∈ f0.1; 0.05; 0.01; 0.0001g are, respectively, 0.072,
0.036, 0.007, 0.000007.

B. Keeping xH + constant

We want to repeat the procedure outlined above while
keeping the ionization fraction xHþ constant. This corre-
sponds to a situation when we decide on a given model

without assuming any uncertainties in xHþ ; in the case of
our paper, we decided to choose Model D with b1 ¼ 2
and ν ¼ 1.6. The only parameters we will vary in that case
are the DHOST parameters ϒ and X, and the hydrogen
mass fraction (one is reminded that Y ¼ 1 − X). Again

we compare absolute joint contributions to
��� _ðδψÞ

_ψ0

��� when

ϒ ¼ 0 and ϒ ≠ 0. We present the results in Fig 6. In this
figure, the solid blue line corresponds to the situation when
we vary X but keep ϒ ¼ 0; the dashed and dotted lines
represent uncertainties coming from the modification of the
ϒ value only, with X ¼ 0.75 in all four cases. The figure
allows us to determine for what values of X the effects
coming from modifications of a star’s composition are
greater than modifications coming from extended grav-
ity alone.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have focused on the cooling processes
of brown dwarf stars and Jupiter-like planets in the
framework of DHOST theories of gravity. Those theories
modify the hydrostatic equilibrium equation which is used
to obtain the equations ruling cooling models. Because of
that fact, we had expected some differences with respect to
the results that are based on Newtonian gravity.
In the case of brown dwarfs, we have used a realistic

analytical equation of state describing the complex interior
of those objects: the main issue is related to taking into
account the phase transition between the molecular hydro-
gen in the photosphere and the ionized one, which is
present in the brown dwarfs’ interior, according to the
current models [66,72]. Moreover, the considered EoS suits
well when a mixture of degenerate Fermi gas with hydro-
gen’s and helium’s ions must be considered, which is the
case of the brown dwarfs’ interiors. This allowed us not
only to derive the master equations describing the inner

FIG. 5. Regions of possible values xHþ and X (and, conse-
quently, in Y) resulting in smaller joint modifications than coming
from variations in ϒ alone.

FIG. 6. Comparison of the uncertainties resulting from varying
the hydrogen mass fraction and from modified gravity while
keeping the ionization fraction xHþ fixed.

TABLE I.
��� _ðδψÞ

_ψ0

��� values for different combinations of X and xHþ

when no modified gravity effects are taken into account.

xHþ ¼ 0.105 xHþ ¼ 0.255 xHþ ¼ 0.26

X ¼ 0.7 0.20 0.02 0.02
X ¼ 0.75 0.21 0 0.01
X ¼ 0.8 0.22 0.02 0.01
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FIG. 7. H-R diagram for Jupiter. Different curves correspond to different values of the ϒ parameter, characterizing deviations for GR
(here, the black solid line). On the y axis, we put the scaled luminosity of the object (L0 ¼ 1029 erg=s). The dots represent different
moments of time (from top to bottom): t ¼ 106 years, t ¼ 108 years, and t ¼ 5 × 109 years.

FIG. 8. H-R diagram for Jupiter. Different curves correspond to different values of the ϒ parameter, characterizing deviations for GR
(here, the black solid line). On the y axis, we put the scaled luminosity of the object (L0 ¼ 1029 erg=s).

COOLING PROCESS OF SUBSTELLAR OBJECTS IN … PHYS. REV. D 108, 024016 (2023)

024016-13



structure of those objects but also to find the photospheric
quantities which are crucial for modeling cooling proc-
esses, (40), (41), and (42), being dependent on the varying
electron degeneracy (48).
The solutions of the equations governing the cooling

process in brown dwarfs are given by Figs. 1–3. For the
given values of the parameter ϒ we see that for an older
object one deals with the bigger differences with respect
to the Newtonian model. It is, as expected, more evident
for the higher absolute values of the parameter. For
example, for the 1 Myr brown dwarf, the difference is
about 5% while for the 10 Gyr one it differs by 10%–15%
for ϒ ¼ j0.6j. In the case of the luminosity, the ratios
are more significant: 20%–40% for old brown dwarfs,
while for the young ones we deal with 10%–15%.
Similarly, as in the case of the previous results in the
field [53], scalar-tensor theories could be constrained by
future data.
Since the positive values of ϒ, as long as the second

derivative of mass with respect to the radius is negative,
correspond to weaker gravity (and vice versa), brown
dwarfs in such models will be smaller (bigger), as it also
follows from Eqs. (31) and (32). Also, their temperature at
the core is lower as the theory parameter increases. The
situation becomes somewhat counterintuitive when one
considers the photosphere of a brown dwarf. It becomes
apparent from Figs. 1 and 3 that, as the gravity becomes
weaker, the luminosity drops faster, while the opposite
effect is visible for the degeneracy (one is reminded that
Ψ ¼ 1 corresponds to no degeneracy). The interpretation is
clear: for weaker gravity, the stored energy can be radiated
faster, and therefore it has the same effect on the cooling
process. Let us recall that the electron degeneracy is a
response (via the Pauli exclusion principle) to the attractive
nature of gravity in the interiors of the substellar objects,
such that weakening this interaction will also have a direct
effect on the degeneracy. We see from Eq. (48) that the
positive (negative) range of the parameter makes the matter
reach a more degenerate state in a shorter (longer) time with
respect to the Newtonian case.
On the other hand, although gaseous giant planets are

quite similar to brown dwarfs, the methods allowing one to
obtain the cooling model are much more complicated. The
main and the most important difference is that one cannot
neglect the energy source coming from the parent star if we
do not deal with a rogue planet (let us notice that we
neglected tidal and ohmic heating in our analysis). It results
in slightly different atmospheric characteristics; that is, the
effective temperature depends on the equilibrium one,
which is a property of a given planetary system and its
parent star [see Eqs. (53) and (54)]. Because of that fact, we
followed a simplified approach developed in [47,74],
whose main assumption is related to the simplified
description of the matter behavior: that is, one models it
as a slightly modified polytropic equation of state (73).

However, even with such a toy model we were able to get
solutions close to the realistic values for the considered
theories of gravity, and again, as expected, the evolutionary
paths are affected with respect to Newtonian gravity 7.
Depending on the ϒ’s sign, Jupiter’s age, based on its
current effective temperature, can be very different from the
one we believe it is. For instance, the age and average
effective temperature of Jupiter is ≈4.9 × 109 years and
≈130 K, respectively, according to the Newtonian model.
Our calculations reveal that for the broader range of the
parameter ϒ, the age of Jupiter varies from 2.08 × tJ for
ϒ ¼ −0.2 to 8.16 × 10−6 × tJ for ϒ ¼ 1 (smaller and
larger values of the ϒ were beyond our integration interval,
but the tendency is pretty clear), where tJ is the age of
Jupiter contracting from the initial size of R0 ¼ 1012 m.
For the much tighter range of the parameter ϒ, we got
0.9993 × tJ for ϒ ¼ −10−3, and 1.0007 × tJ for
ϒ ¼ 5 × 10−4. It must be noted that for the smaller values
of the ϒ, uncertainties coming from the temperature
estimates are much higher than the ones introduced by
the modification of gravity. The modification introduced by
DHOST theories slows down the process of cooling down
Jovian planets. They also achieve lower temperatures for
greater values ofϒ. At a given value of the temperature, the
objects have bigger luminosity for greater ϒ. Also, for a
given luminosity, the objects become older as ϒ increases.
This also means that the evolution of our Solar System will
also be distinct from the one we are used to.
Let us also notice that the giant planets’ models

presented in this work cannot be used yet to constrain
theories of gravity. This is so according to the fact that in
order to derive the cooling equations we have used an
approximated, analytical form of the equations of state,
and, more importantly, a very simplified atmosphere
description, mainly related to the opacity models. Apart
from this, some of those microscopic properties can depend
on a theory of gravity [93–98] and therefore, should also be
properly reanalyzed before applying them to the stellar and
substellar modeling, and finally, to constrain models of
gravity. The problem is, however, different in the case of
brown dwarfs’ modeling, as it reveals our uncertainties
analysis.
Regarding the uncertainties, we have demonstrated that

the evolution of the electron degeneracy (48) is a crucial
element in modeling substellar objects. It depends on the
composition, temperature, energy density, opacity, ioniza-
tion, and phase transition points. As demonstrated in [54],
the atmosphere modeling carries the highest uncertainties
mainly related to metallicity in the case of low-mass stars.
Since in our case we have neglected metallicity and
considered a simple Rosseland opacity (which in the
general case depends on energy density and composition),
we do not have such a dependence. We are aware that
metallicity plays a very important role in the substellar
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evolution [99]. Hence, the analysis in that direction will
have to be done in the near future.
From our current uncertainty analysis, in the case of

fixed ionization fraction xHþ , presented in Fig. 6, we can
see that the effect of modified gravity is more pronounced
in the admissible range of X if the modifications are of
order ≥ 10−2 (for ϒ ¼ 10−2, uncertainties coming from X
can be greater, but remain of the same order). The value of
10−4, however, rules out any possibility to produce a
noticeable effect compared to a varied X, and thence such
modification will not have any noticeable effect on the
evolution of the electron degeneracy.
However, taking into account more variables, such as

small changes in the ionization, as plotted in Fig. 5, for each
value of the ϒ parameter there exists a region of possible
values of xHþ and X such that their joint effect on the rate of
change of degeneracy is smaller than the one coming from a
modification of gravity. As expected, the smaller value of
the parameter ϒ, the smaller region we deal with; never-
theless, the effect is still present even for the very restrictive
range of the parameter [32]. Since the luminosity and
effective temperature depend on the time evolution of the
electron degeneracy and the effects of modified gravity
accumulate with time [100] (compare also the ratios in
Figs. 3 and 1), one deals with a possibility to test this theory
with the brown dwarf stars.
Nevertheless, this is the first step undertaken in the

scalar-tensor theories to understand how to use the interior
properties of planets and brown dwarf stars to test such
theories, as mentioned in the Introduction. The effects of
the extra terms appearing in our equations can be inter-
preted as additional heating or cooling processes, resulting
in altered evolutionary scenarios with respect to the
Newtonian model. Even improved models of brown dwarfs
and Jovian planets (for example, the next step could be
considering rotation effects on the electron degeneracy
evolution [101]) will carry uncertainties related to theo-
retical assumptions—however, having a large sample of
observational properties, differentiated with respect to

distances from the detectors, types of the objects, and
the objects’ neighborhood, will allow one to reduce the
error, and finally, to constrain the models [59,100,102].
Moreover, knowing the age of the neighborhood structures
of giant planets and brown dwarf,5 which are expected to
form at the same time as the substellar bodies, could also be
used to test theories, since the age is the most affected
quantity by modified gravity. Data on the Solar System
objects, because of the vicinity ensuring higher accuracy,
such as effective temperatures (which can also be derived
from theoretical models), measurements of the energy flux
radiated from the Sun and received by a planet as well as
radiated away from it, together with seismic data providing
information on internal properties are only a part of the
opportunities which can be used to test theories. So far,
there have been just a few works discussing those pos-
sibilities, and it is expected that there will appear more in
the nearest future.
We will leave further considerations along these lines for

future work. However, we should again underline that if we
believe that there is a bit better theory of gravity, allowing
one to describe gravitational phenomena on a much wider
scale than GR, probably that theory will also slightly
modify the Newtonian limit. Research in this direction is
in high demand, especially in light of many current and
future missions, whose aim is to explore our and other
planetary systems and to provide more accurate data
regarding the substellar objects [103–109].
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