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We construct scalarized planar charged black holes in Einstein-Maxwell-scalar (EMS) theory with the
presence of a negative cosmological constant. Domains of existence of black hole solutions are given in
term of nonminimally coupling constant α. Perturbative stability of a scalarized black hole is investigated
by calculating its quasinormal modes. Thermodynamic properties of the scalarized planar solution are also
discussed. We observe no evidence of instability of the scalarized black holes. Moreover, we find that
scalarized planar charged AdS black holes are thermodynamically preferred over scalar-free solutions in
grand canonical and canonical ensembles. The transition between scalar-free solutions and scalarized
solutions is found to be the thermal second order phase transition. The transition of these solutions shares
some similar features with conductor-superconductor phase transition.
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I. INTRODUCTION

It is widely accepted that black holes in general relativity
(GR) cannot express other physical quantities rather than
mass, electric charge, and angular momentum or as John
Wheeler simply puts it as a black hole can have no hair [1].
The no-hair conjecture states that any stationary black hole
solutions of Einstein-Maxwell theory (i.e., electrovacuum)
must belong to the Kerr-Newmann family. For instance,
Bekenstein shows nonexistence of asymptotically flat black
holes with scalar, vector, and spin-2 meson hair [2].
However, it is found that a black hole can possess macro-
scopic external degrees of freedom or hairs in several other
setups. These include when GR couples with other types of
matter fields, asymptotic structure of spacetime is modified,
and gravitational theories beyond Einstein-Maxwell theory,
etc. Interestingly, these hairy black holes have much richer
physics than their bald counterpart. There are several
studies providing a counterexample of the no-hair con-
jecture, e.g., black holes with Yang-Mills hair and its
variants [3], hairy black holes in a boxlike boundary [4],

and hairy black holes in modified gravity theories [5]. For a
nice review on this subject, see Refs. [6,7].
A bald black hole is able to dynamically develop into a

black hole with scalar hair via spontaneous scalarization.
This usually occurs in the models with nonminimally
coupled scalar field. The coupling term of scalar field
tends to make the scalar-free black hole solution unstable
and leads to the formation of a black hole with nontrivial
scalar field profile outside its horizon, or a scalarized
black hole (SC BH). Spontaneous scalarization is origi-
nally considered in scalar tensor theory for neutron star
where scalar field is nonminimally coupled to Ricci
curvature [8] and later extends to rapidly rotating neutron
star [9]. It is found that the scalarized neutron star is
energetically favored over the scalar-free solution. Despite
this, it is shown in [10,11] that black holes in scalar tensor
theory do not differ from GR, however, scalarized black
holes in scalar tensor theory are made possible by
surrounding black holes with nonconformally invariant
matter [12,13].
Beyond scalar tensor theory, spontaneous scalarization is

also found in extended scalar tensor Gauss-Bonnet
(eSTGB) gravity where scalar field is generally coupled
to the Gauss-Bonnet curvature term [14]. Despite the fact
that many studies have been devoted to explore sponta-
neous scalararization in the eSTGB gravity, however, one
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of the remaining tasks is to determine the endpoint of
instability of the scalar free solutions and dynamical
evolution of scalarized solutions. Nonlinear higher curva-
ture terms in the eSTGB gravity render these problems to
be challenging. There is, however, a considerably simpler
model that also allows for the spontaneous scalarization,
i.e., Einstein-Maxwell-scalar (EMS) theory with nonmini-
mally coupling function between scalar field and Maxwell
field. A fully nonlinear dynamical evolution from Reissner-
Nordström (RN) black hole into scalarized black hole in the
EMS theory is investigated in [15]. In this model, scalarized
black holes depend on the coupling function between the
scalar field and the Maxwell field. In [16], the dependence
of various coupling functions and dynamical features of
scalarized black holes are discussed. Moreover, stability
and quasinormal modes of scalarized black holes are also
investigated by several studies [17–20]. More interestingly,
spontaneous scalarization in the EMS theory in asymptoti-
cally de Sitter (dS) [21], anti–de Sitter (AdS) [22] and in a
cavity [23] are proposed and studied.
The seminal papers of Bekenstein [24] and Hawking

[25] suggest that black holes could have entropy and
nonzero temperature. Since then, black hole thermodynam-
ics has become one of the most interesting topics to black
hole physics communities. Thermodynamics of BHs in
asymptotically flat spacetime has been often studied,
however, there are some unsettled issues about thermal
equilibrium configurations. By putting the BHs in AdS
space, Hawking and Page [26] find that BHs can be in
thermal equilibrium with its surroundings since the AdS
boundary acts as a reflecting wall. The thermodynamics
and phase transition of Reissner-Nordström black hole in
AdS (RN-AdS) are studied in [27]. Recently, by inves-
tigating thermodynamics of asymptotically AdS BHs in the
EMS theory in a normal phase space, where the cosmo-
logical constant Λ is fixed, scalarized solutions are found to
be thermodynamically preferred over the RN-AdS BHs in
the microcanonical ensemble [22]. Interestingly, this sys-
tem exhibits a reentrant phase transition, which consists of
zeroth order and second order types of phase transitions
between RN-AdS and SC BHs in some range of param-
eters. However, one may consider Λ as a thermodynamic
variable analogous to pressure P in the first law of BH
thermodynamics. This framework is called an extended
phase space approach [28]. In this way, phase structure of
BHs in the EMS model has been studied in both canonical
and grand canonical ensembles [29].
It is known that the BHs in asymptotically AdS

spacetime can have three different geometries of event
horizon with positive, zero, and negative curvature con-
stants. These are called the spherical, planar, and hyper-
bolic BHs, respectively. The thermodynamics and phase
structure of these topological BHs were studied in various
theories of gravity, for example see Ref. [30]. Intriguingly,
thermal properties of AdS BHs and an area law of BH’s

entropy lead to the development of gauge/gravity duality,
which states that the thermodynamics of BHs in a higher
dimensional bulk AdS space is holographically dual to a
thermal state of gauge theories that living into the AdS
boundary [31]. By means of gauge/gravity duality, planar
BH has received more attention in nongravitational
physics communities, such as, condensed matter physics
[32–36], hydrodynamics [37] and quantum information
[38]. In recent years, holographic superconductor in a
probe limit with nonminimally coupled EMS theory are
considered [39].
In the present paper, we extend the previous studies of

[22,29] by considering spontaneous scalarization of four
dimensional AdS BH with planar horizon in EMS gravity
with nonminimal coupling of the scalar and Maxwell
fields. We establish domain of existence, perturbative
stability of scalarized solutions. The law of BH mechanics
demonstrates the mathematical analogy between the
dynamics of BH and the law of thermodynamics [40].
Thus, it is interesting to investigate the spontaneous
scalarization in the context of BH thermodynamcis.
The differences between spherical and planar horizon
of BHs on the scalarization mechanism is also discussed
in both mechanical and thermodynamical perspectives.
This paper is organized as follows. We begin Sec. II with

the action for the Einstein-Maxwell-scalar model in AdS
spacetime and present its field equations along with the
boundary conditions for the numerical method. Moreover,
the bifurcation line that presents the emergence of scalar-
ized planar AdS charged black hole is studied. In Sec. III,
the numerical results of the scalarized planar AdS charged
black hole are demonstrated with the analysis of the
stability of the scalarized solutions. In Sec. IV, the study
of the thermodynamics properties of the scalarized planar
AdS charged black hole is presented in the grand canonical
ensemble (fixed potential) and canonical (fixed charge)
ensemble. We also present the Euclidean regularized action
technique for eliminating the divergences at the boundary
and from the electromagnetic (EM) field. Finally, we
summarize the results and discuss the novel findings in
the conclusions.

II. EINSTEIN-MAXWELL-SCALAR MODEL
IN AdS SPACETIME

In this section, we discuss basics equations involving the
EMS-AdS theory. We will derive equations of motion and
boundary conditions that allow an existence of scalarized
solutions. Then we explore the origin of instability that
leads to scalarization.

A. The model

We consider the model such that massless scalar field (φ)
is minimally coupled to gravity but nonminimally coupled
to gauge field Aμ. The action is given by
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S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λ − 2∇μφ∇μφ − GðφÞFρσFρσ�;

ð1Þ

where Fρσ ¼ ∇ρAσ −∇σAρ and coupling between the
scalar field and the gauge field is denoted by GðφÞ. The
cosmological constant relates to the AdS radius L
by Λ ¼ −3=L2.
Varying (1) with respect to gμν; Aμ and φ, we obtain the

following equations of motion

Rμν −
gμνR

2
þ Λgμν ¼ 2Tμν; ð2Þ

∇μðGFμνÞ ¼ 0; ð3Þ

∇μ∇μφ ¼ 1

4

dG
dφ

FρσFρσ; ð4Þ

where the energy-momentum tensor is defined by

Tμν ¼ ∂μφ∂νφ −
1

2
gμν∂ρφ∂ρφ

þ G
�
gρσFμρFνσ −

1

4
gμνFρσFρσ

�
: ð5Þ

Remark that the nonminimally coupling G cannot take an
arbitrary form. Instead, we must choose this coupling
function that allows an existence of the scalar free solution.
This means when φ ¼ 0, the action (1) admits Reissner-
Nordström-AdS solution. This puts a condition on function

G i.e., Gð0Þ ¼ 1 and dGð0Þ
dφ ¼ 0. In the absence of the gauge

field, the action (1) admits black hole solutions with scalar
hair [41].

B. Equations of motion

Here we consider spacetime metric with planar sym-
metry. The spacetime metric, the gauge field and the scalar
field take the following forms

ds2¼−NðrÞe−2δðrÞdt2þNðrÞ−1dr2þ r2

L2
ðdx2þdy2Þ; ð6Þ

Aμ ¼ fVðrÞ; 0; 0; 0g; ð7Þ

φ ¼ ϕðrÞ: ð8Þ

We define mass function mðrÞ as

NðrÞ≡ −
2mðrÞ

r
þ r2

L2
: ð9Þ

Putting these into equations of motion (2)–(4), we obtain

m0 ¼
�

r3

2L2
−m

�
rϕ02 þ Q2

2r2G
; ð10Þ

δ0 ¼ −rϕ02; ð11Þ

V 0 ¼ −
Qe−δ

r2G
; ð12Þ

0¼
�
r4

L2
−2rm

�
ϕ00 þ

�
4r3

L2
−2m−

Q2

rG

�
ϕ0 þ Q2

2r2G2

dG
dϕ

:

ð13Þ

We denote derivative with respect to radial coordinate r
by 0 e.g.,m0 ¼ dm

dr .Q is constant of integration which can be
associated to black hole’s charge (see Appendix). When
ϕ ¼ 0, the RN-AdS with planar symmetry is the solution to
these equations. To obtain a scalarized planar AdS charged
black hole, we must solve these nonlinear differential
equations (10) with appropriated boundary conditions.

C. Boundary conditions

We assume that there exists regular event horizon located
at r ¼ rþ i.e., NðrþÞ ¼ 0. The field functions fm; δ; V;ϕg
are expected to be finite near the event horizon and at
spatial infinity. Therefore, we expand the field functions
near the event horizon accordingly

m ¼ m0 þm1ðr − rþÞ þ � � � ; ð14Þ

δ ¼ δ0 þ δ1ðr − rþÞ þ � � � ; ð15Þ

V ¼ V0 þ V1ðr − rþÞ þ � � � ; ð16Þ

ϕ ¼ ϕ0 þ ϕ1ðr − rþÞ þ � � � ð17Þ

where equation of motions (10)–(13) allow us to determine
the following

m0 ¼
r3þ
2L2

; m1 ¼
Q2

2r2þGðϕ0Þ
; ð18Þ

δ1 ¼ −rþϕ2
1; ð19Þ

V1 ¼ −
e−δ0Q

r2þGðϕ0Þ
; ð20Þ

ϕ1 ¼
Q2L2

2rþGðϕ0ÞðQ2L2 − 3r4þGðϕ0ÞÞ
dGðϕ0Þ
dϕ

: ð21Þ

Here, we use the gauge freedom to set V0 ¼ 0. At spatial
infinity, we obtain
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m ¼ M −
Q2

2r
þ � � � ; ð22Þ

ϕ ¼ ϕf

r3
þ � � � ; ð23Þ

δ ¼ 3ϕ2
f

2r6
þ � � � ; ð24Þ

V ¼ ΦþQ
r
þ � � � ; ð25Þ

Here, the parameter M is related to the Komar mass E of
black hole (see Appendix). The leading order of scalar field
at spatial infinity is denoted by constant ϕf. The electro-
static potential Φ is defined as the difference between the
gauge field at infinity and event horizon

Φ ¼ Atð∞Þ − AtðrþÞ ¼ Vð∞Þ − VðrþÞ: ð26Þ

Since our equations of motion (10)–(13) has shifted
symmetry in V, therefore we can add arbitrary constant
such that VðrþÞ ¼ V0 ¼ 0. Thus the electric potential of
black hole solution becomes

Φ ¼ Atð∞Þ ¼ Vð∞Þ: ð27Þ

Remark that one obtain an explicit form of Φ by
integrating (12)

Φ ¼ −
Z

∞

rþ
dr

Qe−δ

GðϕÞr2 : ð28Þ

This equation serves as a good check on our numerical
results.

D. Tachyonic instability

Before discussing on scalarized solution, it is useful to
understand what drives bald planar AdS charged black hole
away from its stability. Thus in this subsection, we consider
a linear scalar perturbation on fixed background of planar
AdS charged black holes. We obtain such a solution by
choosing

ϕðrÞ ¼ 0; δðrÞ ¼ 0;

NðrÞ ¼ −
2M
r

þ r2

L2
þQ2

r2
; At ¼

Q
r
: ð29Þ

Equation governing scalar perturbation on curved back-
ground can be obtained by linearization of (4) with a small
perturbation δφ

ð□ − μ2effÞδφ ¼ 0; ð30Þ

where

μ2eff ¼ −
d2Gð0Þ
dϕ2

Q2

2r4
: ð31Þ

It turns out that the second derivative of the nonminimally
coupling function plays a role as the effective mass of
scalar field. In asymptotically flat spacetime, tachyonic
instability arises if μ2eff < 0. For asymptotically AdS
spacetime, if μ2eff < μ2BF where μ2BF ¼ − 9

4L3 is the
Breitenlohner-Freedman bound [42], the tachyonic insta-
tilbity occurs. We therefore choose the nonminimally

coupling such that d2Gð0Þ
dϕ2 > 0. Throughout this work, we

particularly consider the coupling in the following form

G ¼ eαϕ
2

; ð32Þ

where α is a positive constant. Thus the effective mass

squared is μ2eff ¼ − αQ2

r4 . This form of coupling function also
satisfies the requirements discussed in the Sec. II A. For
other forms of the coupling functions, for instance, hyper-
bolic, power law, and fraction are investigated thoroughly
in [16].
We expand the small perturbation δφ as

δφ ¼ UðrÞeiðk1xþk2yÞ; ð33Þ

where k1, k2 can be considered as wave vector in planar
direction. Therefore Eq. (30) can be expressed in the form

ðr2NU0Þ0 −
�
αQ2

r2
− L2k⃗2

�
U ¼ 0; ð34Þ

where k⃗2 ≡ k21 þ k22. The above equation is solved by
assuming that the radial function U is regular at the event
horizon and smoothly vanishing at spatial infinity. For a
given, Q ¼ 0.4; L ¼ 4; k⃗ ¼ 0, we solve this equation for
each α. As a results, we obtain a bifurcation line which
marks the location where scalarized solutions bifurcate
from planar AdS charged black hole. See Fig. 2 below for
an example plot. We remark that in Einstein-scalar-Gauss-
Bonnet-AdS theory, a scalar perturbation on scalar-free
spherical BH is comparatively easier leading to tachyonic
instability than those with planar horizon [43].

III. SCALARIZED PLANAR AdS CHARGED
SOLUTIONS

To obtain scalarized solution, we solve (10)–(13) with
boundary conditions as discussed in the previous section.
We apply numerical shooting method where ϕ0 and δ0 are
chosen such that the boundary conditions at spatial infinity
are satisfied. For a given value of the event horizon rþ,
black hole chargeQ, AdS radius L and coupling constant α,
we numerically integrate (10)–(13) from ðrþ þ ϵÞ to some
certain distance (r∞) where ϵ is set to 10−9. We search for
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ϕ0 and δ0 that make fm; δ; V;ϕg behave asymptotically
as (22)–(25). We obtain M and Φ by identifying M ¼
mðr∞Þ;Φ ¼ Vðr∞Þ. We find that the numerical value of Φ
agrees very well with (28).
To illustrate its behaviors, the plots of scalarized planar

AdS charged black holes as the functions of the radius r are
displayed with setting Q ¼ 0.4, L ¼ 4. In Fig. 1, we
display example plots of scalarized planar AdS charged
black holes. In the left panel, the free parameters are found
to be ϕ0 ¼ 0.622; δ0 ¼ 0.318. We find that the black hole
mass and electrostatic potential are 0.092 and −0.314
respectively. It is obvious that the scalar field profile
develops in the exterior region of the black hole horizon
and decreases rapidly as r is larger. The scalar field profiles
can be characterized by number of node n in the exterior
region of black hole. These are shown in the middle panel.
For the rest of this work, we shall particularly focus on the
n ¼ 0mode. Lastly, the right panel indicates that there is no
essential singularly anywhere outside the black hole’s
horizon since the Kretschmann scalar RabcdRabcd is always
finite for r > rþ.
Solution space of scalarized solution is illustrated in

Fig. 2. The solution space is displayed in α − q plane where
q≡ Q

M is defined as the reduced charge. In this plot, we only
express the region where tachyonic instability occurs, i.e.,
μ2eff < μ2BF. Here we only evaluate μ2eff at event horizon
since it takes the smallest possible value. The domain of
existence of scalarized solution is bounded by the bifurca-
tion line (red dashed line) and critical line (solid blue line).
The bifurcation line indicates the location in phase space
where scalarized solutions bifurcates from bald black holes.
The maximum value of q for each α form the critical line
where scalarized black hole ceases to exist. We find no
solution above the critical line. Remark that, the scalarized
black holes and planar AdS black holes coexist in the
region bounded by the bifurcation line and the extremal
line. On the extremal line the black holes have zero
Hawking temperature. In this plot, the extremal line is
located at q ¼ 3.604 or M ¼ 0.11098. This also implies
that above the extremal line the mass of scalarized solutions
are lower than those of planar AdS charged black holes.

From this plot the area of existence increases with coupling
constant α. We remark that the domain of existence plot
of planar black hole is qualitatively similar to those of
spherically symmetric solution [22]. The difference is that
in spherical symmetric setup the extremal line locates
at q ¼ 1.
In thermodynamics, it is known that the most preferred

state is the state with the largest entropy. Thus, if two states
have different entropy, the state with higher entropy is
preferred over the other. According to Bekenstein [24],
entropy of BHs is proportional to its surface area at horizon
radius, i.e., SBH ∼ AH, where SBH is the Bekenstein-
Hawking entropy and the event horizon area of planar
BH from the metric tensor is given by AH ¼ V2r2þ=L2. Here
V2 denotes the spatial extension in the xy plane. In this
case, we introduce the reduced horizon area aH, which
measures the event horizon area with respect to the area at
r ¼ 2M, i.e., aH ¼ r2þ=4M2. Thus we display the reduced

FIG. 1. Left: Example plots of the field functions for α ¼ 9.3 andM ¼ 0.092, q ¼ 4.35. Middle: The profiles of scalar field for n ¼ 0,
n ¼ 1, n ¼ 2 modes with α ¼ 10 and q ¼ 3.60, 3.62, and 3.91, respectively. Right: Plot the Kretschmann scalar as a function of r for
scalarized black hole geometry with α ¼ 18.7 and M ¼ 0.152, q ¼ 2.63.

FIG. 2. Domain of existence of scalarized planar AdS charged
black hole. The red dashed line is the bifurcation line and the
dashed black line is the black hole extremal line. The shaded area
above the bifurcation line is the domain of existence of scalarized
solutions. The upper limit of this domain is critical line (solid blue
line). The colored area below the bifurcation line is the area where
planar AdS charged black hole exists. All the shaded area is
displayed only when μ2eff < μ2BF.
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horizon area as a function of q in Fig. 3. At small q, only
planar AdS charged black holes exists. Beyond the
extremal point q ¼ 3.604 (marked by the vertical line),
the planar AdS charged black holes do not exist. When q
reaches certain number, scalarized planar black hole
bifurcates from the bald one. The bifurcation points for
α ¼ 5, 10, 15, and 20 are at q ¼ 3.438, 3.065, 2.735, and
2.466, respectively. Remarkably, we observe that there
exists a region where planar AdS black holes co-exist with
the scalarized solutions. It is clear that in the co-exist region
scalarized solutions are entropically favored over planar
AdS charged black holes since their reduced horizon areas
are relatively larger than those of planar AdS charged black
holes. This agrees with spherical symmetric situation where
scalarized black holes are found to be globally stable in
microcanonical ensemble [22].

A. Stability of scalarized solutions

In this subsection, we explore linear stability of scalar-
ized black holes. We consider time dependent linear
perturbations in EMS theory. Therefore, we expand the
field functions fN; δ; V;ϕg

Nðt; rÞ ¼ N0ðrÞ þ ϵ1N1ðrÞe−iω̄t; ð35Þ
δðt; rÞ ¼ δ0ðrÞ þ ϵ1δ1ðrÞe−iω̄t; ð36Þ
Vðt; rÞ ¼ V0ðrÞ þ ϵ1V1ðrÞe−iω̄t; ð37Þ
φðt; rÞ ¼ ϕ0ðrÞ þ ϵ1ϕ1ðrÞe−iω̄t; ð38Þ

with frequency ω̄, and ϵ1 is order parameter. Here δ0 and ϕ0

are not free parameters but rather represent metric function

and scalar function at equilibrium. Thus at first order
(in ϵ1), (2)–(3) imply the following,

N1 ¼ −2rN0ϕ
0
0ϕ1; ð39Þ

δ01 ¼ −2rϕ0
0ϕ

0
1; ð40Þ

V 0
1 ¼

Qe−δ0

r2Gðϕ0Þ2
�
Gðϕ0Þδ1 þ

dGðϕ0Þ
dϕ0

ϕ1

�
: ð41Þ

We redefine ϕ1 ≡ ψ=r and define tortoise coordinate
dr� ¼ eδ0N−1

0 dr. Therefore, the perturbed Klein-Gordon
equation can be expressed in the Schrödinger-like form

−
d2ψ
dr2�

þ ðVω̄ − ω̄2Þψ ¼ 0; ð42Þ

where

Vω̄ ¼ N0e−2δ0
�
3 − 6r2ϕ02

0

L2
−
Q2ð1 − 2r2ϕ02

0 Þ
r4G

−
N0

r2

−
Q2

2r4G2

�
4rϕ0

0

dG
dϕ0

þ d2G
dϕ2

0

��
: ð43Þ

Clearly, the perturbation potential Vω̄ vanishes at event
horizon and positively diverge as we approach spatial
infinity. This is illustrated in Fig. 4 where the potential
is plotted for various value of α. Equation (42) will have no
bound state if Vω̄ is positive everywhere. The existence of
bound state leads to unstable mode with ω̄2 < 0. From
Fig. 4, there exists a region where Vω̄ < 0 at small α.
However, as we increase α, the potential exhibits no
negative region anywhere outside the event horizon.
Nevertheless, the existence of negative potential region
does not sufficiently leads to development of instability
[16,44]. Stability of scalarized solution can be analyzed
using the S-deformation technique [45].

FIG. 3. The reduced horizon areas aH against the reduced
charge q for scalarized planar AdS BHs in the EMS gravity is
plotted with α ¼ 5, 10, 15 and 20 corresponding to dashed pink,
dash-dotted black, dashed green and solid red, respectively,
compared with the case of the bald AdS charged BH (solid
blue). Vertical (solid blue) line represents the extremal point in
this case.

FIG. 4. The plot of perturbation potential against radial coor-
dinate rwithQ ¼ 0.4 and L ¼ 4 for various value of α. The event
horizon locates at rþ ¼ 0.862.
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Furthermore, stability of scalarized solution can be
determined by calculating quasinormal modes (QNMs)
[46,47]. We investigate whether the solutions are stable
against the linear scalar perturbation (42). For asymptoti-
cally AdS spacetime, QNMs are defined to be the modes
that satisfy purely ingoing wave at the horizon and
vanishing at infinity i.e.,

ψðr → rhÞ ∼ e−iω̄r� ; ψðr → ∞Þ ∼ 0: ð44Þ

The frequency ω̄ corresponding to these modes are
quasinormal frequencies. As a consequence of the boun-
dary conditions, the frequencies are complex and discrete.
Imaginary part of ω̄ will reveal whether the perturbations
are stable (exponentially decay) or unstable (exponen-
tially growth). Thus we numerically solve scalar pertur-
bation (42) equation with background numerical nodeless
solutions (as mentioned earlier in this section) and
imposing boundary conditions (44). The aim is to obtain
the quasinormal frequencies as a function of charge q and
nonminimally coupling constant α. This is done by using
built-in function NDSolve in Wolfram’s Mathematica. In
addition, we implement psuedospectral method in order to
obtain the quasinormal frequencies. We refer the readers
to [48] for a nice introduction andMathematica’s package
of this method.
In Fig. 5, we illustrate an imaginary part of quasinor-

mal frequencies ω̄I as a function of q and α. In these plots,
ω̄I of scalarized black holes are displayed by the solid
curves where those of RN-AdS are shown by the dashed
curves. For each fixed value of α, we plot scalarized
solutions from the smallest possible q, i.e., q at the
bifurcation line to the largest possible value (q at the
critical line). We observe that the quasinormal frequen-
cies are always negative. Negativity of ω̄I implies that
these scalarized solutions are linearly stable. The larger

the α, the more stable these solutions are. More interest-
ingly, ω̄I develops nontrivial behavior as a function of q.
At small q, it appears that the solutions become
more stable as q is increased. However, beyond a certain
value of q, the solutions are less stable as q is increased.
We note that similar trends are also observed in [22,49]
for spherically symmetric solutions. Despite this, we
find no evidence of unstable modes of scalarized
black holes. Moreover, QNMs of RN-AdS are also
computed. We find that as q increases, the RN-AdS
becomes more unstable as expected. The RN-AdS
becomes most unstable when we reach extremal limit
denoted by red vertical line. In addition, the right figure
of Fig. 5, we plot ω̄I as a function of α for various values
of q. We notice that when q is increases the ω̄I becomes
more positive. While increasing α, the scalarized solution
become more stable. Similar to the previous case, we find
that the RN-AdS solutions are unstable against scalar
perturbation.

IV. THERMODYNAMICS

In this section, we investigate the thermodynamics and
phase structure of scalarized black holes with the planar
horizon in the grand canonical ensemble and canonical
ensemble [22,29].

A. Action calculation

To analyze the thermodynamics behaviors of black holes
in the grand canonical ensemble with fixed electric poten-
tialΦ or canonical ensemble with fixed electric charge Q̃ ¼
V2Q
4πL2 (see Appendix A). We study the Euclidean action of the
solution in an imaginary time t → iτ by identifying the
period βH ¼ 1=TH with the Hawking temperature TH [50].
In the semiclassical approximation, the thermal partition
function is given by

8 12 14 16 18 20

q

FIG. 5. Imaginary part of lowest-lying quasinormal frequency (ω̄I) plots against charge q (Left) and coupling constant α (Right). The
colored solid lines represent ω̄I of scalarized black holes where dashed lines are planar AdS charged black holes. The red vertical line in
the left figure is charge at extremal limit q ¼ 3.604.
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Z ∼ e−S
E
on-shell ; ð45Þ

where SEon-shell defined as the on-shell Euclidean action.
Nevertheless, the action (1) diverges as spacetime volume
increases. Thus we must renormalize the action to eliminate
the divergences from the asymptotic AdS spacetime.
We introduce the Euclidean regularized action SER

including the Euclidean bulk action SEbulk from (1), the
Gibbons-Hawking boundary term SEGH for eliminating the
divergence at the boundary, the counterterm SEct for elimi-
nating the divergence from the AdS asymptotic at the
boundary, and SEsurf for eliminating the divergence of the
EM field,

SER ¼ SEbulk þ SEGH þ SEct þ SEsurf : ð46Þ

Note that in the above equation, we have changed the time
coordinate t into the Euclidean time τ ¼ it. For conven-
ience, in the Euclidean spacetime, we will denote
d4x ¼ dτdrdxdy. The Euclidean bulk and the boundary
terms are given by

SEbulk ¼−
1

16π

Z
d4x

ffiffiffi
g

p �
Rþ 6

L2
−2∇μφ∇μφ−GðφÞF2

�
;

ð47Þ

SEGH ¼ −
1

8π

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
Θ; ð48Þ

SEct ¼
1

8π

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q �
2

L
þ L

2
R
�
; ð49Þ

SEsurf ¼ −
1

4π

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
GðφÞFμνnμAν; ð50Þ

where γð3Þ is the determinant of the induced metric on
the hypersurface at r → ∞, Θ is the trace of the extrinsic
curvature Θμ

μ, R is the scalar curvature of the induced

metric γð3Þij , and nμ is the unit normal vector on the
hypersurface.
Now we consider the Euclidean bulk term SEbulk along

with the Einstein field equation in (2) and its trace. The
Euclidean bulk term can be written as

SEbulk ¼
1

16π

Z
d4x

ffiffiffi
g

p �
6

L2
þ GðφÞF2

�
: ð51Þ

With the ττ component of the field equation in Eq. (2), we
obtain the identity as follows,

Rττ þ
3

L2
Ne−2δ ¼ −GðφÞNV 02: ð52Þ

The field strength tensor square is given by

F2 ¼ −2e2δV 02: ð53Þ

Plugging Eqs. (52) and (53) into (51), the Euclidean bulk
term becomes

SEbulk ¼ −
1

16π

Z
d4x

ffiffiffi
g

p �
4e2δGðφÞV 02 þ 2e2δ

N
Rττ

�
;

¼ −
1

16π

Z
βH

0

dτ
Z

dxdy
Z

∞

rþ
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2δ

r4

L4

r �
4e2δGðφÞV 02 þ 2e2δ

N
Rττ

�
;

¼ −
V2

4πTH

Z
∞

rþ
dr

r2

L2

�
eδGðφÞV 02 þ 1

2N
eδRττ

�
:

We substitute the ττ component of the Ricci tensor, which
directly calculated from the metric tensor in Eq. (6), into the
above equation. One can integrate out the coordinate r to
obtain

SEbulk ¼
1

TH

�
V2

16πL2
r2e−δðN0−2Nδ0Þ

���
r→∞

−THSBH− Q̃Φ
�
:

ð54Þ

Here, the Hawking temperature of the scalarized black
hole is

TH ¼ 1

4π
N0ðrþÞe−δðrþÞ: ð55Þ

The Bekenstein-Hawking entropy is given in the form of
the area law as

SBH ¼ AH

4
¼ V2r2þ

4L2
: ð56Þ

Note that the horizon area can be calculated from

AH ¼
Z

d2x
ffiffiffiffiffiffiffi
γð2Þ

q
¼ V2r2þ

L2
; ð57Þ
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where γð2Þ is a determinant of the induced metric associated
to the horizon surface and V2 ¼

R
dxdy is the spatial

extension of black hole in R2.
The first term in (54) diverges at r → ∞. To remove this

divergence, we make use of the Gibbons-Hawking term to
cancel them out. The extrinsic curvature is defined by

Θμν ≡ 1

2
hαμhβνð∇ασβ þ∇βσαÞ: ð58Þ

The metric on the hypersurface hμν is defined as follows,

hμν ≡ gμν − σμσν; ð59Þ

where σμ ¼ ð0; 1=N1=2; 0; 0Þ is the unit normal vector
pointing outward from the hypersurface. The trace of the
extrinsic curvature can be expressed explicitly

Θ ¼ N0

2
ffiffiffiffi
N

p − δ0
ffiffiffiffi
N

p
þ 2

ffiffiffiffi
N

p

r
: ð60Þ

Now the Gibbons-Hawking boundary term is,

SEGH ¼ −
1

8π

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
Θ;

¼ −
1

TH

�
V2

16πL2
r2e−δðN0 − 2Nδ0Þ

þ V2

4πL2
e−δ

�
−2M þ r3

L2

��
r→∞

: ð61Þ

The first term in the above equation cancels out the
divergence in the bulk action (54). The second term in
the above equation leads to another divergence. However,
one finds that the counterterm SEct yields

SEct ¼
V2

4πL2TH
e−δ

�
r3

L2
−M

�����
r→∞

; ð62Þ

where R vanishes with planar symmetry. The surface
boundary action SEsurf vanishes when the potential Φ is
fixed at the boundary since the field strength of the gauge
field is zero on this surface. Therefore the grand potential is
given by

Ω ¼ THSER ¼ E − THSBH − Q̃Φ: ð63Þ
On the other hand, if we fix the electric charge Q of the
black hole instead, the surface term now becomes non-
vanishing, i.e.,

SEsurf ¼ −
1

4π

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
GðφÞFμνnμAν;

¼ V2

4πTHL2
QΦ;

¼ 1

TH
Q̃Φ: ð64Þ

Therefore, it contributes to the on-shell action in Eq. (46).
In this case, the free energy is the Helmholtz free energy
which can be written in the following form

F ¼ THSER ¼ E − THSBH: ð65Þ

B. Fixed potential

The behaviors of the reduced temperature TL with
reduced horizon radius rþ=L are illustrated in Fig. 6. In
these plots, we fix the electric potential jΦj ¼ 0.5 and 1.2 in
the left and right panels, respectively. At low temperature,
there are two branches of black holes with planar horizon:
RN-AdS BH (solid blue curve) and SC BH (solid red,

FIG. 6. Reduced temperature TL plots against reduced horizon radius rþ=L with L ¼ 1. Left: for fixed jΦj ¼ 0.5 Right: for fixed
jΦj ¼ 1.2. The solid blue and red lines are RN-AdS and scalarized solution with α ¼ 5. The dashed green and dot-dashed black lines are
scalarized solution with α ¼ 10 and 15 respectively.
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dashed green and dot-dashed black curves which
correspond to coupling constant α ¼ 5, 10, and 15,
respectively). In both BH’s configurations, the Hawking
temperature is proportional to BH’s horizon radius, how-
ever, the SC BH has higher temperature than the RN-AdS
BH until its temperature increases to TB, where TB
represents the temperature at the bifurcation point. For
T > TB, SC BH disappears and there is only one BH
branch which is RN-AdS.
In Fig. 7, we plot the reduced heat capacity C=L2 as a

function of the reduced temperature TLwith corresponding
to the temperature profiles in Fig. 6 for the SC BH branch
(red, dashed green, and dot-dashed black curves) compared
with the RN-AdS BH (blue curve). The heat capacity of
these two branches are both positive and increased when
the increasing temperature, so these two branches are
locally in thermal equilibrium against microscopic fluctua-
tions. The behavior of the heat capacity of these two
branches are significantly different, namely, the heat
capacity of the SC BH is larger than the RN-AdS BH
and reaches its maximum value at TB where T > TB SC
BHs are no longer exist. On the other hand, the heat
capacity of the RN-AdS BH increases monotonically with
when T > 0.
As shown in Fig. 6, when rþ < re, where re denotes the

horizon radius of extremal RN-AdS BH, there exists only
SC BH while the existence of the RN-AdS BH in this
region would violate the cosmic censorship conjecture [51].
Note that the SC BH approaches the extremal limit with
zero temperature comparatively slower than the RN-AdS
BH since its heat capacity is greater than RN-AdS BH. In
other words, the SC BH radiates more energy to reduce one
unit of the temperature. Remarkably, in the planar horizon
case, the SC BH exists at near zero temperature up to TB. In
contrast to spherical horizon case, the SC BH exists at the
lowest (nonzero) temperature Tmin up to arbitrarily high
temperature [29].

In order to investigate the global stability of BH in EMS
system with fixed jΦj ensemble, one needs to consider the
grand potential. For planar black hole, the extensive
quantities such as mass, entropy, charge and free energy
are diverge since V2 has an infinite extension. Therefore it
is more appropriate to use the density of these quantities as
xi ¼ 4πL2Xi=V2 where Xi represents the extensive quan-
tities. In this way, the grand potential in Eq. (63) can be
written in the form

Ω ¼ V2

4πL2
ω; ð66Þ

where

ω ¼ M − THsBH −QΦ; ð67Þ

defined as the grand potential density. Here M, Q, and
sBH ¼ πr2þ are the mass, charge, and entropy density,
respectively. In Fig. 8, we present the reduced grand
potential density ω=L as the function of reduced temper-
ature TL. These graphs show that there are two branches of
black hole emerged at zero temperature with different
values of the grand potential: RN-AdS BH and SC BH.
For the solid blue, solid red, dashed green, and dot-dashed
black curves correspond to RN-AdS BH and SC BH with
different coupling constant α ¼ 5, 10 and 15, respectively.
At low temperature T < TB, the thermodynamically pre-
ferred state is the SC BH since it has lower grand potential
than the RN-AdS BH.
At T ¼ TB, the SC BH and RN-AdS BH coalesce, while

RN-AdS BH persists for all high temperature. Since the
heat capacity, which associated to the second derivative of
the free energy, i.e., C ¼ −Tð∂2Ω

∂T2ÞΦ, is discontinuous. Thus
the SC—RN-AdS BH phase transition is the second order
type of phase transition. In the left panel in Fig. 8, we
explore the influence of α on the phase structures of BH in

FIG. 7. Show the heat capacity C=L2 plot against the reduced temperature TL with L ¼ 1. Left: for fixed jΦj ¼ 0.5 Right: for fixed
jΦj ¼ 1.2. The solid blue and red lines are RN-AdS and scalarized solution with α ¼ 5. The dashed green and dot-dashed black lines are
scalarized solution with α ¼ 10 and 15 respectively.
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EMS system by varying α ¼ 5, 10, 15 for fixed jΦj ¼ 0.85.
We find that the grand potential of SC BH are more
negative value when the α increases, so the SC BH with
larger α are more thermodynamically favored than the BH
with smaller α. In the right panel in Fig. 8, we fixed α ¼ 15
and vary jΦj ¼ 0.5, 0.85 and 1.2 respectively. The grand
potential curves of SC BH and RN-AdS BH are both
decreased from top to bottom when jΦj is increasing.
Figure 9 displays the phase diagram of the grand

canonical ensemble of BH in EMS system with the lowest
grand potential at fixed α ¼ 10 in the TL − jΦj plane. The
dashed black curve represents the line of coexistence of the
SC BH and the RN-AdS BH, where the transition across
this line is of the second order type. This occurs when the
grand potential of these configurations are degenerated at
T ¼ TB. In the upper region, there is only RN-AdS BH;

however, when the temperature decreases to TB, the
RN-AdS BH develops a scalar hair near the event horizon
to form the SC BH, which represents in the lower region of
the coexistence line. In this region, the SC BH can be the
globally preferred thermal state.

C. Fixed charge

To study the BH thermodynamics of the EMS gravity in
the canonical ensemble, we fix the bulk electric chargeQ of
the BH solutions instead of fixing the electric potential Φ.
Fig. 10 shows the behavior of TL as a function of rþ=L
with three different values of Q=L. For low temperature
T < TB region, there are two branches of BH solutions of
different horizon radii. We find that these two BH solutions
with small and large horizon radii correspond to the SC BH
and RN-AdS BH, respectively.
In Figs. 10, 11, and 12, the RN-AdS BH is identified by

the solid blue curve, while the SC BHs with different
α ¼ 5, 10 and 15 are represented in solid red, dashed green,
and dot-dashed black curves, respectively. When the
temperature increases to TB, these two BHs are degenerate
at the same horizon radius and SC BH transits to RN-AdS
BH. Consequently, the RN-AdS BH is the only phase that
exists at any high temperature regime. By varying
Q=L ¼ 0.1, 0.5 and 1.5 from the left to the right panels
in Fig. 10, we find that TB and its corresponding horizon
radius increase whenQ=L increases. At each value ofQ=L,
we also compare the effect of the strength of the coupling
function between the massless scalar field and the Maxwell
gauge field on the thermal behavior of SC BHs by varying
α. These graphs indicate that TB and its corresponding
horizon radius increase with α.
To investigate the local stability of two BH solutions of

the EMS gravity in the canonical ensemble, we plot the
reduced heat capacity C=L2 against the reduced temper-
ature TL in Fig. 11 for different reduced charge Q=L.

FIG. 8. Grand potential density ω plots against the reduced temperature TLwith L ¼ 1. Left: for fixed jΦj ¼ 0.85 and varying α ¼ 5,
10, 15 Right: for fixed α ¼ 15 and varying jΦj ¼ 0.5, 0.85, 1.2.

FIG. 9. Temperature of black hole solutions plot against
electrostatic potential for α ¼ 10. The dashed black line indicates
the temperature at the bifurcation points. The lower region is
dominated by scalarized solution while the upper region belongs
to RN-AdS.
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These graphs illustrate that the heat capacity of these two
BH backgrounds are both positive, so they can be in
thermal equilibrium with heat reservoir at fixed temper-
ature. However, SC BH only exists in the range 0 ≤ T ≤ TB
with higher heat capacity than the RN-AdS BH and
consequently disappear for T > TB region. On the other
hand, RN-AdS BH always exists at any temperature. For
fix α and vary BH’s charge, TB is shifted to the right when
the bulk charge of the black hole increases. Moreover,
when we fix Q of the black hole and vary α, the results
indicate that TB move to the right when α is larger.
A free energy corresponding to the canonical ensemble is

the Helmholtz free energy, which is denoted by F. For

planar BH, it diverges in the same way as the grand
potential of the fix Φ ensemble. Thus, we use the
Helmholtz free energy density F instead of F to investigate
the global stability of BHs in the EMS gravity. The
Helmholtz free energy density is defined as

F ¼ V2

4πL2
F ; ð68Þ

where

F ¼ M − THsBH: ð69Þ

FIG. 10. Plots of the reduced Hawking temperature TL against the reduced horizon radius rþ=L of two BH solutions in the EMS
gravity with three different values of the reduced charge Q=L ¼ 0.1, 0.5, and 1.5 in the left, middle, and right panels, respectively. The
RN-AdS BH is identified by the solid blue curve, while the SC BHs with different α ¼ 5, 10 and 15 are represent in solid red, dashed
green and dot-dashed black curves, respectively.

FIG. 11. Plot of the reduced heat capacity C=L2 as the function of the reduced temperature TL for planar SC and RN-AdS BHs with
the variation of α ¼ 5, 10, and 15 and Q=L ¼ 0.1, 0.5, and 1.5.

FIG. 12. The Helmholtz free energy against the temperature of the phase transition between the scalarized planar black hole and the
RN-AdS planar black hole with the variation of α ¼ 5, 10, and 15 and Q=L ¼ 0.1, 0.5, and 1.5.
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Figure 12 displays the Helmholtz free energy as a function
of temperature. In high temperature regime T > TB, we
find the planar RN-Ads BH is the most globally preferred
phase in the AdS space. As one lower temperature to TB
and keep Q=L to be constant, the RN-AdS BH becomes
unstable and develops an atmosphere in the form of
massless scalar with finite peak near the event horizon
to form the SC BH. The transition between these two BH
configurations can be classified to the second order phase
transition since C=L2 shows a discontinuity and F=L is
continuous and smooth function at T ¼ TB as shown in
Figs. 11 and 12, respectively. For low temperature T < TB,
the SC BH can be the globally preferred state. As we
increaseQ=L, both BH configurations move to lower F=L,
while TB of the system increases. By varying α ¼ 5, 10,
and 15 and fixed Q=L ¼ 0.1, 0.5, and 1.5, respectively. we
find F=L of SC BHs are lower from the top to bottom.
For the canonical ensemble, Fig. 13 demonstrates the

phase diagramofRN-AdS and SCBHswith the lowestF=L
in the TL −Q=L planewhen α ¼ 10. The dashed black line
represents the second order phase transition dividing the
RN-AdS BH (upper region) from the SCBH (lower region).

V. CONCLUSIONS

In this work, the spontaneous scalarization of asymp-
totically AdS charged black holes of planar event horizon in
the Einstein-Maxwell-scalar theory with nonminimally
coupling between scalar field and Maxwell field is inves-
tigated. It is tachyonic instability that drives scalar-free
charged black holes away from their stability. When the
condition μ2eff < μ2BF holds, scalarized planar charged black
holes emerge when charge q and the coupling constant α
are sufficiently large as illustrated in Fig. 2. Moreover, in
the region where RN-AdS and SC BHs co-exist, we find
that SC BHs are entropically preferred over RN-AdS. From
our investigation, we observe that the SC BHs with low α

exhibit a possibility of instability while perturbation equa-
tions of SC solutions with higher α do not develop any
bound states. By computing quasinormal frequencies, we
find that all scalarized black holes investigated in this
work are linearly stable against scalar perturbations. In
fact, the scalarized solutions become more stable as α is
increased. In contrast, we show that the RN-AdS black
holes do suffer from tachyonic instability. Despite that,
comparing to the spherically symmetric case, topological
scalarized solutions are more difficult to obtain. However,
we find that their domains of existence, the reduced event
horizon areas of black hole and stability behaviors share
several similarities.
In terms of thermodynamic behaviors of planar BH

solutions in the EMS gravity, we find two stable branches
of BHs: RN-AdS BH and SC BH in both grand canonical
and canonical ensembles. There is only planar RN-AdS BH
branch at high temperature regime T > TB. By decreasing
temperature, planar RN-AdS BH becomes unstable below
TB and develops nonzero finite value of real scalar field
near its event horizon, i.e., ϕ0 ≠ 0. The phase transition
between RN-AdS BH to SC BH is the second order phase
transition since the behavior of heat capacity shows a
discontinuity at T ¼ TB. Remarkably, SC BH are thermo-
dynamically favored than RN-AdS BH in T < TB region
because they have smaller free energy than RN-AdS BH.
The phase diagram in Figs. 9 and 13 display a region where
RN-AdS BH and SC BH exist with the lowest free energy
in grand canonical and canonical ensemble, respectively.
Unlike the spherical SC BHs that have no extremal limit
since they only exist from nonzero temperature up to
arbitrary temperature, the planar SC BHs emerge from
the bifurcation point at TB which is thermodynamically
preferred than RN-AdS BH. Below TB, planar SC BH
approaches toward the extremal limit. The spherical BHs in
the EMS model has richer thermodynamic phase structure
and phase transition than the planar horizon case. In the
spherical case, the BH configuration exhibits a phase
transition in a similar way as the liquid-gas one at small
Q regime, while the reentrant phase transition can occurs in
some range of parameters in the largeQ limit. Nevertheless,
the thermal second order phase transition between planar
RN-AdS BH and SC BH in the EMS model is reminiscent
of normal conductor-superconductor phase transition. This
similarity may demonstrate as follows. In the gauge/gravity
duality, one can interpret the radial coordinate r of AdS
space as geometrical view of the renormalization group
flow. In other words, running the coordinate r from the
boundary to the interior of the bulk in AdS corresponds to
flowing down the energy scale from high energy (UV) to
low energy (IR) of the field theory. In the left panel of Fig. 1
shows a scalar field profile in the bulk spacetime. The scalar
field is concentrated in the deep interior of spacetime and
monotonically decreases toward zero amplitude near the
boundary. In thermodynamics perspective, SC BH with

TL

FIG. 13. The plot of the temperature against the charge where
the phase transition of the scalarized planar black hole emerging
from the RN planar black hole with the parameter set as follows:
α ¼ 10, Q=L ¼ 0.1, and Q ∈ ½0.0; 1.0�.
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ϕ0 ≠ 0 will develop in the low temperature limit T < TB,
however, for T > TB the scalar field’s amplitude vanishes
ϕ0 ¼ 0, at this point the SC BH transits to scalar-free BH.
Such mechanism implies a spontaneous symmetry break-
ing of Uð1Þ gauge symmetry in the IR limit and the
symmetry is restored at the UV physics. This suggests that
SC BH and RN-AdS BH in the EMS model might behave
as a superconducting phase and normal conducting phase,
respectively, as in the Abelian-Higgs model of super-
conductivity [52].
As a general extension of this work, it is interesting to

explore the dependence of these scalarized black holes on
various form of coupling functions where the similar work
is done with spherical horizon [16]. A nonlinear dynamical
evolution of scalarized spherical black hole is studied in
[53]. Similar should be done for the planar case where it
should offer more insight into perturbative stability of
scalarized planar black holes. Given, thermodyanmics
behaviors and phase structure of our scalarized solutions,
it would be extremely interesting to explore these solutions
in the context of holographic superconductor. We leave
these for future works.
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APPENDIX: MASS AND CHARGE OF PLANAR
EMS SOLUTION

In this appendix, we shall derive mass and electric
charged of planar BH solutions in the EMS gravity via
the Komar integral, which we have used them to derived
some thermodynamic quantities of BHs. Let’s first con-
sider, the Maxwell’s equation with an external current Jμ.
Thus Eq. (3) becomes

∇νðGFμνÞ ¼ Jμ; ðA1Þ

where G ¼ eαϕ
2

. The electric charge Q̃ passing through a
spacelike hypersurface Σ can be defined by an integral over
spatial coordinates xi on Σ

Q̃ ¼ −
1

4π

Z
Σ
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
nμJμ

¼ −
1

4π

Z
Σ
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
nμ∇νðGFμνÞ; ðA2Þ

where γð3Þij is the induced metric and nμ is the unit normal
vector associated to Σ. By using the Stokes’s theorem, we
can rewrite the volume integral in the above relation as a
surface integral

Q̃ ¼ −
1

4π

Z
∂Σ
d2x

ffiffiffiffiffiffiffi
γð2Þ

q
nμσνGFμν; ðA3Þ

where γð2Þij is the induced metric and σμ is the unit normal
vector associated to ∂Σ. For planar EMS solutions in
Eq. (6), the surfaces Σ and ∂Σ are the constant-
time hypersurface and R2 surface at spatial infinity,
respectively. Therefore the unit normal vectors associated
to Σ and ∂Σ are

nμ ¼ ð−N1=2ðrÞe−δðrÞ; 0; 0; 0Þ; and

σμ ¼ ð0; N−1=2ðrÞ; 0; 0Þ; ðA4Þ

respectively. The line element on surface ∂Σ is

γð2Þij dx
idxj ¼ r2

L2
ðdx2 þ dy2Þ; ðA5Þ

and the volume element takes the form

d2x
ffiffiffiffiffiffiffi
γð2Þ

q
¼ r2

L2
dxdy: ðA6Þ

From definition of normal vectors in Eq. (A4), one can
compute

nμσνGFμν ¼ e−δðrÞGV 0ðrÞ: ðA7Þ

Substituting Eq. (A6) and Eq. (A7) into Eq. (A3) gives

Q̃ ¼ −
V2

4πL2
ðr2e−δðrÞGV 0ðrÞÞr→∞; ðA8Þ

where V2 denotes spatial area of constant r surface. Remark
that the electric charge Q̃ is evaluated at spatial infinity. By
using Eqs. (23)–(25), we obtain

Q̃ ¼ V2Q
4πL2

: ðA9Þ

In an asymptotically AdS space, the physical mass
can be measured with respect to a reference AdS back-
ground. In this way, the Komar mass can be written in the
following form
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E ¼ 1

4π

Z
∂Σ
d2x

ffiffiffiffiffiffiffi
γð2Þ

q
nμσν∇μKν − EAdS: ðA10Þ

We define the time-translation Killing vector Kν≡
ð1; 0; 0; 0Þ, nμ and σμ are defined in Eq. (A4). The
Komar integral of vacuum AdS space ðEAdSÞ is given by

EAdS ¼ V2r3

4πL4
: ðA11Þ

Therefore, we have

nμσν∇μKν ¼ 1

2
e−δðrÞN0ðrÞð1 − 2δ0ðrÞÞ: ðA12Þ

Thus the first term of (A10) becomes

1

4π

Z
∂Σ
d2x

ffiffiffiffiffiffiffi
γð2Þ

q
nμσν∇μKν

¼ V2

4π

�
r2

2L2
e−δðrÞN0ðrÞð1 − 2δ0ðrÞÞ

�
;

¼ V2

4π

�
M
L2

−
Q2

2L2r
þ r3

L4
þOðr−2Þ

�
: ðA13Þ

Evaluating at the boundary (r → ∞) with EAdS, we obtain
the Komar mass of planar BH solutions as

E ¼ V2M
4πL2

: ðA14Þ
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