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We investigate the cosmological applications of new gravitational scalar-tensor theories, and we analyze
them in the light of H tension. In these theories, the Lagrangian contains the Ricci scalar and its first and
second derivatives in a specific combination that makes them free of ghosts, thus corresponding to healthy
biscalar extensions of general relativity. We examine two specific models, and for particular choices of the
model parameters, we find that the effect of the additional terms is negligible at high redshifts, obtaining a
coincidence with ACDM cosmology; however, as time passes, the deviation increases, and thus, at low
redshifts the Hubble parameter acquires increased values (H, ~ 74 km/s/Mpc) in a controlled way. The
mechanism behind this behavior is the fact that the effective dark-energy equation-of-state parameter
exhibits phantom behavior, which implies faster expansion, which is one of the sufficient conditions that
are capable of alleviating the H, tension. Lastly, we confront the models with cosmic chronometer (CC)
data, showing full agreement within 1o confidence level.
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I. INTRODUCTION

Although the concordance ACDM paradigm is very
successful in describing early- and late-time cosmological
evolution at both background and perturbation levels,
nevertheless during the last years, there have appeared
some potential tensions with specific datasets, such as
the H, and oy ones. In particular, the estimation for the
present Hubble parameter H, according to the Planck
Collaboration and assuming ACDM scenario is Hy =
(67.27 £ 0.60) km/s/Mpc [1], which is in tension at
about 4.40 with the direct measurement of the 2019
SHOES Collaboration (R19), namely H, = (74.03 +
1.42) km/s/Mpc, obtained using long-period Cepheids [2].
On the other hand, the oy tension arises from the fact that
the parameter that quantifies the matter clustering within
spheres of radius 84! Mpc is found to be different from
the cosmic microwave background (CMB) estimation [1]
and from the SDSS/BOSS measurement [3-5]. These
tensions, and especially the H, one, progressively seem
not to be related to unknown systematics, opening the road
to many modifications of the standard lore [6,7] (for a
review, see Ref. [8]).
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One may follow two main ways to alleviate the H
tension. The first is to modify the Universe content and/or
particle interactions while keeping general relativity as the
underlying gravitational theory [9—41]. The second way is
to construct gravitational modifications, which applied to
cosmological framework would lead to altered expansion
rate [42-71]. We mention here that modified gravity has
additional advantages too, such as the improvement of the
renormalizability behavior of general relativity as well as
the description of inflationary and/or dark-energy phases,
and thus, it might be more preferable. Finally, there is
another way to alleviate H tension, in the framework of
the running vacuum models [72], based on quantum field
theory in curved spacetime [73-75], without the need to
acquire phantom behavior (for a review of both the
theoretical and phenomenological situation, see Ref. [76]
and references therein).

In the present work, we are interested in alleviating
the H tension in the framework of new gravitational
scalar-tensor theories [77-79]. In such constructions, one
uses Lagrangians with the Ricci scalar as well as its first
and second derivatives, nevertheless in combinations that
result to ghost-free theories. These theories are found to
have 2+ 2 propagating degrees of freedom, and thus,
fall outside Horndeski/Galileon [80-82] and beyond-
Horndeski theories [83]. However, although they are
biscalar extensions of general relativity, they were named
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“new gravitational scalar-tensor theories” since they can
still be expressed in pure geometrical terms [77].

The plan of the work is the following: In Sec. II, we
briefly review the new gravitational scalar-tensor theories,
and in Sec. III, we apply them to a cosmological frame-
work, extracting the modified Friedmann equations. Then,
in Sec. IV, we construct specific models that can alleviate
the H, tension, and we compare the induced behavior to
that of ACDM scenario as well as to cosmic chromometers
(CC) data. Finally, in Sec. V, we provide the conclusions.

II. OVERVIEW

In this section, we give a brief overview of the gravi-
tational scalar-tensor theories. The action of such con-
structions is given as [77,78]

5= [ @=a(R. (VR OR) (1)

with (VR)? = ¢V,RV,R. In the following, we set the
Planck mass Mp = 1/k = 1, where « is the gravitational
constant, for simplicity. One can rewrite the above action
by converting the Lagrangian using double Lagrange
multipliers, resulting to actions of multiscalar fields
coupled minimally to gravity. In order to achieve it, one
fixes the dependence of f on IR = .

|

1

In the present work, we consider theories with the
following f form:

F(R.(VR2.OR) = K((R. (VR)?) + G(R. (VR)*)OIR.

(2)

thus maintaining a linear form in LJR = f. Generalizations
to nonlinear forms are straightforward, although more
complicated. In this case, (1) transforms to

_ 4 _A 1 R _ 1 T
S = /d x\/igLR 29” V.Vox
- \/LE e_\/%’fﬁ””gvﬂ;(quﬁ + % VK
+%e—\/?wgﬁ¢ - %e—\@w] , (3)
where K =K(¢,B) and G=G(¢,B), with B=

eV ¢V, ¢V, ¢p. The y and ¢ fields are introduced

through the conformal transformations g,, = %e_\/%f >
@ = [, and they enter in a specific combination in a way
that the final form of the action is equivalent to the original
higher-derivative gravitational action.

Varying the action (3) with respect to the metric leads to

the following field equations in the Einstein frame [77,78]:

1 1 1 2 3 1 2 _ x5
g/w = _G;u/ + Zg;wgaﬁva)(vﬂx - Evﬂ)(vu)( + Zg/w §e_\/:ﬂgaﬁgva)(v/f¢ - 5 ge \/;)(gv(/lxvl/)¢

2

2 1 5 1 i 1 i
- \ﬁfﬂvaﬂm%vmvm — 3 we VHG0P + Gp(OP)V, 0V, + 5 VIGY, V6 =V, (VG55 V9

1 3 1 g 1 g 1 3
+ ka (3_\@(g9,4yv'<¢) - ggﬂye_z\/:ﬂlc + 5 e_\ﬁﬂICBVﬂcﬁquﬁ + ggﬂye_\/;x¢ =0. (4)

Additionally, varying (3) with respect to y and ¢ gives rise to field equations as

& =0+ % VGGV, - %gﬂ”wVﬁng“ﬁVaabvﬁqs + % \Evﬂ (e—%%x g””gquﬁ) - % \@e—ﬂfgm

2 1 /2 2 1 2 2 1 2 _ &
+ \éggvﬂcbwgwmqs -3 \/ge-%ﬁﬂ/c e ViK, \/ggﬂvvﬂqbvyd) +1\/5VEe =0, (5)

and

1 2 _» 2 1 /2 5
&="3 \Le—fﬂgﬂvgqswvyaﬁ + 2\/3Vﬁ<gwggg"ﬁva¢vm¢) +3 \ﬂvp (Vi Vi)

+ %e_\@xg{/,ﬂqb —2G5(0h) = 2V,GppV ¢ - % \gw (Vi) + %w (eV¥6,9,9)

1 /2
2V3

o) 1 2, 2 2 2,
e VHViyGpV B + > e VHVIGLV B + ge-\ﬁﬂng (e\ﬁﬂv,,xvvgbqus)

120V (VTG UV, + 205 RN, 9+ 3V =, (VI Y, 9) — peVE =0, (0
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where for simplicity, we have neglected the hats. Here, the
subscripts in G and C denote the partial derivatives and the
symmetrization is indicated by the parentheses in spacetime
indices. The above equations reduce to GR for K = ¢/2
and G = 0, with the conformal transformation in this case

being y = —\/% In2. As we can see, the above equations do

not contain any higher derivative terms, and therefore, the
present theory is well-behaved. Lastly, note that since we
have set the Planck mass to one, the field y is dimensionless
while ¢ has dimensions of [M]?.

III. COSMOLOGICAL BEHAVIOR

We can now proceed to the study of the cosmological
behavior of the present model. For this, we consider a flat
Friedmann-Robertson-Walker (FRW) metric,

ds* = —di* + a(t)?8;;dx'dx/, (7)

with a(t) the scale factor. We further assume that the two
scalars are time dependent only.

Including the matter sector, considered to correspond to a
perfect fluid, the metric field equations (4) become

1
gyu = 5 T;uzv (8)
with T, \/_ 5 g"”  representing the matter energy-momen-
tum tensor.

With the above substitutions into Egs. (4), we obtain the
following Friedmann equations:

1 .. 1 5 1. . .
3H? —pm—i)( +4 —2\/v«/c+ ¢[ <\/8;(—9H)—3¢]gB—Ee-%ﬂ{mgﬁng(gqg—2/@} =0, (9)
3H? 4+ 2H + p,, +%j{2 +%e-2\/2ﬂ1c —I—%e_\/%f <—§+B¢QB + ¢2g¢> =0, (10)

with B(r) = 2e Vi GV, pV, p = 2e Vi ¢*,and H = a/a the Hubble parameter, where dots denoting differentiation with
respect to t. Similarly, the two scalar field equations (5) and (6) lead to

1
E,=7+3Hy—~
=X 3Hi =3 NG

and

P p(3VOH — 25) + V6|Gy + b vE

[2B¢g3—¢+z¢2</c3+g¢>1+%e-2¢%c=o, (11)

Ep= le‘\@’f[q.ﬁ(—9H +V67) = 3d|Kp + éB{Se_\@ZB +4¢[p(9H — V67) + 3]} G

‘\/3*[ $(9H — V65) + 341G, + { VB +g<}52[<}5(9H -V67) + 35/5]}93(,)

— Vg2 ICB¢+ eVHF Gy — e VIB YKy + [ $(9H — 2f;()¢—%e Vipy,

+¢* <18H2 + 6H — 3V6Hy — %)’(2 - \@zﬂ Gy — Ze‘z\@‘lC(/, + Ze-\@% =0, (12)

with gB{p = g(/)B = (;)Bz—g/), etc.
The above Friedmann equations (9), (10) can be rewrit-
ten as

1

H? :g(PDE + Pm) (13)

2H + 3H? = —(ppg + Pu)- (14)

with the effective dark energy and pressure defined as

1 1 5 2.0 . y
poi = 34 = VK =SBV} — 9H) = 341G,

+%e_\@ﬂ’ [nggs +%+¢2(g¢ —2’C3)]7 (15)

1. 1 g 1 5 e :
PDE 55)(2 +Z€_2‘/:ﬂlc+§€_‘/:ﬂ <B¢QB +¢°G, _%>

(16)
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Hence, one can show that in the new gravitational scalar-
tensor theories the effective dark-energy density satisfies

poE + 3H(ppg + ppE) = 0, (17)

while one can define the corresponding dark-energy equa-
tion-of-state parameter as

wpg = PPE. (18)
PDE

IV. HUBBLE TENSION

In this section, we construct specific models of the theory
in order to be able to alleviate the H tension. We mention
here that in modified gravity theories, one typically has
arbitrary functions, and thus, she has a huge freedom to
determine both their forms as well as their parameters. This
freedom is similar to the freedom of choosing the arbitrary
potentials in scalar-field cosmology. Hence, in the end
of the day, the obtained models are phenomenological,
aiming to be in agreement with observations. In the theories
examined in the present manuscript, we consider specific
ansatzes for the functions C(¢, B) and G(¢, B), and we
select models that lead to higher Hubble function at low
redshifts, while introducing negligible deviations in the
Hubble parameter at high redshifts as compared to ACDM.
The two phenomenological models with the best behavior
related to the H, tension are presented in the following.

A. Model I

As a first example, we consider the following forms for

K(¢, B) and G(¢, B):

IC(¢,B):%¢—§B and G($.B)=0, (19)

with ¢ a coupling constant with dimensions [M]~*. The
corresponding Friedmann equations (9), (10) read as

1., 1 5 1 .
3H? = py = 577 + gV =2V +84) =,

2
(20)

3H? +2H + p,, + %;'(2 + %e—zxﬁﬂd)
Vi) =0, 1)

while the two scalar field equations (11) and (12) become

P43+ e V= e VR g =) =0

2V/6 V6
(22)

Ch+ %C¢(9H —-V67) —%e_\/zﬂ +% =0. (23)

The corresponding effective dark-energy energy density
and pressure (15), (16) become

o — %)-(2 _ée—Z\@m& +%e‘\@*(¢ +9%). (24

1 1 NN S '
PDE = 59.(2 + §€_2\[ﬂ¢ - Ze_\@y((f’ -¢¢%).  (25)

In order to obtain the behavior of the Hubble parameter,
we first set z = —1 + ay/a, with the current value of the
scale factor being set to ay = 1. It is well known that the
behavior of the Hubble parameter in ACDM cosmology is
given by

Hncpm(z) = HO\/QmO(l +20+1-Q,,. (206

where H, is the present value of the Hubble parameter and
Q,,, is the present value of matter density parameter defined
as Q,, :% in Planck units. We set Q, = 0.31 and
Hy =673 km/s/Mpc. We then solve Egs. (20)—(23)
numerically to obtain the solutions for the scale factor
and hence, for the Hubble parameter. In order to achieve
this, we set the initial conditions such that the evolution
of H(z) that we obtain for z = zcyp & 1100 coincides with
H xcpoms namely H(z = zemg) & H acpm While H(z — 0) >
H xcpm(z = 0). For our present analysis, we have one
model parameter, i.e., {, which determines the late-time
deviation of the model from ACDM scenario.

In Fig. 1, we plot the evolution of the dark-energy
equation-of-state parameter in terms of the redshift. As we
can see from the figure, wpg < —1 most of the time,
thereby depicting phantom evolution which implies faster
expansion. The phantom behavior is one of the mechanisms
that can lead to the Hubble tension alleviation [84,85]
(see also the discussion in [8]), and as we will see in the
following, this is exactly what happens.

In Fig. 2, we present the normalised combination
H(z)/(1 + z)*? as a function of the redshift for ACDM

-0.95r
-1.00 L
w -1.05
o
S
-1.10
-1.15
0 5 10 15 20 25
z
FIG. 1. The effective dark-energy equation-of-state parameter

wpg as a function of the redshift, for model I for { = —10 in
Planck units.
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FIG. 2. The normalized combination H(z)/(1 +z)? as a
function of the redshift, for ACDM cosmology (blue dotted
line), and for model I for { = —12 (solid blue line), for { = —10
(solid black line), and for { = —8 (solid red line), in Planck units.

cosmology, and for model I, for different values of {. Here
we used { = —8, —10, —12 in Planck units. We find that the
present value of H, depends on the model parameter { as
expected. For { = —10, the present value of the Hubble
parameter is around H, =~ 74 km/s/Mpc, which is con-
sistent with the direct measurement of the present Hubble
parameter. Values of { higher or lower than this lead to
higher or lower values for H, respectively, and positive {
corresponds to H, values lower than the value of H( in
ACDM scenario; thus, they are not relevant for our present
analysis. Note that in natural units { ~ —10 corresponds to a
typical value ¢'/4 ~ =107 GeV~!. Hence, such values are
the ones that needed in order to bring H, from its ACDM
value to the local-measurement value; in other words, the
magnitude and the sign of the modified gravity modifica-
tion is phenomenologically determined by the distance of
Hy, = 67.3 km/s/Mpc and H, ~ 74 km/s/Mpc.

For completeness, in Fig. 3, we depict the evolution of
the deceleration parameter ¢ = —1 — H /H? as a function
of the redhsift. As we see, the redshift at which the

0.4}

0.2}

-0.2¢

04}

FIG. 3. The deceleration parameter ¢ as a function of redshift z,
for model I with { = —10 in Planck units.

transition from deceleration to acceleration occurs is
around z, = 0.68, in agreement with current observations.

In summary, as we observe, there exist a range of the free
model parameter ¢ that is able to reproduce a Hubble
function evolution that coincides with ACDM cosmology
at high redshifts, but at late times, it alleviates the H,
tension. The reason that this happens is the fact that the
effective dark-energy equation-of-state parameter exhibits a
phantom behavior (following the general requirements
of [8,85]).

B. Model II

As a next, we consider the case where

K(p.B) =34 and G(g.B)=¢B.  (27)

with & the corresponding coupling constant with dimen-
sions [M]™8. Thus, the Friedmann equations (9), (10)
become

3H? - p,, —% 7+ %e—%@m —2eV¥)g
+ &* (V6 — 6H) = 0, (28)

3H? +2H + p,, + %)’(2 —I—%e‘z\/%f(l - 2e\/z?*)¢
1 . . .
= 36° (Vo i +64) =0, (29)
while the two scalar field equations (11) and (12) read as
7+ 3Hy + ige_z\@f(l — Vi)

—V6Ep (H + ) = 0, (30)
EP{2(—6H +V67)d+[—6H + 3H(—6H + v/65) + 65}
+%e—2\@%(1 —2eV¥) =0. (31)

Therefore, in this case, the effective dark-energy energy
density and pressure (15), (16) write as

poe = 572 = g V(1 = 26V)p - £ (VG — 6H),
(32)

poe =72+ g V(1 =20V~ L (Vo +6).
(3)

Let us now proceed to the numerical investigation of
the above equations. Similarly to the previous model I, we
choose the initial conditions such that our scenario matches
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FIG. 4. The effective dark-energy equation-of-state parameter
wpg as a function of the redshift, for model II for £ = —10 in
Planck units.

ACDM cosmology for z = 1100. In Fig. 4, we depict the
evolution of the dark-energy equation-of-state parameter
with the redshift. As in the case of the previous subsection,
here we also see that wpg < —1 for most redshifts, thereby
depicting phantom evolution, thus serving as a mechanism
for Hubble tension alleviation.

In Fig. 5, we present the normalized H(z)/(1 + z)3/?
as a function of the redshift for ACDM cosmology, and for
model II, for different values of &, namely & =—8,—10,—12.
As expected, we find that the present Hubble value H,,
depends on the model parameter & Specifically, for
& =-10, it is around H, ~ 74 km/s/Mpc, which is con-
sistent with the directly measured value of the Hubble
parameter. Values of & higher or lower than this give
higher or lower values for H,, respectively. Note that
in natural units £~ —10 corresponds to a typical value
E/8 ~ —1071° GeV~!. Hence, similarly to model I above,
such values are the ones that are phenomenologically
needed in order to bring Hy from Hy = 67.3 km/s/Mpc
to Hy =~ 74 km/s/Mpc.

80 T T T T

70

(o2}
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H@)/(1+2)*?

o
o

40

3 L L
8.001 0.010 0.100 1 10 100
z

FIG. 5. The normalized combination H(z)/(1+z)*? as a
function of the redshift, for ACDM cosmology (blue dotted
line), and for model II for £ = —12 (solid blue line), for £ = —10
(solid black line), and for & = —8 (solid red line), in Planck units.

0.5+

FIG. 6. The deceleration parameter ¢ as a function of redshift z,
for model II with £ = —10 in Planck units.

In Fig. 6, we depict the evolution of the deceleration
parameter ¢ in terms of z. The transition redshift between
deceleration and acceleration for this case is around
Z¢ = 0.65, in agreement with current observations, too.

We close our analysis by confronting the two examined
models with cosmic chronometer (CC) cosmological data.
This dataset is based on the H(z) measurements through
the relative ages of passively evolving galaxies and the
corresponding estimation of dz/dt [86]. In Fig. 7, we
confront the predicted H(z) evolution of our models,
alongside the one of ACDM scenario, with the H(z)
cosmic chronometer data [87] at 1o confidence level. As
we deduce, the agreement is very good, and the theoretical
H(z) evolution lies within the direct measurements of the
H(z) from the CC data.

300
250
200

150

H(z)

100 |

50 4

-50 . . . . . .
05 1.0 15
z

FIG. 7. The H(z) in units of km/s/Mpc as a function of the
redshift, for ACDM scenario (red dotted line), for model I with
¢ = —10 (orange dashed-dotted), and for model II with & = —10
(black solid line) in H(, units, on top of the cosmic chronometers
data points from [87] at 1o confidence level. We have imposed
Q, =0.31.

mg
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V. CONCLUSIONS

New gravitational scalar-tensor theories are novel mod-
ifications of gravity, consisting of a Lagrangian with the
Ricci scalar and its first and second derivatives in a specific
combination that makes the theory free of ghosts. Such
constructions propagate 2 + 2 degrees of freedom, thus
forming a subclass of biscalar extensions of general
relativity.

In the present work, we investigated the possibility of
resolving the Hubble tension using these new gravitational
scalar tensor theories. Considering a homogenoeus and
isotropic background, we extracted the Friedmann equa-
tions, as well as the evolution equations of the new extra
scalar degrees of freedom. We obtained an effective dark
energy sector that consists of both extra scalar degrees of
freedom.

We then studied the cosmological behavior of two
specific models, imposing as initial conditions at high
redshifts the coincidence of the behavior of the Hubble
function with that predicted by ACDM cosmology.
However, we showed that as time passes, the effect of
biscalar modifications become important and thus, at low
redshifts, the Hubble function acquires increased values in
a controlled way. In particular, the present value of the
Hubble parameter is sensitive to the choice of the model
parameters.

In both models, we showed that at high and intermediate
redshifts the Hubble function behaves identically to that of
ACDM scenario; however, at low redshifts, it acquires
increased values, resulting to H,~ 74 km/s/Mpc for
particular parameter choices. Hence, these new gravita-
tional scalar tensor theories can alleviate the H, tension.
The mechanism behind this behavior is the fact that the
effective dark-energy equation-of-state parameter exhibits
phantom behavior, which implies faster expansion, and it is
one of the sufficient theoretical requirements that are
capable of alleviating the H|, tension [8,85] (although it
is not a necessary requirement as we mention in the
Introduction). Finally, we further confronted our models
with cosmic chromometer data, and we found they are
viable and in agreement with observations.

It would be interesting to investigate what is the situation
of the other famous tension, namely the og one (there seems
to be a disagreement between the amount of matter cluster-
ing, quantified by oy, predicted by ACDM cosmology and
the local measurements of the matter distribution [8]) in the
scenario at hand. In particular, a suggested solution for the
H, tension does not guarantee an alleviation for the og one.
There are models in which H,, alleviation does impinge
positively on the og tension, such as the running vacuum
ones [73,88,89] or f(T) gravity ones [84,90]; however,
there are others in which it leads to a worsening of the latter.
That is why it is necessary to perform a og analysis, too.
Since such an analysis requires the investigation of per-
turbations and the evolution of matter overdensity 9, it is
left for a separate project; however, the obtained phantom
behavior is expected to lead to an increase in the friction
term in the Jeans equation for &, which is qualitatively
expected to lead to a smaller oy.

In conclusion, in this first work on the subject, we
deduced that the H, tension can be alleviated in the
framework of new geometric gravitational theories.
Definitely, the full verification of the above result requires
a complete observational analysis, using data from super-
novae type la (SNIa), baryonic acoustic oscillations (BAO),
redshift space distortion (RSD), and cosmic microwave
background (CMB) observations. Such a full and detailed
observational confrontation is left for a future project.
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