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Cooling processes of brown dwarf stars and giant planets are studied in the framework of degenerate
higher-order scalar-tensor theories. We confirm the previous results in the field that the effect of modified
gravity on substellar objects’ age is pronounced the most.
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I. INTRODUCTION

Scalar-tensor (ST) theories of gravity are a class of
modified gravity theories that were introduced in the hope
of finding a remedy for certain shortcomings of general
relativity (GR) [1-3], such as the difficulty in explaining
currently observed accelerated expansion of the Universe
[4-8]. ST theories are motivated not only by observational
discrepancies between the theory and the empirical data,
but there are also some arguments coming from theories
considered as fundamental, such as the string theory, which
reproduce ST theory in their low-energy limit rather than
GR [9].

ST theories are realized by an addition of a scalar field
into the theory. Historically, the first ST theory was
formulated by Brans and Dicke [10]; their approach was
later generalized to include self-interaction potential of the
scalar field, yielding the so-called Wagoner parametrization
[11,12], in which the scalar field enters the action in a
nontrivial way: in the most general case, it can be coupled
to spacetime curvature and to the matter fields. Such a way
of introducing a new mediator of gravitational interaction
results in many changes gravity manifests itself. For
example, a nonminimal (anomalous) coupling between
the field and matter part of the action can produce a fifth
force acting on the test particles, causing them to deviate
from geodesics (however, this effect can be hidden by
various screening mechanisms, which are for this reason an
essential part of extended gravity models [13—17]). On the
other hand, a scalar field coupled to the curvature acts as an
effective gravitational constant, whose value might depend
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on spacetime position and matter distribution in the
Universe (in agreement with Mach’s principle).

The field equations that are derived from the action
considered by Brans and Dicke are of second order for the
metric components and the scalar field. It is possible,
however, to construct an even more general action func-
tional that produces second-order field equations, allowing
one to avoid the fatal Ostrogradsky instability that can be
present when higher-order theories are considered—
so-called Horndeski theory [18]. Furthermore, it was
demonstrated that Horndeski theories are not the most
general healthy ST theories: it is possible to construct
higher-order theories avoiding the Ostrogradsky instability
by being degenerate (so-called DHOST) [19,20]. It was
discovered that the degeneracy of Lagrangian is an essential
part of theories with one scalar degree of freedom allowing
one to avoid the mentioned problem.

Horndeski and DHOST theories have been widely studied
in cosmology (see for a nice review and references therein
[21-23]). Interestingly, in those theories the screening
mechanism turns out to be partially broken in the case of
astrophysical objects [24], such that the weak field equations
are modified by the presence of terms with a numerical
parameter, which encodes the information about the scalar
field. This allows one thus to study deviations from the
Newtonian model of gravity, which is widely used to describe
stellar and substellar objects. Similar to other modified
theories of gravity, the Poisson and hydrostatic equilibrium
equations in such theories acquire additional terms (see
[25-27]; for review, [28-30]), allowing one to test such
theories [31,32]. Because of that, there have been a few
studies undertaken which demonstrated that the
Chandrasekhar mass for white dwarf stars [33—40] may
differ in modified gravity; the same happens with the
minimum masses for hydrogen and deuterium burning
[41-45], as well as Jeans and opacity masses [46,47].
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Apart from those, the evolutionary pictures of stars and
planets are also distinct with respect to Newtonian gravity
[48-54]. Those theories also modify the light elements’
abundances in atmospheres [55] and internal structures of
terrestrial planets [56-58].

In the following work we are going to reexamine simple
cooling models of brown dwarfs and Jovian planets in the
framework of DHOST theories of gravity. It was demon-
strated that both classes of these substellar objects can be a
remarkable laboratory to test theoretical models of exotic
particles as well as modified gravity [59]." Although brown
dwarfs were discovered barely 30 years ago (but theorized
already in the 1960s), during the past years we have
experienced a rapidly increasing number of their discov-
eries; therefore an expected number of the giant exoplanets
and brown dwarfs is estimated to be in the billions. This
provides a huge advantage with respect to neutron stars—
they are easier to find, and we understand the physics of the
processes inside of those objects much better since we deal
with low temperatures and much lower densities. As it will
be clearer later on, we should pay special attention to the
old objects as the electron degeneracy evolution makes the
modified gravity effects accumulate over time, overcoming
the matter description uncertainties. Moreover, there are no
effects resulting from the nuclear fusions as it happens in
active stars. By this, one deals with additional reducing
uncertainties that are caused by energy generation rates,
being very sensitive to any changes in stellar cores’
conditions, and by heat transport processes. As it will be
demonstrated, DHOST theories introduce extra terms to the
structural equations, which can be interpreted as an addi-
tional heating or cooling process that can not only be
detected but also could explain the internal heat of the Solar
System Jovian planets which have not been understood
well yet [61-63]. Apart for the future constraining of the
models of gravity, these objects, because of better under-
stood physics behind their internal processes, can be an
indicative tool to figure out how gravity interacts with the
other forces and what is the nature of such an interplay
between them.

The paper is organized as follows: first, we will outline
the basics of spherically symmetric objects analysis within
the paradigm of DHOST theories of gravity. This part will
consist of obtaining the Lane-Emden equation, which
originates from the hydrostatic equilibrium equation, and
discussing the way matter is introduced into the theory. In
our model, we will make use of the polytropic equation of
state. The main part of the paper will be dedicated to the
analysis of brown dwarfs and Jovian planets. Our aim is to
study the cooling processes of those objects in the
considered model of gravity, where the nonrelativistic
hydrostatic equilibrium equation is supplemented with

"Let us also notice that dark matter can also be modeled as a
(pseudo)scalar field [60].

an extra term. In the part dedicated to brown dwarfs, we
compute time evolution of the luminosity and degeneracy
parameter for different values of Y. In the case of the
Jupiter, we present a modified Hertzsprung-Russell (H-R)
diagram for the planet, showing how the luminosity
depends on temperature for various values of the
DHOST parameter. We will also briefly discuss the age
of Jupiter-like planets in modified gravity. We conclude the
paper with a short discussion.

I1. BASIC STRUCTURAL AND MATTER
EQUATIONS FOR SCALAR-TENSOR GRAVITY

As promised, first we will provide the basic equations to
describe the stellar structure in a nonrelativistic case for
DHOST gravity. This will familiarize the reader with the
most important formalism used to characterize the sub-
stellar objects.

A. Hydrostatic equilibrium equation

In what follows, we assume that the objects analyzed in
the paper are static, spherically symmetric, and fully
convective, which allows us to make further assumptions
about their matter composition. Apart from this, the
substellar objects are surrounded by a radiative atmosphere
with a simplified opacity model.

The DHOST theories can be, in general, described by the
Lagrangian [24]

E_M212%+“¢T+%W7 (1)
where
L, =X, (2a)
Ly = XU — " ¢, (2b)
Ly =-X[0¢)* = dput"]
— (0" 9B — ¢ b9, (2¢)

Ls = =2X[(O¢)° - 3¢, ¢ 0 + 2, b))
3
- 5 ((D¢)2¢ﬂ¢y¢ﬂy - 2¢ﬂ¢yy¢y/}¢p
- ¢ﬂy¢ﬂv¢p¢pa¢o_ + 2¢/4¢ﬂv¢up¢pg¢o‘) (2d)

with A; being the mass scale, T, is the stress-energy tensor
for matter, X = —30,00¢, and ¢, ., =V, ---V, . A
special subclass of these theories, called G3-Galileon,
where the terms £, and L£; vanish, is of some interest
because it yields a spherically symmetric solution stable to
perturbations [24]. This subclass is described by
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R L
L—\/:'g'Mf,,<§+X+A—j>. (3)

In the investigations of the nonrelativistic limit, one

introduces the metric

ds? = =[1 4+ 2®0(r, 1)]d* 4+ a*(1)[1 — 2%(r, 1)]6;;dx"dx’,
(4)

perturbed about the Friedmann-Lemaitre-Robertson-

Walker metric. One also assumes that the scalar field

can be decomposed as ¢(r,t) = ¢o(t) + 6¢p(r,t). Then,
introducing the new parameter [24]

@) o

one can write

ao  Gm(r) T
P + 4Gm (r), (6a)

d® _ Gm(r) S5YGm'(r)
dr  r? 4 r

(6b)

It is the first quantity, (6a), that is related to the motion of
nonrelativistic particles, and for this reason, we will focus
on it. Then, we have

Ldp__do

-2 7
pdr dr’ ()

so the nonrelativistic hydrostatic equilibrium equation in
the DHOST theories can be written as [24]

d*m(r)
dr?

dp _ Gm(r) T

o= P =7 Ge(r)

(8)

where T denotes a parameter characterizing the theory. In
what follows, we will consider its values from the range
—% < T < 1.4 [41] and also a much tighter range, provided
by helioseismology: —1073 < Y < 5 x 107* [32]. The first
range was obtained from analyzing brown dwarf stars
physics and the observational properties, taking into
account a description of the electron degeneracy properties
which we need in our studies even more detailed. To obtain
the second range, the authors were using a simplified
description of the Sun, although they provided a very
rigorous uncertainties analysis that the first one was
lacking. Because of that reason, we will focus on those
two ranges, and at the end we will also perform the
uncertainties analysis.

The mass function in the considered theory has the
following, well-known relation:

dm _

- drr’p(r). 9)

To model the interior and the atmosphere of an astro-
physical object, one also needs to specify the type of heat
transport. Usually, one uses the Schwarzschild criterion
[64,65] to determine whether one deals either with a
diffusive/conductive transport or with an adiabatic con-
vection present locally. One introduces the temperature

gradient
dinT
Vi = , 10
rad <dln p) d ( )
which, for our theory, can be written as [54]
oT 3k, L T -1
. i (11)
op 16zGMacT 2

where we have used the fact that the surface gravity g can
be treated as a constant [see Eq. (36)], such that

3k..Lp T\ !
Vo, == (1) 12
rad 167zGMchT4< +2) (12)

The constant @ = 7.57 x 10713 Cnfgg,(4, the radiative and/or
conductive opacity is denoted by x., and L is the
luminosity. To determine the kind of the heat transport
we are dealing with

Viad £ V4 pure diffusive radiative or conductive transport,

V,ada > V4 adiabatic convection is present locally,

one compares it with the adiabatic gradient, V,,;, whose
value depends on the properties of the gas. For an ideal gas,
the adiabatic gradient becomes V,;, = 0.4.

To solve the set of differential equations, we need to
impose an additional relation between the pressure and the
energy density. We will work with (analytical) barotropic
equations of state

p=rp). (13)

whose polytropic form p = Kp" will be discussed in more
detail in the upcoming subsection. For the polytropic
equation of state, it is convenient to use the Lane-Emden
(LE) approach, allowing one to write the equations with
dimensionless quantities # and £. For the DHOST theories,
the LE equation reads as [24,41,42]

ii E 2 Qn—1 2% If’vn — _pn
§2d§{<1+4rge )5 d§+259}_ 0", (14)

with the following definitions:
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+1)p,
o, p=0TDPe
P=p. S Gy (15)

r=rg, p=p0",
where p. and p, are the values of pressure and density at
the core of the object, respectively. One can solve the
equation numerically and get the star’s radius, mass,
temperature, and central density:

K\ .
R=yvy, (5)3 M=, M = 4znrip.w,, (16a)
Ku 1 M
T:E/’ceu Pec = 5nm’ (16b)

where u denotes the mean molecular mass and kjp is the
Boltzmann constant. The parameters {w,,y,,d5,} depend
on the theory of gravity and are defined as follows:

SR
L = -k (17
i df o T Tsaja s

= (4m)7(n +

where 0(&) is a solution of (14), while & is a value for
which 0(£g) = 0; that is, the first zero indicates the radius
of the object. In the further part, we will skip the index »n in
the Lane-Emden parameters o, y, and 6.

The luminosity of a substellar object is given by the
Stefan-Boltzmann law

+ 1)k e, (18)

L = 47R*cT%;, (19)

where R is given by the solution of the structural equation
given by (16a) while the effective temperature 7., in our
assumption being also the photosphere temperature, must
be determined by other meanings, discussed briefly in the
brown dwarfs’ section and derived in the Jovian planets’ one.

B. Matter description

To describe the matter our substellar object is made of,
we make use of the polytropic equation of state given in the
following form:

p=Kp'*, (20)

where n is a constant, polytropic index, whose value
depends on a type of an object while K provides the
information on the composition of matter and its properties,
for instance, interactions between particles and electron
degeneracy. In the simplest case, K is a constant depending
on n, such that in our case it is given for n = % by?

*The polytropic parameter n = 3/2 describes a nonrelativistic
electron gas which is good enough to model fully convective
objects.

“5 (&) mn 2y

where m, is the electron mass, 4, is related to the number of
baryons per electron — =X+ Y/2, with X and Y being the

mass fractions of hydrogen and helium, respectively, and
m,, is the mass of a nucleon. We will use a mixture of this
simplified equation of state with ideal gas in order to model
a Jupiter-like planet.

On the other hand, when brown dwarf stars are consid-
ered, one needs to take into account the additional effects
arising when a mixture of the degenerate Fermi gas of
electrons at a finite temperature with a gas of ionized
hydrogen and helium is considered. It turns out that the
resulting equation of state can also be written in the form of
a polytrope with the polytropic index n =3/2 [66];
however, the polytropic parameter K takes the form

K =Cu” (14 b+ a¥), (22)
where
5 15
b:—ElPln(l—i- v) + 8‘1‘2{3 + Lip (- eiﬂ)},
(23)
5 1 Y
fry ,L{e’ —:(]+XH+)X+—, (24)
2u Hi 4

where 4, is the mean molar mass for an ionized hydrogen
and helium mixture with x5+ being the ionization fraction
of hydrogen, Li,(x) is a polylogarithmic function, while
the constant C = 10'3 cm* g=2/3 s72. The quantity ¥ is the
degeneracy parameter, which is defined as

kB 2m kB 2/3
U (37[2713)2/% |:P—:| ’ (25)

where N, is the Avogadro number while the other con-
stants have the standard meaning.

Another thermodynamic quantity is the internal entropy.
It was showed that in the case of brown dwarfs with the
interior described by the above equation of state is given by

Y=

3 kgN
=2 A (InW + 12.7065) + C;,  (26)
2:ulmod

N interior

where C| is an integration constant of the first law of
thermodynamics and

1 1 3xg+(l—xy+
:_+_M, (27)
M1 2 2—XH+

H1mod
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with xy+ being the ionization fraction of hydrogen. In the
further part, we will consider a specified metallic-molecular
phase transition model with xz+ = 0.255, given in [66].

When analyzing the atmosphere of substellar objects, it
is convenient to introduce the so-called optical depth:

o(r) = / * %pdr, (28)

where k denotes the mean opacity. To describe objects
whose surface temperature is low, one can use Rosseland
mean opacities given by Kramer’s law:

K =kop"T" (29)

with kg, u, and w being constants whose values depend on
the opacity regime. Regarding the composition of the
atmosphere, we assume that it can be modeled as an ideal
gas with the equation of state:

__mp
NakgT

p (30)

III. BROWN DWARF STARS

Before going to the theoretical description of the brown
dwarf stars, let us briefly recall the basic notions related to
those failed stars. According to the current models based on
Newtonian gravity, they are objects with masses from the
range (~0.08—~ 0.003M) [67,68]; the upper limit cor-
responds to the minimum mass for hydrogen burning3
[69,70] while the lower one is related to the so-called
opacity mass [71]. The opacity mass limit is the smallest
mass bounded gravitationally which cools via radiation
processes. Using other words, it is the smallest mass of a
gas cloud that will not crumble into smaller pieces caused
only by gravitational instabilities. It is believed that stars
and brown dwarfs form via such a fragmentation process,
which is limited by the opacity mass, while gaseous giant
planets are made from the gas and rocks of the proto-
planetary disk surrounding just a formed parent star.

Let us notice that the above boundary masses as well as
mentioned processes related to the substellar formation
depend on the interior structure, first-order phase transition,
opacity, and atmosphere model [66], as well as modified
gravity [41-48,51,53,54]. Moreover, massive brown
dwarfs can burn deuterium as well as lithium and even
hydrogen in their cores; however, those processes are
neither stable nor energetic enough to stop the gravitational
contraction. Therefore, they continue shrinking, radiating

3That is, roughly speaking, the mass an object needs to have in
order to star hydrogen fusion in its core which results as a
counterbalance process to the gravitational contraction. Such a
star enters then the main sequence phase.

the stored energy away and cooling down with time. The
contraction stops on the onset of the electron degeneracy.

In what follows, we will model our brown dwarf star
as a ball with two layers: the interior that is described by
the equation of state (20) with K given by (22), and the
atmosphere whose matter properties are given by the ideal
gas relation (30) and opacity (29).

A. Theoretical framework

With the use of the Lane-Emden formalism presented in
Sec. II we may write down the radius’, central density’s,
and pressure’s dependence on the brown dwarf’s mass and
electron degeneracy:

M\ /3 _
R =1.19138 x 109;/(?@) > (@¥ 4 b+ 1)[em,

(31)
o) M 2 IuS
0808007 x 1052 (M He o ems
8 7 <Mo> @ b1y e
(32)
pC:1.204103x10‘0ﬁ M 10/3L0/3Wbar],
r \Mo)  (a¥®+b+1)t
(33)

while the central temperature is given by combining
Egs. (25) and (32):

2/3 8/3
T, = 1.294057 x 109% < i >4/3 ( e
v

—) —=— K]
Mg a‘I’+b+1)2[ ]

(34)

On the other hand, modeling the surface properties of those
objects requires knowledge on a first-order phase transition
between the interior, characterized by a mixture of metallic
hydrogen and helium, and photopshere, with molecular
hydrogen and helium composition. Following the result
given by [66,72,73], the effective temperature can be
expressed as

Ter = by x 10°0%y*[K], (35)

where b; and v are numerical values* depending on the
phase transition.

To follow further, we assume that the photosphere’s
radius is approximately equal to the radius of the brown

*Their values, together with the values for the ionization
fraction of hydrogen xy+, can be found in [53,66]. In the further
part, as an example, we will focus on the model D, so b; = 2 and
v = 1.6, while xy+ = 0.255.
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dwarf star; moreover, the surface gravity g can also be taken
as a constant value,

= const (36)

such that the hydrostatic equilibrium equation (8) at the
photosphere can be written as [41,42]

p=-gp (1 + %) : (37)

The photosphere is defined at the radius when the optical
depth given by (28) is equal to 2/3,

7(r) = kg /roopdr = %, (38)

with Rosseland’s mean opacity kz = 0.01 cm?/g. Using
this definition and the photospheric hydrostatic equilibrium
given by (37), one can find the photospheric pressure

2GM T
= (14+2).
pph 3KRR2 ( + 2) (39)

Inserting the radius relation (31) into above yields (in [bar])

62352023 ( M\ LT
Pon =" \My) (a¥+bt1) 2 )

(40)

Since in our model the photosphere’s equation of state is
given by the ideal gas (30), the photospheric density can be
easily obtained and inserted in (35), such that the effective
temperature is now written as

~2.557879 x 10* (M 10/
A M,

bf/7‘I’”'5/7 T\ 2/7
— |14+ —= K|. 41

Finally, the luminosity of the brown dwarf stars is obtained
as a function of its mass and electron degeneracy ¥ by
inserting the above effective temperature together with (31)

| _0.072233Lg ( M \ 26/ b}/ T 20/7 ALY
YT \Mg (a¥+b+1)Y7 t2)
(42)

This is the main result related to the modeling of brown
dwarf stars in DHOST, where the modification with respect
to the Newtonian model is given by the presence of the
parameters Y and y. Let us, however, notice that those

objects undergo the gravitational contraction, since there is
no energy source whose pressure could counterbalance the
attraction, apart from the initial unstable hydrogen burning
in the case of the very massive brown dwarfs. Depletion of
lithium and deuterium in massive brown dwarfs is not
sufficient to stop the contraction, and in our approximation
the energy generated by these nuclear processes can be
ignored; therefore, those bodies will cool down with time.
The electron degeneracy is, however, the non-negligible
effect in the cooling process, and its evolution while a
brown dwarf contracts should also be taken into account.

To find the time dependency of the electron degeneracy
W, let us consider the energy equation, given by

dE dv ds . oL

a Pa T T T (43)
where E is the energy of the system, V the volume, S the
entropy per unit mass, and L the surface luminosity. As
mentioned, we may neglect the energy generation term &,
such that integrating over mass the last two terms from the
above equation one finds

%{ / NAkBTdM} =L, (44)

where we have defined s = S/kzN,. The polytropic
equation of state (20) inserted into (25) allows one to
get rid of the temperature from the previous expression,
such that

ds  N,Au,¥ /
BTl T [ gy =L, 45
daic(i+b+a®)) (43)

(3N 72133

5 while the

where the constant was defined as A =
integral is given by

2 M?

The entropy rate can be obtained from the relation (26)

ds_ 15 1av
dt—ﬂlmod ¥t

(47)

which inserted together with (46) and luminosity (42) to
(45) provides the degeneracy’s evolution

d¥  —1.018097 x 1084, (Mo)23/21

dr K%ﬂ M
b20/7le.2()/7<a\P+b+ 1)12/7 T 8/7
2 : <] +) . (48)
ﬂe/3

which clearly also depends on the theory parameter.
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S 109 T

e !
‘\ ‘‘‘‘‘

0.8 b T et T
108 107 108 10° 10%
Time(years)
FIG. 1. The time evolution of the degeneracy parameter ¥ for

M = 0.05M; and different values of the T parameter. The
bottom panel shows the ratio of the time evolution in the
scalar-tensor gravity with respect to T = 0.

B. Numerical solutions

Equation (48) is numerically solved with the initial
condition ¥ = 1 at t = O for the theory parameter T from
the range [—0.6; 1.4] (see Fig. 1), where T = 0 provides the

1.0 1 == Y= -0.001
100 4 Y= -0.0007
Y= - 0.0005
== Y= -0.0003
0.8 A -1 — Y=0.0
10 Y=0.0003
== Y=0.0005
1072 5
0.6
3 o
~
3 1073 4
0.4
1074 4
0.2 1 1075 4
10—6 4
0.0 . . . T
107 10° 107 10°

Time (years) Time (years)

FIG. 2. The time evolution of the degeneracy parameter ¥ and
the luminosity (as compared to the Sun’s luminosity) for M =
0.05M and different values of the Y parameter. Clearly, the
effect of modified gravity is negligible for such a range of the
parameter Y.

=== ¥Y=-0.6 =sen Y= 0.6
1071 5 Y=-0.2 Y=1.0
N — Y=0(GR) =--- Y=14
\‘ _
10—2 < Y=0.2
"o
=
2 1073 3
wn
(o]
£
€ 10 4
~
1075 5
10—6 d
1.25 4
S 1.00
]
[ <
0.75
0.50 A
Time(years)
FIG. 3. The time evolution of a M = 0.05M brown dwarf’s

luminosity. The bottom panel shows the ratio of the time
evolution in the scalar-tensor gravity with respect to T = 0.

Newtonian model, and for a much tighter range [—1073;
5 x 107#] (see Fig. 2), as suggested by [32]. The choice of
the initial value of the degeneracy parameter comes from
the assumption that, at the beginning, when the object is
large, there is no degeneracy [one needs to remember that
smaller values of the parameter y correspond to a bigger
extent of degeneracy; see the definition (25)]. When inte-
grating the equations, we assumed that u = 0.5andw = 1 in
(29), as suggested by the work [74]. The value of x, = 107
in (29) was selected in such a way that the model reproduced
cooling time of Jupiter in the case of Newtonian gravity, that
is, when Y = 0. The mass fractions of hydrogen and helium
are set to be X =0.75 and Y = 0.25, respectively, so
1, = 1.14. The solutions are given by Figs. 1 and 2.
Using these results in (42), one finally gets the luminosity
as a function of time, given by Fig. 3.

IV. JOVIAN PLANETS

There is no doubt that Jovian planets possess a compli-
cated internal structure, as indicated by theoretical models
and Juno mission collecting data on Jupiter [75-84]. It
seems that the internal model which goes well with the
current observational data must have at least three layers: a
diffusive core built of heavier elements, a mantle mainly
composed of metallic hydrogen with admixtures of helium
and heavier elements. The outer layer mainly consists of
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molecular hydrogen with helium rain and silicate droplets
[85]. Apart from such a complex structure, there is still no
consistent equation of state describing a mixture of hydro-
gen and helium in the pressure range approaching megabar,
while the temperature can reach even a few thousand
kelvins [84,86,87]. Despite this, we can still model a
Jupiter-like planet with the use of a simplified and
analytical equation of state, as presented further, because
it was demonstrated that it can produce a cooling model
with the nowadays’ surface temperature close enough to the
actual value [74,88]. Since the model is simple, it also
allows us to trace differences provided by the scalar-tensor
gravity with respect to the Newtonian one. Therefore, we
will follow the derivation of the atmospheric, boundary,
and convective interior given by [74] and further studied
by [47].

A. Atmosphere quantities for the Jovian planets

The planet’s luminosity is described by the Stefan-
Boltzmann law. In general, there can be various energy
sources contributing to the total radiation energy of the
planet. To simplify our considerations, we assume here that
the only relevant energy source of energy for a given planet
is the energy flux from the nearest star:

R 2
Licceived = | =——| Ly, 49
received (2 Rsp) S ( )

where R, denotes the planet’s radius, L, is the luminosity
of the star, and Ry, is the distance between the planet and
the star. Some part of the energy is directly reflected by the
planet, and the absorbed energy is given by the formula

R 2
L= (1= ) (5 ) T (50)
sp

where A, is the plant’s albedo. Making the assumption that
the distribution of the energy absorbed is uniform, we can
obtain the equilibrium temperature 7', by using the Stefan-
Boltzmann law:

R 2
(1=4) (ZRP ) L = 4nfoT4,R3, (51)
sp

with f < 1 being a factor that allows one to take into
account the fact that the planet radiates less energy than the
blackbody with the same effective temperature. The ther-
mal equilibrium is achieved when the energy received from
the star becomes equal to the energy the planet radiates
away from its surface. This allows one to write Tefp = Teq.
Taking into account the fact that the star’s luminosity is
given by

L, = 4n6T*R?, (52)

we are able to relate the equilibrium temperature to the
star’s surface temperature 7'g:

R\ 1
T = (=4 (5 ) 57 (53)

Interestingly, T, does not depend on the planet’s size in
this case. These considerations are not true for more general
cases when one needs to take into account internal sources
of energy, such as gravitational contraction, tidal forces, or
ohmic heating. With these additional sources, the planet’s
temperature is higher than Ty, and the planet radiates away
more energy than it receives from the star. To find the relation
between the effective and equilibrium temperatures, one can
use the standard equation describing radiative transfer in gray
atmosphere [89-91] and Eddington’s approximation. One
can show that [74]

4T = 32(Thy — Tog) + 2(Tey + Tey)- (54)
Here, T denotes the stratification temperature in the atmos-
phere, described by

dT 3kLp
— =, 55
dr  64rnor’T? (53)
and 7 is the optical depth. Zero value of the depth is achieved
at the planet’s surface. The equation can be rewritten in a
simpler form if one introduced the following quantities:

. T4 4
T_ =T —T

eq? T, := Tgff =+ qu

so that Eq. (54) reads now
4T* = 3¢T_ +2T,. (56)

We can use the fact that the atmosphere is in hydrostatic
equilibrium with gravitational pressure to find the pressure
in the atmosphere. The optical depth definition can be used
in the hydrostatic equilibrium equation to relate the pressure
to the density and gravitational interaction:

d d T
L e ipP=—gp(1+5). (57)
dr 2

dr
The opacity is given by Eq. (29) with u and w unspecified to
make our considerations more general. Now, using (29), we
can rewrite (57) as

dp g T
b = 1+—1, 58
p dr K0T4W < + 2) (58)

which can be plugged into (54) to give
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P 4vq T 4 dr
Ydp =—=(1+—= —_— . (5
[ rar="2(043) [ g

We integrate it for w # 1 and w = 1, respectively, to get the
pressure in the atmosphere:

4gu+1 T
upl _ T 9UT 2 1 - T—l T 2T 1-w
3K01—w<+2) “N(3eT_ +214)
—(2T,)'). (60)
4 T
et =29 (4 1) (1 +§) T-'In[3cT_+2T,].  (61)
Ko

where we have used the boundary condition p = O atz = 0.

B. Boundary between the radiative atmosphere
and convective interior

Inside the gaseous planets, the transport of energy can be
attributed to convective processes. Between the atmosphere
and the interior of the planet, the transport of energy is
replaced by the radiative one. The change of the type of
energy transport can be described by the Schwarzschild
criterion (12). The behavior of the convective interior can
be modeled with a polytropic equation of state (20) with
n =3/2, so that the stratification dInT/dIlnp = V4 is
adiabatic and equal to 2/5 for a fully ionized gas [92].
Using (58) together with the Schwarzschild condition,
we get

15 .- g T
5P Hp-4r = pRaT (1 +5), (62)

which, upon substituting the temperature of the atmosphere
(56) and its pressure (60), gives the critical depth:

2T (8 (=YY
() e @

TL.:g—(eﬁ—l), w=1. (64)

At this optical depth, the radiative transport is replaced by
the convective one. To find the temperature and pressure
at the radiative-convective boundary, one substitutes the
relations given above to (56) and (60):

4v(14+% 1
pi = U E2) (S ) )
15k0 T_(2T )"~ \Su + 8w —3

T, (Su—+8w—3\"!
s o il B

for w # 1. For w = 1, those equations give

2g (1+71
3&%239( t2), (67)
15k T-
4 1 1
Teony = §T+€15. (68)

C. Convective interior of the Jovian planets

In the following parts of the paper, when modeling the
interior pressure of Jovian planets, we will assume it can be
split into two parts:

p=pi+p. (69)

where p; comes from the electron degeneracy and is given
by the polytropic equation of state (EoS) (20) with
n=3/2, and p, is simply the pressure of an ideal gas:

knpT
Py = [j , (70)

where u denotes the mean molecular weight. It can be
shown that such a combination of pressures can be
described by a single polytropic EoS:

p = Ap, (71)

s
where A = p./p: (index denotes values at the core of the
object). We can then substitute it in (69) and make use of
the Lane-Emden relations (32) and (33) to obtain

1
A=y"'GM}R,. (72)

The interior pressure (69) can now be written as

1/
_GMiR, (ﬂ ( 73

kTCOIlV > %
pCO]’lV - .
4

Gy'M’R, - K)

This pressure must be equal to the pressure at the radiative-
convective boundary (66):

Sutw—3

Ti T = CG_MM%?(2—M)R]—7(M+3>”%(M+])k;%(u+l)yu+l

X (Gy_lM%,,Rp — K)3tD) <1 +§> (74)

Using this condition, one can relate the effective temper-
ature T to the radius of the planet R,. In the equation

above, C is a constant whose value depends on the opacity
constants u# and w, w > 1:

16

— 25(1+L¢)+w
Wil 15K0 '

QY

5 8w — 3\ 120 +u)(w-1)
w2 ) 8 . (75)

S5(u+1)
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- 32
Comt = 5 2rDeilern, (76)

The final radius of the planet can be obtained from
Eq. (74) after setting 7T_ = 0; this condition means that the
effective planet’s temperature reached an equilibrium value
so that the only source of energy for the fully contracted
planet is the parent star. The radius of a contracted planet is
given by

K
Rp=—1_. (77)

1
GM},

The effect of the nonrelativistic limit of DHOST theories
is contained within the y parameter. For different values of
the theory parameter Y, the final radius will be either larger
or smaller than the one predicted by Newtonian gravity.

D. Jovian planets’ evolution

We assume that the process of contraction is quasi-
equilibrium, which allows us to write the planet’s lumi-
nosity as a sum of the internal gravitational energy and the
total energy absorbed by the planet, L. For a polytrope
with the polytropic index n = 3/2, we can write [53]

3GM%dR,

L,=Lys—= —
pTEsTITR

(78)
Using the Stefan-Boltzmann law (19) and Eq. (50), the

evolution equation given above can be written as

3G ar,
7 R: dr’

macRIT_ = (79)

To obtain the contraction time, one needs to integrate this
equation from the initial radius R, to the final one Rp:

3GM?% (R, dR
t=-2 _p/) . (80)
7 mac Jr, RpT_

0

Here, T_ can be thought of as a function of R, and T
[cf. (74)]. Thus, we can write the integral in the following
way:

4 35

3 Mk k, Ty
7 ﬂécyﬁ(uﬂ)K%H%C 5

/1 <Tgff + qu)%“""w—%dx

X

Xo

xl—u(x _ 1)§(u+1)

(81)

remembering that 7. also depends on the radius. Here, we
rescaled the variable over which we integrate, so now x =
R,/Rr and xy = Ry/Rp. Let us notice that it takes an

infinite amount of time for the planet to contract fully; this
result is independent of the theory of gravity.

E. Numerical solutions

The solution was obtained by solving numerically
Eq. (74) (using the bisection method) for a range of
possible radii of a planet of mass equal to Jupiter’s mass.
Each solution gave us a direct relationship between the
effective temperature and other parameters characterizing
the system, which was then used to compute the luminosity.
When computing the equilibrium temperature 7y, we
assumed that the planet’s mass was equal to Jupiter’s,
and also its distance from the parent star was ~5 AU. The
procedure was repeated for different values of the param-
eter Y. The results of this procedure can be seen in Fig. 7,
where on the y axis we put the scaled luminosity of the
object (L, = 10%° erg/s). The black dots represent differ-
ent moments of time: the uppermost is for r = 10° years,
the middle one for = 108 years, and the lowest for
t =5 x 10° years. Different times were obtained by inte-
grating numerically the integral (81) for appropriate radii. As
one can see, bigger values of the parameter Y correspond to
lower temperatures for the same range of the planet’s radii,
but also the cooling rate is slightly lower, as the final dot for
the time t = 5 x 10° years lies above the line L /L, = 1073,
whereas the other dots are located beneath that line.

We repeated the calculations for a tighter range of the
parameter T € [-1073,5 x 107#] to illustrate how minus-
cule the effect might be for very small values of Y
(see Fig. 8).

V. UNCERTAINTIES ANALYSIS

In this section, we obtain analytical formulas allowing us
to quantify the variation in observable quantities with
respect to certain parameters assumed in our calculations.
Since, as obtained by our numerical analysis, we expect that
the modified gravity effects are crucial in the late times of the
substellar objects’ evolution, we will determine whether any
alternation of the rate of change of degeneracy due to the
presence of Horndeski’s parameter Y could be overshad-
owed by uncertainties in other theory parameters, i.e.,
ionization fraction xy+ or different mass fractions of hydro-
gen and helium. In what follows, all quantities computed for
T = 0 and the ionization and mass fractions assumed in the
part of the article preceding this section are denoted with the
subscript 0. For each quantity Q, 6Q is to be understood as

60 = Q(modified values of xz+, X, Y; T # 0)
— Q(xgy+ = 0255, X =0.75,Y =025, =0)
=0 - 0. (82)

First, let us compute the relative change in the degeneracy
using Eq. (25):
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1) oT 29
o _oL_2o% (83)
wo To 3po

Variation in the temperature is calculated using Eqs. (16a)
and (15):

oT 6 14,
=R (84)
Ty o 3Po

so that
Sy _ou_1dp (85)
wo Ho 3P0

At the end, we compute the variation in the rate of
change in time of the degeneracy parameter:

(oy) _ ﬂ T Oft1mod _ § e 12yy6a i fl‘/’
Wo 7 Mimodo 3Heo (14 agwq + by) ’
(86)
where T <« 1 and
Fo
wy = —, 87
=7 (57)

where
Fo=21(1+ eﬁ)WO(Z(S + 8agyo + 57y}
— SyoLog(l + ¢77) + 30y’Liy(—e 7)) (88)
and
Go = 2(—10 + 80e7 + (1 + e70) (368agyo + 41072y
— 655yoLog(1 + e 70) + 1230y3Liy(—e 7))).  (89)

Taking into account the formulas above and the defi-
nition of a,, we can write

o6a  ou

90
ao Hi0 0
and, finally,
(y) _ ﬂ i St 1mod _§5ﬂe _ 1206,
Yo 7 Mimodo 3Heo Tio(l+ agyo+ by)
op 14
+@(—”———p). (91)
wo \Ho 3P0

The density variation for r ~ R takes the following form
(expanded around r = 0.99R) [32,54]:

5 —R
P _ _0217 - 10.1T<¥>, (92)
£o R

where R, is the radius of the convective zone. Putting this
altogether, we get

(dy) _ <4 L w021 4101 <",§‘:>>> v Oimoa _ 85k

Wo 7 3wy Himod 0 3Heo
12061 Wo o

- —_ (93)
Turo(1+agwo +bo) — wo po

In Fig. 4, we present how K—g changes as a function of the
degeneracy parameter. We can see that this parameter
decreases as time progresses (we remind the reader that
the value of the degeneracy parameter goes down with
time), going to the constant value of N%. In Fig. 4 we also
plotted the dependence of the parameter multiplying du,; as
one can see, at a certain moment it reaches maximum value
but then drops to zero at later times.

For large times and » = R, we obtain the following:

& P 8ou, 15
( ) ~0.7277  2Himod H1mod OO, 4= oH
Wo H1mod ,0 3ﬂe,o 2 pg
) 13 6
= 07277 4 Himod _ 2 %fe (94)
H1imod .0 6 tep

where in the last equality we have used the assumption on
the zero metallicity, so ¢ = u,.

A. Varying with respect to x-+

In this part, we want to investigate how a simultaneous
change in xy+ and X will influence the evolution of the
electron degeneracy. We neglect the possible change in
other theory parameters, such as b, and v, since in Fig. 5
we plot regions of values of deviations from X = 0.75,

35 0.14 4

3.0

0.10 4
25

|4 0.08

slg 2.0 B

% 0.06
0.04

0.02 4

0.5 0.00

0.0 0.2 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0
Yo Yo

FIG. 4. Change of %2 and m parameters with respect
to degeneracy value. Tfle numerical value of aq is ay = 2.8679.
The value W, = 1 denotes the nondegenerated case (early times);
see Figs. 1 and 2.
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0.155

0.355 T T T
0.85 0.8 0.75 0.7 0.65

X

FIG. 5. Regions of possible values xy+ and X (and, conse-
quently, in Y) resulting in smaller joint modifications than coming
from variations in Y alone.

Y = 0.25, xy+ = 0.255, resulting in smaller joint variations
than the ones coming from modified gravity alone, i.e.,

g
‘@(x —0.75,Y = 0.25, x+ = 0.255; # 0)
Yo
p
> ‘(—f”)(x,Y,xH;Tzoy (95)
Yo

As one can see, the regions shrink down to a single line for
very small values of the parameter Y, representing possible

values of X and xy+ resulting in 5”‘—“’"—%5”—6 =0. We
Himod .0 He0

impose additional constraints on X and xy+, coming from
theories considered in [53].

To get some idea about the order of variations coming
from either modified gravity or changed parameters X and

Xy+, let us compute the value |%| for extreme values of

these parameters. The results of these calculations are
shown in Table 1. .

On the other hand, M| for unchanged X and xg+
and T € {0.1,0.05, 0.01,5(.)0001} are, respectively, 0.072,
0.036, 0.007, 0.000007.

B. Keeping xy+ constant

We want to repeat the procedure outlined above while
keeping the ionization fraction xgz+ constant. This corre-
sponds to a situation when we decide on a given model

TABLE L. ‘ %’ values for different combinations of X and x -+
when no modified gravity effects are taken into account.

xge =0.105  xye =0255  xye =026
X =07 0.20 0.02 0.02
X =075 0.21 0 0.01
X =08 0.22 0.02 0.01

0.08
— Y=0
0.07 -=- Y=01
—-- Y=0.05
006 doereemeeeeeee e Y=0.01
- — - Y=0.0001
0.05
2B 0.04 -
0.03
0.02
0.01 -
0.00 ; . . .
0.70 0.72 0.74 0.76 0.78 0.80

X

FIG. 6. Comparison of the uncertainties resulting from varying
the hydrogen mass fraction and from modified gravity while
keeping the ionization fraction xy+ fixed.

without assuming any uncertainties in x+; in the case of
our paper, we decided to choose Model D with b; =2
and v = 1.6. The only parameters we will vary in that case
are the DHOST parameters Y and X, and the hydrogen
mass fraction (one is reminded that ¥ =1 — X). Again

we compare absolute joint contributions to ‘%‘ when

T =0and T # 0. We present the results in Fig 6. In this
figure, the solid blue line corresponds to the situation when
we vary X but keep T = 0; the dashed and dotted lines
represent uncertainties coming from the modification of the
T value only, with X = 0.75 in all four cases. The figure
allows us to determine for what values of X the effects
coming from modifications of a star’s composition are
greater than modifications coming from extended grav-
ity alone.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have focused on the cooling processes
of brown dwarf stars and Jupiter-like planets in the
framework of DHOST theories of gravity. Those theories
modify the hydrostatic equilibrium equation which is used
to obtain the equations ruling cooling models. Because of
that fact, we had expected some differences with respect to
the results that are based on Newtonian gravity.

In the case of brown dwarfs, we have used a realistic
analytical equation of state describing the complex interior
of those objects: the main issue is related to taking into
account the phase transition between the molecular hydro-
gen in the photosphere and the ionized one, which is
present in the brown dwarfs’ interior, according to the
current models [66,72]. Moreover, the considered EoS suits
well when a mixture of degenerate Fermi gas with hydro-
gen’s and helium’s ions must be considered, which is the
case of the brown dwarfs’ interiors. This allowed us not
only to derive the master equations describing the inner
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H-R diagram for Jupiter
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FIG. 7. H-R diagram for Jupiter. Different curves correspond to different values of the Y parameter, characterizing deviations for GR
(here, the black solid line). On the y axis, we put the scaled luminosity of the object (L, = 10> erg/s). The dots represent different
moments of time (from top to bottom): ¢ = 10° years, ¢t = 10% years, and t = 5 x 10° years.
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FIG. 8. H-R diagram for Jupiter. Different curves correspond to different values of the Y parameter, characterizing deviations for GR
(here, the black solid line). On the y axis, we put the scaled luminosity of the object (L, = 10?° erg/s).
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structure of those objects but also to find the photospheric
quantities which are crucial for modeling cooling proc-
esses, (40), (41), and (42), being dependent on the varying
electron degeneracy (48).

The solutions of the equations governing the cooling
process in brown dwarfs are given by Figs. 1-3. For the
given values of the parameter T we see that for an older
object one deals with the bigger differences with respect
to the Newtonian model. It is, as expected, more evident
for the higher absolute values of the parameter. For
example, for the 1 Myr brown dwarf, the difference is
about 5% while for the 10 Gyr one it differs by 10%—15%
for T =10.6]. In the case of the luminosity, the ratios
are more significant: 20%—40% for old brown dwarfs,
while for the young ones we deal with 10%-15%.
Similarly, as in the case of the previous results in the
field [53], scalar-tensor theories could be constrained by
future data.

Since the positive values of T, as long as the second
derivative of mass with respect to the radius is negative,
correspond to weaker gravity (and vice versa), brown
dwarfs in such models will be smaller (bigger), as it also
follows from Eqgs. (31) and (32). Also, their temperature at
the core is lower as the theory parameter increases. The
situation becomes somewhat counterintuitive when one
considers the photosphere of a brown dwarf. It becomes
apparent from Figs. 1 and 3 that, as the gravity becomes
weaker, the luminosity drops faster, while the opposite
effect is visible for the degeneracy (one is reminded that
¥ = 1 corresponds to no degeneracy). The interpretation is
clear: for weaker gravity, the stored energy can be radiated
faster, and therefore it has the same effect on the cooling
process. Let us recall that the electron degeneracy is a
response (via the Pauli exclusion principle) to the attractive
nature of gravity in the interiors of the substellar objects,
such that weakening this interaction will also have a direct
effect on the degeneracy. We see from Eq. (48) that the
positive (negative) range of the parameter makes the matter
reach a more degenerate state in a shorter (longer) time with
respect to the Newtonian case.

On the other hand, although gaseous giant planets are
quite similar to brown dwarfs, the methods allowing one to
obtain the cooling model are much more complicated. The
main and the most important difference is that one cannot
neglect the energy source coming from the parent star if we
do not deal with a rogue planet (let us notice that we
neglected tidal and ohmic heating in our analysis). It results
in slightly different atmospheric characteristics; that is, the
effective temperature depends on the equilibrium one,
which is a property of a given planetary system and its
parent star [see Egs. (53) and (54)]. Because of that fact, we
followed a simplified approach developed in [47,74],
whose main assumption is related to the simplified
description of the matter behavior: that is, one models it
as a slightly modified polytropic equation of state (73).

However, even with such a toy model we were able to get
solutions close to the realistic values for the considered
theories of gravity, and again, as expected, the evolutionary
paths are affected with respect to Newtonian gravity 7.
Depending on the Y’s sign, Jupiter’s age, based on its
current effective temperature, can be very different from the
one we believe it is. For instance, the age and average
effective temperature of Jupiter is ~4.9 x 10 years and
~130 K, respectively, according to the Newtonian model.
Our calculations reveal that for the broader range of the
parameter Y, the age of Jupiter varies from 2.08 x 7, for
YT =-02 to 8.16x10°x ¢, for T =1 (smaller and
larger values of the Y were beyond our integration interval,
but the tendency is pretty clear), where 7; is the age of
Jupiter contracting from the initial size of R, = 10'> m.
For the much tighter range of the parameter Y, we got
0.9993 x ¢, for YT =-1073, and 1.0007 xt, for
YT =5 x 107*. It must be noted that for the smaller values
of the Y, uncertainties coming from the temperature
estimates are much higher than the ones introduced by
the modification of gravity. The modification introduced by
DHOST theories slows down the process of cooling down
Jovian planets. They also achieve lower temperatures for
greater values of Y. At a given value of the temperature, the
objects have bigger luminosity for greater Y. Also, for a
given luminosity, the objects become older as Y increases.
This also means that the evolution of our Solar System will
also be distinct from the one we are used to.

Let us also notice that the giant planets’ models
presented in this work cannot be used yet to constrain
theories of gravity. This is so according to the fact that in
order to derive the cooling equations we have used an
approximated, analytical form of the equations of state,
and, more importantly, a very simplified atmosphere
description, mainly related to the opacity models. Apart
from this, some of those microscopic properties can depend
on a theory of gravity [93-98] and therefore, should also be
properly reanalyzed before applying them to the stellar and
substellar modeling, and finally, to constrain models of
gravity. The problem is, however, different in the case of
brown dwarfs’ modeling, as it reveals our uncertainties
analysis.

Regarding the uncertainties, we have demonstrated that
the evolution of the electron degeneracy (48) is a crucial
element in modeling substellar objects. It depends on the
composition, temperature, energy density, opacity, ioniza-
tion, and phase transition points. As demonstrated in [54],
the atmosphere modeling carries the highest uncertainties
mainly related to metallicity in the case of low-mass stars.
Since in our case we have neglected metallicity and
considered a simple Rosseland opacity (which in the
general case depends on energy density and composition),
we do not have such a dependence. We are aware that
metallicity plays a very important role in the substellar
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evolution [99]. Hence, the analysis in that direction will
have to be done in the near future.

From our current uncertainty analysis, in the case of
fixed ionization fraction xp+, presented in Fig. 6, we can
see that the effect of modified gravity is more pronounced
in the admissible range of X if the modifications are of
order > 1072 (for T = 1072, uncertainties coming from X
can be greater, but remain of the same order). The value of
1074, however, rules out any possibility to produce a
noticeable effect compared to a varied X, and thence such
modification will not have any noticeable effect on the
evolution of the electron degeneracy.

However, taking into account more variables, such as
small changes in the ionization, as plotted in Fig. 5, for each
value of the T parameter there exists a region of possible
values of xy+ and X such that their joint effect on the rate of
change of degeneracy is smaller than the one coming from a
modification of gravity. As expected, the smaller value of
the parameter Y, the smaller region we deal with; never-
theless, the effect is still present even for the very restrictive
range of the parameter [32]. Since the luminosity and
effective temperature depend on the time evolution of the
electron degeneracy and the effects of modified gravity
accumulate with time [100] (compare also the ratios in
Figs. 3 and 1), one deals with a possibility to test this theory
with the brown dwarf stars.

Nevertheless, this is the first step undertaken in the
scalar-tensor theories to understand how to use the interior
properties of planets and brown dwarf stars to test such
theories, as mentioned in the Introduction. The effects of
the extra terms appearing in our equations can be inter-
preted as additional heating or cooling processes, resulting
in altered evolutionary scenarios with respect to the
Newtonian model. Even improved models of brown dwarfs
and Jovian planets (for example, the next step could be
considering rotation effects on the electron degeneracy
evolution [101]) will carry uncertainties related to theo-
retical assumptions—however, having a large sample of
observational properties, differentiated with respect to

distances from the detectors, types of the objects, and
the objects’ neighborhood, will allow one to reduce the
error, and finally, to constrain the models [59,100,102].
Moreover, knowing the age of the neighborhood structures
of giant planets and brown dwarf,” which are expected to
form at the same time as the substellar bodies, could also be
used to test theories, since the age is the most affected
quantity by modified gravity. Data on the Solar System
objects, because of the vicinity ensuring higher accuracy,
such as effective temperatures (which can also be derived
from theoretical models), measurements of the energy flux
radiated from the Sun and received by a planet as well as
radiated away from it, together with seismic data providing
information on internal properties are only a part of the
opportunities which can be used to test theories. So far,
there have been just a few works discussing those pos-
sibilities, and it is expected that there will appear more in
the nearest future.

We will leave further considerations along these lines for
future work. However, we should again underline that if we
believe that there is a bit better theory of gravity, allowing
one to describe gravitational phenomena on a much wider
scale than GR, probably that theory will also slightly
modify the Newtonian limit. Research in this direction is
in high demand, especially in light of many current and
future missions, whose aim is to explore our and other
planetary systems and to provide more accurate data
regarding the substellar objects [103—-109].
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