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In the framework of scalar-Einstein-Gauss-Bonnet gravity, we construct the Hayward black hole model
and discuss the absence of ghosts in this model. Because a Hayward black hole has two horizons but no
curvature singularity, it may solve the problem of the information loss that might be generated by black
holes. The Gauss-Bonnet term appears as a stringy correction, and therefore, our results might indicate that
the stringy correction would solve the information loss problem.
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I. INTRODUCTION

Black holes (BHs) are extremely unusual regions of
spacetime. They are defined by the existence of the event
horizon, which is a one-way causal spacetime boundary
beyond which even light cannot escape. BHs are understood
to be the final state of the gravitational collapse of matter and
are a generic prediction of general relativity (GR) [1–3].
Furthermore, BHs may hold the key to realizing the dream of
unifying GR and quantum mechanics [4,5] (see also [6]).
Undoubtedly, a deeper understanding of BHs will lead to a
more complete understanding of gravity at energy scales that
we cannot access from Earth.
From an observational perspective, BHs can be seen

in a wide range of astrophysical settings, and there is a
plenitude of direct and indirect data suggesting the exist-
ence of supermassive black holes with masses as large as
1010M⊙. The supermassive BHs are thought to be located
at the centers of the majority of galaxies with sufficiently
large mass, including our galaxy [7,8]. They are thought to
be a source of energy that often outstrips other galaxies,
called the active galactic nucleus, where the center of the
galaxy is extremely luminous. For a comprehensive over-
view of astrophysical BHs, see [9].
The gravitational collapse in GR would result in the

appearance of singularities, which could be unavoidable
and sometimes unwelcome [3,10,11]. It would be desirable
if we could find any solution that completely avoids the

singularities, even though the cosmic censorship conjecture
predicts that all singularities of gravitational collapse
should be veiled beneath the event horizons of BHs and
so should not be naked [12,13]. Since Bardeen’s early
work [14], a lot of attention has been focused on finding
regular BH solutions without singularity. To do this, one
can either alter the gravity sector or look for (usually exotic)
matter content that can regularize the central singularity.
For an exhaustive list of works in this area, see [15–49]. For
significant investigations on the observational signatures of
such BHs, see [50–54].
One of the most important problems in quantum gravity

could be the so-called information loss problem by BH
evaporation. Hawking radiation [55] seems to tell us that
the initial quantum pure state, which describes gravitation-
ally collapsing matter to form a BH, evolves into the
quantum mixed state, and therefore the unitarity, which is
one of the basic principles in quantum theory, seems to be
broken. There have been several proposed scenarios to
solve this problem of the loss of quantum information.
Hawking himself has proposed that the black hole com-
pletely evaporates and the quantum coherence could be lost
and the unitarity is broken. On the other hand, ’t Hooft has
considered that Hawking radiation may carry information
about the quantum states of the black holes [56]. There is
also a proposal that after Hawking radiation, there remains
a stable remnant that carries the information of the initial
state [57]. A candidate of the remnant is the extremal limit
of the Reissner-Nordström BHs [58]. More recently, the
importance of infrared physics has been pointed out. Soft
hairs associated with the asymptotic symmetries in the
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infrared region may store the information before the
collapse to the BH [59].
Another scenario could be given by the regular BH

where any curvature singularity does not appear. In a
semiclassical description of Hawking radiation, there
occurs the pair creation of two particles near the horizon.
One of the particles escapes to infinity and the particle is
recognized as radiation. Another particle falls into the
singularity of the BH, and the information is lost. If there is
no singularity, then the fallen particle goes out through the
horizons, again, and arrives at another universe and the
information is carried to the universe. Therefore, if we
include another universe, information loss does not occur.
Such a regular BH has been constructed by using nonlinear
electrodynamics [14] (see also [60]). Hayward also pro-
posed the metric of the regular BH [20] but the gravity
theory that a realizes Hayward BH was not given. In this
paper, in the framework of the scalar-Einstein-Gauss-
Bonnet gravity, we propose a model that realizes a
Hayward BH although it is constructed by using the
nonlinear electrodynamics [36].
The reason why we consider the Einstein-Gauss-Bonnet

gravity is that the gravity theory appears as a correction
coming from the string theory [61]. String theory is the
strongest candidate for quantum gravity and it could be
natural to expect that quantum gravity could solve the
problem of information loss. Because the Gauss-Bonnet
invariant is a topological quantity, that is, total derivative in
four dimensions, the BH solutions have been well studied
in dimensions equal to or higher than five [62] (see
also [63]). If we consider the dimensional reduction from
the higher dimensions to four dimensions, there could
appear the coupling between the Gauss-Bonnet term and
other fields. The simplest model of this type is the scalar-
Einstein-Gauss-Bonnet gravity, which we consider in this
paper. In cosmology, the scalar-Einstein-Gauss-Bonnet
gravity has been also used to explain dark energy, and it
has been shown that the phantom universe is realized
without ghosts [64]. Furthermore, it has been found that
arbitrary development of the expansion of the Universe can
be realized in the scalar-Einstein-Gauss-Bonnet gravity [65].
Even for BH-like objects, the authors have found that
arbitrary spherically symmetric and static spacetime can
be constructed in the framework of scalar Einstein-Gauss-
Bonnet gravity, although there might appear ghosts [66]. In
this paper, by using the formulation in [66], we construct the

model that realizes Hayward BHs and discusses the pos-
sibility of the absence of ghosts.
In the next section, we give the equations in the scalar-

Einstein-Gauss-Bonnet gravity model, and we show how
to construct a model that realizes general spherically
symmetric and static solutions. In Sec. III, after briefly
reviewing the properties of Hayward BHs, we construct a
model that realizes Hayward BHs. We especially discuss
how we could be able to avoid ghosts. We also investigate
the solution’s small- and large-r behaviors for general
spherically symmetric and static solutions and check the
obtained results. In Sec. V, by using the formulation of
the geodesic deviation, the stability condition of a particle
motion in the background of a Hayward BH is studied. The
last section is devoted to the summary and discussions.

II. GENERAL SPHERICALLY SYMMETRIC
AND STATIC SOLUTION OF SCALAR-EINSTEIN-

GAUSS-BONNET GRAVITY IN FOUR
DIMENSIONS

The action of the scalar-Einstein-Gauss-Bonnet gravity
in N spacetime dimensions is given by

S ¼
Z

dNx
ffiffiffiffiffiffi
−g

p �
1

2κ2
R−

1

2
∂μξ∂

μξþVðξÞþ fðξÞG
�
: ð1Þ

Here ξ is the scalar field and VðξÞ is the potential for ξ and
fðξÞ is also a function of ξ. Furthermore, G is the Gauss-
Bonnet invariant defined by

G ¼ R2 − 4RαβRαβ þ RαβρσRαβρσ: ð2Þ

Although the Gauss-Bonnet invariant is a total derivative in
four dimensions (N ¼ 4), due to the coupling fðξÞ, the term
including the Gauss-Bonnet invariant gives nontrivial
contributions to the field equations of the system. We also
assume that the matters do not couple with the scalar field ξ,
which may avoid the appearance of the fifth force.
The variation of the action (1) with respect to the scalar

field ξ yields the following equation:

∇2ξ − V 0ðξÞ þ f0ðξÞG ¼ 0: ð3Þ

On the other hand, by the variation of the action (1) with
respect to the metric gμν, we obtain the following equations:

0 ¼ 1

2κ2

�
−Rμν þ 1

2
gμνR

�
þ 1

2
∂
μξ∂νξ −

1

4
gμν∂ρξ∂ρξþ

1

2
gμν½fðξÞG − VðξÞ� þ 2fðξÞRRμν þ 2∇μ∇νðfðξÞRÞ

− 2gμν∇2ðfðξÞRÞ þ 8fðξÞRμ
ρRνρ − 4∇ρ∇μðfðξÞRνρÞ − 4∇ρ∇νðfðξÞRμρÞ þ 4∇2ðfðξÞRμνÞ þ 4gμν∇ρ∇σðfðξÞRρσÞ

− 2fðξÞRμρστRν
ρστ þ 4∇ρ∇σðfðξÞRμρσνÞ: ð4Þ
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Using the Bianchi identities,

∇ρRρτμν ¼ ∇μRντ −∇νRμτ;

∇ρRρμ ¼
1

2
∇μR;

∇ρ∇σRμρνσ ¼ ∇2Rμν −
1

2
∇μ∇νRþ RμρνσRρσ − Rμ

ρRνρ;

∇ρ∇μRρν þ∇ρ∇νRρμ ¼ 1

2
ð∇μ∇νRþ∇ν∇μRÞ − 2RμρνσRρσ þ 2Rμ

ρRνρ;

∇ρ∇σRρσ ¼ 1

2
□R; ð5Þ

in Eq. (4), we obtain

0 ¼ 1

2κ2

�
−Rμν þ 1

2
gμνR

�
þ
�
1

2
∂
μξ∂νξ −

1

4
gμν∂ρξ∂ρξ

�
þ 1

2
gμν½fðξÞG − VðξÞ� − 2fðξÞRRμν þ 4fðξÞRμ

ρRνρ

− 2fðξÞRμρστRν
ρστ − 4fðξÞRμρσνRρσ þ 2ð∇μ∇νfðξÞÞR − 2gμνð∇2fðξÞÞR − 4ð∇ρ∇μfðξÞÞRνρ − 4ð∇ρ∇νfðξÞÞRμρ

þ 4ð∇2fðξÞÞRμν þ 4gμνð∇ρ∇σfðξÞÞRρσ − 4ð∇ρ∇σfðξÞÞRμρνσ: ð6Þ

In the four-dimension case, i.e., N ¼ 4, Eq. (6) is reduced to

0 ¼ 1

2κ2

�
−Rμν þ 1

2
gμνR

�
þ
�
1

2
∂
μξ∂νξ −

1

4
gμν∂ρξ∂ρξ

�
−
1

2
gμνVðξÞ þ 2ð∇μ∇νfðξÞÞR − 2gμνð∇2fðξÞÞR

− 4ð∇ρ∇μfðξÞÞRνρ − 4ð∇ρ∇νfðξÞÞRμρ þ 4ð∇2fðξÞÞRμν þ 4gμνð∇ρ∇σfðξÞÞRρσ − 4ð∇ρ∇σfðξÞÞRμρνσ: ð7Þ

This is because the Gauss-Bonnet invariant is a total
derivative in four dimensions and therefore, if f is
a constant, then the term including the Gauss-Bonnet
invariant does not give any contribution to the equations
in (6) or (7), which tells that any term including
fðξÞ without a derivative of fðξÞ should vanish in four
dimensions.
In the present study, we consider the following spheri-

cally symmetric and static spacetime,

ds2 ¼−aðrÞdt2þ dr2

aðrÞþ r2ðdθ2þ sin2ðθÞÞdϕ2: ð8Þ

Therefore we may assume that the scalar field ξ is a
function of only the radial coordinate r and therefore the
function fðξÞ is also a function of r, i.e., fðrÞ≡ fðξðrÞÞ.
Under the metric given by Eq. (8), the field equations (7)

take the following forms:

0 ¼ 16að1 − aÞf00 þ f8ð1 − 3aÞf0 þ 2rga01 þ 2aþ r2ξ02a − 2þ 2r2V
4r2

; ð9Þ

0 ¼ 2ð4ð1 − 3aÞf0 þ rÞa0 þ 2a − r2aξ02 − 2þ 2Vr2

4r2
; ð10Þ

0 ¼ ðr − 8f0aÞa00 − 8f00aa0 − 8f0a02 þ 2a0 þ rð2V þ ξ02aÞ
4r

: ð11Þ

Here the prime 0 expresses the derivative with respect to r, for example, a0 ¼ da
dr. Equations (9) and (10) are the ðt; tÞ

component and ðr; rÞ component of Eq. (7), respectively. On the other hand the ðθ; θÞ and ðϕ;ϕÞ components give the
identical equation (11).
The equation of the scalar field ξ in (3) has the following form:

0 ¼ 4f0ða − 1Þa00 þ ξ00aξ0r2 þ 4a02f0 þ r½a0rþ 2a�ξ02 − r2V 0

r2ξ0
: ð12Þ
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By combining Eqs. (9) and (10), we obtain

V ¼ 1 − 4að1 − aÞf00 − ½4a0ð1 − 3aÞf0 þ r�a0 − a
r2

: ð13Þ

Furthermore, Eqs. (9) and (10) yield

ξ0 ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða − 1Þf00

p
: ð14Þ

Finally, by using Eqs. (9) and (11), we find

0 ¼ 8að2a − a0r − 2Þf00 þ a00rðr − 8f0aÞ − 8rf0a02

þ 8ð3a − 1Þf0a0 þ 2ð1 − aÞ: ð15Þ

In Eq. (14), if ða − 1Þf00 < 0, then the scalar field ξ
becomes an imaginary number. In this case, by redefining
the scalar field ξ ¼ iζ, we obtain a real scalar field ζ, but for
the redefined scalar field ζ, the signature of the kinetic term
in (1) is changed − 1

2
∂μξ∂

μξ ¼ þ 1
2
∂μζ∂

μζ. This tells us that
the scalar field ζ is a ghost and therefore the system is
physically inconsistent. Classically the ghost generates the
unbounded negative kinetic energy and in quantum theory,
there appear negative norm states. The negative norm states
that generate the negative probability conflict with the
Copenhagen ansatz, which is one of the basic assumptions
in the quantum theory.
We should note that Eq. (15) can be trivially integrated

and we obtain

fðrÞ ¼ −
1

8

Z  Z
e
R

a0−3aa0þra02þraa00
að2−2aþa0rÞ drð2a − 2 − a00r2Þ

að2 − 2aþ a0rÞ dr − 8c0

!
e
−
R

a0−3aa0þra02þraa00
að2−2aþa0rÞ dr

drþ c1; ð16Þ

where c0 and c1 are constants of integration.
When a ¼ aðrÞ in (8) is given, we find the r dependence

of f, i.e., f ¼ fðrÞ by using (16). Then by using (13), we
find the r dependence of the potential V ¼ VðrÞ and
furthermore by using (14), we also obtain the r dependence
of the scalar field ξ ¼ ξðrÞ, which could be solved with
respect to ξ, r ¼ rðξÞ. Because we find the r dependence of
f ¼ fðrÞ and V ¼ VðrÞ, if we delete r by using r ¼ rðξÞ,
then we obtain f and V as functions of ξ, VðξÞ ¼ VðrðξÞÞ
and fðξÞ ¼ fðrðξÞÞ, which gives the model to realize the
metric in (8).

III. HAYWARD BH

A. Properties

In this paper, we construct Hayward BH [20] as a
solution of the scalar-Einstein-Gauss-Bonnet gravity.
For this purpose, in this section, we start to describe the
properties of Hayward BH.
The metric of the spacetime describing Hayward

BH [20] is given by

ds2 ¼ −aðrÞdt2 þ dr2

aðrÞ þ r2ðdθ2 þ sin2ðθÞÞdϕ2;

aðrÞ ¼ 1 −
2Mr2

r3 þ 2Mλ2
: ð17Þ

We should note that a0ðrÞ vanishes at the center r ¼ 0,
a0ðr ¼ 0Þ ¼ 0, and therefore, there is no conical singular-
ity. In fact, when r is small, we find aðrÞ ∼ 1 − r2

λ2
, which

gives a metric of the de Sitter spacetime in a static patch.

We rewrite aðrÞ in (17) as follows:

aðrÞ ¼ bðrÞ
r3 þ 2Mλ2

; bðrÞ≡ r3 − 2Mr2 þ 2Mλ2: ð18Þ

Then the solutions of b0ðrÞ ¼ 3r2 − 4Mr ¼ 0 are given by
r ¼ 0 and r ¼ 4

3
M. Because

b
�
r ¼ 4

3
M
�

¼ −
25

33
M3 þ 2Mλ2; ð19Þ

we find
(1) In the case that the following inequality is satisfied,

2
5
3M

3ð2Mλ2Þ13 < 1; ð20Þ

a is always positive and therefore the metric (17)
describes a kind of the gravastar. Gravastar was
proposed in [67] as an alternative to the BH. In the
original proposal, the gravastar has the usual BH
metric outside of the horizon but the de Sitter metric
inside the horizon and on the horizon, there is a thin
shell of matter. In the metric of (17), when r is large,
aðrÞ behaves as a BH aðrÞ ∼ 1 − 2M

r , but there is no
singularity at the center and it behaves as the de
Sitter spacetime. Therefore the metric (17) surely
describes the gravastar without a shell when the
condition (20) is satisfied.

(2) On the other hand, when

2
5
3M

3ð2Mλ2Þ13 > 1; ð21Þ
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aðrÞ has two zeros, which correspond to the outer
and inner horizons, and therefore the metric corre-
sponds to the regular BH in [20], which is shown
in Fig. 1(a).
Because there is no singularity at the center, the

object fallen into the BH beyond the outer and inner
horizon can escape the BH by going through the
inner and outer horizons, again. The Penrose dia-
gram of this spacetime is given in the original paper
by Hayward [20]. The Penrose diagram tells that
the universe before the object falls into BH is
different from the universe in which the object

escapes. In this sense, the regular BH plays the role
of the wormhole.

(3) When

2
5
3M

3ð2Mλ2Þ13 ¼ 1; ð22Þ

the radii of the two horizons become identical with
each other and constitute the degenerate horizon and
therefore it corresponds to the extremal limit of the
BH that is shown in Fig. 1(b).

If the condition (21) is satisfied, then aðrÞ can be
rewritten as follows:

aðrÞ ¼
ðr − rþÞðr − r−Þ

�
rþ rþr−

rþþr−

�
r3 þ 2Mλ2

; 2M ¼ rþ2 þ r−2 þ rþr−
rþ þ r−

; 2Mλ2 ¼ rþ2r−2

rþ þ r−
; ð23Þ

or

r� ¼
M

2
3

hn
8M2 − 27λ2 � 3λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81λ2 − 48M2

p o1
3 þ 2M

2
3

in
8M2 − 27λ2 � 3λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81λ2 − 48M2

p o1
3 þ 4M2

3M
1
3

n
8M2 − 27λ2 � 3λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81λ2 − 48M2

p o1
3

: ð24Þ

We should note that rþ > r− > 0. The surface gravities κ� on the horizons are defined by

κ�≡
				 12 a0ðrÞjr¼r�

				 ¼ ðrþ − r−Þ
�
r� þ rþr−

rþþr−

�
2ðr�3 þ 2Mλ2Þ ¼ ðrþ − r−Þðr�2 þ 2rþr−Þ

2ðr�3 þ 2Mλ2Þðrþ þ r−Þ
; ð25Þ

and the Hawking temperatures T� are given by

T� ¼ κ�
2π

≡
				 12 a0ðrÞjr¼r�

				 ¼ ðrþ − r−Þðr�2 þ 2rþr−Þ
4πðr�3 þ 2Mλ2Þðrþ þ r−Þ

: ð26Þ

FIG. 1. Schematic plot of the radial coordinate r vs. the function a. Panel (a) gives the two horizons where we have put M ¼ 1 and
λ ¼ 0.3; (b) the degenerate horizon where we have put M ¼ 0.8 and λ ¼ 0.3; and (c) the Hawking temperature where we have put
M ¼ 1 and λ ¼ 0.3.
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We should note that in the extremal limit where the radii
of the horizons coincide with each other, rþ ¼ r− ¼ rd,
the Hawking temperature vanishes as in the Reissner-
Nordström BH. In Fig. 1(c), we show the behavior of
the Hawking temperature, which indicates where the two
horizons coincide with each other.

B. A solution of information loss problem

The standard arguments for the information loss by the
black hole are the following: Let us suppose the standard
black hole is formed by the collapse of matters. After the
formation of the black hole, the Hawking radiation could
occur. Because the black hole is characterized only by three
hairs, which are the mass, the angular momentum, and the
electric charge, the thermal radiation reflects only the three
pieces of information, and therefore most of the informa-
tion in the collapsing matters is lost if the black hole
evaporates by the Hawking radiation.
In the case of a regular black hole like the Hayward one,

after the collapsing matters go through the inner horizon,
because there is no singularity, the matters may go through
the horizons, again, and go out to the (possibly another)
spacetime. The Hawking radiation could be the pair
creations of particles near the horizon and one particle

goes out to infinity and is observed as radiation. Another
particle falls into the black hole and in the standard black
hole with singularity, the particle arrives at the singularity
and the information carried by the falling particle is lost.
In the case of the regular black hole, the falling particle
may appear in (another) spacetime by going through the
horizons. The falling particle carries also the information of
the outgoing particle that may be observed as the Hawking
radiation. Therefore if we include the (other) spacetime,
then the total information is not lost.

C. Realization of Hayward BH

Now, we are going to construct a model of the scalar-
Einstein-Gauss-Bonnet gravity, which realizes Hayward
BH in (17). Because

a0 ¼ −
−2Mr4 þ 8M2λ2r
ðr3 þ 2Mλ2Þ2 ;

a00 ¼ −
4Mr6 − 56M2λ2r3 þ 16M3λ4

ðr3 þ 2Mλ2Þ3 ; ð27Þ

Eq. (16) has the following form:

fðrÞ ¼ 1

2

Z �
3Mλ2

Z
e4
R

ϒðrÞdr

ðr3 þ 2Mλ2 − 2Mr2Þ drþ 2c0

�
e−4
R

ϒðrÞdrdrþ c1;

ϒðrÞ ¼ 6r6Mλ2 − r9 þ 18r3M2λ4 þ 4M3λ6 þ 3Mr8 − 21M2r5λ2

3r4ðr3 þ 2Mλ2 − 2Mr2Þðr3 þ 2Mλ2Þ : ð28Þ

Then, by using Eqs. (13) and (14), we find the r
dependence of the potential V ¼ VðrÞ and the scalar field
ξ ¼ ξðrÞ We may solve the equation ξ ¼ ξðrÞ with respect
to ξ, r ¼ rðξÞ. By deleting r in f ¼ fðrÞ and V ¼ VðrÞ and
by using r ¼ rðξÞ, we obtain f and V as functions of ξ,
VðξÞ ¼ VðrðξÞÞ and fðξÞ ¼ fðrðξÞÞ, which realizes the
Hayward BH model (17).

D. Avoiding ghosts

We now check if we can avoid ghosts.
When r is small, we find

ϒðrÞ∼Mλ2

3r4
;

fðrÞ∼
Z �

3

4

Z
e−

4Mλ2

9r3 drþ c0

�
e
4Mλ2

9r3 drþ c1: ð29Þ

Because

Z
e−

4Mλ2

9r3 dr ¼
Z

3r4

4Mλ2

�
4Mλ2

3r4

�
e−

4Mλ2

9r3 dr

¼ 3r4

4Mλ2
e−

4Mλ2

9r3 −
Z

12r3

4Mλ2
e−

4Mλ2

9r3 dr;

¼
�

3r4

4Mλ2
þ Oðr7Þ

�
e−

4Mλ2

9r3 ;

Z
e
4Mλ2

9r3 dr ¼
�
−

3r4

4Mλ2
þ Oðr7Þ

�
e
4Mλ2

9r3 ; ð30Þ

we find

fðrÞ∼−
3c0r4

4Mλ2
e
4Mλ2

9r3 þ c1 þ
9r4

80Mλ2
þOðr7Þ: ð31Þ

If c0 does not vanish, then the first term in (31) becomes
dominant and we find

f00ðrÞ ∼ −
9c0r4

Mλ2
e
4Mλ2

9r3 : ð32Þ
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Therefore if we choose c0 > 0, then f00ðrÞ < 0 and the
scalar field ξ could not be a ghost. The behaviors of f and
therefore the scalar field ξ become very singular at the
origin. If we should avoid the singularity, then we need to
put c0 ¼ 0. In the case c0 ¼ 0, however, we find

f00ðrÞ ∼ 27r2

20Mλ2
> 0; ð33Þ

and therefore the ghosts appear there.
On the other hand, when r is large, we obtain

ϒðrÞ ¼ −
1

3r
;

fðrÞ ¼
Z

3Mλ2

2

�Z
r−3−

4
3drþ c0

�
r
4
3drþ c1

¼ 9Mλ2

20r
þ 3

7
c0r

7
3 þ c1: ð34Þ

If c0 does not vanish, then the second term in (34)
dominates for large r and we find

:f00ðrÞ ∼ 4

3
c0r

1
3: ð35Þ

By choosing c0 < 0, f00ðrÞ < 0 and the scalar field ξ could
not be the ghost.
The summary of the above section is the fact that we

have constructed the model of the scalar-Einstein-Gauss-
Bonnet gravity, which realizes a Hayward BH in (17). As
long as we observe the behaviors when r → 0 and r → ∞,
the ghost might be excluded by choosing the constants of
the integration although it is highly nontrivial to check if we
can choose the constants of the integration consistently.
We should also note that we cannot constrain the

constants of the integration by any solar system or galactic
test. As mentioned after Eq. (2), in order to avoid the
appearance of the fifth force, we have assumed that the
scalar field does not directly couple with matters. Therefore
the motions of the matters are only governed by the
geometry (17), which is that of the standard Hayward
black hole, and the motions do not depend on the constants
of the integration.

IV. GHOSTS FOR GENERAL METRIC

Now, to investigate the problem of ghosts, we consider
the small r and large r behaviors of the solution of Eq. (15)
corresponding to the general form of the ansatz aðrÞ in (8)
and check the results for a Hayward BH in the last section.
For this purpose, we consider the behavior of fðrÞ when r
is small and when r is large enough.
If we rewrite the ansatz a as

aðrÞ ¼ 1þ δaðrÞ; ð36Þ

and we assume that jδaj ≪ 1, then Eq. (15) can be re-
written as

0¼−8r3ðr−2δaÞ0f00−8r3ðr−2δa0Þ0f0−2δaþ r2δa00: ð37Þ

If we assume that δa ∼ a0rn, where a0 is a constant, and we
consider the case of small r, i.e., r → 0, then the correction
will be of Oðrnþ1Þ. On the other hand, if we consider the
case r → ∞, then the correction is Oðrn−1Þ. We also note
that, when n ¼ −1, 2, we obtain −2δaþ r2δa00 ∼ 0, there-
fore, we need to reconsider these two cases separately.
Moreover, if we further assume that f ∼ f0rm, we find

− 8r3ðr−2δaÞ0f00 − 8r3ðr−2δa0Þf0
∼ −8mfðn − 2Þðm − 1Þ þ nðn − 3Þga0f0r−2þmþn:

ð38Þ

Therefore when m ¼ 0, or m ¼ 1 − nðn−3Þ
n−2 ¼ − n2−4nþ2

n−2
if n ≠ 2, we find −8r3ðr−2δaÞ0f00 − 8r3ðr−2δa0Þf0 ∼ 0.

When n ≠ −1 nor n ≠ 2 and m ≠ 0 nor m ≠ 1 − nðn−3Þ
n−2 ¼

− n2−4nþ2
n−2 , we find m ¼ 2. When n ¼ −1 or n ¼ 2, we

assume

δa ∼ a0rn þ a1rl; ðl ≠ −1; 2Þ: ð39Þ

Then we find the following behavior of f:
(1) When n ≠ −1 nor n ≠ 2, we find m ¼ 2 and

fðrÞ∼ f0 þ f1r−
n2−4nþ2

n−2 þ ðnþ 1Þðn− 2Þ
16fn2 − 2n− 2g r

2: ð40Þ

(2) When n ¼ −1, we obtain m ¼ 2þ l − n ¼ 3þ l

fðrÞ ∼ f0 þ f1r
7
3 −

ðlþ 1Þðl − 2Þa1
8ðlþ 3Þð3lþ 2Þa0

r3þl; ð41Þ

which may tell us that l ≠ −3.
(3) When n ¼ 2, we find m ¼ l and

fðrÞ ∼ f0 −
ðlþ 1Þðl − 2Þa1

16la0
rl: ð42Þ

We should note that when n ¼ 2, the second order
differential equation (37) reduces to the first order
differential equations and therefore there appears
only one constant f0 of the integration. Another
constant of the integration corresponding to the
original second-order differential equation may
appear in a form that cannot be expanded by the
power of r.

We now investigate the behavior when r is small and find
the necessary conditions to avoid the ghosts. When n < 0,
δa diverges in the limit r → 0 and the assumption jδaj ≪ 1
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is violated. This tells us that we only need to consider the
case n ≥ 0.
(1) When n ≠ 2 and therefore m ¼ 2, we find that if

n>1þ ffiffiffi
3

p
(0< n< 1þ ffiffiffi

3
p

), we obtain − n2−4nþ2
n−2 <

2 (− n2−4nþ2
n−2 > 2). We should note that because the

coefficient of the third term in (40) diverges when
n ¼ 1þ ffiffiffi

3
p

, we may assume n ≠ 1þ ffiffiffi
3

p
. There-

fore we find the following:
(i) When n > 1þ ffiffiffi

3
p

, the second term in (40)
dominates for f00ðrÞ and by using (14), if f1
does not vanish, then we find the necessary
condition ða − 1Þf00ðrÞ > 0 to avoid ghosts is
given by

a0f1ðn2 − 4nþ 2Þðn − 3Þn > 0: ð43Þ

On the other hand, if f1 vanishes, then we find

ðnþ 1Þðn − 2Þ
16fn2 − 2n − 2g > 0; ð44Þ

therefore f00ðrÞ > 0, and further therefore
the condition for the absence of the ghosts is
given by

a0 > 0: ð45Þ

(ii) When 0 < n < 1þ ffiffiffi
3

p
, the third term in (40)

dominates for f00ðrÞ. If 2 < n < 1þ ffiffiffi
3

p
, then

we find f00ðrÞ < 0, and therefore the condition
or the absence of the ghosts is given by

a0 < 0: ð46Þ

On the other hand, if 0 < n < 2, we obtain
f00ðrÞ > 0, and obtain the condition (45).

(2) When n ¼ 2 and therefore m ¼ l, because we are
considering the case that r is small, we require
l > n ¼ 2 so that the second term in (39) becomes
less dominant than the first term. If we forget the
term that cannot be expanded by the power of r, then
we find

f00ðrÞ ∼ −
ðlþ 1Þlðl − 1Þðl − 2Þa1

16la0
rl−2: ð47Þ

Because l > 2, we find ðlþ1Þlðl−1Þðl−2Þ
16l > 0, and there-

fore the necessary condition to avoid ghosts is

a1 < 0: ð48Þ

In the case of Hayward BH in (17), when r → 0, we find

aðrÞ ∼ 1 −
r2

λ2
þ r5

2Mλ4
þOðr8Þ; ð49Þ

which corresponds to the case that n ¼ 2, l ¼ 5, a0 ¼ − 1
λ2
,

and a1 ¼ 1
2Mλ4

, therefore, by using (49), we find

fðrÞ ¼ f0 þ
9r5

80Mλ2
: ð50Þ

As we mentioned, another solution corresponding to the
homogeneous equation, which is proportional to another
constant of the integration, could appear because the
original differential equation is second order. The solution
could not be able to be expanded by the power of r. If we
neglect the solution, when r → 0, then we find

f00ðrÞ ∼ 9r3

4Mλ2
> 0: ð51Þ

Therefore because a < 1, we find 2ða − 1Þf00 < 0
and Eq. (14) tells us that ξ is an imaginary number and
therefore ξ is a ghost. The behavior of (50) is consistent
with the previous result in (31). The behavior of (50)
coincides with the second and third terms in (31). The first
term including c0 in (31) corresponds to the term that
cannot be expanded by power of r as we mentioned
after Eq. (50).
On the other hand, when r → ∞, we find

aðrÞ ∼ 1 −
2M
r

þ 4M2λ2

r4
þOðr−7Þ: ð52Þ

Therefore we find n ¼ −1, l ¼ −4, a0 ¼ −2M, and
a1 ¼ 4M2λ2 and Eq. (41) gives

fðrÞ ∼ f0 þ f1r
7
3 þ 9Mλ2

20r
: ð53Þ

When f1 ¼ 0, because f00ðrÞ > 0, ξ becomes the imagi-
nary, that is, ξ should be ghost. The behavior of (53) is
completely consistent with the previously obtained behav-
ior in (34).
The summary of this section is the fact that we confirmed

the results in the previous section about the asymptotic
behaviors of fðrÞ when r is small or large. Furthermore, we
have considered more general cases as given in (40), which
give the necessary conditions to exclude ghosts although
the conditions are not sufficient. Because the behavior
of the Hayward black hole in (51) seems to imply the
existence of the ghosts at least when r is small, we may
modify the original metric in (17) so that the obtained
necessary condition is satisfied.
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V. GEODESIC DEVIATION

In this section, we study the stability condition of a
particle motion in the background of Hayward BH using
the geodesic deviation. This is an important test to know
where the region of the Hayward BH becomes stable. It is
well known that the geodesics of a particle in a background
of a gravitational field are described by

0 ¼ d2xσ

dε2
þ
�
σ

μν

�
dxμ

dε
dxν

dε
; ð54Þ

with ε being the affine parameter along the trajectory.
Equation (54) is the trajectory equation where their
deviation yields the following form [68]:

0 ¼ d2ησ

dε2
þ 2

�
σ

μν

�
dxμ

dε
dην

dε
þ
�
σ

μν

�
;ρ

dxμ

dε
dxν

dε
ηρ; ð55Þ

with ηρ being the deviation four-vector. The use of
Eqs. (54) and (55) into the line element (17) yields

0 ¼ d2t
dε2

; 0 ¼ 1

2
a0ðrÞ

�
dt
dε

�
2

− r

�
dϕ
dε

�
2

; 0 ¼ d2θ
dε2

; 0 ¼ d2ϕ
dε2

; ð56Þ

and

0 ¼ d2η1

dε2
þ aðrÞa0ðrÞ dt

dε
dη0

dε
− 2raðrÞ dϕ

dε
dη3

dε
þ


1

2
ða02ðrÞ þ aðrÞa00ðrÞÞ

�
dt
dε

�
2

− ðaðrÞ þ ra0ðrÞÞ
�
dϕ
dε

�
2
�
η1;

0 ¼ d2η0

dε2
þ a0ðrÞ

aðrÞ
dt
dε

dζ1

dε
; 0 ¼ d2η2

dε2
þ
�
dϕ
dε

�
2

η2; 0 ¼ d2η3

dε2
þ 2

r
dϕ
dε

dη1

dε
; ð57Þ

where aðrÞ is the ansatz defined by the Eq. (17). Equa-
tions (56) and (57) are the equations for the geodesics and
geodesic deviations, respectively. The use of the circular
orbit

θ ¼ π

2
; 0 ¼ dθ

dε
; 0 ¼ dr

dε
; ð58Þ

yields�
dϕ
dε

�
2

¼ a0ðrÞ
rð2aðrÞ− ra0ðrÞÞ ;

�
dt
dε

�
2

¼ 2

2aðrÞ− ra0ðrÞ :

ð59Þ
Equation (57) can be reexpressed as

0 ¼ d2η1

dϕ2
þ aðrÞa0ðrÞ dt

dϕ
dη0

dϕ
− 2raðrÞ dη

3

dϕ
þ


1

2
ða0ðrÞa0ðrÞ þ aðrÞa00ðrÞÞ

�
dt
dϕ

�
2

− ðaðrÞ þ ra0ðrÞÞ
�
η1;

0 ¼ d2η2

dϕ2
þ η2; 0 ¼ d2η0

dϕ2
þ a0ðrÞ

aðrÞ
dt
dϕ

dη1

dϕ
; 0 ¼ d2η3

dϕ2
þ 2

r
dη1

dϕ
: ð60Þ

The second equation of Eq. (60) indicates that we possess
a simple harmonic motion, which means that we have a
stable motion. We can suppose the solution of the remain-
ing of Eq. (60) in the form

η0 ¼ ζ1eiσϕ; η1 ¼ ζ2eiσϕ; and η3 ¼ ζ3eiσϕ; ð61Þ

where ζ1, ζ2, and ζ3 are constants and ϕ should be fixed.
Substituting (61) into Eq. (60), we obtain

3aa0 − ω2a0 − ara02 þ raa00

a0
> 0; ð62Þ

which is the stability condition. Equation (62) for the
BH (17) can be reexpressed as

r6 þ 22r3Mλ2 − 32M2λ4 − 6Mr5 > 0; ð63Þ

which is the condition of stability for the BH solution (17)
and when λ ¼ 0, we get r > 6M, which is the condition
of stability of Schwarzschild BH solution [69]. We draw the
stability condition in Fig. 2, where we have shown the
region of stability for different values of λ.

HAYWARD BLACK HOLE IN SCALAR-EINSTEIN-GAUSS-BONNET … PHYS. REV. D 108, 024014 (2023)

024014-9



VI. SUMMARY AND DISCUSSIONS

In this study and in the framework of the scalar-Einstein-
Gauss-Bonnet gravity, whose action is given by Eq. (1), we
have constructed a model that realizes the Hayward BH.
Moreover, we have shown the possibility to avoid ghosts as
given in Eqs. (32) and (35). These equations show that if we
can choose the constants of integration so that the arbitrary
function appears in Eq. (1), i.e., f00ðrÞ < 0, then the ghosts
may disappear. We have only shown that we can obtain
f00ðrÞ < 0 at least when r is small or when r is large. It is not
clear if we can choose the constants of the integration so that
f00ðrÞ < 0 simultaneously when r is small or when r is large.
We also need to show that f00ðrÞ < 0 in all the regions of r to
show the absence of ghosts. Anyway, our model could not be
easily excluded due to the ghosts. We also need to show the
stability of the solution under the perturbation.
Therefore there remain many difficulties in the model;

however, we have shown that the problem of information
loss might be solved by introducing stringy corrections like
the Gauss-Bonnet invariant.
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