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We theoretically investigate the feasibility of applying spin squeezing to a light pulse atom
interferometer in the presence of large momentum transfer using off resonant Raman transitions, in
order to enhance the sensitivity of accelerometry close to the Heisenberg limit. We also show how to
implement this scheme in a dual-species atom interferometer for a precision test of the equivalence
principle by measuring the Eötvös parameter, and to identify the spin squeezing protocol that is best suited
for such an experiment. For a space borne platform in low Earth orbit, such a scheme may eventually enable
the measurement of the Eötvös parameter with a sensitivity of the order of 10−20 within 150 days when 105
atoms are employed in each cycle of the experiment.
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I. INTRODUCTION

Precision test of the equivalence principle (EP), which
lies at the heart of general relativity (GR), is one of the
grand challenges in fundamental physics. The EP is
characterized by the Eötvös parameter, η, which is defined
as the ratio of the relative acceleration to the mean
acceleration of two objects with different inertial masses
under free fall in a gravitational field. GR has been
immensely successful in predicting many phenomena.
However, there are also reasons to believe that GR is
incomplete. One indication of this is that GR cannot be
reconciled with the standard model (SM). EP violation was
found by the Committee on the Physics of the Universe to
be relevant to four of the eleven questions that are the focus
of the landmark study commissioned by the National
Research Council [1]. Search for EP violation with ever
increasing precision thus attempts to answer these four
questions: Did Einstein have the last word on gravity? Are
there additional space-time dimensions? What is the nature
of dark energy? Is a new theory of matter and light needed
at the highest energies?
Fundamentally, a violation of the EP arises when the SM

is augmented by a new field with gravitational-strength
coupling [2]. Since this field does not couple universally to
SM fields, it causes different rates of fall. Such fields are
explored in many theories, including those attempting to
unify gravity with the other fundamental interactions.
Proposals with concrete predictions for EP violation

include Lorentz-violating fields introduced as part of the
SM extension [3,4], cosmological models where a new
field couples indirectly to SM fields via interactions with
dark matter [5], chameleon fields with density dependent
masses [6,7], and modified-gravity theories in which the
new field is related to spacetime curvature [8].
The most precise test of the EP has been carried out

under the satellite-borne MICROSCOPE experiment
employing classical accelerometers [9,10]. The final result
from this experiment [10] constrains the value of η to
∼1.5 × 10−15. Efforts are underway to reach a sensitivity of
10−18 under the STEP experiment [11]. While it is
predicted by some models that the extent of EP violation
is on the order of η ∼ 10−18 [2], targeting higher measure-
ment precision is necessary for two reasons. Firstly, the
validity of these models cannot be guaranteed, suggesting
the possibility of a lower degree of EP violation. Secondly,
a more precise measurement of the degree of EP violation
offers more information for the validity and accuracy of the
theories. Here, we propose the use of space-borne dual
species atomic interferometry, augmented by spin squeez-
ing and large momentum transfer, that may make it possible
to reach a sensitivity of η < 10−20 within 150 days when
105 atoms are employed in each cycle of the experiment.
The conventional dual-species light pulse atom interfer-

ometer offers the potential to test the equivalence princi-
ple [12–21] and to search for the wavelike dark
matter [22,23] with high precision. This approach has
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constrained the value of η to 1.5 × 10−12 using a terrestrial
experiment [13]. It has been estimated that a space-borne
version of a similar experiment, employing five parallel
dual species atom interferometers employing Bose-Einstein
condensates, can reach a sensitivity to measure η as small
as 10−17 in 18 months [24]. The technique of large
momentum transfer (LMT) [25–34] has been used for
enhancing the sensitivity of a dual-species atom interfer-
ometer [12,13]. However, another technique that can in
principle enhance the sensitivity of the atom interferometer,
namely spin squeezing [35–39], has not yet been applied to
a dual-species atom interferometer. Furthermore, the com-
bination of LMT and spin squeezing has not been inves-
tigated even for the single-species atom interferometer. It
should also be noted that for atom interferometry, spin
squeezing has only been used for suppressing the quantum
projection noise [40,41], which reduces the resistance to
detection noise. Alternative approaches of spin squeezing
that produces phase magnification [42,43] to increase the
resistance to detection noise has not been explored in the
context of atomic interferometry.
In recent years,we havebeen investigating, separately, the

use of LMT in atom interferometry [25] as well as the
application of various protocols using cavity-induced one-
axis-twist squeezing (OATS) for enhancing the sensitivity of
atom interferometers and atomic clocks [42–45]. The
approach for realizing OATS that has been studied most
extensively, theoretically as well as experimentally, is the
one based on cavity-mediated interactions [36–39]. In what
follows, we consider, for specificity, only this approach for
realizing the OATS scheme. The Hamiltonian of OATS can
be expressed as ℏχS2z , where Sz is the z component of
collective spin operator, and χ is a characteristic frequency
representing the squeezing process. The corresponding
propagator can be expressed as e−iμS2z , where μ is the
squeezing parameter, defined as χ times the interaction
time. Arguably the most promising approach for applying
OATS to atomic interferometry makes use of the so-called
generalized echo squeezing protocol (GESP) [42], which is
predicted to yield a sensitivity of the Heisenberg limit
divided by

ffiffiffi
2

p
. The GESP has two versions. Their behavior

does not differ much until μ approaches π=2. As μ
approaches π=2, one version is optimized for evenN, where
N is the number of atoms and is thus denoted as GESP-e,
while the other version is optimized for odd N, denoted as
GESP-o. Other protocols of interest with similar degree of
enhancement in sensitivity include the Schrödinger cat state
protocol (SCSP) [42–44], and the conventional echo squeez-
ing protocol (CESP) [46,47]. The SCSP also has two
versions, namely SCSP-e and SCSP-o, where SCSP-e is
optimized for even N, and SCSP-o is optimized for odd N.
Both versions of the GESP become identical to the corre-
sponding version of the SCSP for μ ¼ π=2. Each of the
squeezing protocols mentioned above employs the squeez-
ing operation and the inverse of the squeezing operation.

To apply OATS to the atom interferometer, we first need
to determine whether the Raman pulse [48,49] or the Bragg
pulse [31,34] should be used for the interferometer. In
principle, two momentum states with the same internal state
coupled by a Bragg transition can also be squeezed [50].
However, squeezing the momentum states using the OATS
process may not work well for alkali atoms, mainly because
the linewidths of optical transitions (∼6 MHz, for example,
in Rb), relevant for the three-level system used in OATS,
are much larger than the energy difference (∼15 kHz for
Rb) between the two momentum states coupled by a Bragg
transition. In contrast, the two ground states involved in the
Raman transition is 3.0 GHz for 85Rb and 6.8 GHz for 87Rb,
which are much larger than the linewidths of the optical
transitions. Therefore, in this paper, we only consider atom
interferometers employing Raman pulses.
In Refs. [42–44], we proposed the SCSP and the GESP

versions of the squeezing protocols mentioned above,
adapted to the atom interferometer. These versions are
based on the conventional light pulse atom interferometer
that uses counterpropagating Raman pulses in the sequence
of π=2, π, π=2. However, these versions of the squeezing
protocols have a practical problem. The distance between
the two states of the atoms produced by the first π=2 pulse
will keep increasing during the squeezing process, which
imposes significant constraints on the squeezing operation,
especially for protocols that require a relatively long atom-
cavity interaction time. Therefore, in this paper we adopt a
different scheme of atom interferometry that uses a hybrid
of counterpropagating Raman pulses and copropagating
Raman pulses [40,41]. Of course, the copropagating
Raman pulses can be substituted with microwave pulses.
For concreteness, we assume that only the counterpropa-
gating Raman pulses and the microwave pulses would be
used. In this paper, we describe how the SCSP and the
GESP can be realized using this version of atom interfer-
ometry. In addition, we show how to augment these
protocols to accommodate large momentum trans-
fer (LMT).
It is not obvious whether a dual-species atom interfer-

ometer can adopt the technique of spin squeezing. One
immediate problem of incorporating cavity-assisted OATS
is that the two species must be squeezed individually to
prevent entanglement between the two species but must be
overlapped during the step of phase shift accumulation. In
this paper, we also propose a scheme for a dual-species
atom interferometer that employs both spin squeezing
and LMT.
The rest of the paper is organized as follows. In Sec. II,

we illustrate the experimental scheme and the sensitivity
analysis for atom interferometer employing spin squeezing
for acceleration sensing. In Sec. III, we discuss how to
adapt the spin-squeezed atom interferometer to a dual-
species atom interferometer for the EP test. The conclusion
is given in Sec. IV.
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II. SPIN-SQUEEZED ATOM INTERFEROMETER
FOR ACCELERATION SENSING

In order to describe the LMT augmented and spin-
squeezed atom interferometry protocols, we first introduce
the notations of the relevant states. Each atom is modeled as
a three-level system with the two ground states denoted
as j � ẑ0i and the excited state denoted as jei. In practice,
the two ground states are typically the mF ¼ 0 Zeeman
substates of the two hyperfine ground states of an alkali
atom. The microwave will couple these two ground states.
The wavenumber of the beam coupling the state j�ẑ0i and
jei is denoted as k�. This three-level system can be reduced
to a two-level system, with the effective wavenumber of the
pair of counterpropagating Raman beams expressed as
keff ¼ ðkþ − k−Þ if the direction of keff is defined to be that
of kþ. The absolute value of the effective wavenumber can
be expressed as keff ¼ ðkþ þ k−Þ ≈ 2kþ, where k� is the
absolute value of the corresponding wavenumber.
The two-level system can be modeled as spin-1=2

pseudo-spinors, with the spin operator defined as s ¼
ðsx; sy; szÞ. In this notation, the subscripts fx; y; zg re-
present the three dimensions of the Bloch sphere rather than
dimensions of the physical space.
The five OATS-based protocols mentioned in the

Introduction, namely SCSP-e, SCSP-o, GESP-e, GESP-o,
and the CESP, all involve very similar sequences of
pulses [42], and can be denoted as variations of the echo
squeezing protocol (ESP). The differences are only the
rotation axes of microwave pulses and the duration of the
squeezing and unsqueezing pulses. Here, we describe
specifically SCSP-e. Later on, we will discuss how the
protocol can be modified easily to realize the GESP or
the CESP protocols. Figure 1(a) shows the basic version of
the pulse sequence of the echo squeezed atom interferometer
where the momentum transfer is 2ℏkeff (in contrast to the
conventional atom interferometer where the momentum
transfer is ℏkeff ). In this protocol, all microwave pulses
cause rotations around the y axis. The pulse sequence of
the protocol is as follows. The atoms are initially in state
jþẑ; 0i, which is a collective state where all the atoms are in
state j þ ẑ0i with a linear momentum of zero along the
propagation direction of the Raman beams. Application
of the first microwave π=2 pulse is followed by the
OATS process with μ ¼ π=2, which produces the so-
called x-directed Schrödinger cat state, defined as
ðjþx̂; 0i þ eiφj−x̂; 0iÞ= ffiffiffi

2
p

. Here, φ is a phase resulting
from the squeezing process. The OATS operation is
followed by the second microwave π=2 pulse, which
creates a z-directed Schrödinger cat state ðj−ẑ; 0i þ
eiðφþφ0Þjþẑ; 0iÞ= ffiffiffi

2
p

, where φ0 is a phase resulting from
this auxiliary rotation. It should be noted that the phase
φþ φ0 is irrelevant andwill be canceled during the inverse of
the auxiliary rotation and the squeezing operation [51]. As
such, for simplicity, we assume it to be zero. The first

counterpropagating Raman π pulse (A1) transforms j�ẑ; 0i
to j∓ẑ;�ℏkeffi, resulting in beam splitting. Next, another
Raman π pulse (B−1) transforms j∓ẑ;�ℏkeffi to j�ẑ; 0i.
This is followed by the application of a microwave π pulse,
and then another Raman π pulse (B1). After the application
of the final Raman π pulse (C−1), the state of the atoms can
be expressed as ðjþẑ; 0i þ eiNψ j−ẑ; 0iÞ= ffiffiffi

2
p

, where ψ is
the acceleration-induced phase shift for a single atom. Pulse
C−1 is followed by a π=2 microwave pulse that transforms
the state to ðjþx̂; 0i þ eiNψ j−x̂; 0i=Þ= ffiffiffi

2
p

. Next, the
application of the inverse of the OATS operation induces
the interference between the upper arm and the lower
arm, which produce the state cosðNψ=2Þjþx̂; 0i þ
sinðNψ=2Þj−x̂; 0i. The final microwave π=2 pulse rotates
the state to cosðNψ=2Þj−ẑ; 0i þ sinðNψ=2Þjþẑ; 0i so that
the phase shift can be measured by detecting the population
of state j � z0i. We can see that the phase shift is magnified
by a factor of N in this case. This is why the protocol stated
above can enhance the sensitivity of an atom interferometer.
Figure 1(b) shows the pulse sequences for the atom
interferometer with a momentum transfer of 4ℏkeff . The
protocol shown in Fig. 1(b) contains four additional Raman
π pulse A2, B−2, B2, C−2. Pulse A2 transforms j∓ẑ;�ℏkeffi
to j�ẑ;�2ℏkeffi and thus, increases themomentum transfer.
The rest of the additional pulses are necessary for converg-
ing the two arms since they are separated farther away. This
approach can be extended to produce even largermomentum
transfer. For example, in Fig. 1(b), we illustrate the case
where the momentum transfer is 6ℏkeff .
The other protocols can be viewed as modifications of

SCSP-e. In SCSP-o, all the microwave pulses except the
first and the last ones are around the x axis. The steps in
GESP-e(o) are the same as those in SCSP-e(o), except that
the squeezing and unsqueezing interaction times are
shorter, corresponding to μ < π=2. Thus, GESP-e(o)
becomes identical to SCSP-e(o) for μ ¼ π=2. The CESP
differs from GESP-o only in the very last step, where the
last microwave π=2 pulse causes a rotation around the
x axis.
We next calculate the value of ψ , the acceleration-

induced phase shift for a single atom. The propagator
for a microwave π=2 pulse representing a rotation around
the xðyÞ axis can be expressed as exp½−iðπ=2ÞsxðyÞ�. The
effective Hamiltonian of the Raman pulse, which couples
states differing in linear momenta by ℏkeff, can be
expressed, in the absence of two-photon detuning, as

H ¼ 1

2

�
0 −iΩe−iϕ

iΩeiϕ 0

�
; ð1Þ

where ϕ ¼ keff · rþ ϕ0 is the phase of the light field at the
position of the atom, with ϕ0 accounting for any additional
phase difference between the Raman beat signal and the
microwave field [45]. However, explicit knowledge of the
value of ϕ0 is not relevant, since it can be easily checked
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that it does not affect the signal in these protocols.
Accordingly, in the following discussion, ϕ0 is assumed
to be zero. The corresponding propagators for the Raman π
pulses can be expressed as

Uπ ¼
�

0 −e−iϕ
eiϕ 0

�
¼ e−i2ϕsze−iπsy ¼ e−iπsyei2ϕsz ; ð2Þ

which represents a rotation around ŷ cosϕ − x̂ sinϕ on the
Bloch sphere. It should be noted that these propagators only
contain the linear terms of the spin operators in the
exponent, so that the corresponding propagators for the
ensemble can be obtained simply by replacing the single

atom operators sw ðw ¼ x; y; zÞ with the collective spin
operators Sw.
For concreteness, we first focus on GESP-e, in which all

the pulses are around the y axis. With the propagator of a π
pulse shown in Eq. (2), the net propagator for pulse A1 and
B−1 can be calculated to be

ðe−i2ðϕA1
þϕ0ÞSze−iπSxÞðe−iπSxei2ðϕB−1þϕ0ÞSzÞ

¼ �ei2ðϕB−1−ϕA1
ÞSz ¼ �ei2keff ·ðrB−1−rA1 ÞSz ; ð3Þ

where the sign � represents þð−Þ when the number of
atoms is even (odd). However, this sign issue is irrelevant
in this context. It can be seen from Eq. (3) that two
consecutive π pulses is equivalent to a rotation around the

FIG. 1. Pulse sequences of (a) the basic version of the spin squeezing protocol for the atom interferometer with a momentum transfer
of the spin squeezing protocol for the atom interferometer with a momentum transfer of 2ℏkeff , (b) the spin squeezing protocol for the
atom interferometer with a momentum transfer of 4ℏkeff , (c) the spin squeezing protocol for the atom interferometer with a momentum
transfer of 6ℏkeff . The green arrows represent the Raman pulses, and the gray lines represent the microwave pulses. The blue (red) lines
represent states j � ẑ0i. The horizontal axis is time and the vertical axis corresponds to the physical vertical coordinate.
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z axis on the Bloch sphere, with the rotation angle
proportional to the displacement of the atoms between
A1 and B−1. Similarly, the net propagator for pulse B1 and
C−1 is calculated to be �ei2keff ·ðrC−1−rB1 ÞSz . Therefore, the
equivalent propagator for the pulses between the squeezing
and the unsqueezing operations can be calculated to be

e−iðπ=2ÞSyei2keff ·ðrC−1−rB1 ÞSze−iπSyei2keff ·ðrB−1−rA1 ÞSze−iðπ=2ÞSy

¼ e−iðπ=2ÞSyei2keff ·ðrC−1−rB1 ÞSze−i2keff ·ðrB−1−rA1 ÞSz

× e−iπSye−iðπ=2ÞSy

¼ e−iðπ=2ÞSyei2keff ·ðrA1−rB−1−rB1þrC−1 ÞSze−ið3π=2ÞSy

¼ �e−i2keff ·ðrA1−rB−1−rB1þrC−1 ÞSx ; ð4Þ

which is a rotation around the x axis on the Bloch sphere.
The step from the first line to the second line in Eq. (4)
makes use of the relation shown in Eq. (2). Here, we have
assumed that there is no Sagnac effect induced phase shift
due to rotation. We can see that the net effect of the pulses
between the squeezing and the unsqueezing process is only
a rotation around the x axis on the Bloch sphere by an angle
of the phase shift. Therefore, it can be seen that the protocol
shown in Fig. 1(a) is equivalent to the fundamental three-
step GESP-e described in Ref. [42], with the phase shift
ψ ¼ 2keff · ðrA1

− rB−1 − rB1
þ rC−1Þ, which is calculated to

be 2keff · aðT2 þ 2TT0Þ, where the time intervals T and T0

are as defined in Fig. 1(a). Accordingly, this basic version
of GESP-e augmented atom interferometer can be used for
accelerometry. It should be noted that in the case of
μ ¼ π=2, for which GESP-e becomes the same as SCSP-
e, this phase gets magnified by a factor of N, as shown
earlier. When the concomitant increase of the quantum
noise by a factor of

ffiffiffiffi
N

p
is considered, the sensitivity

reaches the Heisenberg limit.
Consider next the atom interferometer augmented

with both the GESP and LMT, corresponding to the
cases shown in Figs. 1(b) and 1(c). In this case, the
only difference is that the phase shift becomes
keff · ½

P
n
j¼1 ðrAj

− rB−j − rBj
þ rC−jÞ�, where n is the factor

by which the momentum splitting is augmented using the
LMT process [e.g., n ¼ 3 if the momentum splitting is
6ℏkeff , corresponding to the case shown in Fig. 1(c)]. It can
be shown that the phase shift can be expressed as
ψ ¼ 2nkeff · a½T2 þ 2TT0 − ðn − 1ÞTτ�, where the time
interval τ is as defined in Figs. 1(b) and 1(c). For
T ≫ τ, the acceleration phase shift can be approximated
as 2nkeff · aðT2 þ 2TT0Þ. Therefore, the spin-squeezed
atom interferometer with LMT magnifies the phase shift
by a factor of 2n compared to the conventional π=2-π-π=2
interferometer and thus, enhances the sensitivity by a factor
of 2n, if the noise and the signal amplitude reduction
caused by LMT are negligible.

The primary effect of all squeezing protocols considered
above is to increase the gradient of the signal with respect to
the phase shift, j∂hSzi=∂ψ j, where Sz is the quantum
operator measured [42–44]. The SCSP magnifies the phase
gradient by a factor of N if the parity of N matches the
version of the SCSP but also increases the quantum noise
by a factor of

ffiffiffiffi
N

p
[44]. Therefore, the SCSP can reach the

Heisenberg limit for a known parity of N. Taking into
account the application of LMT, the sensitivity is totally
enhanced by a factor of 2n

ffiffiffiffi
N

p
, compared to the conven-

tional π=2-π-π=2 interferometer. Both versions of the
GESP work optimally in the interval 4

ffiffiffiffiffiffiffiffiffi
2=N

p
≤ μ ≤

π=2 − ffiffiffiffiffiffiffiffiffi
2=N

p
. In this interval, the phase gradient is

magnified by a factor of N sin μ=
ffiffiffi
2

p
, and the quantum

noise is amplified by factor of
ffiffiffiffiffiffiffiffiffi
N=2

p
sin μ. Therefore, the

ideal sensitivity is enhanced by a factor of
ffiffiffiffiffiffiffiffiffi
N=2

p
, reaching

the Heisenberg limit divided by
ffiffiffi
2

p
. Taking into account

the application of LMT, the sensitivity is totally enhanced
by a factor of n

ffiffiffiffiffiffiffi
2N

p
, compared to the conventional

π=2-π-π=2 interferometer. The CESP is optimal only for
μ ¼ N−1=2. With this value of μ, the phase gradient is
magnified by a factor of

ffiffiffiffiffiffiffiffiffi
N=e

p
, while the quantum noise is

not changed. Accordingly, the ideal sensitivity reaches the
Heisenberg limit divided by

ffiffiffi
e

p
. Again, taking into account

the application of LMT, the sensitivity is totally enhanced
by a factor of 2n

ffiffiffiffiffiffiffiffiffi
N=e

p
, compared to the conventional

π=2-π-π=2 interferometer. Although ideally all these ESPs
can approach the Heisenberg limit, their actual sensitivities
in the absence in the presence of detection noise and
decoherence mechanisms can differ a lot. The SCSP is
robust against detection noise but vulnerable to
decoherence mechanisms, while the CESP is less robust
against detection noise but more resistant to decoherence
mechanisms. The GESP can balance the properties of these
two protocols and is thus possibly the most promis-
ing ESP [42].

III. SCHEME FOR TESTING THE
EQUIVALENCE PRINCIPLE

A dual-species atom interferometer can be used to test
the equivalence principle [12,13]. In such an interferometer,
the two isotopes are initially captured in the same magneto-
optic trap. So far, Bragg pulses have been used in dual-
species atom interferometers employing 87Rb and 85Rb
because a single pair of Bragg beams can address both
isotopes. In this way, the effective wavenumber of the
Bragg beams, keff , and the half duration of the interfer-
ometer sequence, T, are naturally the same for both
isotopes. Therefore, the acceleration phase shift keffaT2

only depends on the acceleration a for both isotopes.
In principle, Raman pulses can also be used for such a

dual-species atom interferometer. However, two different
pairs of monochromatic Raman beams are needed to
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address the two isotopes. These two pairs of Raman beams
can be combined and controlled with the same switch so
that they spatially coincide and are exactly synchronized.
To make the value of keff the same for the two pairs of
Raman beams, we can produce them from the same laser.
To produce the Raman beams for 85Rb, we can guide a
beam from the laser through an EOM (electro-optic
modulator) tuned to ∼1.5 GHz, which is half the hyperfine
splitting of the ground state. In this way, the þ1 order and
−1 order in the output of the EOM would differ in
frequency by the hyperfine splitting, and their average
value is the laser frequency. Each of these frequency
components can be extracted with a Fabry-Perot cavity.
Alternatively, two different AOMs (acousto-optic modu-
lators) can be used for generating these frequency compo-
nents, with one up-shifted and another down-shifted. The
pair of counterpropagating Raman beams prepared using
either approach would have a keff that is exactly twice the
laser wavenumber. If the Raman beams for 87Rb are
prepared in the same way, their keff will equal the keff of
the Raman beams for 85Rb. Of course, it would be
necessary to adjust the intensities of the beams to balance
the light shifts [52] and make the effective Rabi frequencies
for the two isotopes equal.
OATS is realized via nonlinear interaction between the

atoms and the light in an optical cavity [36–39]. To ensure
that the value of the single-photon Rabi frequency remains
as uniform as possible longitudinally, it is preferable to use
a ring cavity. In the model describing the mechanism of
OATS, an atom is considered as a three-level system
consisting of two ground states, denoted as j � ẑ0i, and
an excited state, denoted as jei, as discussed earlier. Ideally,
to balance the light shifts of states jþẑ0i and j−ẑ0i, the
cavity should be tuned to the average frequency of the
transitions from jþẑ0i to j−ẑ0i and from j−ẑ0i to jei if we
assume that the Rabi frequencies of these two transitions
are the same. In practice, the states jþẑ0i and j−ẑ0i are,
respectively, the F ¼ 3, mF ¼ 0 (F ¼ 2,mF ¼ 0) and
F ¼ 2, mF ¼ 0 (F ¼ 1, mF ¼ 0) Zeeman substates for
the case of 85Rb (87Rb), state jei is the 5P3=2 manifold,
which contains multiple hyperfine states, and the probe
beam would be σ� polarized. Thus, it is necessary to
augment the model to take into account the multiplicity of
the hyperfine states in the 5P3=2 manifolds, and the
coupling strengths between j�ẑ0i and the relevant
Zeeman substates within the hyperfine states in the
5P3=2 manifold, in order to determine the optimal cavity
resonance for each isotope. This analysis is summarized in
the Appendix.
If the atoms of both isotopes are present in the cavity

simultaneously during the OATS operation, the nonlinear
interaction would produce entanglement among the atoms
from both isotopes. As such, the OATS operation for the
two isotopes must be carried out separately with two
distinct cavities. In describing the process for the dual

species atom interferometry augmented by the GESP and
LMT, we refer to the steps illustrated earlier in Fig. 1. The
protocol will start as follows. Atoms for each isotope would
be trapped in a separate magneto-optic trap, followed by
polarization gradient cooling and evaporative cooling. Each
ensemble will then be loaded into a separate dipole force
trap, which would be shifted spatially from each other
along the direction of propagation of the Raman pump
beams. The first microwave π=2 pulse, followed by the
application of OATS and the auxiliary microwave π=2
pulse will all be carried out while the atoms are still in
the dipole force traps. After this, the traps will be turned
off, and the two ensembles will be overlapped by control-
ling the movement of one isotope, using the process
described next.
Controlling the movement of one isotope can be realized

with low-Rabi-frequency Raman transitions, as illustrated
schematically in Fig. 2. When the dipole traps are turned
off, the atoms are in a superposition of state jþẑ0; 0i and
j−ẑ0; 0i. One method to impart a momentum to both states
of 85Rb is to apply a species-selective Raman π pulse
consisting of two pairs of Raman beams, with one pair
resonant with the transition from jþẑ0; 0i to j−ẑ0;ℏkeffi,
and the other pair resonant with the transition from j−ẑ0; 0i
to jþẑ0;ℏkeffi, as shown in Fig. 2(a). Unfortunately, such a
Raman π pulse can have a side effect. Consider, for
example, the pair of Raman beams that couples jþẑ0; 0i
to j−ẑ0;ℏkeffi. Normally, this pair of Raman beams can
also drive the undesirable transition from j−ẑ0; 0i to
jþẑ0;−ℏkeffi. However, this side effect can be suppressed
by noting that this Raman pulse is detuned from this
undesirable transition by ℏk2eff=m ≈ 30 kHz (m is the mass
of 85Rb), as shown in Fig. 2(b). Therefore, if the effective
Rabi frequency of the Raman pulse is much lower than
30 kHz, this Raman pulse will only impart to state jþẑ0; 0i
a momentum of ℏkeff . Of course, this method requires that
the Doppler broadening of the counterpropagating Raman
excitation is much less than 30 kHz, which is necessary
anyway for such an experiment [13]. When the two
isotopes overlap, the motion of the 85Rb atoms is halted
with another Raman π pulse identical to the one applied
previously. The two Raman π pulses and the motion of the
atoms controlled by them are shown in Fig. 2(c).
To find the effective Rabi frequency of the Raman pulse

that should be used, we have implemented a numerical
simulation of the efficiencies of the transition from jþẑ0; 0i
to j−ẑ0;ℏkeffi and the transition from j−ẑ0; 0i and
jþẑ0;−ℏkeffi. The temperature of the atoms used for the
simulation is 10 pK, which is the temperature of atoms in
the equivalence-principle-test experiment reported in
Ref. [24]. The corresponding Doppler broadening (stan-
dard deviation) of 10 pK Rb atoms is ∼80 Hz. Using a
Blackman pulse envelope [53,54] instead of a square
envelope can also suppress the undesired transition from
j−ẑ0; 0i and jþẑ0;−ℏkeffi due to the absence of the side
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bumps in the Fourier spectrum. Actually, the power of a
Blackman pulse is even more concentrated around the
central frequency than a Gaussian pulse. The instant Rabi
frequency of a Blackman π pulse is defined as

ΩðtÞ¼
�Ωeff

0.84ð0.42þ0.5cos πt
τeff

þ0.08cos2πtτeff
Þ; −τeff ≤ t≤ τeff

0; otherwise

ð5Þ

where Ωeff and τeff are defined in such a way thatR∞−∞ ΩðtÞdt ¼ Ωeffτeff . Therefore, a Blackman pulse is a
π pulse if Ωeffτeff ¼ π.
The efficiencies of the two transitions as functions ofΩeff

are shown in Fig. 3. The red curve shows the efficiency of the
desirable transition from jþẑ0; 0i to j−ẑ0;ℏkeffi, and the
blue curve the undesirable transition from j−ẑ0; 0i to
jþẑ0;−ℏkeffi. We can see that the efficiency of the desired
transition is ∼1 and the undesirable transition ∼0 if Ωeff is
between 1 kHz to 10 kHz. Therefore, this technique to
control the movement of one isotope is theoretically
feasible. In addition, the technique described in Ref. [12]
can suppress the remaining imperfection in the overlap
between the two isotopes. After the antiauxiliary microwave
π=2 pulse which appears before the unsqueezing pulse, we
need to separate the two isotopes. The technique of low-
Rabi-frequency Raman transition can still be used for such a
purpose. Once the two isotopes are spatially separated, they
can be confined in two dipole traps again and undergo the

rest of the protocol, namely the unsqueezing process and the
last microwave π=2 pulse.
Practically, it is difficult to make the values of μ for

85Rb and for 87Rb the same. The sensitivity of the spin
squeezing protocols depends on the value of μ and the
number of atoms, which will be generally different for these
two isotopes. However, a very important aspect of the
GESP protocol is that it has essentially the same sensitivity
of the Heisenberg limit divided by

ffiffiffi
2

p
for a wide range of

μ [42] and thus, is best suited for such a dual-species
interferometer.

FIG. 3. Efficiencies of the two transitions as functions of Ωeff
driven by a Blackman pulse. The red curve shows efficiency of
the desirable transition from jþẑ0; 0i to j−ẑ0;ℏkeffi, and the blue
curve the undesirable transition from j−ẑ0; 0i to jþẑ0;−ℏkeffi.
We can see that the efficiency of the desired transition is ∼1 and
the undesirable transition ∼0 if Ωeff is between 1 kHz to 10 kHz.

FIG. 2. Schematic illustration of the method to overlap the two isotopes. All Raman beams only address 85Rb. (a) Raman transitions
driven by the Raman π pulse consisting of two pairs of Raman beams. One pair is resonant with the transition from jþẑ0; 0i to
j−ẑ0;ℏkeffi (green arrows), and the other pair is resonant with the transition from j−ẑ0; 0i to jþẑ0;ℏkeffi (orange arrows). (b) Illustration
of transitions driven by the beat notes of the two pairs of Raman beams. The lengths of the green and oranges arrow indicate the
frequencies of the beat notes. The resonant transitions in this diagram correspond to the ones shown in panel (a). In addition, other
relevant neighboring energy levels are also shown here. The dashed lines indicate the possible but undesirable transitions in the presence
of the Raman beams. As can be seen, the Raman beat notes are detuned from these transitions by 30 kHz, which sets limits on the
maximum Raman Rabi frequency and the maximum temperature of the atoms. (c) Application of the two Raman π pulses and the
motion of the atoms controlled by them. For each color, the thick (thin) arrows represent the Raman beam corresponding to the higher
(lower) frequency leg. The first Raman π pulse imparts to the 85Rb atoms a momentum of ℏkeff in the vertical direction. When they
overlap the cloud of 87Rb, the second Raman π pulse is applied to reverse the transitions, thus halting the motion of 85Rb atoms in the
vertical direction.
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By modulating the phase of any one of the π pulses,
denoted as ϕp, we can obtain the signal (namely, the
difference between the population of jþẑ0i state and the
population of j−ẑ0i state) versus the phase shift. The total
phase shift is 2nkeffaT2 þ ϕp. Although the sensitivity can
be made the same for these two isotopes, the widths
of the fringes as a function of ϕp depend on the value
of μ and the number of atoms. Assuming, for example, that
the value of μ would be larger for 85Rb, and the number of
atoms trapped for 85Rb would be higher, the fringes for 85Rb
would be narrower. If the equivalence principle holds, the
central peaks, which correspond to the point where
2nkeffaT2 þ ϕp ¼ 0, will coincide, as shown in Fig. 4.
Therefore, we can lock ϕp to the central peak (i.e.,
ϕp ¼ −2nkeffaT2) of one isotope and check whether
the signal of the other isotope deviates from its central
peak.
Ideally, the sensitivity of the GESP can be expressed as

2nkeffΔaT2 ¼ ffiffiffi
2

p
=N, where N is the number of atoms

during the interrogation time, and Δa is the uncertainty of
the measured relative acceleration. For n ¼ 5, T ¼ 1 s, and
N ¼ 105, which are close to the values of the parameters
adopted in Ref. [13], the value of Δa is calculated to be
8.7 × 10−14 m · s−2. If the experiment is implemented on
the ground or in a low earth orbit, the gravitational
acceleration is ∼9.8 m · s−2. Therefore, the relative preci-
sion that can be achieved is η ¼ Δa=a ¼ 8.8 × 10−15 per
shot, which is 1600 times the sensitivity reported in
Ref. [13]. Of course, the experimental sensitivity reported
in Ref. [13] did not reach the standard quantum limit.
Compared to the theoretically highest sensitivity of the
experiment in Ref. [13], which is the standard quantum
limit, the factor of sensitivity enhancement would beffiffiffiffiffiffiffiffiffi
N=2

p
≈ 220. It should also be possible to increase the

number of atoms by a factor of 10 compared to what
was employed in Ref. [13]. In that case, the sensitivity
that can be achieved in a single shot would be
η ¼ Δa=a ¼ 8.8 × 10−16, since the sensitivity under the
GESP is proportional to N. If the experiment is

implemented on a space-borne platform in a low earth
orbit, the value of T can be much larger due to the
weightless environment. If T ¼ 100 s, which is reasonable
for the temperature of the atoms envisioned above, and 105

shots are implemented, the ideally achievable sensitivity
would be ∼2.8 × 10−22. Taking into consideration that the
state preparation takes up to 30 s [13,24], the duration of
such a measurement is calculated to be ∼150 days.
Of course, in practice it would be exceedingly difficult to

reach this ideal limit. As we have discussed at length in
Ref. [42], the GESP makes it possible to reach the
Heisenberg limit of sensitivity divided by

ffiffiffi
2

p
for a broad

range of values of the squeezing parameter. The optimal
choice of the squeezing parameter μ would depend on
various sources of noise as well as decoherence mecha-
nisms. As μ increases, the protocol is more robust against
detection noise but more vulnerable to decoherence mech-
anisms, including cavity decay, residual spontaneous
emission, and collisions between the atoms and back-
ground particles. A cavity with a high single-atom coop-
erativity could suppress the effect of cavity decay and
residual spontaneous emission [42]. The single-atom coop-
erativity can be increased by shrinking the cavity mode as
well as enhancing the quality factor. Meanwhile, a cryo-
genic vacuum [55] could significantly lower the rate of
collisions with background particles. Assuming the use of a
cavity with high single-atom cooperativity and a cryogenic
vacuum, and operation of the GESP for the optimal value of
μ, it might be possible to limit the ratio of the ideal
sensitivity to the actual one within 36, which corresponds to
an actual sensitivity on the order of ∼10−20. Of course, the
number of shots can be increased to improve the sensitivity
further. We would also like to note that the analysis of the
effects of various sources of noise as presented in Ref. [42]
is not comprehensive, and more detailed studies, theoretical
as well experimental, are warranted in order to determine
the actual degree of enhancement in sensitivity that could
be achieved using the GESP in general, and the dual-
species atomic interferometry augmented by LMT and the
GESP in particular.
Increasing either the interrogation time or the momentum

transfer can enhance the sensitivity. However, for an
experiment even in the weightless environment, the
length of the vacuum chamber l imposes a constraint
2nℏkeffT=m ≤ l because the two arms of the interferometer
move apart at a relative velocity of 2nℏkeff=m. Recalling
that the phase shift is ϕ ¼ 2nkeffaT2, we find that
ϕ ≤ malT=ℏ, which is proportional to T but does not
depend on n. Therefore, if the physical dimension of the
apparatus is the primary constraint, it may be optimal to
increase T at the expense of decreasing n, while satisfying
the constraint 2nℏkeffT=m ≤ l. However, other factors may
restrict the maximum value of, T such as the expansion of
the atomic cloud and long-term stability of the system.
Taking these factors into account, the use of LMT is

FIG. 4. Example of the signals of the generalized echo
squeezing protocol for 85Rb (red) and 87Rb (blue). The position
of the central peak is at ϕp ¼ −keffaT2. If the equivalence
principle holds, the central peaks of both isotopes will coincide.
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expected to be useful for increasing the sensitivity of the
experiment.

IV. CONCLUSION

We have shown theoretically the feasibility of applying
spin squeezing to a light pulse atom interferometer even in
the presence of large momentum transfer using off resonant
Raman transitions, in order to enhance the sensitivity of
accelerometry close to the Heisenberg limit. Even if
practical imperfections lower the sensitivity from the ideal
level, there is still a good chance to significantly surpass the
standard quantum limit with this scheme. We also show
how to implement this scheme in a dual-species atom
interferometer for a precision test of the equivalence
principle by measuring the Eötvös parameter. Based on
experimental constraints, we find that the generalized echo
squeezing protocol, which enhances the sensitivity close to
the Heisenberg limit for a very broad range of values of the
squeezing parameter, is the best suited for such an experi-
ment. For a space borne platform in low Earth orbit,
employing a cavity with a high single-atom cooperativity
and a cryogenic vacuum system, such a scheme may enable
the measurement of the Eötvös parameter with a sensitivity
of the order of 10−20 within 150 days when 105 atoms are
employed in each cycle of the experiment.
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APPENDIX: CALCULATION OF THE OPTIMAL
CAVITY RESONANT FREQUENCY

In this appendix, we calculate the optimal cavity reso-
nant frequency that balances the light shifts of the two
ground hyperfine states of Rb. Specifically, we assume that
the cavity field would be σþ polarized. We use first 87Rb as
the example to illustrate the calculation and then show what
the result would be for 85Rb. Consider first the light shift of
the ground state F ¼ 2, mF ¼ 0. The light field inside the
cavity couples this state to the mF ¼ 1 Zeeman substate of
each hyperfine state in the 5P3=2 manifold. Each coupling
contributes a light shift to the ground state F ¼ 2, mF ¼ 0.

Therefore, the total light shift of this ground state is the sum
of the light shifts by all the couplings, which can be
expressed as

ωLS2 ¼
X3
j¼1

jΩ2→jj2
4ðωHFS=2þ ωj3 − ΔωÞ

¼ Γ2
X3
j¼1

jα2→jj2
4ðωHFS=2þ ωj3 − ΔωÞ ; ðA1Þ

where Ω2→j is the Rabi frequency of the transition from the
ground state F ¼ 2, mF ¼ 0 to the excited state F ¼ j,
mF ¼ 1, ωHFS is the energy difference between the F ¼ 1
and F ¼ 2 states, ωj3 is the energy difference between F ¼
j (j ¼ 1, 2, 3) and F ¼ 3 in the 5P3=2 manifold,Δω (whose
optimal value is to be determined by this analysis) is as
defined in Fig. 5, Γ is the spontaneous decay rate of the
5P3=2 manifold, and α2→j is the matrix element for
the transition from the ground state F ¼ 2, mF ¼ 0 to
the excited state F ¼ j, mF ¼ 1, as shown in Fig. 5. In this
model, we have assumed that the Rabi frequency of the
strongest transition remains much smaller than ωHFS=2. A
similar expression is used to determine the total light shift
of the ground state F ¼ 1, mF ¼ 0, denoted as ωLS1. To
balance the light shifts, we require that ωLS1 þ ωLS2 ¼ 0.
Solving this equation, we can obtain the optimal value of
Δω, which is 2π × 235.7 MHz for 87Rb. It is important to
note that this value is independent of the intensity of the
probe field, as long the assumption regarding the Rabi
frequency of the strongest transition stated above remains
valid. Implementing the same calculation, we can also
obtain the value of Δω for 85Rb, which is 2π × 114.2 MHz.

FIG. 5. Relevant transitions for calculating the optimal cavity
resonance that balance the light shifts of the two ground states.
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