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Gravitational wave memory is a nonoscillatory correction to the gravitational wave strain predicted by
general relativity, which has yet to be detected. Within general relativity, its dominant component known as
the null memory can be understood as arising from the backreaction of the energy carried by gravitational
waves, and therefore, it corresponds to a direct manifestation of the nonlinearity of the theory. In this paper,
we investigate the null-memory prediction in a broad class of modified gravity theories, with the aim of
exploring potential lessons to be learned from future measurements of the memory effect. Based on
Isaacson’s approach to the leading-order field equations, we in particular compute the null memory for the
most general scalar-vector-tensor theory with second-order equations of motion and vanishing field
potentials. We find that the functional form of the null memory is only modified through the potential
presence of additional radiative null energy sources in the theory. We subsequently generalize this result by
proving a theorem that states that the simple structure of the tensor null-memory equation remains unaltered
in any metric theory whose massless gravitational fields satisfy decoupled wave equations to first order in
perturbation theory, which encompasses a large class of viable extensions to general relativity.
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I. INTRODUCTION

The first direct measurement of gravitational waves [1]
opened a new window to probe the fundamental physics of
gravitation. Together with subsequent observations [2,3],
this has given hope to the idea that one day soon we may
find an eventual glimpse beyond the currently unquestioned
theoretical bedrock, general relativity (GR), which has so
far passed all tests with flying colors [4–13]. A particularly
interesting prediction of GR is the gravitational wave
memory effect [14–18] (see also [19–22]), which manifests
itself as a permanent displacement of test masses within an
idealized gravitational wave detector. Gravitational wave
memory is an interesting effect because its dominant
contribution is sourced by the outgoing gravitational
radiation itself and is therefore a direct manifestation of
the nonlinearity of GR. Moreover, for compact binary
coalescences, the measurable component of the memory
effect is most sensitive to the merger dynamics of the
system [23]. The recent discovery of gravitational waves
therefore begs the question of whether we can use future
observations of the memory effect to test the “ability
of gravity to gravitate” and, moreover, probe the high-
curvature regime of the merger of compact objects. On top
of that, the manifestation of memory is directly connected

with supertranslations of the Bondi-Metzner-Sachs (BMS)
group of asymptotically flat spacetimes [24–27] and can
also be related toWeinberg’s soft-graviton theorem [28,29].
Gravitational wave memory therefore also represents a
window for experimental tests of the fundamental sym-
metries of spacetime.
Observational probes of general relativity through gravi-

tational wave memory require both the detection of the
memory effect and the modeling of beyond-GR memory
effects that can be searched for in the data. On the detection
front, while the memory effect has not yet been observed,
the prospects of its detection are positive, both with future
ground-based experiments [30–35], as well as the eagerly
awaited Laser Interferometer Space Antenna (LISA) mis-
sion [23,36,37]. On the modeling front, only recently have
there been several concrete efforts to compute the memory
effect beyond GR. Within a post-Newtonian (PN) expan-
sion (i.e., an expansion of the field equations in weak
fields and slow motions [38]) of Brans-Dicke (BD) theory
[39–41], a new memory contribution originating from a
dipole-dipole coupling was found [42–44]. Another way to
compute memory hinges on the structure of asymptotically
flat spacetimes, in particular, on the relation of memory to
BMS balance laws at future null infinity [26,27]. BMS
balance laws were recently derived in BD theory [45–48]
by showing that the theory retains the same asymptotic
group structure as in GR, despite its altered peeling
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properties. The resulting memory component was shown to
match the earlier PN calculation [44]. Moreover, different
aspects of the scalar memory within BD theory were
investigated in [49,50]. More recently, the memory effect
was also computed for dynamical Chern-Simons (DCS)
gravity [51,52] by establishing the corresponding BMS
balance laws [53,54].
In this paper, we begin a broad investigation of the

gravitational wave memory in theories beyond GR, which
will be crucial for the creation of future, memory-based
probes of gravity. For now, we will restrict ourselves to the
study of the so-called null memory [21], which can be
thought of as being sourced by the energy flux of
the outgoing massless radiation fields themselves [17].
This is motivated by the expectation that for binary
coalescences the ordinary memory associated with
unbound massive objects of the system, including remnant
kicks, will generally be subdominant, a statement that is
confirmed both in GR [15,55] and in BD theory [44].
Moreover, to put this study on firm footing, we choose to
only consider so-called dynamical metric theories of
gravity (see Definition 1), i.e., local and covariant theories
with a symmetric and locally flat, physical metric tensor
that is the only field that couples minimally to matter, while
any additional dynamical gravitational field exclusively
couples to the metric. Moreover, we choose to only
consider metric theories with massless gravitational fields
and therefore for simplicity only consider operators with at
least two powers of derivatives, which in particular imposes
vanishing field potentials.
These requirements select a specific class of theories that

are local-Lorentz invariant and preserve the geodesic
deviation equation of GR, which is at the heart of current
gravitational wave observations. However, it should be
mentioned that it is sometimes computationally advanta-
geous to rewrite a metric theory through field-dependent
transformations of the metric, which might result in an
apparent violation of the minimal coupling requirement
with respect to the redefined metric. A restriction to metric
theories of gravity therefore more precisely corresponds to
only attributing physical significance to gauge-invariant
observables associated with the physical metric. Such an
idea is, in fact, strongly suggested by the Einstein equiv-
alence principle (see, e.g., [41,56]).
Dynamical metric theories of gravity can be classified by

the number and type of gravitational fields they contain, as
well as by their governing evolution equations. The desire
for the inclusion of additional fields derives from a theorem
by Lovelock [57], which, under certain theoretically and
observationally desirable assumptions, establishes that GR
is the only theory that propagates two massless, spin-2
degrees of freedom. More precisely, Lovelock’s theorem
asserts that in four dimensions, the Einstein equations are
the unique, second-order field equations of a covariant and
local theory with a single metric tensor. Similarly, at the
level of amplitudes, GR can be proven to be the unique

gauge-invariant theory of interacting, massless, spin-2
particles with second-order equations of motion [58,59],
confirming earlier work based on the requirement of
Lorentz invariant S-matrices [60].
These theorems imply that a broad class of still-viable

departures from Einstein gravity necessitate the introduc-
tion of new gravitational fields [61]. Indeed, additional
gravitational degrees of freedom are, for instance, a generic
prediction of string theory compactifications (see, e.g.,
[62–66]) and Kaluza-Klein reductions [67,68], in particular
of higher-dimensional Lovelock gravity [69]. Such addi-
tional gravitational fields naturally introduce additional
radiative modes to the theory, which can be excited through
various mechanisms in gravitational wave sources, such as
in compact binary coalescences, as investigated in detail for
many theories (see, e.g., [70–85])
On general grounds, it can be expected that additional

propagating degrees of freedom in the theory of gravity
will greatly affect the null memory, as, in principle, null
memory is sensitive to any radiative losses. How exactly
does the presence of additional null sources modify null
memory and can there be other types of modifications?
These are the questions we focus on and answer in this
paper. We begin in Sec. II by developing a novel way to
understand the null memory from the so-called Isaacson
approach, in which the metric tensor is decomposed into a
high- and a low-frequency part. Within this framework, the
null memory naturally arises as a low-frequency back-
ground perturbation induced by the coarse-grained energy
density carried by any high-frequency perturbations present
in the theory.
We then proceed to apply this approach explicitly to the

most general massless scalar-vector-tensor (SVT) gravity
theory with second-order equations of motion [86].
Section III first defines the theory and presents its propa-
gating degrees of freedom and gravitational polarizations,
while Sec. IV calculates the associated null memory. The
beyond-GR null-memory result of this calculation [pre-
sented in Eqs. (92) and (101)] encompasses many popular
modified-gravity theories and matches with the memory
extracted from the asymptotic symmetry approach in
BD theory [45,46], as we explicitly demonstrate in
Appendix C. Moreover, we further exemplify the general-
ized Horndeski result by offering the explicit correspond-
ences to scalar-Gauss-Bonnet (SGB) gravity [62,64,65,87]
and double-dual Riemann gravity [88–90]. The beyond-GR
null-memory results of Sec. IV are also presented both in
terms of the transverse-traceless part of the components of
the metric perturbation, as well as in terms of the elements
of the spin-weighted spherical harmonic expansion of the
metric perturbation. A proof of the key identity [see
Eq. (96)], which allows us to establish the equivalence
between these representations, is provided in Appendix B.
We continue in Sec. V by generalizing these results

further through the development of a new theorem, which
proves that the structure of the null-memory equation
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remains in fact unchanged for theories which to first order
on a flat background satisfy decoupled massless wave
equations. This assumption is met by arguably almost any
massless and local-Lorentz invariant metric theory of
gravity, whose effective field theory (EFT) structure
remains stable under the inclusion of deviations from
GR. In other words, the theorem proves that the beyond-
GR null memory simply receives additional contributions
proportional to the energy flux of any new, propagating
gravitational degree of freedom, similar to contributions
from ordinary massless matter fields.
Interestingly, the results described above suggest that

one may be able to use future gravitational wave memory
observations not only as a probe of the highly nonlinear
regime of gravity, but also as a largely model-agnostic test
for additional gravitational degrees of freedom in nature.
We discuss these future research directions in the
Conclusion presented in Sec. VI. Henceforth, we use a
ð−;þ;þ;þÞ metric signature and set c ¼ 1 throughout.

II. GRAVITATIONAL MEMORY
IN THE ISAACSON PICTURE

The gravitational null (or nonlinear)memory inGR can be
understood as originating from the Einstein equations within
the Landau-Lifshitz approach [18,19]. We will argue in this
section, however, that the equations at the root of thememory
arise rather naturally from the alternative Isaacsonviewpoint,
which identifies the null memory as a low-frequency
perturbation of the background spacetime that is parametri-
cally distinct from the high-frequency waves that generate
thememory through backreaction of the stress energy carried
by the waves. Moreover, this shift of perspective provides
stringent arguments for the necessity of a spacetime averag-
ing over the radiative memory-source tensor.
For convenience, we first offer a quick review of the

arguments originally brought forth by Isaacson [91,92] (see
also [93–95]) within GR in Sec. II A. This will also allow
us to set the notation. Toward the end of Sec. II A, we then
explore how the memory equation naturally arises from the
coarse-grained low-frequency Isaacson equation. These
arguments are then generalized in Sec. II B to more general
dynamical metric theories of gravity with an arbitrary
number of gravitational fields on top of the metric.

A. Isaacson picture and null memory in GR

Consider GR, hence a theory on a four-dimensional
manifold M with Lorentzian metric gμν and an associated
Levi-Civita connection, governed by the Einstein equa-
tions. Omitting any matter contributions for simplicity,1 the
vacuum Einstein equations can be written as Rμν ¼ 0. The

first part of this subsection will closely follow the treatment
in [93,95].
Within the Isaacson picture [91,92], the notion of

gravitational waves propagating on an arbitrary back-
ground spacetime is given physical meaning by a clear
separation of scales. More concretely, one requires the
separation

fL ≪ fH ð1Þ
between a slowly varying background of frequencies lower
than fL and high-frequency perturbations, i.e., gravitational
waves, of characteristic frequency fH. We therefore decom-
pose the metric as

gμν ¼ ḡLμν þ hHμν; ð2Þ
where a super- or subscript L and H indicate the depend-
ence of a quantity on the low or high frequencies,
respectively. Because of the clear separation of physical
scales, this decomposition is actually unique and does not
depend on the chosen coordinates. Moreover, the metric
perturbations are assumed to be of small amplitude

jhHμνj ¼ OðαÞ; ð3Þ

where α ≪ 1 compared to the background ḡLμν ¼ Oð1Þ.2 In
conclusion, there are two small parameters at hand, namely,
the amplitude of the perturbations α, as well as the ratio of
frequencies fL=fH. Moreover, since the scale on which
the low- and high-frequency components of the metric
[Eq. (2)] vary is determined by fL and fH, respectively,
one schematically has that ∂ḡLμν ≤ OðfLÞ and ∂hHμν ¼
OðαfHÞ [93].
At this point, a comment on the choice of separation of

scales Eq. (1) in frequency space is in order. In the literature
(for instance, in the original work by Isaacson [91,92]),
the distinction between a “slowly varying” background and
a wavelike perturbation is usually made by imposing a clear
separation in terms of scales of spatial variations LL and
LH, instead of temporal variations characterized through
scales of frequency fL and fH. Hence, instead of Eq. (1)
one demands LH ≪ LB, also known as a short-wave
expansion, where the scale LH is associated with the
characteristic wavelength of the wavelike perturbation.
Demanding LH ≪ LB is in principle distinct from
Eq. (1). This is because, while LH and fH are naturally
related through the dispersion relation of the high-
frequency wave, this is a priori not the case for the
variations LL and fL of the background, where the notion
of slowly varying in time or in space are in principle
unrelated. However, the two choices are interchangeable in
the sense that the conclusions drawn below would remain

1In this work, we will only be interested in regions outside any
potential matter sources of the system.

2Locally, we can always choose a coordinate system in which
the diagonal elements of ḡLμν are of Oð1Þ.
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the same if the condition LH ≪ LB was assumed instead of
Eq. (1). The only difference would be that the distinction
between the slowly varying background and wave pertur-
bation would be drawn at a different level (see Ref. [95] for
more details).3

In light of Eq. (2), we can now expand the vacuum
Einstein equations. Writing the Ricci tensor as a sum of its
background component and an infinite series of operators
depending on increasing powers in hHμν, one finds

0 ¼ ð0ÞRμν
½ḡL� þ ð1ÞRμν

½ḡL; hH� þ ð2ÞRμν
½ḡL; hH�

þ
X∞
i¼3

ðiÞRμν
½ḡL; hH�: ð4Þ

Let us explain the new notation we have introduced. The
quantity ðNÞO½A; B� denotes the expanded operatorO atNth

order in the perturbation field B, as computed with the
background A. For example,

ð1ÞRμνρσ
½ḡ; H� ¼ −

1

2
ð∇σ∇μHνρ þ∇ρ∇νHμσ

−∇σ∇νHμρ −∇ρ∇μHνσ

þ ð0ÞRμγρσ
½ḡ�Hγ

ν − ð0ÞRνγρσ
½ḡ�Hγ

μÞ ð5Þ

for some tensor perturbation Hμν and background metric
ḡμν, such that also

ð1ÞRνσ
½ḡ; H� ¼ −

1

2
ḡμρð∇σ∇μHνρ þ∇ρ∇νHμσ

−∇σ∇νHμρ −∇ρ∇μHνσÞ: ð6Þ
Let us now estimate the size of the operators that appear

in Eq. (6). The second operator in the sum in Eq. (4),
namely, ð1ÞRμν

½ḡL; hH�, is clearly maximally of Oðαf2HÞ.
Indeed, due to the separation of scales given by Eq. (1), any
contribution for which a derivative acts on a background
metric instead of the perturbation field will be parametri-
cally suppressed. Similarly, the second perturbation of the
Ricci tensor ð2ÞRμν

(see, e.g., [93,95] for the exact form)

also only involves two derivative operators, as any term in
Eq. (4), and therefore, ð2ÞRμν

½ḡL; hH� ¼ Oðα2f2HÞ. Except
for the background term ð0ÞRμν

, whose order we will

address later in the discussion, every term ðMÞRμν
in

Eq. (4), maximally of OðαMf2HÞ, is therefore suppressed
compared to the leading-order terms in ðNÞRμν

of OðαNf2HÞ
whenever M > N, and we can rewrite Eq. (4) as

0 ¼ ð0ÞRμν
½ḡL�|fflfflfflfflffl{zfflfflfflfflffl}

?

þ ð1ÞRμν½ḡL; hH�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Oðαf2HÞ

þ ð2ÞRμν
½ḡL; hH�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Oðα2f2HÞ

þOðα3f2HÞ: ð7Þ

To continue, we want to solve Eq. (7) to leading order in
our bivariate expansion, by also imposing the decomposi-
tion of this equation into low- and high-frequency parts,
thus only equating terms with comparable frequency
behavior. This can be viewed as performing a multiple-
scale analysis of this problem. Such a decomposition
leads to the following key observations. First, clearly
the background term ð0ÞRμν

, which is independent of the

high-frequency field, only contains low-frequency modes.
Similarly, any terms coming from ð1ÞRμν, which are linear

in high-frequency perturbation fields, will only contribute
to the high-frequency equations. On the other hand, and
quite crucially, the quantities ð2ÞRμν

at second order in

perturbation fields will contain contributions both at the
level of fH, as well as at the background scales fL, since
two different high-wave-vector modes can combine to form
a low-frequency contribution.
A natural and practical way to single out the low-

frequency part of an expression is to perform an average
h…i over a spacetime region4 with averaging kernel of
characteristic scale fL ≪ fav ≪ fH. For instance, the low-
frequency part of ð2ÞRμν

, which we will denote as ½ð2ÞRμν
�L,

satisfies ½ð2ÞRμν
�L ¼ hð2ÞRμν

i. The high-frequency part can

then be determined through ½ð2ÞRμν
�H ¼ ð2ÞRμν

− hð2ÞRμν
i.

One can also think about the averaging procedure as a type
of coarse graining, which integrates out over the small
scales we are not interested in [93,95]. In the following,
such an averaging will also turn out to be crucial to promote
the energy-momentum flux to a gauge-invariant, and
therefore, physically meaningful, quantity. Several averag-
ing schemes could be applied, but their details are not
essential, as long as the following properties hold [92–96]5:
(I) the average of an odd number of short-wavelength
quantities vanishes; (II) total derivatives of tensors average
out to zero; (III) as a corollary of the above, integration by
parts of covariant derivatives are allowed. See also [97] for
a discussion of these three properties.

3Yet, from the point of view of current gravitational wave
detectors on Earth, it is actually the condition Eq. (1) that allows
for a clear distinction between gravitational waves and the
background [95].

4In this work, we will primarily be interested in the asymptotic
region far from any matter source. In that case, a mere spatial
average over several wavelengths or a temporal average over
several periods would actually suffice (see Ref. [95] for more
details), but for the sake of generality, we choose here to work
with a spacetime average.

5Strictly speaking, requiring these properties introduces an
error that would be relevant at higher orders in perturbation
theory, e.g., boundary terms arising from integration over a box of
finite size do not vanish completely. We will, however, not be
concerned by any of these higher-order corrections in this paper.
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Considering all of the above while solving Eq. (7) to
leading order, we arrive at the following set of equations:

ð0ÞRμν
½ḡL� ¼ −hð2ÞRμν

½ḡL; hH�i; ð8Þ

ð1ÞRμν½ḡL; hH� ¼ 0: ð9Þ

Equation (8) is the leading-order, low-frequency equa-
tion, which we can interpret as telling us that the back-
ground curvature is modified by the backreaction of the
coarse-grained operator hð2ÞRμν

i of high-frequency gravi-

tational waves. This is because, in the absence of other
matter sources, the order of ð0ÞRμν

is simply determined by

the leading-order gravitational wave operator that contrib-
utes to the low-frequency equations. Quite naturally, the
right-hand side of Eq. (8) is therefore interpreted as the
energy-momentum (pseudo)tensor of gravitational waves
[91–93,95]

hð2ÞRμν
½ḡL; hH�i ∝ ð2Þt

GR
μν

: ð10Þ

On the other hand, Eq. (9) is the leading-order, high-
frequency equation, and it simply corresponds to a propa-
gation equation for the leading-order gravitational
waves hH.
This concludes the review of the basic textbook intro-

duction to the Isaacson picture, which we can now use to
construct a well-defined equation that will naturally give
rise to null memory in GR. Let us then make the additional
assumption that the low-frequency background metric ḡLμν
can be further split into a time-independent piece η̄μν of
amplitude Oð1Þ and a low-frequency correction δhLμν.
The time-independent metric η̄μν is assumed to solve
the vacuum Einstein equations, but it need not be the
Minkowski metric. In fact, we chose here to work with a
time-independent background solution η̄μν only for the sake
of simplicity, but a generalization to a background that
varies slowly at Oðf̃L ≲ fLÞ would not change the results
obtained below. The background metric is then split via

ḡLμν ¼ η̄μν þ δhLμν; ð11Þ

where we assume that

jδhLμνj ¼ OðβÞ; ð12Þ

and β ≪ 1. Up to order Oðα2βf2HÞ and Oðαβf2HÞ, Eqs. (8)
and (9), respectively, become

ð0ÞRμν
½η̄� ¼ 0; ð13Þ

ð1ÞRμν½η̄; δhL� ¼ −hð2ÞRμν
½η̄; hH�i; ð14Þ

ð1ÞRμν½η̄; hH� ¼ 0: ð15Þ

One can view η̄μν and δhLμν as the homogeneous and
particular solutions of Eq. (11), respectively, where δhLμν is
the low-frequency component determined by the back-
reaction of the energy-momentum carried by gravitational
waves. In general, the background geometry η̄μν can be
viewed as being sourced by some matter field content
outside the region of interest.
Even though we have introduced here a third small

parameter β, in addition to fL=fH and α, these parameters
cannot all be independent of each other. Since δhLμν is
determined through the coarse-grained backreaction of the
high-frequency gravitational wave perturbations, the scale
of β is determined through Eq. (14) to be

β ∼ α2
f2H
f2L

; ð16Þ

because ð1ÞRμν½η̄; δhL� ¼ Oðβf2LÞ and ð2ÞRμν
½η̄; hH� ¼

Oðα2f2HÞ, hence the requirement that β ≪ 1 imposes a
hierarchy between the two expansion parameters fL=fH
and α, namely,6

α ≪
fL
fH

: ð17Þ

The scenario captured by the assumption in Eq. (11) also
encompasses the asymptotic region of an asymptotically
flat spacetime around an isolated source. More precisely, in
the limit to null infinity, the metric satisfies gμν ¼ ημν þ
Oð1=rÞ in a set of coordinates ft; x; y; zÞg7 and where r≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the radial source-centered coordinate. In

the following, we will frequently employ the loose termi-
nology “limit to (future) null infinity” to describe the
asymptotic behavior of a quantity as r → ∞ at a fixed
asymptotic retarded time u≡ t − r and therefore take the
limit up to the first nontrivial term in the r expansion.8

6Note that the original work by Isaacson [91] explicitly only
considers the situation in which α ∼ fL=fH .

7More formally, we choose to work in the asymptotic rest
frame of the source [93,98]. Since we will neglect any linear or
ordinary memory contributions, and henceforth also any remnant
kicks, we are not concerned with more rigorous definitions of
BMS rest frames in this paper.

8This abuse of terminology mainly arises because of the
precise formulation of asymptotic flatness defined though the
existence of a conformal completion (M̂ ¼ M ∪ I ; ĝμν) where
ĝμν ¼ Ω2gμν, with boundary I of topology S2 × R at null

infinity, where Ω ¼ 0 and b∇μΩ ≠ 0 (see, e.g., [27,99–102]).
Thus, the conformal completion is a manifold with actual
boundary at null infinity, whose nontrivial limit corresponds to
leading-order terms in the expansion in r on the physical
spacetime.
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With this in mind, we can now make a few observations
about the metric in the limit to null infinity. The back-
ground metric η̄μν defined in Eq. (11) asymptotes to the
Minkowksi metric ημν. Moreover, as we will explicitly see
in Sec. IV, the low-frequency perturbation to the back-
ground metric δhLμν naturally describes the gravitational null
memory in GR. This is because in a suitable gauge, Eq. (14)
reduces to

□δhLμν ∝ ð2Þt
GR
μν

½η; hH�; ð18Þ

where

ð2Þt
GR
μν

½η; hH� ∝ h∂μhHαβ∂νhαβH i: ð19Þ

This is the equation whose solution δhLμν yields a gravita-
tional memory contribution that is sourced by the coarse-
grained energy-momentum carried by the high-frequency
gravitational wave hHμν [18,19].
Since ημν is time independent and ḡLμν varies on the scale

fL, the latter corresponds to the characteristic frequency of
the gravitational null memory in GR. Interestingly, Eq. (16)
implies that the null memory is enhanced by an additional
factor of f2H=f

2
L compared to terms at Oðα2Þ. This parallels

the observation in [19], that, while the hereditary time
integral of oscillatory corrections scales with the orbital
timescale, the memory scales with the radiation-reaction
timescale instead. However, note that an estimate of β
above does not represent a faithful estimate of the ampli-
tude of the memory, mostly because one has to take into
account that the memory correction also falls off as 1=r,
which boosts its amplitude up to roughly 10% of the
(nonmemory) oscillatory signal (see also [17]).
Moreover, we want to point out that the inequality in

Eq. (17) is indeed satisfied in astrophysical systems of
interest to ground- or space-based gravitational wave
detectors. The amplitude of gravitational waves is typically
of Oð10−22Þ and Oð10−19Þ for ground- and space-based
detectors, respectively. The high-frequency fH can be
approximated with the frequency at merger, which for a
102M⊙ and 105M⊙ (total) mass binary is approximately
fH ≈ 102 Hz and fH ≈ 10−1 Hz for ground- and space-
based detectors, respectively. The characteristic frequency
of the memory can be estimated from the inverse of the rise
time of the memory at merger, which is approximately
102M, where M is the total mass of the binary (see,
e.g., Fig. 1 in [23]). The low-frequency fL for a 102M⊙
and 105M⊙ (total) mass binary is then fL ≈ 10 Hz
and fL ≈ 10−2 Hz for ground- and space-based detectors,
respectively.
We want to conclude this subsection by defining some

terminology that will be important to distinguish two
similar, but in truth very different, notions used in this
paper (see also [91]). The first one is the notion of

high-frequency perturbations as defined in this section,
which are introduced in contrast to the slowly varying field
content of the background. We henceforth choose to use
the terminology “waves” for such perturbation fields.
Hence, gravitational waves denote the high-frequency
perturbations of the physical metric. On the other hand,
we want to reserve the term “radiation” to denote fields that
escape to null infinity, to which we can associate a power
that is irreversibly carried away from a localized source.
In particular, the polarization modes of the physical metric
in the limit to null infinity will be called gravitational
radiation. Interestingly, such a distinction is important
in order to properly address the manifestation of gravita-
tional memory. This is because, in light of the discussion
above, null memory is a low-frequency perturbation, and
hence, according to the preceding definition, it is not a
“gravitational wave.” On the other hand, memory does
escape to null infinity as a component of the polarization
modes of the physical metric (as a direct consequence of the
definition of memory, which will become clear in Sec. IV),
and therefore, it is part of the gravitational radiation emitted
by the system.

B. Isaacson picture and null memory beyond GR

We now want to generalize the above arguments to more
generic dynamical metric theories of gravity with space-
time ðM ; gÞ, where the metric gμν couples minimally to
matter and nonminimally to a number of additional
dynamical gravitational fields, which we will collectively
refer to as Ψ. Moreover, as already mentioned in the
Introduction, for simplicity we will further restrict
ourselves to theories, for which each term in the action
carries at least two derivative operators. While the main
steps will remain similar to the above treatment within GR,
there are a few important differences that we will high-
light below.
A generic dynamical metric theory is governed by a set

of vacuum field equations, which we schematically denote
as Gμν ¼ 0 for the metric equations and J ¼ 0 for all other
field equations. We will primarily be interested in the
equations for the metric, hence, the generalized vacuum
Einstein equations Gμν ¼ 0. Therefore, henceforth, we
mainly only explicitly write down this equation in the
derivation that follows, but in principle, the considerations
below also hold for any of the additional field equations.
Let us again postulate a separation of frequency scales

fL=fH ≪ 1; ð20Þ

and assume that it is possible to this time not only
decompose the metric, but also any other gravitational
field into a low-frequency background and high-frequency
perturbation component

gμν ¼ ḡLμν þ hHμν; Ψ ¼ Ψ̄L þΨH: ð21Þ
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For simplicity, we will assume that all high-frequency
perturbations can be captured by the same small expansion
parameter α, such that

jhHμνj; jΨHj ¼ OðαÞ; ð22Þ

where α ≪ 1, although in practice of course the amplitudes
of each field wave might be different. In general, one can
assume that the gravitational wave tensor perturbations will
dominate the expansion of the field equations. This is so if
one assumes that deviations from GR must remain small.
Here we will assume that this is the case, and therefore, we
ignore the situation in which there are waves of the
additional fields Ψ but no gravitational waves present in
the spacetime.9

Let us start by again expanding the field equations in the
perturbation fields

0 ¼ ð0ÞGμν þ ð1ÞGμν þ ð2ÞGμν þ
X∞
i¼3

ðiÞGμν; ð23Þ

where, compared to Eq. (4), the respective arguments are
given by replacing ḡL → fḡL;ΨLg and hH → fhH;ΨHg.
On very general grounds, we can still expect that the
background terms ð0ÞGμν will only contain low-frequency

modes, while the terms in ð1ÞGμν, which are linear in

perturbation fields, will only contribute to the high-
frequency equations. In contrast to GR, however, the terms
in this expansion might involve operators with more than
two derivatives. This implies that for a generic metric
theory of gravity, the order counting needs to be modified.
In particular, it is crucial to ensure that in the expansion in
Eq. (23), the higher-order terms in α remain negligible,
such that we can still solve the equations of motion order by
order. As we will now argue, under certain assumptions,
this requirement can be met, such that the beyond-GR
complications do not affect the main character of the results
in Eqs. (8) and (9).
In the following, we will separately consider theories

with and without any higher-order derivative interactions.
Let us first consider the latter, and work with the metric gμν
and any additional fields Ψ in dimensionless natural units.
Since by assumption any term involves exactly two
derivative operators, at each order N in α, there might
be terms of OðαNf2HÞ, OðαNfHfLÞ, or OðαNf2LÞ, just as in
GR. Because of the assumption in Eq. (20), it is clear that
for each N, the term of OðαNf2HÞ dominates. Thus, the
order counting remains the same as in GR [cf. Eq. (7)] and
the arguments in Sec. II A go through.

Let us now consider beyond-GR theories with field
equations that have interactions with more than two
derivatives in the action. By dimensional analysis, each
such term must be multiplied by a corresponding power of
a dimensionful coupling, which we will collectively denote
as ϵ. Theories involving such higher-order derivative
interactions are generally further subclassified in two
different types: (i) theories with higher-derivative inter-
actions that still admit equations of motion at second order
in derivative operators (hence, only up to two derivative
operators per field) and (ii) theories whose equations of
motion are higher order in derivatives.
A restriction to theories with second-order field equa-

tions is usually motivated by the Ostrogradski theorem
[103]. This theorem states that, quite generally, theories
with field equations involving more than two time deriv-
atives per field possess ghost instabilities. Such instabilities
are rooted in a Hamiltonian that is unbound from below.
Yet, solutions to theories with higher-order field equations
can nevertheless be stable within the so-called small-
coupling approximation (see, e.g., [5]). More precisely,
the small-coupling approximation hinges on an EFT point
of view (see, e.g., [104–107]), in which the higher-order
derivative terms can be viewed as (quantum) corrections,
which may leave traces in observables within the regime of
validity of the EFT. This is indeed the case, for example, in
DCS gravity [51,52], which propagates a ghost degree of
freedom [108] that can be eliminated if one imposes the
small-coupling approximation [5].
If one assumes that a quantization of the theory is

inevitable, however, then the first type of theory described
above also needs to be understood as an EFT, for which
quantum corrections are required to remain under control
(see, for instance, [109,110] for a study of quantum
stability of subclasses of covariantized Galileon theories).
Moreover, an EFT point of view for any theory involving
higher-order derivative interactions is further motivated by
the observation that such theories are generally believed to
only be well posed in the weakly coupled regime (see e.g.
[111,112]). Horndeski theories can only be shown to be
well posed in this regime [113], while the well posedness of
other higher-order derivative theories still needs to be
proven. By “well posedness” of a theory, here we mean
more precisely that the hyperbolic partial differential (field)
equations have a well-posed initial value problem and can
be meaningfully evolved in numerical simulations, which is
guaranteed if the system is strongly hyperbolic [112]. Such
a restriction to the weakly coupled regime effectively
translates into the requirement that the couplings of terms
involving more than two derivative operators remain small
compared to the highest-frequency scale fH.
The arguments above therefore naturally suggest that one

should only apply such theories in regimes in which the
coupling ϵ of any term in the action that involves more than
two derivatives is treated as small when compared to the

9Note that if the waves of a particular additional gravitational
field are parametrically smaller in amplitude than the gravita-
tional waves, then it might be that the effect of that wave only
comes in at higher orders and would therefore drop out of our
leading-order analysis.
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energy scale of the perturbations. Such a small-coupling
requirement then enables us to include such higher-derivative
theories in our analysis. More precisely, we demand that for
any scale of energy fH below the scale of validity of the EFT,
we have

ϵfH ≲ 1: ð24Þ

This directly implies that the leading-order terms in the
expansion in Eq. (23) are again dominated by α, in the sense
that any operator ðMÞGμν

, maximally of OðαMf2HðfHϵÞiÞ
for some i ≥ 0, remains subdominant compared to the
leading-order terms in ðNÞGμν

ofOðαNf2HðfHϵÞjÞ, whenever
M > N.
The above is all we need to establish the analog to

Eqs. (8) and (9) for the case of generic metric theories. The
arguments above imply that we may solve the generalized
field equations in Eq. (23) to leading order in α, while
ensuring that any higher-order correction remains sub-
dominant. Moreover, because of the split between low- and
high-frequency equations, which we insist is crucial in this
case, we can consider the leading-order contributions of the
low- and high-frequency equations separately. Just as in
GR, these equations will be given by the low-frequency
terms from hð2ÞGμνi and ð0ÞGμν [determined through back-

reaction of the coarse-grained contribution hð2ÞGμνi, at most

of Oðαf2HÞ] and the high-frequency contribution ð1ÞGμν at

most of Oðα2f2HÞ, respectively, while all other contribu-
tions will be of higher order. Thus,

ð0ÞGμν½fḡL; Ψ̄Lg� ¼ −hð2ÞGμν½fḡL; Ψ̄Lg; fhH;ΨHg�i; ð25Þ

ð1ÞGμν½fḡL; Ψ̄Lg; fhH;ΨHg� ¼ 0; ð26Þ

while now

hð2ÞGμνi ∝ ð2Þtμν ð27Þ

captures the effective energy-momentum contribution of all
of the high-frequency perturbations. For later reference, we
explicitly also state here the leading-order low- and high-
frequency equations for the additional field equations
J ¼ 0, which similarly read

ð0ÞJ ½fḡL; Ψ̄Lg� ¼ −hð2ÞJ ½fḡL; Ψ̄Lg; fhH;ΨHg�i; ð28Þ

ð1ÞJ ½fḡL; Ψ̄Lg; fhH;ΨHg� ¼ 0: ð29Þ

Following the GR derivation, let us further decompose
the background metric and background field into time-
independent pieces η̄μν and Ψ̄0, and time-dependent pieces
(with characteristic frequency fL) δhLμν and δΨL, namely,

ḡLμν ¼ η̄μν þ δhLμν; Ψ̄L ¼ Ψ̄0 þ δΨL; ð30Þ

where the set fη̄μν; Ψ̄0g≡ η̄0 solves the background equa-
tions of motion ð0ÞGμν½η̄0� ¼ 0, and where

jδhLμνj; jδΨLj ¼ OðβÞ; ð31Þ

where β ≪ 1. Equations (25), (26), (28), and (29) to
leading order [i.e., to Oðα2f2HÞ and Oðαf2HÞ, respectively]
become

ð1ÞGμν½η̄0; fδhL; δΨLg� ¼ −hð2ÞGμν½η̄0; fhH;ΨHg�i; ð32Þ

ð1ÞJ ½η̄0; fδhL; δΨLg� ¼ −hð2ÞJ ½η̄0; fhH;ΨHg�i; ð33Þ

ð1ÞGμν½η̄0; fhH;ΨHg� ¼ 0; ð34Þ

ð1ÞJ ½η̄0; fhH;ΨHg� ¼ 0: ð35Þ

Observe that the relation in Eq. (16) β ∼ α2f2H=f
2
L still

holds [at least for the tensor perturbations for which we
know a priori that in the presence of gravitational waves
the right-hand side of Eq. (32) does not vanish].
Let us close this section by commenting on the number

of derivatives involved in each term of the equations above.
Note that because of the small-coupling assumption in
Eq. (24), the number of derivative operators involved in
each leading-order term is no longer restricted. However,
for theories satisfying second-order equations of motion
[hence, also including theories of type (i) above] and in the
asymptotic region of an asymptotically flat spacetime
(which we will be interested in, in this work), any operator
at first order in perturbation fields ð1ÞGμν½η̄0; fhH;ΨHg� and
ð1ÞJ ½η̄0; fhH;ΨHg� involves exactly two derivatives. This is
because the maximum number of derivatives per field is
two, while any term involving a derivative acting on the
Minkowski background will vanish. Moreover, anticipating
the results in Sec. V below, we will show that in the limit to
null infinity, this implies that also the low-frequency
contribution hð2ÞGμν½η̄0; fhH;ΨHg�i will only involve two

derivatives. This statement will actually also hold for many
theories of type (ii). However, for some of them, a stronger
assumption than Eq. (24) is needed, namely that

ϵfH ≪ 1; ð36Þ

which assures that any term in ð1ÞGμν½η̄0; fhH;ΨHg� involv-
ing more than two derivatives is of higher order. This
statement will be further discussed in Sec. V D.
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III. THE BASICS OF MASSLESS SVT GRAVITY

As a first application of the approach to the Isaacson
picture discussed in the previous section, we will use that
framework to calculate the backreaction of the energy-
momentum carried by wave perturbations in the limit to
null infinity for a concrete set of metric theories beyond
GR. This will not only confirm that the induced, low-
frequency metric perturbation indeed corresponds to the
null memory, but it will also provide a formula for the null
memory in theories for which the memory has not yet been
explored. For now, we choose to restrict our study to the
leading-order effects in the asymptotic region of asymp-
totically flat spacetimes, mainly because this is the simplest
situation from which observationally relevant conse-
quences can be drawn.
Let us therefore focus on spacetimes that are asymp-

totically flat and expand the metric and any additional
gravitational fields around a Minkowski background

gμν ¼ ημν þOð1=rÞ; Ψ ¼ Ψ0 þOð1=rÞ: ð37Þ

Moreover, we want to consider a particular class of metric
theories of gravity, namely, the most general, massless,
and gauge-invariant10 SVT theories with second-order
equations of motion that include a single Uð1Þ gauge field
Aμ, with field strength Fμν, and a single massless scalar
field Φ, with vanishing potential. The theory thus prop-
agates 5 degrees of freedom. In terms of the notation of
Sec. II B, the theory contains a physical metric gμν
together with two additional gravitational fields
Ψ ¼ fAμ;Φg. The restriction to massless fields results
directly from our assumption of trivial potentials. This is
not a severe restriction because massive fields are, by
definition, not expected to source any null memory, which
we focus on in this paper. This section introduces the
theory, as well as the standard first-order wave solutions in
asymptotically flat spacetime. The actual computation of
the gravitational null memory will then be carried out in
the next section.

A. Action and definitions

The action of SVT gravity can be written as [86]11

SSVT ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p �X5
i¼2

Li

�
; ð38Þ

where12

L2 ¼ G2ðΦ; X; Y; F; F̃Þ; ð39Þ

L3 ¼ −G3ðΦ; XÞ□Φþ ½Ĝ3ðΦ; XÞgαβ
þ ˆ̂G3ðΦ; XÞ∇αΦ∇βΦ�F̃μαF̃νβΦμν; ð40Þ

L4 ¼ G4ðΦ; XÞRþ G4X½ð□ΦÞ2 −ΦμνΦμν�
þ Ĝ4ðΦ; XÞLμναβFμνFαβ

þ
�
ˆ̂G4ðΦÞ þ 1

2
Ĝ4X

�
F̃μαF̃νβΦμνΦαβ; ð41Þ

L5 ¼ G5ðΦ; XÞGμνΦμν −
G5X

6
½ð□ΦÞ3

− 3□ΦΦμνΦμν þ 2ΦμνΦνλΦλ
μ�; ð42Þ

with κ0 ≡ 8πG0, where G0 is the dimensionful, bare

gravitational constant and where Gi, Ĝi, and ˆ̂Gi are
arbitrary functions of Φ, X ≡ −ð1=2Þ∇μΦ∇μΦ, Y ≡
∇μΦ∇νΦFμαFν

α, F≡ −ð1=4ÞFμνFμν, and F̃≡ FμνF̃μν,
with the Hodge dual F̃μν ≡ 1

2
ϵμναβFαβ. The quantity

Lμναβ is the double-dual Riemann tensor, and it is given by

Lμναβ ≡ Rμναβ þ ðRμβgνα þ Rναgμβ − Rμαgνβ

− RνβgμαÞ þ 1

2
Rðgμαgνβ − gμβgναÞ: ð43Þ

We also define Φμν ≡∇μ∇νΦ and GiZ ≡ ∂Gi=∂Z for any
function, and we impose a vanishing potential via
G2ΦnðΦ; 0; 0; 0; 0Þ ¼ 0 for any integer n ≥ 1. Moreover,
as already mentioned, we will for simplicity omit any
explicit matter contributions, although it is important to
keep in mind that only the metric couples minimally to
matter, while the additional scalar and vector remain purely
in the gravity sector. The corresponding equations of
motion associated with the action presented above can,
for instance, be found in the Appendix of [115,116].
The above action actually defines a large class of

theories. This class generalizes the well-known scalar
Horndeski or covariant Galileon gravity class [117–119],
reducing it when ∇μAν ¼ 0 and reducing to vector
Horndeski gravity [120,121] for a vanishing scalar field.
The theory members of this class are determined by the

choices of Gi, Ĝi, and ˆ̂Gi functionals. For example,
G2 ¼ ð2ω=ΦÞX, G4 ¼ Φ, and all other Gi ¼ 0 correspond
to BD gravity [39,40], while other choices lead to other
theories, like SGB gravity [62,64], and double-dual
Riemann gravity [89,90] (see Sec. IV D for more details).

10Gauge invariance, signaling a redundancy in the description
of the vector through a tensor-field Aμ, is a direct consequence of
its masslessness and local-Lorentz invariance.

11This theory was derived through a decoupling limit of
generalized Proca theories [114] written in gauge-invariant form
by introducing Stueckelberg fields.

12Note that up to integrations by part, a term with G3ðΦ; XÞ ¼
Φ is equivalent to the kinetic term of the scalar, such that we
specifically exclude such a term from G3.
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B. Leading-order waves

We will now consider the leading-order waves of the
theory presented in the previous section and solve for the
corresponding propagating or radiative degrees of freedom
of the gravitational fields. Moreover, we will also comment
on the direct detectability of the radiation through gravi-
tational wave observations.

1. Radiative degrees of freedom

We start by assuming that we can split all fields between
slowly varying and high-frequency components, as in
Eq. (21) of Sec. II B. Since we are focusing on asymp-
totically flat spacetimes that contain an isolated matter
source, the limit to null infinity naturally selects the
time-independent background solutions [Eq. (30)] by
identifying

η̄μν ¼ ημν; Ψ̄0 ¼ Ψ0; ð44Þ

where ημν andΨ0 are the Minkowski metric and asymptotic
field values defined through Eq. (37). In the concrete case
of SVT gravity, we define the zeroth-order background
fields Ψ0 ¼ fa0μ;φ0g, which solve the background-field
equations if we impose

a0ν ¼ 0; ∇μφ0 ¼ 0; ð0ÞG2 ¼ 0; ð45Þ

where we define ð0ÞGi ≡ Giðφ0; 0;…; 0Þ. The background
equations of motion would actually be solved even for a
nontrivial but constant background vector a0ν. However, in
order to preserve local-Lorentz invariance, we impose a
vanishing asymptotic value for the vector field.
Moreover, we now assume that the isolated system

produces gravitational radiation, whose physical modes
asymptote to future null infinity with a 1=r falloff. We also
impose a “no-incoming radiation” boundary condition at
past null infinity. We then typically describe the oscillatory
radiation modes in the radiation zone through perturbations
of characteristic amplitude OðαÞ. These perturbations can
therefore be identified with the high-frequency perturba-
tions hHμν and ΨH of Sec. II B, so that we have

hHμν ¼ hμν;ΨH ¼ faμ;φg: ð46Þ

Note that for these fields, the terms radiation and wave can
thus be used interchangeably. We further want to ensure a
nonvanishing kinetic term for at least the tensor perturba-
tions by imposing ð0ÞG4 ≠ 0. For a certain gravitational
wave source within a given theory, the scalar and vector
waves might or might not be excited, depending on the
concrete situation. We assume, however, that a tensor
gravitational wave is present.
To address the leading-order wave propagation in

Eqs. (34) and (35), it is very useful to first expand the

action in Eq. (38) to second order in perturbations,13 which
facilitates the determination of the physical dynamical
degrees of freedom in the theory in terms of gauge-invariant
modes. The second-order action in SVT theory contains a
kinetic term that couples the metric and scalar perturbations
hμν and φ. This term can, however, be removed through the
field redefinition

ĥμν ≡ hμν þ ημνσφ; σ ≡
ð0ÞG4Φ
ð0ÞG4

: ð47Þ

Moreover, the scalar and vector perturbation can be rescaled
so that their kinetic terms in the second-order action are
canonically normalized. The necessary rescaling is

φ̂≡ ρφ; âμ ≡ ζaμ; ð48Þ

where

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3σ2 þ ðð0ÞG2X − 2ð0ÞG3ΦÞ

ð0ÞG4

s
ð49Þ

and

ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0ÞG2F
ð0ÞG4

s
: ð50Þ

We require here that the coefficients σ, ρ, and ζ
are real, which is also imposed by the positivity of
the energy carried by the perturbations as we will see
explicitly below. In terms of the new variables in Eqs. (47)
and (48), the second-order action of SVT theory then
simply reads

ð2ÞS
SVT ¼ −1

2κeff

Z
d4x

�
ĥμνEαβ

μν ĥαβ þ
1

4
f̂μνf̂

μν þ 1

2
∂μφ̂∂

μφ̂

�
;

ð51Þ

where we define the field strength of the leading-order
vector perturbation f̂μν ≡ ∂μâν − ∂νâμ, κeff ≡ 8πGeff with
the effective gravitational constant Geff ≡G0=ð0ÞG4, as
well as the trace ĥt ≡ ημνĥμν. Moreover, Eαβ

μν stands for the
flat-space Lichnerowicz operator

Eαβ
μν ĥαβ ¼ −

1

4
½□ĥμν − 2∂α∂ðμĥνÞ

α þ ∂μ∂νĥ
t

− ημνð□ĥt − ∂α∂βĥ
αβÞ�; ð52Þ

13At this order, the perturbations ofOðα2Þ would contribute an
additional linear term in the action, which is, however, irrelevant
for the equations of motion, and we can safely neglect it at this
stage.

HEISENBERG, YUNES, and ZOSSO PHYS. REV. D 108, 024010 (2023)

024010-10



which allows for compact notation when writing down the
Fierz-Pauli Lagrangian. Indeed, the first term in the action of
Eq. (51) is equivalent to the usual Fierz-Pauli combination

ĥμνEαβ
μν ĥαβ ¼

1

4
½∂μĥαβ∂μĥαβ − ∂μĥ

t
∂
μĥt

þ 2∂μĥ
μν
∂νĥ

t − 2∂μĥ
μν
∂αĥ

α
ν� ð53Þ

upon integration by parts. Hence, in terms of new variables,
the second-order action in Eq. (51) is nothing but the
linearized Einstein-Hilbert action with a sum of additional
canonical fields.
It is well known that perturbed solutions of metric theories

of gravity are subject to gauge redundancies, which can be
understood as arising from the invariance of the action under
coordinate transformations, or equivalently, the invariance of
the spacetime under diffeomorphisms.14 Concretely, pertur-
bations δhμν of a given background solution η̄μν in a given
coordinate system xμ (as well as the perturbations of all other
fields) are only physical up to adding fake perturbations δhfμν
to the background that can be removed by a small coordinate
transformation. Thinking actively, a perturbation is fake if
there exists an infinitesimal coordinate transformation that
moves the points from xμ → x0μ ¼ xμ þ ξμ, with jξμj ≪ 1,
such that15

η̄μνðx0Þ þ hfμνðx0Þ ¼ η̄0μνðx0Þ; ð54Þ
where we compare the expressions at the same point x0.
Therefore, the fake perturbations correspond to the Lie
derivative of the background metric hfμνðxÞ ¼ η0μνðx0Þ−
η0μνðx0Þ þOðξ2Þ ¼ −Lξη̄μν þOðξ2Þ, such that any pertur-
bation δhμν is only physical up the gauge transformation

δhμν → δhμν − Lξη̄μν: ð55Þ
The same holds for all other field perturbations δΨ on a given
background solution Ψ̄0,

δΨ → δΨ − LξΨ̄0: ð56Þ
For the SVT gravity at hand, only the metric perturbation

transforms under this gauge symmetry through Lξημν¼
ðξα∂αημνþ2ηαðν∂μÞξαÞ¼2ηαðν∂μÞξα, since for the back-
ground solutions in Eq. (45), we have that Lξφ¼
ξα∂αφ0¼0 and Lξa

μ
0 ¼ ξα∂αa

μ
0 − aα0∂αξ

μ ¼ 0. Moreover,

since we made a split between the low-frequency and high-
frequency parts of the fields, we need to make sure that the
small coordinate transformations also affect only in this
case the high-frequency part of the metric perturbation hμν,
which therefore transforms as

hμν → hμν − 2ηαðν∂μÞξαH: ð57Þ

Note that this gauge freedom is entirely inherited by the
redefined perturbation variable ĥμν. On the other hand,
the vector perturbation aμ inherits a gauge freedom from
the Uð1Þ gauge transformations of the massless vector Aμ

given by

aμ → aμ þ ∂μΛH: ð58Þ

By performing suitable coordinate [Eq. (57)] and Uð1Þ
gauge transformations [Eq. (58)], we can impose at the
level of the equations of motion the following gauge
conditions:

∂μĥ
μν ¼ 0; ĥt ¼ 0; and ∂μâμ ¼ 0: ð59Þ

In this gauge, it is no surprise that the leading-order wave
propagation described by Eqs. (34) and (35) leads to
decoupled wave equations for all the hatted perturbations

□ĥμν ¼ 0; □âμ ¼ 0; □φ̂ ¼ 0: ð60Þ

Let us now single out the radiative modes that dominate
in the limit to null infinity. To do so, we perform the
usual 3þ 1 decomposition with a spatial orthonormal basis
given by a unit longitudinal or radial direction ni and
two transverse vectors ui and vi, such that δij ¼ ninj þ
uiuj þ vivj. The plane wave solutions of Eq. (60) can then
be expanded in terms of 5 radiative degrees of freedom, 2 of
which appear in the gauge-invariant, transverse-traceless
(TT) tensor part (hþ and h×), 2 are transverse vectors (âu
and âv), and 1 is a scalar φ̂:

ĥTTij ¼ ĥþeþij þ ĥ×e×ij; âTi ¼ âuui þ âvvi; φ̂; ð61Þ

where we defined the polarization tensors eþij ≡ uiuj − vivj
and e×ij ≡ uivj þ viuj.
These radiative modes are indeed invariant under the

residual gauge freedom left over after fixing Eq. (59),
which are transformations satisfying □ξμH ¼ ∂μξ

μ
H ¼ 0 and

□ΛH ¼ 0. While other components of the metric and
vector perturbations are not explicitly gauge invariant
in this approach, this will not be relevant in our con-
siderations, since, in particular, only the radiative modes
will contribute to the gauge-invariant, and hence, physical,
response of a detector in the radiation zone (see Sec. III B 2
below). One could have chosen to work exclusively with

14More precisely, the spacetime solution ðM ; g;ΨÞ with a
metric g and additional tensor-fields Ψ defined on the manifold is
physically equivalent to the solution ðN ;ϕ�g;ϕ�ΨÞ, where
ϕ∶M → N is a diffeomorphism and ϕ� the associated pushfor-
ward [101].

15In terms of diffeomorphisms, the active transformation is
given by the pushforward ðϕ�η̄Þμν, whose components are
equivalent to a coordinate transformation η̄0μν defined through
the pullback x0μ ¼ ðϕ�xÞμ (see, e.g., [101,122,123]).
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manifestly gauge-invariant quantities (see, e.g., [94]) at the
cost of having to deal with a priori nonlocal fields. Once
more, however, only certain combinations of them will be
locally measurable in the physical detector response. Yet
another approach would have been to not introduce any
metric perturbations or vector potentials at all, and only
work with manifestly gauge-invariant and local objects
(see, e.g., [22,124]). In the end, all of these approaches are
physically equivalent in the limit to null infinity.
Before proceeding, let us make several observations

about the radiative modes presented above. First, observe
that the tensor polarizations defined above are identical to
the tensor polarizations of the physical metric perturba-
tions: ĥþ ¼ hþ and ĥ× ¼ h×, and hence, ĥTTij ¼ hTTij .
Second, note that one can construct linear combinations
of the radiative modes that have a certain (tensor s ¼ −2 or
vector s ¼ −1) “spin weight” (see, e.g., [102]), namely,

h ¼ ĥ≡ ĥijm̄im̄j ¼
1

2
ĥijðeþij − ie×ijÞ ¼ ĥþ − iĥ× ð62Þ

and

â≡ âTi
ffiffiffi
2

p
m̄i ¼ âu − iâv; ð63Þ

where m̄i ≡ ð1= ffiffiffi
2

p Þðui − iviÞ is a transverse vector of
spin weight s ¼ −1 as determined by its behavior under
rotations about the longitudinal direction. Third, observe
that both the tensor and the vector polarization modes are
transverse, while the tensor modes are, moreover, traceless.
It is convenient to define a transverse projector

⊥ij ≡ δij − ninj ¼ uiuj þ vivj ¼ mim̄j þ m̄imj; ð64Þ

as well as a transverse-traceless projector

⊥ijab ≡⊥ia⊥jb −
1

2
⊥ij⊥ab: ð65Þ

These projectors can be used to single out the transverse
vector modes and transverse-traceless tensor modes in any
given expression. For instance, we can write

ĥTTij ¼ ⊥ijabĥab; âTi ¼ ⊥ijâj: ð66Þ
In what follows, we will use the two spin-weighted scalars
in Eqs. (62) and (63), together with the scalar perturbation
φ̂ to describe the leading-order tensor, vector, and scalar
radiation, respectively. In coordinates fu; r;Ω ¼ ðθ;ϕÞg
and asymptotically close to null infinity, these radiative
modes take the general form

ðĥ; â; φ̂Þ ∼ 1

r
½fhðu; θ;ϕÞ; faðu; θ;ϕÞ; fφðu; θ;ϕÞ� ð67Þ

for some complex functions fh;a and real function fφ.

2. Gravitational polarizations

At this point, it is important to realize the difference
between the notion of propagating degrees of freedom of
the gravitational fields, also called modes, discussed above
and gravitational polarizations. The former are gauge-
invariant solutions to the equations of motions for the
leading-order perturbed fields in the theory. The latter are
gauge-invariant radiative modes within the perturbations
of the physical metric that minimally couples to matter,
and which, therefore, can be detected through typical
gravitational wave observations. In order to determine
the admitted gravitational polarizations of a theory, one
must compute the electric part of the Riemann tensor
of the physical metric that enters the geodesic deviation
equation.
In the nonrelativistic and low-frequency regime and in

Fermi normal coordinates, the geodesic equation reads (see,
e.g., [95])

̈si ¼ −Ri0j0sj; ð68Þ

where si is the proper distance between nearby geodesics,
while overhead dots represent derivatives with respect to
proper time along the geodesic. This equation is at the core
of all gravitational wave experiments, and it is valid for any
metric theory of gravity, since it is a direct consequence of
minimal coupling to matter and does not depend on the
field equations.
Very generically, a metric theory of gravity admits up to

six polarizations [125,126]. This statement can be under-
stood from the fact that, in the limit to null infinity of an
asymptotically flat spacetime characterized by Eq. (37), the
physical metric can be decomposed as

gμν ¼ ημν þHμν; ð69Þ

with ημν the Minkowski metric and an arbitrary perturbation
Hμν characterizing six distinct gauge-invariant radiation
modes HP ¼ fHþ; H×; Hu;Hv;Hb;Hlg of the physical
metric, which fall off as 1=r near future null infinity
[cf. Eq. (67)]. The electric part of the linear Riemann tensor

ð1ÞRμνρσ
½η; H�, which itself is gauge invariant, can then be

written as a sum of these six gauge-invariant polarizations
HP. More precisely, near future null infinity, one finds that
(see, e.g., [41,94])

Ri0j0 ¼ −
1

2
Äij þO

�
1

r2

�
; ð70Þ

where

Aij ¼ eþijHþ þ e×ijH× þ 2nðiujÞHu þ 2nðivjÞHv

þ ðuiuj þ vjviÞHb þ ninjHl: ð71Þ
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The structure of the electric part of theRiemann tensor tells us
that, on top of the two familiar tensor modesHþ andH×, the
change in proper distance can also arise from two additional
vector modesHu andHv or from a scalar longitudinalHl or
scalar transverse (“breathing”) Hb mode.
In order to determine the gravitational polarization

content of the leading-order wave within the SVT gravity,
we can simply evaluate the general linear expression in
Eq. (5), namely,

Ri0j0 ¼ −
1

2
ð∂0∂0Hij þ ∂i∂jH00 − ∂0∂iH0j − ∂0∂jH0iÞ

ð72Þ

for Hμν → hμν. Decomposing the leading-order wave in
terms of the gauge-invariant degrees of freedom of Eq. (61),
using Eq. (47), one can write

hij ¼ ĥTTij − δij
σ

ρ
φ̂ and h00 ¼

σ

ρ
φ̂: ð73Þ

After imposing the falloff of Eq. (67), and noting that to
Oðr−1Þ we can replace ∂i → −ni∂0, the electric part of the
linearized Riemann tensor reads

Ri0j0 ¼ −
1

2

�
̈ĥTTij − ½δij − ninj�

σ

ρ
̈φ̂
�

¼ −
1

2
ðeþijḧþ þ e×ijḧ× − ½uiuj þ vivj�σφ̈Þ: ð74Þ

Thus, whenever σ ≠ 0, the theory possesses an additional
scalar breathing polarization within the detector response,
as it is well known from scalar Horndeski theory [127]. On
the other hand, since the massless vector does not couple
nonminimally to the Ricci scalar, the gravitational vector
degrees of freedom will never induce any additional
gravitational polarizations. Therefore, this is a concrete
example of a theory that possesses 5 propagating degrees of
freedom, yet only a maximum of three polarizations of the
physical metric survive.
Observe that, in the language of Sec. II, Hμν here in

principle represents the “total” perturbation, including both
the leading-order high-frequency perturbations, as well as
the low-frequency perturbations hHμν and δhLμν. Therefore,
Hμν will generically also contain the memory component.
In other words, while being a nonoscillatory “Coulombic”
contribution (cf. [17]), memory can still be regarded as a
part of the radiative modes of the physical metric, which
are, in turn, part of the measurable components of the
Riemann tensor in the limit to null infinity. This is nothing
but a rephrasing of the statement that memory is part of the
gravitational radiation, as defined earlier. These memory
modes in the perturbation of the physical metric will inherit
the tensor structure from the leading-order radiation, and
therefore, it is in general not possible for memory modes to

excite a different gravitational polarization from the ones
excited through the leading-order radiation (see also dis-
cussion below). This is because the excitation of additional
polarizations can be associated with nonminimal couplings
between the fields and the Ricci scalar in the full action of
the theory.

IV. NULL MEMORY IN MASSLESS
SVT THEORIES

We will now proceed and compute the memory con-
tribution as sourced by the leading-order radiation of the
SVT theory introduced in the previous section. In general,
the memory effect can be understood by integrating the
linearized geodesic deviation equation [Eq. (68)] twice
using Eq. (70), and then solving for the separation vector
Δsi ≡ ΔsiðτfÞ − Δsiðτ0Þ between an initial time τ0 and a
final time τf before and after the passage of a gravitational
wave16

Δsi ≈
1

2
ΔAijsjðτ0Þ: ð75Þ

A permanent change in proper distance Δsi ≠ 0 character-
izes gravitational memory. More precisely, any piece within
the radiative gravitational polarizations of the physical
metric in Aij, which induces such a permanent displace-
ment, will be called a memory component. Hence, on a
very general basis, metric theories of gravity are expected
to contain memory that can be associated with each of the
six polarizations. This naturally leads to a distinction
between scalar, vector, and tensor memory, where in this
terminology, the terms “scalar,’, “vector,” or “tensor” refer
to the polarization type that induces a permanent displace-
ment (not to be confused with the tensorial nature of a
leading-order wave that acts as a source of memory, which
is not restricted in any way).
Let us therefore consider the existence of leading-order

waves with small amplitudes of OðαÞ, as described in the
previous section, which satisfy the propagation equations
[Eqs. (34) and (35)] and, in practice, are assumed to be
known a priori, and try to solve the leading-order low-
frequency equations [Eqs. (32) and (33)] close to null
infinity. These solutions will determine the low-frequency
background components

δhLμν ¼ δhμν; δΨL
μν ¼ fδaμ; δφg: ð76Þ

As we will now see explicitly in the next subsection, these
low-frequency perturbations will in general describe gravi-
tational memory as defined above. In particular, the tensor
memory described by δhμν as the solution to Eq. (32) will
correspond to the gravitational memory known from GR.

16Note that we are neglecting here subdominant initial velocity
contributions.
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Can there also be similar nontrivial scalar or vector
memory contributions? Or, in other words, does the
low-frequency equation for the scalar and the vector field
[Eq. (33)] in SVT theories also give rise to a corresponding
scalar and vector memory component? For the vector
perturbations, the answer can be given right away, since
SVT gravity never excites any vector polarizations in the
physical metric. By definition, this directly implies that
SVT gravity will not contain any vector memory either. For
the scalar equation, there is no analogous source entering
the low-frequency equation [Eq. (33)], which simply reads
□δφ ¼ 0. This is, however, not surprising, in the sense that
within the SVT theory that we consider, no scalar source is
radiated to null infinity. Therefore, the only nontrivial null-
memory component is the tensor null memory, which is
what we will focus on henceforth. Moreover, since the low-
frequency perturbation δhμν is sourced by radiative modes
that reach null infinity, it is more specifically called a tensor
null-memory component.

A. Tensor null memory: Derivation
of the memory-evolution equation

The right-hand side of Eq. (32) is the memory-source
term given by the averaged second-order metric field
equations as a function of the leading-order waves, and
it can be readily computed and simplified tremendously.
Using the gauge fixing conditions of Eq. (59), as well as the
leading-order equations of motion [Eq. (60)], while also
performing several integrations by parts,17 the result can be
reduced to

hð2ÞGSVT
μν

i ∝ h∂μĥαβ∂νĥαβ þ 2∂μâα∂νâα þ 2∂μφ̂∂νφ̂i ∝ tSVTμν :

ð77Þ

Observe that this expression only contains two derivative
operators and does not contain any second-order perturba-
tions and any mixed terms between first-order perturbations
of the tensor, vector, and scalar waves. Spacetime averag-
ing removes any second-order perturbations, since they
would depend on the high-frequency scale only, and thus,
they average out. Averaging also allows for integrations by
parts, which is crucial to ensure gauge invariance. The
boundary terms generated upon integration by parts can be
discarded because they introduce higher-order corrections
only [see footnote above Eq. (8)].
Let us comment on the result above. For notational

compactness, Eq. (77) introduces the total effective energy-
momentum tensor tSVTμν ≡ tGRμν þ tâμν þ tφ̂μν. Thus, as in GR
and despite the many nontrivial operators in the full action
of Eq. (38), the result is simply proportional to the sum of

known energy-momentum (pseudo)tensors of free bosonic
fields in terms of leading-order perturbations

tGRμν ¼ 1

4κeff
h∂μĥαβ∂νĥαβi; ð78Þ

tâμν ¼
1

2κeff
hf̂μαf̂ναi ¼

1

2κeff
h∂μâα∂νâαi; ð79Þ

tφ̂μν ¼ 1

2κeff
h∂μφ̂∂νφ̂i: ð80Þ

Because of the spacetime average and the wave equations
[Eq. (60)], this total energy-momentum tensor is con-
served,18 as well as traceless

∂
μtSVTμν ¼ 0; ημνtSVTμν ¼ 0: ð81Þ

Furthermore, gauge invariance can easily be checked (see,
e.g., [95]), such that the total stress-energy (pseudo)tensor
only depends on the modes in Eq. (61), namely,

tSVTμν ¼ 1

4κeff
h∂μĥTTij ∂νĥTTij þ 2∂μâTi ∂νâ

T
i þ 2∂μφ̂∂νφ̂i: ð82Þ

The left-hand side of Eq. (32) is the operator ð1ÞGμν

evaluated at the low-frequency perturbation, which will
have the same structure as the operator governing the high-
frequency propagation equation. Thus, within this term, the
low-frequency perturbations can also be decoupled by
performing a redefinition of fields analogous to what we
used for the leading-order radiation [see Eq. (47)], namely,

δĥμν ≡ δhμν þ ημνσδφ: ð83Þ

Moreover, thanks to the properties of the source term in
Eq. (81), infinitesimal coordinate transformations at the
low-frequency level ξLμ can be used to once again impose
the gauge conditions19

∂
μδĥμν ¼ 0; ημνδĥμν ¼ 0; ð84Þ

such that the left-hand side of Eq. (32) reduces to a wave
equation ð1ÞG

SVT
μν

∝ □δhμν.

Putting everything together, the metric equation
[Eq. (32)] in the asymptotic region of an asymptotically
flat spacetime described by SVT gravity simply reads

□δĥμν ¼ −2κefftSVTμν : ð85Þ

17Recall that integration by parts is permitted due to the
spacetime averaging, which is crucial in this calculation.

18Conservation follows from the fact that the divergence
commutes with the average and property (II) of the average
procedure (see Sec. II A).

19Note that these gauge conditions do not correspond to what is
usually called the TT gauge. Indeed, the TT gauge can, in general,
only be imposed outside of the source (see, e.g., [95]).
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Thus, as in GR, the physical energy-momentum carried by
the leading-order waves induces a new, low-frequency
perturbation δĥμν that satisfies a sourced wave equation.
Equation (85) can be viewed as our first key result, as it
essentially already implies that the new low-frequency
component is identified with a null-memory contribution
(see Refs. [18,19,22]) and anticipates that the memory
equation in full SVT gravity is modified in a very minimal
way, independent of the many details at the nonlinear level.
Let us stress, however, that the precise form of the

leading-order TT radiation itself can still depend on the
higher-order terms through modifications in the dynamics
that create the gravitational waves. Such modifications of
the amplitude and phase of the emitted gravitational waves
therefore also alter the memory contribution in an indirect
way. Interestingly, in the case of compact binary coales-
cence, modifications in the TT radiation already simply
arise due to a change in the rate of emitted energy induced
by the emission of additional scalar or vector radiation.

B. Tensor null memory: Solution
to the evolution equation

We will now explicitly present the procedure to solve
Eq. (85) for field points ðt; x⃗Þ in the limit of outgoing null
rays and obtain an explicit formula for the tensor null
memory. Up to the expression for memory in terms of the
TT part of the components of the physical metric pertur-
bation in Eq. (89) below, we will follow the arguments laid
out in [18] (see also [19]), filling in certain useful details.
We then proceed by further simplifying the memory
formula through an explicit rewriting of the result in terms
of coefficients of an expansion in spin-weighted spherical
harmonics. This is also the form in which memory is
naturally extracted from asymptotic BMS balance laws.
Explicitly showing the equivalence of the two different
representations will therefore later allow us to confirm our
results by a direct comparison to recent computations of
BMS balance laws in the special case of BD theory (see
Appendix C).
The wave equation can be solved generically through the

standard retarded Green’s function

δĥμνðxÞ ¼
κeff
2π

Z
d4x0tSVTμν ðx0Þ δðt − t0 − jx⃗ − x⃗0jÞ

jx⃗ − x⃗0j : ð86Þ

To transform this expression into a form that is useful to us,
we need to perform several simplification steps. First, we
will switch to spherical coordinates fu; r;Ω ¼ ðθ;ϕÞg for
the arguments of the tensor components20 with x⃗ ¼ rn⃗,
where n⃗ is the outgoing radial unit vector and u ¼ t − r is
the asymptotic retarded time. This will ease an evaluation

of the expression close to null infinity, when we take
the limit r → ∞ at fixed u. We do the same for the
source, such that the integration measure becomes d4x0 →
du0r02dr0d2Ω0.
Moreover, like for the leading-order waves, the physical

response to the tensor memory outside of the source21 is
captured by the propagating TT component of the metric
perturbation δĥTTij ¼ δhTTij of the physical metric, as dic-
tated by the general expression given in Eq. (70). This
means that the measurable effect of the tensor null memory
is given by a projection of the spatial components of
Eq. (86) onto its transverse-traceless part.
The final step required to transform Eq. (86) into a more

suitable form for our calculations is to study the behavior of
the integrand with respect to r0 in order to perform the
radial integration. To do this, we note that, while we are
interested in the behavior of δĥμν close to null infinity, the
radiative source term itself also needs to be considered far
from its own source (i.e., in the radiation zone), where the
outgoing leading-order waves are well defined. In particu-
lar, this implies that the leading-order waves satisfy
Eq. (67) with respect to the source variable r0, such that
to leading order in large r0, the radiative energy-momentum
tensor takes the form (see, e.g., [95])22

tμνðu0; r0;Ω0Þ ¼ 1

r02
dE

du0dΩ0 l
0
μl0

ν: ð87Þ

Here, the null vector lμ is defined as lμ ≡ −∇μtþ∇μr,
with ∇ir ¼ ni and the energy flux dE=du0dΩ0 only
depends on retarded time u0 and the direction Ω0. This
allows us to use the delta function to perform the radial
integral and arrive at23

δhTTij ðu; r;ΩÞ ¼
κeff
2π

Z
u

−∞
du0

Z
d2Ω0 dE

SVT

du0dΩ0

×

� ⊥ijabðΩÞn0an0b
rð1 − n⃗0 · n⃗ðΩÞÞ þ u − u0

�
: ð88Þ

The limit to null infinity can now be performed rather
straightforwardly to yield

20As it is customary in a large part of the gravitational wave
community, we will still use a Minkowski basis ft; x; y; zg for the
index structure of tensor components.

21While the source of the null memory is itself constructed
out of null waves within the radiation zone, such that both r and r0
are large, any location at which the radiative source is nonzero
within the past null cone of a point ðt; x⃗Þ where we evaluate
the null-memory component satisfies r0 ≪ r (see, e.g., [22]).
This also justifies the approximation t0 ≈ uþ r0n⃗0 · n⃗.

22ToOðr0−1Þ, we have tSVTij ¼ t00n0in
0
j, while ti0 ¼ −t00n0i. This

follows from the general structure tSVTμν ∼ h∂νψ∂μψi, together with
the falloff properties Eq. (67), which imply that we can replace
∂i → −ni∂0. Moreover, in units with c ¼ 1, we can equate an
energy flux of radiation at speed c with an energy density
1=r2dESVT=dudΩ ¼ ctSVT00 .

23Recall the formula δgðxÞ ¼ P
i δðx − xiÞ=jg0ðxiÞj, where

gðxiÞ ¼ 0 is a root.
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δhTTij ¼ κeff
2πr

Z
S2
d2Ω0 dE

SVT

dΩ0

�
n0in

0
j

1 − n⃗0 · n⃗

�TT
; ð89Þ

where the superscript TT denotes a projection onto the TT
component via ⊥ijabðΩÞ defined in Eq. (65) and where we
define the energy per solid angle as

dESVT

dΩ0 ≡
Z

u

−∞
du0

dESVT

du0dΩ0 ¼ r2
Z

u

−∞
du0tSVT00 ðu0; r;Ω0Þ:

ð90Þ

Note that Eq. (89) is a well-defined quantity even if n⃗0 ¼ n⃗,
since in that case the numerator vanishes as well.
The tensor null memory for SVT gravity can thus be

simply evaluated by inserting the expression for the
radiative energy density in Eq. (82) into the expression
for the time-integrated energy flux in Eq. (90). In terms of
canonically normalized “hatted” variables defined in
Eqs. (47) and (48), and the expansion in terms of polari-
zation tensors in Eq. (61), the energy density reads

tSVT00 ðu0; r;Ω0Þ ¼ 1

2κeff
hj _̂hj2 þ j _̂aj2 þ _̂φ2i: ð91Þ

However, the physical (in the sense of observationally
relevant) modes are characterized in terms of the perturba-
tions of the original fields that appear in the full action.
Indeed, it is the scalar perturbation φ that is associated with
a potentially observable additional breathing mode, as
shown in Eq. (74). Thus, in terms of the physical modes,
the radiative energy density becomes

tSVT00 ðu0; r;Ω0Þ ¼ 1

2κeff
hj _hj2 þ ζ2j _aj2 þ ρ2 _φ2i; ð92Þ

where we recall the definitions

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3σ2 þ ðð0ÞG2X − 2ð0ÞG3ΦÞ

ð0ÞG4

s
ð93Þ

and

σ ≡
ð0ÞG4Φ
ð0ÞG4

; ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0ÞG2F
ð0ÞG4

s
: ð94Þ

Equations (89) and (92) define the tensor null memory of
massless SVT gravity. These equations indeed represent a
memory component, as one can simply infer from their
functional form. That is, these expressions contain a time
integral over a strictly positive function, which therefore
induces a permanent displacement within the detector
strain. Observe that this tensor null memory is sourced
by all radiative degrees of freedom in the SVT theory,
independent of whether these radiative modes excite

additional gravitational polarizations in the physical metric
or not. More precisely, a nonzero value of σ, which implies
that the breathing mode is excited (recall the discussion in
Sec. III B 2), only influences the value of the scalar
prefactor ρ, but it does not determine whether the emitted
scalar radiation provides an additional tensor memory
source in principle. Moreover, the energy density emitted
in vector modes backreacts to produce tensor memory, even
though they are in no way connected to any gravitational
polarizations of the physical metric.

C. Tensor null memory: Spin-weighted spherical
harmonic decomposition

The tensor null-memory expression in Eq. (89) above
can still be further simplified for practical use. We do so
by first defining the spin-weight s ¼ −2 quantity [recall
Eq. (62)]

δh≡ δhTTij m̄im̄j; ð95Þ

and then determining the value of the coefficients δhlm of
its expansion in spin-weighted spherical harmonics (see
Appendixes A 1 and A 5 a). Writing the memory in this
alternative form will also ultimately allow a direct com-
parison to the memory arising from BMS balance laws or
within a systematic PN expansion, as we will see below.
The simplest way to obtain the spin-weighted spherical

harmonic coefficients is to first expand the TT-projected
term in the square brackets of Eq. (89) as a geometric
series and then transform the result to a symmetric trace-
free (STF) basis, which can subsequently be related to
the spin-weighted spherical harmonic expansion. In
Appendix A, we gathered a collection of formulas for
different multipole expansions and the relations between
them, and also introduce the notation we use for STF
tensors (see Appendix A 3). As we show explicitly in
Appendix B, the transformation of the TT-projected square
brackets in Eq. (89) in terms of STF tensors results in the
identity [see also Eq. (2.34) in [128] ]�

n0in
0
j

1 − n⃗0 · n⃗

�TT
¼ ⊥ijab

X∞
l¼2

2ð2lþ 1Þ!!
ðlþ 2Þ! nL−2n0habL−2i; ð96Þ

such that

δhTTij ¼ κeff
2πr

⊥ijab

X∞
l¼2

1

l!
nL−2

2ð2lþ 1Þ!!
ðlþ 1Þðlþ 2Þ

×
Z
S2
d2Ω0 dE

SVT

dΩ0 ðuÞn0habL−2i: ð97Þ

By comparing to the general STF multipole expansion of a
rank-2 TT tensor written out in Eq. (A30), we immediately
see that the memory only contributes via the electric-parity
multipole, namely,
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δUL ¼ κeff
8πr

2ð2lþ 1Þ!!
ðlþ 1Þðlþ 2Þ

Z
S2
d2Ω0 dE

SVT

dΩ0 ðuÞn0hLi; ð98Þ

δVL ¼ 0; ð99Þ

where we have relabeled ijL − 2 → L through multi-index
notation.
A change to the pure-spin TT harmonic basis using

Eq. (A37) as well as Eq. (A13) then yields24

δUlm ¼ 4κeff
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
2ðlþ 2Þ!

s Z
S2
d2Ω0 dE

SVT

dΩ0 ðuÞȲlmðΩ0Þ:

ð100Þ

This expression can finally be related to the spin-weighted
spherical harmonic expansion through Eq. (A34) to give

δhlmSVT ¼ 2κeff
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
u

−∞
du0

×
Z
S2
d2Ω0ȲlmðΩ0Þr2tSVT00 ðu0; r;Ω0Þ; ð101Þ

where tSVT00 is given by Eq. (92). Note that the angular
integral in this expression can be evaluated analytically as a
sum of 3j symbols by simply also expanding the leading-
order waves in spin-weighted spherical harmonics and
applying the identity in Eq. (A8), which involves three
spin-weighted spherical harmonics.25

D. Interesting examples

We close this section with a few explicit results for the
tensor null memory of interesting subclasses of Horndeski
gravity, in order to further exemplify the broad scope of the
SVT theory investigated above.

1. Brans-Dicke gravity

Horndeski gravity reduces to BD theory for the choices

G2 ¼
2ω

Φ
X;

G4 ¼ Φ;

Gi ¼ 0 otherwise; ð102Þ

such that the action given in Eq. (38) becomes

SBD ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΦR −

ω

Φ
gμν∇μΦ∇νΦ

�
; ð103Þ

with physical metric gμν and where ω is a coupling
constant. Inserting Eq. (102) into Eq. (92), the correspond-
ing energy-momentum (pseudo)tensor sourcing the tensor
memory reads

tBD00 ¼ 1

2κBDeff

�
j _hj2 þ ð2ωþ 3Þ

�
_φ

φ0

�
2
	
; ð104Þ

where κBDeff ¼ κ0=φ0, such that Eq. (101) becomes

δhlmBD ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
S2
d2Ω0ȲlmðΩ0Þ

×
Z

u

−∞
du0

�
j _hj2 þ ð2ωþ 3Þ

�
_φ

φ0

�
2
	
: ð105Þ

As we show in Appendix C, the result in Eq. (105)
precisely matches the memory extracted from the BMS
balance laws in BD theory, which were previously com-
puted in [45–48], and therefore corrects the formula for the
tensor memory of BD gravity of [49].
Moreover, note that in this theory

σ ¼
ð0ÞG4Φ
ð0ÞG4

¼ 1

φ0

≠ 0; ð106Þ

such that according to the results in Sec. III B 2, BD gravity
has an additional breathing polarization. As discussed
above, this fact only minimally modifies the memory
formula of Eq. (105), since ω is already constrained to
be a large number (e.g., ω > 4 × 104 due to constraints
from the tracking of the Cassini spacecraft and the Shapiro
time delay [130]). However, the existence of such an
additional scalar polarization makes it in principle possible
to also measure scalar memory, hence, memory within the
scalar polarization of the detector response. Yet, as already
mentioned, we do not find any analogous scalar null-
memory component because there is no analogous null
source for the scalar mode. This agrees with the results in
[45–48] as they do not find a full BMS constraint for the
scalar, which indicates, in the terminology of [46], that the
scalar displacement contribution to the Riemann tensor that
can potentially arise through other mechanisms26 is rather a
more general persistent gravitational variable, as opposed
to a true memory component.

24The memory computed in a PN expansion assumes precisely
this form, as explicitly shown in GR [16] (see also [20]). However,
we define the mass multipole without factoring out the r−1
dependence. Note as well that we could have obtained Eq. (100)
more directly by using the identity in Eq. (A26).

25This could in principle simplify the widely used GWMEMORY

PYTHON package for memory computations in GR [129], where
the angular integral is partially performed numerically. We also
note that the GWMEMORY code does not perform any spacetime
averaging.

26See, for instance, [49] where a nonvanishing shift in the
scalar is shown to arise as a consequence of the no-hair theorem.
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2. Scalar Gauss-Bonnet gravity

SGB theory can be obtained by choosing [116,119]

G2 ¼ X þ 8fð4ÞðΦÞX2ð3 − lnXÞ;
G3 ¼ 4fð3ÞðΦÞXð7 − 3 lnXÞ;
G4 ¼ 1þ 4fð2ÞðΦÞXð2 − lnXÞ;
G5 ¼ −fð1ÞðΦÞ lnX; ð107Þ

where fðnÞðΦÞ≡ ∂
nf=∂Φn. This leads to a SGB theory

action27

SsGB ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
gμν∇μΦ∇νΦþ ϵ2fðΦÞG

�
;

ð108Þ

where the Gauss-Bonnet curvature scalar is defined as G≡
−R̃μν

ρσR̃ρσ
μν ¼ RμνρσRμνρσ − 4RμνRμν þ R2 and the Hodge

dual reads R̃μν
ρσ ≡ 1

2
ϵμναβRαβρσ. To lowest nontrivial order,

the theory represents GR with a canonical scalar field,
while for constant values of Φ the entire theory reduces to
GR because the Gauss-Bonnet term integrates to a boun-
dary term. Although at first glance the correspondence of
SGB to Horndeski theory given by Eq. (107) could suggest
that for nontrivial functions fðΦÞ the SGB term could
actually contribute nontrivially to the memory, this is not
the case. A closer look reveals that

3
ð0ÞG2

4Φ
ð0ÞG2

4

þ ðð0ÞG2X − 2ð0ÞG3ΦÞ
ð0ÞG4






sGB

¼ lim
X→0

1 − 4wðXÞðfð2Þðφ0Þ þ 2fð4Þðφ0ÞÞX þ � � � ¼ 1;

ð109Þ

where we defined wðXÞ≡ 2 − lnX as well as fðNÞ for the
Nth derivative of f. Hence, the higher-order SGB term does
not modify the memory formula, and the theory simply
contributes through the canonical scalar term within
Eq. (92) as

tsGB00 ¼ 1

2κ
hj _hj2 þ _φ2i: ð110Þ

Indeed, in Sec. V, we will show that any term in the action
involving more than two derivative operators will not
modify the tensor memory in an explicit way.

Furthermore, since

σ ¼
ð0ÞG4Φ
ð0ÞG4

¼ 0; ð111Þ

SGB gravity does not excite any additional scalar polar-
izations (breathing or longitudinal) within the physical
metric, as opposed to the BD theory considered above. This
result is consistent with the analysis of the polarization
states of SGB theory in [131]. This also implies that SGB
by definition only features tensor null memory.

3. Double-dual Riemann coupling

Similarly, choosing [119,132]

G2 ¼ X;

G5 ¼ X;

Gi ¼ 0 otherwise; ð112Þ

the Horndeski action reduces to

SddR ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ∇μΦ∇νΦΦαβLμναβ

−
1

2
gμν∇μΦ∇νΦ

�
; ð113Þ

where the derivative coupling to the double-dual Riemann
tensor defined in Eq. (43) therefore also leads to second-
order equations of motion. Since this coupling is associated
with a nontrivial G5 function only, we immediately know
that such an additional term will not alter the tensor null-
memory formula. Hence, exactly as for SGB, the memory
is sourced by Eq. (110) and only modified due to the kinetic
term of the scalar and thus by the mere presence of the
possibly propagating scalar mode.

V. TENSOR NULL MEMORY IN DYNAMICAL
METRIC THEORIES

We will now generalize the result of the explicit null-
memory computation of massless SVT theory in the
previous section by proving that, assuming the scenario
outlined in Sec. II B, the functional form of the low-
frequency evolution equation at the basis of the tensor
null memory remains unaltered in the limit to null infinity
for any dynamical metric theory with trivial potentials (see
Definition 1), given a set of minimal assumptions outlined
in Sec. V B below. Together with an additional assumption
on the structure of the radiative energy-momentum tensor
in the limit to null infinity, this further implies directly that
the tensor null memory can still be written as [cf. Eq. (101)]

27Note that while this correspondence is not obvious at the
level of the action, the resulting equations of motion are
equivalent.
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δhlmL ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
d2Ω0Ȳlm

Z
du0ð2Þt00; ð114Þ

where ð2Þtμν is a conserved and gauge-invariant generalized

energy-momentum (pseudo)tensor of the leading-order
radiation in the theory. This (pseudo)tensor contains a
purely GR piece in the form of an Isaacson energy-
momentum tensor and a correction thereof that consists
of a sum of terms, which exclusively depend on high-
frequency perturbations of the additional gravitational
fields.
In a second step, we will explore the scope of the

theorem in Sec. V D by outlining which classes of theories
actually satisfy the underlying assumptions. Before stating
and proving the theorem which allows us to draw the above
conclusions, however, we need to first introduce the so-
called second-variation approach [133], which we present
in the next subsection.

A. The second-variation approach

In the second-variation framework, the low-frequency
metric equation [Eq. (25)], as well as the propagation
equations [Eqs. (26) and (29)] can be derived from a
perturbed action. To do so, one first separates the metric, as
well as any other field, into a background and a perturba-
tion, as in Eq. (21), and expands the action S of the theory
to second order in perturbation fields

Ssv ¼ ð0ÞSþ ð1ÞSþ ð2ÞS: ð115Þ

With this in hand, one then promotes the action Ssv to an
effective one Ssv → Ssveff by treating the background fields
and the perturbations as independent fields.
Indeed, one recovers the low-frequency metric equation

[Eq. (25)] by varying the effective action

Ssveff ½fḡL; Ψ̄Lg; fhH;ΨHg� ¼ ð0ÞSeff ½fḡL; Ψ̄Lg�
þ ð2ÞSeff ½fḡL; Ψ̄Lg; fhH;ΨHg�;

ð116Þ

with respect to the independent background metric ḡLμν and
a subsequent restriction to low-frequency quantities. More
precisely, �

δSsveff
δḡμνL

�
L
¼ 0 ð117Þ

gives back Eq. (25), where after the variation, the back-
ground metric is not treated as an independent variable
anymore. Note that the linear piece ð1ÞSeff in Eq. (116) can

always be neglected, because a term linear in perturbation
fields generated through a variation with respect to the

background metric will vanish upon restriction to low-
frequency modes [see property (I) of the average procedure
in Sec. II A].
Let us see how this comes about explicitly. The variation

of the zeroth-order action ð0ÞSeff simply gives back the

background equation operator of the theory

δð0ÞSeff
δḡμνL

∝ ð0ÞGμν; ð118Þ

and thus the left-hand-side in Eq. (25). Avariation of ð2ÞSeff ,
on the other hand, provides a definition for the effective
energy-momentum (pseudo)tensor of the perturbation
fields via the Hilbert approach, namely,

−2ffiffiffiffiffiffiffiffi
−ḡL

p �δð2ÞSeff
δḡμνL

	
≡ ð2Þtμν ð119Þ

upon averaging out the small scales. We have already
established that the right-hand side of Eq. (25) is propor-
tional to the energy-momentum tensor of the perturbation
fields in Eq. (27). From that point of view, Eq. (25) can
therefore be understood as a dynamical equation of the
a priori unknown background sourced by the effective
energy-momentum tensor of the perturbation fields.
The propagation equations for the gravitational waves

and any other perturbed field can also be obtained through
this variational approach. The metric equation [Eq. (26)], as
well as all other high-frequency propagation equations of
the additional gravitational fields [Eq. (29)], are recovered
by varying Ssveff in Eq. (116) with respect to the correspond-
ing field perturbation. This is because, in general, a
variation of a perturbed action with respect to a perturbation
field yields the same equation that one obtains by per-
turbing the total field equations computed from the full
action [133,134]. Moreover, the action in Eq. (116) is
enough, because we can again safely neglect any linear
piece ð1ÞSeff ; a variation of such a piece would not contain

any high-frequency components.28 Hence, the leading-
order propagation equations [Eqs. (26) and (29)] can be
obtained from�

δSsveff
δhHμν

�
H
¼ 0;

�
δSsveff
δΨH

�
H
¼ 0: ð120Þ

In the following, this approach will enable us to general-
ize the result for tensor null memory in SVT theories
(explicitly computed in the previous section) and will allow
us to explore the boundaries of the validity of the associated

28In fact, a variation of ð1ÞSeff with respect to a perturbation
field would simply give back the corresponding back-
ground equation, and therefore, does not contain any additional
information.
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functional form of tensor null memory. More precisely, we
will show that, after further splitting the low-frequency
fields into a background and perturbation as in Eq. (30) and
in the limit to null infinity, the low-frequency metric
equation [Eq. (25)] that determines the null-memory
component very generally takes on the simple form that
we derived for SVT gravity. That is, the equation reduces to
a massless wave equation for the memory component
sourced by the energy-momentum of the high-frequency
waves [cf. Eq. (85)]. In other words, the equation remains
the same, except for the proportionality coefficient and the
energy-momentum tensor, which is replaced by a corre-
sponding generalization that is still conserved. These
statements will be made precise through the formulation
of an associated Theorem 1.
In particular, the proof of Theorem 1 will be based on the

key observation that in the limit to null infinity, both the
propagation equations [Eqs. (26) and (29)], as well as
the low-frequency energy-momentum tensor in Eq. (25)
(see Lemma 1), actually only depend on the second-order
effective action

ð2ÞS
flat
eff

≡ ð2ÞSeff ½fη;Ψ0g; fhH;ΨHg� ð121Þ

evaluated on a flat, but still independent background
η0 ≡ fημν;Ψ0g. By flat, here we mean a metric with a
vanishing curvature, as well as the existence of coordinates,
in which the metric and the fields satisfy ∂αημν ¼ ∂αΨ0 ¼ 0,
so that, in particular, the Christoffel symbols vanish as
well.29

Moreover, in the subsequent derivation of the tensor
null-memory formula of SVT theories in Sec. IV B [starting
from Eq. (85)], the radiative energy-momentum tensor
essentially only played the role of a spectator. Based on
Theorem 1, this observation will then allow us to conclude
that for a very broad class of dynamical metric theories of
gravity, the memory formula remains of the same func-
tional form as in Eq. (101).

B. A theorem for the evolution of memory
in dynamical metric theories

We want to start with a more formal definition of the
dynamical metric theories we will focus on. Based on the
framework outlined in Secs. II and VA above, we will then
first prove Lemma 1, based on which we establish
Theorem 1 that restricts the functional form of the

leading-order, low-frequency metric equation [Eq. (25)]
of such theories in source-centered coordinates describing
the asymptotic null region.

1. Preliminary definitions and lemmas

Definition 1. Dynamical metric theory. Let M be a
four-dimensional oriented and differentiable pseudo-
Riemannian manifold equipped with a Lorentzian metric
g of signature (−1;þ1;þ1;þ1) and an associated Levi-
Civita connection Γ. By dynamical metric theory, we shall
mean a local and covariant Lagrangian-metric theory onM
described by an action

S ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p ðLG½g;Ψ� þ Lm½g�Þ ð122Þ

consisting of a matter Lagrangian Lm minimally coupled to
the metric g only, and a gravitational Lagrangian LG
consisting of scalar terms, each involving at least two
derivative operators that are constructed out of curvature
invariants as well as a set of additional dynamical gravi-
tational fields Ψ that preserve local-Lorentz invariance, and
whose dynamical degrees of freedom are massless.30

We will generally distinguish between three classes of
dynamical metric theories. The first ones are those that only
involve terms in the action with two derivative operators.
On a classical level, such theories can be considered to be
exact, in the sense that they could be, in principle, well
posed as an initial value problem for any values of their
coupling constants.
The other two classes encompass theories with more

than two derivative operators per term, which typically
represent theories admitting higher-order derivative inter-
action terms. Between those two classes, we further
distinguish between theories that still admit second-order
equations of motion and theories which lead to higher
equations of motion. As discussed in Sec. II B, such
theories require the additional assumption of small cou-
plings ϵ, and they are naturally interpreted as effective field
theories. In our context, a small-coupling approximation is
satisfied for theories admitting second-order equations, if
the assumption in Eq. (24) holds. Moreover, for theories
with higher-order equations of motion, we must in principle
demand the stronger condition Eq. (36). Thus for theories
of the latter class, Lemma 1 below, as well as the statements
in the subsequent Theorem 1 need to be understood as
statements up to factors of OðϵfHÞ.29For GR, more precisely with the assumption of vanishing

torsion and nonmetricity (assumptions that are therefore also
satisfied in our case), it can be explicitly proven that the vanishing
of the Riemann tensor implies that for every point on the
manifold, there exists a chart, in which the metric can be written
as a Minkowski metric. However, we do not prove here the
additional requirement ∂αΨ0 ¼ 0, which should therefore be
regarded as an additional assumption.

30For fields that are not a scalar, we will also assume a local
gauge invariance. However, this does not represent an additional
assumption, since for theories with local-Lorentz invariance,
gauge invariance is in general needed to obtain a description of
massless fields via components of tensor fields (see, e.g., [135]).
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Lemma 1. In the limit to null infinity

−2ffiffiffiffiffiffi−ηp
�δð2ÞSflateff

δημν

	
¼ ð2Þtμν½η0; fhH;ΨHg�; ð123Þ

and hence, the leading-order energy-momentum tensor
[Eq. (119)] only depends on the flat, second-order effective
action defined in Eq. (121).
Proof.—The energy-momentum tensor was defined in

Eq. (119), and therefore, the lemma is proven if we can
show that in the limit to null infinity

�δð2ÞSflateff

δημν

	
¼

�δð2ÞSeff
δḡLμν

	
; ð124Þ

where recall here that the background metric must be
treated as an independent field. Since we only consider
local and covariant theories with Levi-Civita connection, a
variation of the second-order action ð2ÞSeff with respect to

the independent background metric ḡLμν will only arise from
polynomial contributions of the background metric, the
associated covariant derivatives ∇μ through its Christoffel
symbols Γ̄μ

αβ, and contractions of background curvature
invariants ð0ÞRμνρσ

½ḡL�, the last two of which vanish for a

flat metric by definition. To prove Lemma 1, we therefore
need to show that any term in the nonflat perturbed action

ð2ÞSeff that involves background curvature or connection

operators does not contribute to the effective stress-energy
tensor ð2Þtμν at null infinity.

For any term in the perturbed action that contains
curvature or connection quantities, a variation of a curva-
ture or connection coefficient with respect to the back-
ground metric ḡμνL can be written as [97]

δḡL ½ð2ÞSeff � ⊃
Z

d4x
ffiffiffiffiffiffiffiffi
−ḡL

p ∇σPσ
μνδḡ

μν
L ð125Þ

for some tensor Pσ
μν upon integration by parts. Such a

contribution vanishes

ð2Þtμν ⊃ −2h∇σPσ
μνi ¼ 0 ð126Þ

due to property (II) of the average (see Sec. II A). See
Ref. [97] for a pedagogical discussion of the above
two facts.
On the other hand, if the variation of such a term is

hitting a background metric, the resulting term will still
contain either a curvature or a connection operator.
Therefore, any such contribution will vanish in the limit
to null infinity. ▪

2. Memory evolution theorem beyond GR

Theorem 1. Consider a dynamical metric theory, as
introduced in Definition 1, for which

(i) the assumptions of Sec. II B hold. In particular the
Eqs. (20), (22), and (24) are satisfied, such that
the leading-order, low-frequency metric equation
can be written as [Eq. (25)]

ð0ÞGμν½fḡL; Ψ̄Lg� ¼ −hð2ÞGμν½fḡL; Ψ̄Lg; fhH;ΨHg�i;
ð127Þ

while the leading-order, high-frequency propagation
equations [Eqs. (26) and (29)] are

ð1ÞGμν½fḡL; Ψ̄Lg; fhH;ΨHg� ¼ 0; ð128Þ

ð1ÞJ ½fḡL; Ψ̄Lg; fhH;ΨHg� ¼ 0: ð129Þ

Moreover, the low-frequency fields can be further
split into a background fη̄μν; Ψ̄0g≡ η̄0 that solves
the background equations of motion ð0ÞGμν½η̄0� ¼ 0

and a small perturbation

ḡLμν ¼ η̄μν þ δhLμν; Ψ̄L ¼ Ψ̄0 þ δΨL: ð130Þ

(ii) The spacetime is asymptotically flat, which in par-
ticular implies that there exists a chart ft; x; y; zgwith
r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

for which gμν ¼ ημν þOð1=rÞ
andΨ ¼ Ψ0 þOð1=rÞ in the limit to null infinity r →
∞ at fixedu≡ t − r. The background η0 ¼ fημν;Ψ0g
solves the vacuum field equations and preserves local-
Lorentz invariance, with ∂αΨ0 ¼ 0 for scalar fields
andΨ0 ¼ 0 for all other tensor fields and where ημν is
the Minkowski metric.31

(iii) There exists a set of leading-order high-frequency
field perturbations ĥHμν ¼ WðhH;ΨHÞ and Ψ̂H ¼
VðΨHÞ for some functions W and V, for which,
in the limit to null infinity, the leading-order, high-
frequency propagation equations [Eqs. (128) and
(129)] reduce to a set of decoupled wave equations
for each field

□ĥHμν ¼ 0; □Ψ̂H ¼ 0 ð131Þ
pmg:quad="70"upon imposing the Lorenz gauge as
well as tracelessness

∂
μĥHμν ¼ 0; ημνĥHμν ¼ 0: ð132Þ

31Note that asymptotic flatness also requires that any matter
energy-momentum tensor components Tμν fall off quickly
enough, so that r2Tμν has a smooth limit to null infinity.
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Then, in the limit to null infinity, the leading-order low-
frequency metric equation [Eq. (127)] can be written as

□δĥLμν ¼ −2κeff ð2Þtμν½η0; fĥ
H; Ψ̂Hg�; ð133Þ

where δĥLμν satisfies the Lorentz gauge ∂
μδĥLμν ¼ 0, and

where κeff ¼ κ0Aðη0Þ, with Aðη0Þ a function that only
depends on the Minkowski background. Furthermore,

ð2Þtμν has the following properties:

(a) It is conserved, ∂μð2Þtμν½η0; fĥH; Ψ̂Hg� ¼ 0.
(b) It can be written as a sum of terms

ð2Þtμν½η0; fĥ
H; Ψ̂Hg�

¼ ð2Þt
GR
μν

½η0; ĥH� þ
X
Ψ

ð2Þt
Ψ̂
μν
½η0; Ψ̂H�; ð134Þ

where ð2Þt
GR
μν

∝ h∂μĥHαβ∂νĥHαβi and where each ð2Þt
Ψ̂
μν

involves two derivative operators.
(c) It is invariant under infinitesimal coordinate trans-

formations xμ → x0μ ¼ xμ þ ξμH.
Proof.—Let Seff ¼ ð0ÞSeff þ ð2ÞSeff be the effective action

of a dynamical metric theory (see Definition 1), where here
we have ignored the linear term because it will not
contribute to the equations of motion of the perturbations
at leading order [Eqs. (128) and (129)] or to the leading-
order memory-evolution equation [Eq. (127)]. In the
following, every equality or proportionality is to be under-
stood as a statement in the limit to null infinity. Moreover,
proportionalities are relations up to scalar functions, which
may depend on the Minkowski background η0 ¼ fημν;Ψ0g
at null infinity, as well as the dimensionful bare Newton’s
constant κ0.
With this in mind, let us separately consider the left-hand

side and right-hand side of the leading-order, low-
frequency equation [Eq. (127)], starting with the former.
The left-hand side of Eq. (127) arises from δð0ÞSeff=δḡ

μν
L ,

and it simply corresponds to the metric field equation
operator of the theory in terms of the low-frequency fields.
Imposing the split in Eq. (130) into a low-frequency
background η̄0 ¼ fη̄μν; Ψ̄0g that satisfies the vacuum equa-
tions and low-frequency perturbations δhLμν and δΨL, the
operator splits into a homogeneous piece ð0ÞGμν

½η̄0� ¼ 0 and

an inhomogeneous part ð1ÞGμν
½η̄0; fδhL; δΨLg� [see Eq. (32)].

In the limit to null infinity, this becomes ð1ÞGμν
½η0; fδhL;

δΨLg�, since ḡLμν ¼ ημν þOð1=rÞ and Ψ ¼ Ψ0 þOð1=rÞ.
Note that this operator ð1ÞGμν

½η0; fδhL; δΨLg� has the

same functional form as the operator ð1ÞGμν
½η0; fδhH;

δΨHg�, which is the operator of the propagation equation
[Eq. (128)] in the limit to null infinity. Therefore,
assumption (iii) also dictates the functional form of the
inhomogeneous piece ð1ÞGμν

½η0; fδhL; δΨLg�.

By assumption (iii), the operator takes the form of a wave
operator ð1ÞGμν

½η0; fδhH; δΨHg� ∝ □ĥHμν upon a field

redefinition ĥHμν ¼ WðhH;ΨHÞ and Ψ̂H ¼ VðΨHÞ and after
imposing the conditions in Eq. (132). Thus, there exists a
redefinition δĥLμν ¼ ŴðδhLμν; δΨLÞ together with a suitable
choice of ξμL in a coordinate transformation xμ → xμ þ ξμL,
such that the remaining leading-order operator reduces to a
decoupled wave operator □δĥLμν. The corresponding gauge
choice is the Lorenz gauge on the rescaled, low-frequency
metric perturbation, ∂μδĥLμν ¼ 0. The existence of this gauge
follows from the conservation of the energy-momentum
tensor ∂μð2Þtμν ¼ 0, which in turn can be established from
property (II) of the average (see Sec. II A). If the total energy-
momentum tensor is moreover traceless, it is possible to
impose tracelessness on δĥLμν, and, in this case, Eq. (136)
follows directly by choosing δĥLμν ¼ WðδhLμν; δψLÞ. If the
total energy-momentum tensor is not traceless, we can
perform a further redefinition to a trace-reversed variable

δ ˆ̄h
L
μν ≡ δĥLμν − 1

2
ημνδĥ

Lt, which yields Eq. (136) in terms of
this new variable. Thus, the left-hand side of Eq. (127)
includes the homogeneous equation

ð0ÞGμν½η0� ¼ 0; ð135Þ

and an inhomogeneous contribution given by

ð1ÞGμν½η0; fδhL; δΨLg� ∝ □δĥLμν: ð136Þ

The right-hand side of Eq. (127) only contributes to the
inhomogeneous equation and is, by definition, the energy-
momentum (pseudo)tensor, which in the limit to null
infinity reduces to ð2Þtμν → tμν½η0; fĥH; Ψ̂Hg�. In this limit,

we can then write

hð2ÞGμνi ¼ 2κ0Aðη0Þð2Þtμν½η0; fĥ
H; Ψ̂Hg�; ð137Þ

where the proportionality can only depend on a scalar
function of the Minkowski background η0, while dimen-
sional analysis requires the presence of a factor of κ0.
Combining Eqs. (136) and (137) establishes that the
memory-evolution equation can be written as Eq. (133).
The proof of the theorem is finalized if we can establish

properties (a)–(c) of the flat energy-momentum (pseudo)
tensor. Property (a), the conservation of the energy-
momentum (pseudo)tensor ∂

μð2Þtμν ¼ 0, was already
touched upon when describing the left-hand side of
Eq. (127), but let us be more explicit here. This
(pseudo)tensor is conserved because it is defined in terms
of the average of the variation of the second-order effective
action with respect to the background metric [Eq. (119)].
When we take the divergence of this quantity, the derivative
commutes with the average symbol and then hits the
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variation itself, which is a rank-2 (pseudo)tensor. Property
(II) of the average procedure (see Sec. II A), however,
guarantees that the average of the divergence of a tensor
vanishes up to boundary terms, which are higher order in
the ratio of the frequency scales. Therefore, the divergence
of the (pseudo)tensor also vanishes up to these boundary
terms, which establishes property (a).
Let us now focus on property (b), which tells us that the

energy-momentum (pseudo)tensor near null infinity can be
decomposed into two terms: a standard GR term and a term
that depends on the perturbations of the additional gravi-
tational fields. In order to establish this property, we must
first massage the second-order effective action near null
infinity. In the limit to null infinity,

0 ¼ ð1ÞGμν½η0; fhH;ΨHg� ∝
�δð2ÞSflateff

δhHμν

�H
; ð138Þ

0 ¼ ð1ÞJ ½η0; fhH;ΨHg� ∝
�δð2ÞSflateff

δΨH

�H
; ð139Þ

and hence, the leading-order propagation equations
[Eqs. (128) and (129)] only depend on the ð2ÞS

flat
eff

of

Eq. (121). Assumption (iii) of the theorem then implies
that there exists a set of redefined perturbation variables
fĥHμν; Ψ̂Hg for which the effective action ð2ÞS

flat
eff

can be

written as

ð2ÞS
flat
eff

∝
Z

d4x
ffiffiffiffiffiffi
−η

p �
ĥHμνEαβ

μν ĥHαβ þ
X
Ψ
ð∂Ψ̂HÞ2

�
: ð140Þ

The first term is the usual Fierz-Pauli operator with indices
contracted with the independent background metric ημν.
The second term corresponds schematically to the sum of
kinetic terms of the high-frequency perturbations of the
additional gravitational fields. Up to integrations by parts,
this is the unique action that will lead to a set of decoupled
massless wave equations for the leading-order, high-fre-
quency perturbations upon imposing the adequate gauge
choices of Eq. (132).
With this in hand, we can now establish property (b).

Lemma 1 and the perturbed generalized field equations
imply that, in the limit to null infinity,

hð2ÞGμν½η0; fĥH; Ψ̂Hg�i ∝
�δð2ÞS

flat
eff

δημν

	
∝ ð2Þtμν: ð141Þ

In other words, in this limit, the effective stress-energy
(pseudo)tensor of radiation, and therefore, also the right-
hand side of the memory equation [Eq. (127)], only
requires knowledge of the flat, second-order effective
action ð2ÞS

flat
eff

as well. Since ð2ÞS
flat
eff

can be written in the

form of Eq. (140), it can be split into a term that only

depends on the metric perturbation hHμν and another set
of terms, each of which only depends on the field
perturbation ΨH of every additional field Ψ and involves
only two derivative operators. Each of these terms can be
treated separately when computing the radiative energy-
momentum (pseudo)tensor, and hence,

ð2Þtμν ¼ ð2Þt
GR
μν

½η0; ĥH� þ
X
Ψ

ð2Þt
Ψ̂
μν
½η0; Ψ̂H�; ð142Þ

where each term only involves two derivative operators.
Moreover, since the metric perturbation piece in the flat,
effective second-order action in Eq. (140) admits the same
form as in GR, the first term is proportional to the radiative
energy-momentum tensor of GR. After imposing the gauge
of Eq. (132), the latter reads

ð2Þt
GR
μν

∝ h∂μĥHαβ∂νĥHαβi; ð143Þ

thus establishing property (b).
Finally, let us consider property (c), which states that the

energy-momentum (pseudo)tensor is invariant under infini-
tesimal coordinate transformations. The the assumptions on
asymptotic flatness of the peacetime, together with the split
in Eq. (142) and the assumption that Ψ̂H does not depend
on hHμν, directly implies that ð2Þtμν is invariant under

infinitesimal diffeomorphisms xμ → xμ þ ξμH. This is
because the assumption of a local-Lorentz preserving
background with Ψ0 ¼ 0 for fields that are not a scalar
and ∂αΨ0 ¼ 0 for scalars implies that the Lie derivative of
the first-order perturbations with respect to a vector field
generating such a diffeomorphism will vanish. Therefore,
only the metric perturbations hHμν transform under the gauge
shift. Moreover, since the Ψ̂H perturbations are independent
of hHμν, the coordinate gauge transformation only affects the
term ð2Þt

GR
μν

, which is invariant upon integration by parts and

after imposing the Lorenz gauge Eq. (132).
Since we have established Eq. (133) together with all

the required properties (a)–(c) of the radiative energy-
momentum tensor ð2Þtμν, we have therefore proven the

theorem. ▪

3. Technical remarks on the theorem

Let us conclude the discussion of the theorem by making
several technical remarks. First, let us stress that in
assumption (iii), we only require the first-order propagation
equations to reduce to a set of decoupled second-order
wave equations. The two main results of the theorem are
therefore that (1) the decoupling between fields remains
intact even atOðα2Þ at the low-frequency level; (2) the low-
frequency Oðα2Þ term also only involves two derivative
operators. In particular, the latter directly implies that in any
theory satisfying the assumptions of the theorem, the
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memory equation will only directly depend on terms in the
action that involve two derivative operators. This is nicely
exemplified in the SVT theory result of the radiative
energy-momentum tensor in Eq. (92).
Furthermore, observe that assumption (iii) is quite

generic. Indeed, in any theory satisfying second-order
equations of motion, the first-order propagation equation
will only involve two derivative operators. But as we will
explore in Sec. V D, this is even true for a large class of
theories, whose field equations are higher-order in deriv-
atives. Local Lorentz invariance as well as masslessness
then ensure that the leading-order propagation equation
generically takes the form of a massless wave equation.
Moreover, also a decoupling of the equations at first

order in perturbations is quite generic. First, note that a
Minkowski background ensures that the tensor, vector,
and scalar sectors32 can always be decoupled at leading
order in perturbations, and each of these sectors can
therefore be treated individually. Therefore, potential cou-
plings between perturbations at the level of the leading-
order perturbation equations could only arise within each of
these sectors. We are, however, not aware of any concrete
massless theory that admits such a coupling of first-order
perturbations. Indeed, explicit examples of such coupled
equations typically only arise in theories that include an
explicit mass term, such as, for instance, in massive
bigravity models (see, e.g., [136,137]) or massive multi-
Proca theories [138]. It would, however, be interesting to
explore null memory for such theories with coupled
leading-order perturbation equations, a task we leave for
future work. Also, any typical massless theory involving
multiple interacting vector or scalar fields at the level of the
full action, such as non-Abelian vector fields or typical
scalar multifield models (see, e.g., [139]), naturally decou-
ple to leading order in perturbations on a Minkowski
background, and thus, still abide by the decoupling
assumption in (iii).

C. Relation of the memory-evolution theorem
to the tensor null memory

The form of the memory-evolution equation [Eq. (133)]
for dynamical metric theories (see Definition 1) established
through Theorem 1, precisely corresponds to the memory
equation [Eq. (85)] obtained for the specific example of
SVT gravity considered in Sec. IV. The only difference
is that the energy-momentum (pseudo)tensor of the lead-
ing-order radiation tSVTμν is replaced by a more general
(pseudo)tensor ð2Þtμν, which is still conserved and gauge

invariant. The precise form, of course, depends on the
nature of the additional gravitational fields Ψ.

To make a statement about the resulting tensor null
memory, we will now further assume that in the asymptotic
region far from the source, the radiative energy-momentum
tensor can be written in the form [cf. Eq. (87)]

ð2Þtμν ¼ ð2Þt00lμlν: ð144Þ

where lμ ¼ −δ0μ þ δiμni and the scaling with r of ð2Þt00 is

∼r−2.33 This is all that is needed to apply the same steps
presented in Secs. IV B and IV C, in order to write the
resulting asymptotic tensor null memory as [see Eq. (101)]

δhlmL ¼ 2κeff
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
d2Ω0Ȳlm

Z
du0r2ð2Þt00; ð145Þ

where

ð2Þt00 ¼ ð2Þt
GR
00

þ
X
Ψ

ð2Þt
Ψ̂
00
: ð146Þ

Here, δhlmL are the coefficients of a spin weighted
spherical harmonics (SWSH) expansion of the quantity
δhL ¼ δhLTTij mimj, with δhLTTij ¼ δĥLTTij . This result fol-
lows immediately, because, in the derivation in Secs. IV B
and IV C, the details of the radiative energy-momentum
tensor are irrelevant, since the radiated energy flux r2ð2Þt00
remains untouched after Eq. (144) is established.
The question is now the following: How general is the

assumed structure of the radiative energy-momentum in
Eq. (144)? We will argue that this assumption is not very
restrictive, in the sense that it is expected to be generically
satisfied by dynamical metric theories of Definition 1, and
thus, by most of the viable extensions to GR considered in
the literature, whose fields are massless and obey local-
Lorentz invariance.
To analyze this question carefully, we will first assume

that any of the modes, and hence any of the gauge-invariant
solutions to the leading-order wave equations h and ψ ,
scale as [cf. Eq. (67)]

ðĥ; ψ̂Þ ∼ 1

r
½fhðu; θ;ϕÞ; fψðu; θ;ϕÞ� ð147Þ

near null infinity. This implies that the GR piece ð2Þt
GR
μν

∝

h∂μĥHαβ∂νĥαβH i satisfies Eq. (144) (cf. Sec. IV B). Using the

considerations in Sec. II B, the additional terms in ð2Þt
Ψ̂
μν
can

be schematically written as

32The terms tensor, vector, and scalar refer here to the
polarization type of each mode.

33Recall that in the SVT example, this structure followed from
the general asymptotic falloff behavior in Eq. (67) of the solutions
to the wave equation and the explicit structure of the energy-
momentum tensor.
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ð2Þt
Ψ̂
μν
∼ ηn0h∂Ψ̂H

∂Ψ̂Hi; ð148Þ

where we have omitted the index structure to keep the
expression general, and where ηn0 denotes n background-
field contributions with indices contracted onto the deriv-
atives or the tensor structure of the gravitational fields
themselves. The additional terms in ð2Þt

Ψ̂
μν

take this form

because the leading-order term in hð2ÞGμν
i has two deriv-

atives acting on the two leading-order wave perturbations,
which, at most, can be multiplied by background fields η0
in the limit to null infinity. Moreover, due to Theorem 1, the
assumption of decoupled high-frequency propagation
equations ensures that there are no mixed terms between
the metric perturbation ĥH and the other gravitational fields
Ψ̂H (e.g., of the form h∂Ψ̂H

∂ĥi) or between different types
of gravitational fields (e.g., of the form h∂V̂H

∂ϕ̂Hi if Ψ
contains a vector V and scalar ϕ).
We will now partially restore the tensor structure.

Requiring that the background preserves local-Lorentz
invariance and upon imposing a Lorenz gauge, we can
rewrite Eq. (148) as

ð2Þt
Ψ̂
μν
∼ h∂μΨ̂H

∂νΨ̂Hi; ð149Þ

where we have explicitly included the indices on the partial
derivatives and assumed that any tensor structure in the first
Ψ̂H that is contracted onto the tensor structure of the second
Ψ̂H is a trace or a scalar. The free indices μ and ν need to be
placed on the two derivative operators because otherwise
the resulting term vanishes either due to the first-order
equations of motion or the Lorenz gauge, upon integration
by parts. Moreover, here we have removed the n copies of
the η0 background fields because by assumption, only
scalar fields can have nontrivial background values, and
therefore, there are no indices to be contracted with
background fields. Together with the falloff Eq. (147) this
implies that Eq. (144) holds.
To continue, we want to be more specific and consider a

concrete type of possible additional gravitational fields,
which covers a large class of theories considered in the
literature. Namely, from now on, we will focus on dynami-
cal metric theories whose additional gravitational fields Ψ
are k-form field potentials with an associated Abelian Uð1Þ
gauge symmetry.34 The collection of these additional

dynamical k-form fields are assumed to describe N addi-
tional propagating gravitational degrees of freedom. Thus,
the theory admits N independent and propagating solutions
to the wave equations characterized throughN modes in the
canonically normalized, second-order action, which we
will denote as ψ̂ λ, where λ ¼ 1;…; N. Note that in four
spacetime dimensions, we only consider k-forms for k < 4.
A 0-form field simply corresponds to a scalar field, while a
1-form field naturally describes an Abelian vector field,
and, therefore, it carries two propagating degrees of free-
dom. A 2-form field, on the other hand, again only
describes one dynamical mode equivalent to a scalar degree
of freedom (see, e.g., [142]). A 3-form field will not contain
any propagating modes in four dimensions simply because
the components of the associate 4-form field strength are
constant (see, e.g., [143]).35

In Appendix D, we offer the explicit derivation of the
associated tensor null-memory formula for this class of
theories. Provided that the assumptions of Theorem 1 hold,
the end result is

δhlmH ðu; rÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
S2
d2Ω0ȲlmðΩ0Þ

×
Z

u

−∞
du0r2

�
j _̂hþj2 þ j _̂h×j2 þ

XN
λ¼1

j _̂ψλj2
	
;

ð150Þ

where ĥþ;× ¼ hþ;×. Recall that for certain theories (see
Sec. III), it is necessary to redefine the tensor perturbation
variable ĥHμν ¼ WðhH;ΨHÞ to obtain a perturbation variable
that satisfies a first-order wave equation in the appropriate
gauge. However, the TT component of this redefined
variable, and thus, also the polarization modes hþ;×, always
correspond to the TT component of the physical metric
present in the detector response ĥTTHμν ¼ hTTHμν . The same is
true for the memory component. The need of such a change
of variables to decouple the leading-order equations is,
typically, a sign of the presence of additional gravitational
polarizations.
Let us end this subsection by stressing that the tensor

null-memory result in Eq. (150) was obtained without any
knowledge of the precise form of the Lagrangian, and it
simply follows from Theorem 1 and the resulting solution
of the memory-evolution equation. The coupling constants
of a specific theory would then enter through a trans-
formation from the canonically normalized modes ψ̂ λ to the
physical modes of the theory [recall the discussion around
Eq. (92)]. The expression in Eq. (150) should be compared

34Recall that a differential k-form field Ψ is a totally anti-
symmetric tensor field, which in a coordinate-induced basis can
be written as Ψ ¼ ð1=k!ÞΨμ1…μkdx

μ1 ∧ … ∧ dxμk , with k < d
and where “∧” denotes the exterior product. Such k-form fields
naturally generalize Uð1Þ vector field potentials because their
field strength F ≡ dΨ is invariant under Abelian gauge trans-
formations Ψ → Ψþ dΛ, where Λ is an arbitrary (k − 1)-form
and d is the exterior derivative. See, for instance, [140,141] for a
review of the topic.

35However, a nontrivial coupling to the metric of such fields
can, for example, lead to a dynamical contribution to the
cosmological constant [144] and may thus still have physical
implications.
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to the result in Eqs. (101) and (91), and it represents a
generalization of the explicit SVT theory example we
considered in Sec. IV.

D. Scope of the memory-evolution theorem
and its link to the tensor null memory

We will now explore the scope of the above statements
and, in particular, investigate which theories admit a tensor
null memory of the form Eq. (150). Such theories must, of
course, satisfy the assumptions of Theorem 1. Let us then
restrict ourselves to dynamical metric theories of gravity
that admit an arbitrary number of additional k-form fields in
the gravitational sector (see Appendix D). In particular, this
restriction implies that we focus on theories with Abelian
gauge groups, but similar conclusions should also hold in
the non-Abelian case. A restriction to k-form fields also
implies a limitation to bosonic fields. Fermionic fields do
not usually play the role of a massless force carrier in
known theories. Nonetheless, in principle, it could still be
interesting to enrich metric theories with fermionic fields
in the gravitational sector, an investigation we leave for
future work.
Given these restrictions, there is a large class of theories

for which the tensor null memory takes the form Eq. (150).
The theorem clearly encompasses any covariantized
version of massless k-form Galileon theories [145,146],
restricting the full equations of motion to second order.
Such theories represent a natural generalization of the SVT
class of theories with second-order equations of motion
discussed in Sec. IV. As shown explicitly in Sec. IV D,
these SVT theories contain Horndeski-type theories,
including BD theory [39,40] and other similar scalar-tensor
theories, SGB gravity [62,64], and double-dual Riemann
gravity [89,90].
The memory formula in Eq. (150), however, is not

restricted to theories that satisfy second-order equations of
motion. A first interesting concrete example of a theory that
does not fall under the class of covariantized k-form
Galileon theories is DCS gravity [51] (see also [52]).
This theory is defined through the action

SdCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ ϵ2

4
ΘRμνρσR̃νμρσ

−
1

2
gμν∇μΘ∇νΘ

�
; ð151Þ

where ϵ is a dimensionful coupling constant and Θ is a
(pseudo)scalar field.36 This theory is an example of the
effective field theories with higher-than-second-order field
equations discussed in Sec. II B. In recent years, DCS

gravity has received some attention, mainly because its
rotating black holes have a nontrivial (pseudo)scalar profile
or “hair” [147]. This implies that when such hairy black
holes accelerate, a scalar wave is sourced, which carries
energy-momentum to null infinity.
This fact is what makes DCS interesting from the point

of view of the memory because the scalar wave should
modify the tensor null memory. Just as in SGB gravity (see
Sec. IV D 2), the DCS action expanded to second-order in
perturbations simply reduces to the GR one with a
canonical scalar field near null infinity, because the
Pontryagin density is of higher order in this limit.
Therefore, the linear-order, high-frequency propagation
equations are just given by two decoupled, second-order
wave equations for the metric and the scalar field pertur-
bations. In turn, this fact implies that DCS gravity naturally
falls within the scope of Theorem 1 and admits the tensor
null-memory formula of Eq. (150), with N ¼ 1, Ψ → Θ,
and corresponding leading-order wave mode ψ̂ λ → ϑ̂ ¼ ϑ.
Note, however, that just as in the SGB case, the coupling ϵ
does not enter explicitly into the memory equation, but
rather it enters implicitly through the dependence of the
metric and scalar perturbations on the coupling. For DCS
gravity, this result is indeed confirmed by the explicit
computation of the associated BMS balance laws in [53],
from which one can extract the null memory following the
same steps outlined in Appendix C for BD gravity.
The above result can be generalized to a wide class of

theories with higher-derivative field equations. Indeed, any
GR correction involving higher powers of curvature invar-
iants, including nonminimally coupled, massless scalar
fields, satisfies decoupled second-order wave equations
at the linear level [97]. In particular, assuming Eq. (36), this
is even true when the GR corrections involve terms that are
quadratic in the curvature and do not form topological
invariants (as in the DCS cases). Unlike other GR correc-
tions, such theories do in fact lead to higher-order equations
of motion at the linear level in perturbations, when taken at
face value. However, in the small-coupling approximation,
more precisely, if we assume the strong condition Eq. (36),
these contributions are suppressed by factors of OðϵfHÞ,
where ϵfH ≪ 1, and, therefore, they do not appear at
leading order. Indeed, it was explicitly shown in [97] that
iteratively solving these higher-derivative equations
through order reduction in fact leads again to second-order
wave equations for the metric perturbations. All of this
then immediately implies that, even for these theories,
Theorem 1 holds and the tensor null memory takes the form
of Eq. (150).
Note that the arguments and conclusions above also

naturally encompass metric theories with higher-derivative
terms in the action that do not introduce new gravitational
fields, as for example systematically explored in [107].
Moreover, the statements can be generalized to theories
with nonminimal couplings to other gauge-invariant,

36A vanishing of the scalar field potential implies that Θ is
massless, and the theory is shift symmetric in Θ. This modified
theory reduces to GR smoothly when Θ is constant or when ϵ
vanishes.
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Abelian, k-form fields. This is because for k > 0, gauge
invariance forces any nonminimal coupling to occur
through the field strength, whose background value van-
ishes when evaluated at null infinity, such that the deriva-
tion in [107] is essentially unaltered. The massless and
covariant (including local-Lorentz invariant) conditions, on
the other hand, ensure that the leading-order propagation
equations reduce to massless wave equations at null
infinity. As discussed in Sec. V B 3, even if multiple vector
or scalar modes are present in the theory, these leading-
order propagation equations typically decouple, and the
assumptions of Theorem 1 are satisfied. Furthermore, just
as for the higher-derivative curvature terms, a small-
coupling approximation can in principle also be applied
to any higher-derivative terms of the additional k-form
fields that are not tuned to lead to second-order equations of
motion. Therefore, it is expected that very generally,
Theorem 1 can be applied to dynamical metric theory with
additional k-form fields, which further implies that the
tensor null memory is given by Eq. (150).
In summary, Theorem 1 suggests that, very generically,

for dynamical metric theories of gravity defined in
Definition 1 in the small-coupling approximation (ensuring
a viable EFT expansion), the tensor null memory is of the
form of Eq. (150). In other words, null memory is modified
in comparison to GR in two ways: (I) through contributions
of the energy fluxes to null infinity of additional, massless,
dynamical degrees of freedom in the theory, and (II)
through modifications in the generation and propagation
of the leading-order tensor perturbations. This simple result
could have interesting implications, as we will explore in
the discussion below. Clearly then, the theorem does not
cover metric theories (a) with additional massive degrees of
freedom or a massive physical metric, such as in massive
gravity [148], (b) with nonlocal effects, (c) with explicit
Lorentz breaking in the gravitational sector, such as in
Einstein-Æther theories [149], and (d) with nonvanishing
torsion or nonmetricity, such as in torsion bigravity
[150,151].

VI. DISCUSSION AND CONCLUSION

Planned space-based detectors, such as LISA [152], or
next-generation ground-based detectors, such as the
Einstein Telescope [153] or Cosmic Explorer [154] are
expected to provide the first detections of the tensor
memory effect in the near future. These observations of
gravitational wave memory may play an important role in
establishing a better understanding of gravity and con-
straining modifications of GR. This is because tensor
memory is a very special, nonlinear correction to the
gravitational wave response. Indeed, the memory’s dom-
inant null component can be understood as being sourced
by the leading-order wave front itself, allowing for
potential consistency checks between the standard
oscillatory part of the response and the memory itself.

The results of the work we have presented, including the
computation of the null memory in the most general,
massless, and gauge-invariant SVT theory with second-
order equations of motion, together with its subsequent
generalizations, is but one of the first steps toward the
possible future exploitation of gravitational wave memory
as a test of GR.
One of the main discoveries we have presented in

this paper is a simple but very generic conclusion [see
Eq. (150)]: The functional form of the tensor null memory
of massless dynamical metric theories of gravity is merely
modified from the GR expectation through the presence of
additional null fluxes due to other gravitational fields
present in the beyond-GR extension. This result could
potentially be exploited to develop a largely model-insen-
sitive test of GR of perhaps the most straightforward
manifestation of new physics: the existence of additional
scalar, vectorial, or tensorial propagating degrees of free-
dom. Since memory is sensitive to any kind of energy-
momentum emitted from the source, such a test would not
only complement ongoing searches for additional gravita-
tional polarizations [155], but also extend the sensitivity of
such tests to scenarios in which additional gravitational
fields do not excite any other polarization modes of the
physical metric.
Much work remains to be done to explicitly construct

such a model-insensitive null-memory test of GR, but let
us suggest some general directions that could be explored.
One direction for future research is to study whether the
oscillatory part of the gravitational wave signal can be
separated from the nonoscillatory part. This could be
accomplished by exploiting the fact that, by definition of
the memory-evolution equation in the Isaacson picture,
the characteristic frequency of the oscillatory component
of the signal is parametrically separated from the fre-
quency of the null-memory part. Therefore, Morlet wave-
lets [156] in a time-frequency analysis may be able to
separate these two components. Based on such a model-
independent analysis, one could imagine developing a
consistency check between the extracted oscillatory part
of the gravitational wave signal and the nonoscillatory
memory contribution. Such a test would require knowl-
edge of the inclination angle and the extraction of both
polarizations, which could, for example, be obtained
through an electromagnetic counterpart and the detection
of the signal with multiple interferometers. On a very
general basis, a potential mismatch between the two
signals could then be interpreted as the presence of
additional propagating (scalar, vector, or tensor) degrees
of freedom.
Another possible approach would be to target as well the

merger sensitivity of the memory signal directly by devel-
oping a parametrization for the beyond-GR memory effect,
akin to the parametrized post-Einsteinian framework used
for the oscillatory signal [157]. Such an approach would
require the construction of a parametric post-Einsteinian

GRAVITATIONAL WAVE MEMORY BEYOND GENERAL … PHYS. REV. D 108, 024010 (2023)

024010-27



model for the GR deformation to the null memory through
simple transition functions, such as those studied in [158].
Based on a set of examples of the null memory in specific
beyond-GR theories computed through Eq. (150), such a
parametric model could then be chosen to ensure that the
various specific beyond-GR modifications to the memory
can be recovered by the model. This would in turn allow for
a Bayesian parameter estimation study of the full signal to
attempt to extract the parameters of the post-Einsteinian
tensor memory from the signal.
On the theoretical side, a very interesting future task will

be to generalize our study to ordinary memory [14,22,159]
defined colloquially as the part of the memory that is
sourced by fields that do not reach null infinity. The
typical example of such a source is unbound components
of the matter stress energy of the system itself, which, due
to compact support, are typically assumed to not reach
null infinity. In theories beyond GR, however, the pos-
sibility of additional massive gravitational fields in the
theory represents an additional source of ordinary
memory. In particular, considering massive fields would
allow for the study of a much richer structure of
Ostrogradski-stable vector field theories [114], as well
as a higher-derivative massive 2-form interaction [142],
which can be related to the topological mass generation of
BF theories [160].
Moreover, we would like to mention, that a definition of

the memory-evolution equation as the leading-order low-
frequency equation of motion in the Isaacson picture,
potentially allows for an even broader study of memory
beyond GR. Indeed, in principle, the Isaacson approach
could also be applied to the field equations of theories
which we have explicitly disregarded in this work, such as
theories with nondynamical field content or explicit
Lorentz breaking. In such a general setting, one could
also think about solving the resulting memory-evolution
equation not in the vicinity of null infinity, but in a different
appropriate limit.
This last point could potentially be explored for the study

of the tensor memory in metric theories with broken
diffeomorphism invariance, such as massive gravity theo-
ries [148]. Such an analysis may, however, turn out to be
less straightforward, as the current understanding of
memory is heavily based on the structure of the theory
around null infinity. In the case of massive gravity, other
calculation techniques, such as point-particle source
approximations [161], might be more appropriate for the
computation of its memory contribution. For example,
[162] applied such approximations to massive Fierz-
Pauli theory, but the analysis in this work may need to
be generalized to avoid an unphysical discrepancy with GR
in the small mass limit.
Another avenue for future work would be to investigate a

possible generalization of the BMS balance laws to a wide
class of theories based on the results obtained in this paper.
In light of the close connection between BMS balance laws

and tensor null memory established in Appendix C for BD
theory, our results strongly suggest that the approach of
[45–48] for BD gravity may be readily generalized to the
asymptotic structure of any dynamical metric theories. It
would be interesting to explore this conjecture in detail,
especially with regard to the ordinary memory, which we
have excluded in our analysis. As concerns scalar or vector
null memory, the connection with BMS balance laws is less
clear. In our work, we have not found any nonzero scalar or
vector memory, which parallels the observation that no
analogous BMS constraint can be formulated for scalar
memory within BD theory [45–48]. Recently, however,
[163] suggested that scalar memory in BD theory could be
associated with asymptotic symmetries of a dual descrip-
tion of the scalar sector instead, the implications of which
still remain unexplored.
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useful discussions on the memory effect, Justin Ripley for
helpful comments on gravitational radiation in SGB the-
ories and recent progress in numerical relativity, as well as
Fabio D’Ambrosio, Shaun Fell, Francesco Gozzini, David
Maibach, and Stefan Zentarra for valuable conversations on
asymptotic symmetries and BMS flux-balance laws. L. H.
is supported by funding from the European Research
Council under the European Union’s Horizon 2020 research
and innovation program Grant Agreement No. 801781 and
by the Swiss National Science Foundation Grant
No. 179740. L. H. further acknowledges support from the
Deutsche Forschungsgemeinschaft (DFG,GermanResearch
Foundation) under Germany’s Excellence Strategy EXC
2181/1–390900948 (the Heidelberg STRUCTURES
Excellence Cluster). N. Y. acknowledges support from the
Simmons Foundation through Grant No. 896696. J. Z. is
supported by an ETH Zürich Doc.Mobility Fellowship.

APPENDIX A: TRANSVERSE TRACELESS
MULTIPOLE EXPANSION

For convenience, we gather in this appendix a collection
of definitions and formulas from the unifying review by
Thorne [98] for different multipole expansions used in this
work. In particular, we will touch upon spin-weighted
spherical harmonics, pure-spin transverse-traceless tensor
harmonics, as well as STF tensors, all tied to the SOð3Þ
rotation group and the irreducible representations thereof.
The notation for STF tensors will, however, be adapted to a
more contemporary custom (see, for instance, [38,41,95]).
For more details and derivations, we refer the reader to [98],
while part of the treatment can also be found in [95] and in
the Appendix of [164].
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1. Spin-weighted spherical harmonics

Spin-weighted spherical harmonics can be constructed
from ordinary spherical harmonics through applications of
angular derivative operators

sYlm ¼

8>>><>>>:
ffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ðsYlm; l ≥ s ≥ 0;

ð−1Þs
ffiffiffiffiffiffiffiffiffi
ðlþsÞ!
ðl−sÞ!

q
ð̄−sYlm; 0 > s ≥ −l;

0; jsj > l;

ðA1Þ

where the angular derivative operator ð and its complex
conjugate ð̄ are defined through their action on functions fs
of spin-weight s. The application of the operator ð on a
function fs defines a quantity with spin-weight sþ 1, while
ð̄ lowers the spin weight by one unit.

ðfs ≡ − sins θð∂θ þ i csc θÞðfs sin−s θÞ; ðA2Þ

ð̄fs ≡ − sin−s θð∂θ − i csc θÞðfs sins θÞ: ðA3Þ

They satisfy

ð−1Þsþm
−sȲl−mðθ;ϕÞ ¼ sYlmðθ;ϕÞ; ðA4ÞZ

S2
dΩsYlmðθ;ϕÞsȲl0m0 ðθ;ϕÞ ¼ δll0δmm0 ; ðA5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Y

lm ¼ ðsYlm; ðA6Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Y

lm ¼ ð̄sYlm; ðA7ÞZ
S2
d2Ωs1Y

l1m1
s2Y

l2m2
s3Y

l3m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

3
i¼1ð2li þ 1Þ

4π

r �
l1 l2 l3
m1 m2 m3

��
l1 l2 l3
−s1 −s2 −s3

�
ðA8Þ

if s1 þ s2 þ s3 ¼ 0.

2. Pure-spin transverse-traceless tensor harmonics

The electric- and magnetic-parity pure-spin TT harmon-
ics can also be constructed from ordinary spherical har-
monics through

TE2lm
ij ≡ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s
⊥ijab∂a∂bYlm; ðA9Þ

TB2lm
ij ≡ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s
⊥ijabϵcdða∂bÞrnd∂cYlm; ðA10Þ

where ni is a unit radial vector, and the TT projector⊥ijab is
defined in Eq. (65). They satisfy

ð−1ÞmT̄Pl−m
ij ðθ;ϕÞ ¼ TPlm

ij ðθ;ϕÞ; ðA11ÞZ
S2
dΩTPlm

ij ðθ;ϕÞTP0l0m0
ij ðθ;ϕÞ ¼ δPP0δll0δmm0 : ðA12Þ

3. STF tensors

Denoting a multi-index of l spatial indices collectively as
L≡ i1i2…il, the projection of a tensor component AL onto
its STF part will be referred to as AhLi. Note that
BLAhLi ¼ BhLiAhLi, where a sum over l is implicit.
Moreover, nL stands for the tensor product of l radial
vectors ni. An expansion in terms of STF tensors nhLi ¼
nhLiðθ;ϕÞ is equivalent to an expansion in spherical
harmonics

nhLi ¼
4πl!

ð2lþ 1Þ!!
Xl

m¼−l
Ylm

hLiY
lm; ðA13Þ

Ylm ¼ Ylm
L nL ¼ Ylm

L nhLi; ðA14Þ

where Ylm
L are angle-independent, STF tensors connecting

the two basis. They satisfy

ð−1ÞmȲl−m
L ¼ Ylm

L ðA15Þ

Ȳlm
L Ylm0

L ¼ ð2lþ 1Þ!!
4πl!

δmm0 : ðA16Þ

4. Relations between harmonics

The pure-spin TT harmonic tensors are related to spin
weight s ¼ �2 spin-weighted spherical harmonics through

TE2lm
ij ¼ 1ffiffiffi

2
p ð−2Ylmmimj þ 2Y

lmm̄im̄jÞ; ðA17Þ

TB2lm
ij ¼ −

iffiffiffi
2

p ð−2Ylmmimj − 2Y
lmm̄im̄jÞ; ðA18Þ

while the relation to the STF basis is given by

TE2lm
ij ¼ ⊥ijab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þl

ðlþ 1Þðlþ 2Þ

s
Ylm

abL−2nL−2; ðA19Þ

TB2lm
ij ¼ ⊥ijab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þl

ðlþ 1Þðlþ 2Þ

s
ϵcdðaYlm

bÞdL−2ncL−2: ðA20Þ

5. Expansion of a rank-2, TT tensor

Using the definitions above, we will now relate the
expansions of an arbitrary, rank-2, TT tensorHTT

ij ðu; r; θ;ϕÞ,
in terms of spin-weighted spherical harmonics, pure-spin TT
tensor harmonics, and STF tensors.
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a. Spin-weighted spherical harmonic expansion

Using the transverse null vector of spin-weight s ¼ −1,

m̄i ≡ 1ffiffiffi
2

p ðui − iviÞ; ðA21Þ

we can define the spinweight s ¼ −2 scalar quantity

H ≡HTT
ij m̄

im̄j ¼ Hijm̄im̄j; ðA22Þ

which we expand in terms of spin-weighted spherical
harmonics as

H ¼
X∞
l¼2

Xl

m¼−l
Hlm

−2Y
lm; ðA23Þ

where

Hlmðu; rÞ ¼
Z
S2
d2Ω−2Y

lmH: ðA24Þ

b. TT tensor expansion

The general expansion in terms of TT tensor harmonics
reads

HTT
ij ¼

X∞
l¼2

Xl

m¼−l
½UlmTE2lm

ij þ VlmTB2lm
ij �; ðA25Þ

where

Ulmðu; rÞ ¼
Z
S2
d2ΩTE2lm

ij HTT
ij ; ðA26Þ

Vlmðu; rÞ ¼
Z
S2
d2ΩTB2lm

ij HTT
ij : ðA27Þ

The expansion coefficients Ulm and Vlm are the electric-
and magnetic-parity multipole moments, respectively, also
commonly known as mass and current multipole moments.
In the literature, it is common to explicitly factor out the r
dependence of mass and current multipole moments, which
we will not do here. Since HTT

ij is real, they satisfy

Ūlm ¼ ð−1ÞmUl−m; V̄lm ¼ ð−1ÞmVl−m: ðA28Þ

c. STF expansion

The corresponding STF multipole expansion is given by

HTT
ij ¼ 4⊥ijab

X∞
l¼2

1

l!

�
UklL−2nL−2

þ 2l
lþ 1

ϵcdðaVbÞcL−2ndL−2

�
; ðA29Þ

where

UijL−2 ¼
1

4π

lðl − 1Þð2lþ 1Þ!!
2ðlþ 1Þðlþ 2Þ

Z
d2ΩnL−2HTT

ij ; ðA30Þ

VijL−2 ¼
1

4π

ðl − 1Þð2lþ 1Þ!!
4ðlþ 2Þ

Z
d2ΩnaL−2ϵiabHTT

bj :

ðA31Þ

d. Relations between expansion coefficients

The multipole moments in a spin-weighted basis are
related to the electric- and magnetic-parity moments as

Hlm ¼ 1ffiffiffi
2

p ½Ulm − iVlm�; ðA32Þ

which can be inverted to give

Ulm ¼ 1ffiffiffi
2

p ½Hlm þ ð−1ÞmH̄l−m�; ðA33Þ

Vlm ¼ iffiffiffi
2

p ½Hlm − ð−1ÞmH̄l−m�: ðA34Þ

On the other hand, the relation between a STF and a TT
tensor basis is given by

Ulm ¼ 16π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

2ðl − 1Þl

s
Ȳlm

L UL; ðA35Þ

Vlm ¼ −32πl
ðlþ 1Þð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

2ðl − 1Þl

s
Ȳlm

L VL; ðA36Þ

UL ¼ l!
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þl

ðlþ 1Þðlþ 2Þ

s Xl

m¼−l
Ylm

L Ulm; ðA37Þ

VL ¼ −ðlþ 1Þ!
8l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þl

ðlþ 1Þðlþ 2Þ

s Xl

m¼−l
Ylm

L Vlm: ðA38Þ

APPENDIX B: PROOF OF EQ. (96)

In this appendix, we provide a derivation of the relation�
n0in

0
j

1 − n⃗0 · n⃗

�TT
¼

X∞
l¼2

2ð2lþ 1Þ!!
ðlþ 2Þ! ½nL−2n0hijL−2i�TT; ðB1Þ

where a superscript TT implies a contraction of free indices
with the TT projector with respect to n⃗, which we defined in
Eq. (65). The proof below is based on private communi-
cations with Blanchet and can also be found in [128].
Proof.—First, note that due to the TT projection, the left-

hand side of Eq. (B1) vanishes for n⃗0 ¼ n⃗, while this is also
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true for the right-hand side. Thus, in the following, we
consider the case n⃗0 ≠ n⃗, which implies jn⃗0 · n⃗j < 1 such
that we can expand the left-hand side in terms of a
geometric series

n0in
0
j

1 − n⃗0 · n⃗
¼ n0in

0
j

X∞
l¼2

ðn⃗0 · n⃗Þl−2 ¼
X∞
l¼2

nL−2n0ijL−2; ðB2Þ

where we use the notation introduced in Sec. A 3. The
remaining task is to rewrite n0ijL−2 in terms of its STF
part n0hijL−2i by using the formula [see, e.g., Eq. (A21a)

in [165] ]

nL ¼
X½l=2�
k¼0

alkδf2Kn
0
hL−2Kig; ðB3Þ

where

alk ≡ ð2l − 4kþ 1Þ!!
ð2l − 2kþ 1Þ!! ; ðB4Þ

and where ½l=2� selects the integer part of l=2. Moreover,
the operator f…g on tensor indices AfLg denotes the sumP

σ∈S Aiσð1Þ…iσðlÞ , where S is the smallest set of permutations
of ð1…lÞ, which makes AfLg fully symmetric in L. For
instance,

δfabn0ijg ¼ δabn0ij þ δain0bj þ δajn0bi þ δbin0aj

þ δbjn0ai þ δijn0ab: ðB5Þ

With this in hand,

n0in
0
j

1 − n⃗0 · n⃗
¼

X∞
l¼2

nL−2
X½l−22 �
k¼0

alkδf2Kn
0
hijL−2−2Kig: ðB6Þ

Notice, however, that due to the TT projection with respect
to n⃗ on the free indices ij and the contraction of the
remaining indices with nL−2, any term which involves one
of the indices i or j within the Kronecker delta, hence terms
containing δij, δia, or δja for any index a, will vanish. For
example, for the term l ¼ 4 and k ¼ 1 written out in
Eq. (B5), only the first term will survive. Thus,

�
n0in

0
j

1 − n⃗0 · n⃗

�TT
¼

X∞
l¼2

nL−2
X½l−22 �
k¼0

½δ2Kn0hijL−2−2Ki�TTalkblk;

¼
X∞
l¼2

X½l−22 �

k¼0

alkb
l
k½nL−2−2Kn0hijL−2−2Ki�TT;

ðB7Þ

where

blk ≡ ðl − 2Þ!
2kk!ðl − 2 − 2kÞ! ðB8Þ

is the number of terms within the sum δf2Kn0L−2−2Kg.
We can now rearrange the sum over positive integers

l and k as

X∞
l¼2

X½l−22 �

k¼0

¼
X
l;k

½2 ≤ l ≤ ∞�
�
0 ≤ k ≤

l − 2

2

�
¼

X
l;k

�
0 ≤ k ≤

l − 2

2
≤ ∞

�
¼

X
p;k

�
0 ≤ k ≤

pþ 2k − 2

2
≤ ∞

�
¼

X
p;k

½2 ≤ p ≤ ∞�½0 ≤ k ≤ ∞�; ðB9Þ

where we defined p≡ l − 2k and, in this context, the
angular brackets [B] of a Boolean expression denote
Inverson brackets,37 such that

�
n0in

0
j

1 − n⃗0 · n⃗

�TT
¼

X∞
p¼2

X∞
k¼0

apþ2k
k bpþ2k

k ½nP−2n0hijP−2i�TT

¼
X∞
l¼2

X∞
k¼0

alþ2k
k blþ2k

k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≡Sl

½nL−2n0hijL−2i�TT;

ðB10Þ

where in the last step we simply relabeled p → l. The sum
over k can indeed be resummed explicitly to give

Sl ¼
X∞
k¼0

ð2lþ 1Þ!!
ð2lþ 2kþ 1Þ!!

ðlþ 2k − 2Þ!
2kk!ðl − 2Þ!

¼ 22þlΓðlþ 3
2
Þffiffiffi

π
p

Γðlþ 3Þ

¼ 2ð2lþ 1Þ!!
ðlþ 2Þ! ; ðB11Þ

where in the last step we used the identities of gamma

functions Γðlþ 3Þ ¼ ðlþ 2Þ! and Γðlþ 3
2
Þ ¼

ffiffi
π

p ð2lþ1Þ!!
21þl .

Comparing to Eq. (B1), this concludes the proof. ▪

37Inverson brackets are defined as ½B� ¼
�
1 if B is true;
0; otherwise

.
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APPENDIX C: DISPLACEMENT MEMORY
FROM BMS BALANCE LAWS
IN BRANS-DICKE GRAVITY

Starting from the action in Eq. (103), the authors
in [45–48] arrive at the BMS supermomentum flux-balance
law in spherical coordinates fu; r; xAg, xA ¼ fθ;ϕg [see,
for instance, Eqs. (10)–(12) in [48], from which we also
adopt the notation]

0 ¼ φ0

4πG

Z
S2
d2Ωα

�
ΔM þ

Z
∞

−∞
du0

�
1

2
NABNAB

þDADBNAB þ ð2ωþ 3Þ
�
N
φ0

�
2
��

; ðC1Þ

where DA is the covariant derivative on S2, α ¼ αðθ;ϕÞ
is an arbitrary function on S2 parametrizing super-
translations, and M denotes the Bondi mass aspect, while
ΔM≡Mðu → ∞Þ −Mðu → −∞Þ. Moreover, as in [48]
we write

NAB ≡ − _̂cAB; N ≡ _φ1; ðC2Þ

where ĉAB is the symmetric, traceless, and transverse shear
tensor and φ1 the component of the scalar that falls off as
∼1=r. We additionally expand the shear as

ĉAB ¼ c̄m̄Am̄B þ cmAmB; ðC3Þ

where in spherical coordinates

m ¼ 1ffiffiffi
2

p ð∂θ þ i sin θ∂ϕÞ: ðC4Þ

Using Eqs. (C2) and (C3), as well as the definition of the
angular derivative operator [Eq. (A2)], which implies that
we have DADBĉAB ¼ 1

2
ðð2cþ ð̄2c̄Þ, the flux-balance law

in Eq. (C1) can be rewritten asZ
S2
d2ΩαΔM ¼ 1

4

Z
∞

−∞
du0

Z
S2
d2Ωα

�
j_cj2

− Reð2 _cþ ð2ωþ 3Þ
�
_φ1

φ0

�
2
�
: ðC5Þ

To single out the tensor null memory from the above
relation, we can first set the subdominant, left-hand side to
zero. This gives rise to the so-called linear or ordinary
memory. We then rewrite the BMS supermomentum
balance law in Eq. (C5) by moving the second to last term
to the left, while carrying out the u0 integral to obtainZ
S2
d2ΩαReð2Δc ¼

Z
∞

−∞
du0

Z
S2
d2Ωα

×

�
j_cj2 þ ð2ωþ 3Þ

�
_φ1

φ0

�
2
�
: ðC6Þ

Furthermore, expanding c with spin-weight s ¼ −2 on the
left-hand side as

cðu; θ;ϕÞ ¼
X∞
l¼2

Xl

m¼−l
clmðuÞ−2Ylmðθ;ϕÞ; ðC7Þ

and using the relation [Eq. (A6)] (or equivalently, integrat-
ing ð2 by parts),

ð2−2Ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
Ylm ðC8Þ

as well as choosing αðθ;ϕÞ ¼ Ȳlmðθ;ϕÞ, we obtain

1

2
ðΔclmþð−1ÞmΔc̄l−mÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl− 2Þ!
ðlþ 2Þ!

s Z
S2
d2ΩȲlm

Z
∞

−∞
du0

�
j_cj2þð2ωþ 3Þ

�
_φ1

φ0

�
2
�
:

ðC9Þ

Note that by separating clm into its electric- and magnetic-
parity moments of a spin-2, TT tensor harmonic expansion
of the rank-2 TT tensor cij ¼ eAi e

B
j ĉAB (A33)

clm ¼ 1ffiffiffi
2

p ½Ulm
c − iVlm

c �; ðC10Þ

the left-hand side in Eq. (C9) precisely corresponds to
the electric-parity part [Eq. (A34)]. Therefore, finally we
arrive at

ΔUlm
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s Z
S2
d2ΩȲlm

×
Z

∞

−∞
du0

�
j_cj2 þ ð2ωþ 3Þ

�
_φ1

φ0

�
2
�
: ðC11Þ

From the balance laws, we can therefore single out the
total tensor displacement memory, and hence, the lasting
nonzero component within the electric-parity multipole of
the shear c, which ultimately induces a lasting offset in the
detector strain. Note, however, that the shear and the scalar
field which enter the balance laws are the total shear and
scalar field at Oðr−1Þ within the full nonlinear theory, and
therefore, in particular, they already contain all possible
memory contributions.38 In order to connect this result with
the computation in Eq. (104) within the setup of the present
work, we should therefore also distinguish between a high-
and low-frequency part of the shear and the scalar

38However, the generalized Bondi news, which enters the
right-hand side of the equation, vanishes as u → �∞, where by
assumption no gravitational waves reach null infinity.
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c ¼ cL þ cH; φ1 ¼ φL
1 þ φH

1 ; ðC12Þ

and slightly reinterpret the flux-balance law in order to use
it as a tool to compute the low-frequency displacement
memory characterized by the measurable monotonically
increasing and nonoscillatory, time-dependent raise of the
memory, which is what gravitational wave detectors are
sensitive to. We therefore only gradually integrate over
retarded time, while extracting the low-frequency part of
the expression by averaging out the small scales. Note that
in order to compute the full memory, such an averaging is
irrelevant.
After averaging, any cross terms of the form “cLcH” or

“φL
1φ

H
1 ” on the right-hand side in Eq. (C11) will vanish.

Moreover, we assume that we can neglect any contribution
of low-frequency components cLcL or φL

1φ
L
1 which can be

interpreted as the “memory of the memory.” In other words,
we assume that the source modes for the memory them-
selves have a negligible memory component, which is
indeed a reasonable assumption [129]. Furthermore, impos-
ing cðu → −∞Þ ¼ 0, we therefore have

clmL ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
S2
d2ΩȲlm

×
Z

u

−∞
du0

�
j_cHj2 þ ð2ωþ 3Þ

�
_φH
1

φ0

�
2
	
; ðC13Þ

where clmL ðuÞ is the resulting low-frequency correction to
the shear, given high-frequency radiation modes cH and
φH
1 . Here we have used Eq. (C10) with δV

lm
c ¼ 0 to rewrite

Eq. (C12) in terms of the shear.
The reason why such a reinterpretation of the balance

law is useful in practice is because typical numerical
relativity waveforms do not capture any memory compo-
nent due to various technical reasons (see, e.g., [19]). Only
recently were people able to compute memory in numerical
relativity based on Cauchy-characteristic extraction [166].
As a last step before finally being able to compare

results, we need to connect the perturbative shear and scalar
field defined here with the perturbations used in the main
text and ensure that these are indeed the same quantities. In
the case of BD theory, the easiest way to establish this
correspondence is to compare the corresponding leading
Oðr−1Þ terms of the electric part of the Riemann tensor. In
[45,46], these terms were computed and found to be [see,
e.g., Eq. (2.44) in [45] ]39

RuAuB ¼ −
1

2r

�
̈ĉAB − γAB

φ̈1

φ0

�
þO

�
1

r2

�
: ðC14Þ

By using the embedding of the unit S2 basis eiA ¼ ∂ni

∂xA,

such that γAB ¼ δijeiAe
j
B ¼ 2mðAm̄BÞ, we can convert the

leading-order expression to a ft; x; y; zg Minkowski basis,
which yields

R0i0j ¼ eAi e
B
j RuAuB ¼ −

eAi e
B
j

2r

�
̈ĉAB − γAB

φ̈1

φ0

�
¼ −

1

2r

�
mimjc̈þ m̄im̄j ̈c̄|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

2
eþijðc̈þ ̈c̄Þþi

2
eþijðc̈− ̈c̄Þ

− ðδij − ninjÞ
φ̈1

φ0

�

¼ −
1

2r

�
eþijc̈þ þ e×ijc̈× − ðδij − ninjÞ

φ̈1

φ0

�
;

where we used that eAi e
B
j γAB ¼ 2mðim̄jÞ ¼ δij − ninj,

eAi mA ¼ mi and we defined cþ ≡ Rec and c× ≡ −Imc.
Hence, comparing to Eq. (74) with σ ¼ 1=φ0 we obtain the
correspondence

cHþðu;ΩÞ ¼ lim
r→∞

rhþðu; r;ΩÞ; ðC15Þ

cH× ðu;ΩÞ ¼ lim
r→∞

rh×ðu; r;ΩÞ; ðC16Þ

φH
1 ðu;ΩÞ ¼ lim

r→∞
rφðu; r;ΩÞ; ðC17Þ

while therefore as well

clmL ¼ lim
r→∞

rδhlm; ðC18Þ

such that Eq. (C13) indeed corresponds to the result
in Eq. (105).

APPENDIX D: TENSOR NULL MEMORY
IN A GAUGE-INVARIANT k-FORM

METRIC THEORY

In order to exemplify how generic the assumption given
by Eq. (144) is, we present in this appendix the general
form of the tensor null memory of a particular but fairly
general class of additional gravitational fields. Namely,
we consider an arbitrary number of additional dynamical
k-form connection fields that we schematically denote as
Ψ, with an associated, Abelian, gauge symmetry for k > 1
(for k ¼ 0, the field simply corresponds to a scalar field).
The action in Eq. (122) is thus constructed out of curvature
invariants of the metric, as well as field strengths F ≡ dΨ
that are invariant under Abelian gauge transformations

Ψ → Ψþ dΛ; ðD1Þ

where Λ are arbitrary (k − 1)-forms and d is the exterior
derivative. These dynamical k-form fields are assumed to
describe N additional propagating gravitational degrees of

39Note, however, that the authors in [45,46] report the result in
an orthonormal tetrad basis, instead of the spherical coordinates
employed here.
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freedom. Note that in a local chart-induced basis, a k-form
field reads

Ψ ¼ 1

k!
Ψμ1μ2…μkdx

μ1 ∧ dxμ2 ∧ … ∧ dxμk ;

≡ 1

k!
ΨKdXK: ðD2Þ

The assumptions of Theorem 1 are now natural. In
particular, the leading-order propagation equations
[Eq. (129)] of the theory reduce to a set of decoupled
wave equations for the leading-order waves ΨH

K upon
imposing the analog of the Lorentz gauge

∂
μiΨ̂H

K ¼ 0 ðD3Þ

on each of the field perturbations. This is because, by
assumption, the theory is covariant, locally Lorentz invari-
ant, and massless. Moreover, any term in the action that
would lead to higher-order derivatives in the equations of
motion of the leading-order waves does not contribute
to leading order in the small-coupling approximation
[Eq. (24)]. An additional assumption here is that, in the
limit to null infinity, there is no coupling between different
fields at the level of the leading-order, high-frequency
equation.
Following the proof of Theorem 1, the flat, effective,

second-order action of Eq. (140) can thus be written as

ð2ÞS
flat
eff

¼ −1
2κeff

Z
d4x

ffiffiffiffiffiffi
−η

p �
ĥμνH Eαβ

μν ĥHαβ

þ
X
Ψ

1

2q
ημ1ν1…ημqνqF̂H

μ1…μqF̂
H
ν1…νq

�
; ðD4Þ

where q≡ kþ 1, κeff ¼ κ0Aðη0Þ, and F̂H ¼ dΨ̂H are the
field strength of the canonically normalized k-form per-
turbations Ψ̂H. The first term in Eq. (D4) is again the usual
Fierz-Pauli operator with indices contracted with the
independent background metric ημν, while the second term
corresponds to the sum of kinetic terms of all the additional
gravitational, gauge-invariant, k-form field perturbations.
With this explicit form of the flat effective action at hand,

we can now explicitly compute the resulting effective
stress-energy tensor for the additional leading-order waves
(see also [167] for a study of the properties of the energy-
momentum tensor of k-forms)

ð2Þt
Ψ̂
μν

¼ 1

2κeff

X
Ψ

�
F̂H

μKF̂
HK
ν −

1

2q
ημνF̂

H
QF̂

HQ
	
: ðD5Þ

Imposing the equations of motion [Eq. (131)], as well as
the Lorenz gauge [Eq. (D3)], while recalling that the
averaging allows for integrations by parts, the only surviv-
ing terms are

ð2Þt
Ψ̂
μν

¼ 1

2κeff

X
Ψ
h∂μΨ̂H

K∂νΨ̂KKi: ðD6Þ

Including the Fierz-Pauli result, the total energy-momentum
tensor therefore reads

ð2Þtμν ¼
1

2κeff

�
1

2
∂μĥ

H
αβ∂νĥ

Hαβ þ
X
Ψ
∂μΨ̂H

K∂νΨ̂HK
	
: ðD7Þ

This (pseudo)energy-momentum tensor is indeed conserved
(and traceless), as well as gauge invariant (both under
linearized diffeomorphisms and gauge transformations of
the k-form fields upon imposing a Lorenz gauge).
The above also means that the (pseudo)energy-

momentum tensor can be written in terms of the radiative
modes of each field, which are the solutions to the wave
equations that we can expand in terms of a polarization
basis. For the metric perturbation, we have the usual TT
tensor modes of the physical metric

ĥHTT
μν ¼ hHTT

μν ¼ ϵþμνĥþ þ ϵ×μνĥ×; ðD8Þ

where

ϵþμνϵþμν ¼ ϵ×μνϵ
×μν ¼ 2; ϵþμνϵ×μν ¼ 0: ðD9Þ

For the additional gravitational fields Ψ, by assumption
they describe N additional radiative modes ψλ, where
λ ¼ 1;…; N. These can be written in some polarization
basis as40

Ψ̂p
K ¼

X
P

ϵPKψ̂P; where ϵPKϵ
P0K ¼ δPP

0
: ðD10Þ

These solutions to the wave equation in the limit to null
infinity take the form [cf. Eq. (67)]

ðĥþ; ĥ×; ψ̂ λÞ ∼
1

r
½fþðu; θ;ϕÞ; f×ðu; θ;ϕÞ; fλðu; θ;ϕÞ�

ðD11Þ

for some real functions fþ;×;λ. Together with the form of the
energy-momentum tensor Eq. (D7) this behavior near null
infinity implies that the radiative energy-momentum tensor
can indeed be written as (see Sec. IV B)

ð2Þtμν ¼
1

2κeff

�
j _̂hþj2 þ j _̂h×j2 þ

XN
λ¼1

j _̂ψλj2
	
lμlν; ðD12Þ

40A practical way of completely fixing the gauge is the use of
spacetime light-cone coordinates, as exemplified, for instance, in
[142] for 2-forms. These polarizations should, however, not be
confused with the gravitational polarizations of the physical
metric defined in Sec. III B 2.
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where lμ ¼ −∇μtþ∇μr and the falloffs of Eq. (D11)
impose the scaling tμν ∼ r−2.
Following Sec. V C, the tensor null-memory formula

therefore takes the form

δhlmH ðu; rÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
S2
d2Ω0ȲlmðΩ0Þ

×
Z

u

−∞
du0r2

�
j _̂hþj2 þ j _̂h×j2 þ

XN
λ¼1

j _̂ψλj2
	
:

ðD13Þ

Note that the ψ̂ here are the canonically normalized modes.
The coupling constants of a specific theory will then enter
the memory formula by transforming back to the physi-
cal modes.

The example presented here could be readily general-
ized by the inclusion of non-Abelian, 1-form gauge fields
with a simple and compact but otherwise arbitrary gauge
group and field strength dF ¼ dΨþ Ψ ∧ Ψ. Such theo-
ries are a natural generalization of the SVT theory
considered in this work but would not change the result
significantly, as the background solution requires a
vanishing vector field in this case. Moreover, just as
for massless Abelian fields, no higher-order self-
interaction terms exist in d ¼ 4, which would still lead
to second-order equations of motion [145]. Similarly, in
the same way as Abelian 1-forms can be generalized to
non-Abelian gauge groups, k-forms have non-Abelian
generalizations, which typically require the use of gerbes
(see, e.g., [168,169]). We conjecture, that also in such a
general framework an adapted version of the memory
equation [Eq. (150)] should hold.
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Mem. Acad. St. Petersbourg 6, 385 (1850).

[104] S. Weinberg, Effective field theory for inflation, Phys. Rev.
D 77, 123541 (2008).

[105] J. F. Donoghue, The effective field theory treatment of
quantum gravity, AIP Conf. Proc. 1483, 73 (2012).

[106] R. A. Porto, The effective field theorist’s approach to
gravitational dynamics, Phys. Rep. 633, 1 (2016).

GRAVITATIONAL WAVE MEMORY BEYOND GENERAL … PHYS. REV. D 108, 024010 (2023)

024010-37

https://doi.org/10.1088/0264-9381/24/2/006
https://doi.org/10.1088/0264-9381/24/2/006
https://doi.org/10.1103/PhysRevD.105.044022
https://doi.org/10.1088/0264-9381/7/7/009
https://doi.org/10.1007/978-3-319-10070-8
https://doi.org/10.1103/PhysRevD.85.064022
https://doi.org/10.1103/PhysRevD.93.029902
https://doi.org/10.1103/PhysRevD.93.029902
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.93.024010
https://doi.org/10.1103/PhysRevD.94.121503
https://doi.org/10.1103/PhysRevD.94.121503
https://doi.org/10.1088/1361-6382/aa5ce7
https://doi.org/10.1103/PhysRevD.96.064009
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevD.96.044020
https://doi.org/10.1103/PhysRevD.96.044020
https://doi.org/10.1103/PhysRevD.98.044013
https://doi.org/10.1103/PhysRevD.98.044013
https://doi.org/10.1103/PhysRevD.99.084015
https://doi.org/10.1103/PhysRevD.99.084015
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1103/PhysRevLett.127.031101
https://doi.org/10.1103/PhysRevLett.127.031101
https://doi.org/10.1103/PhysRevD.105.L041502
https://doi.org/10.1103/PhysRevD.104.124028
https://doi.org/10.1103/PhysRevD.106.044018
https://arXiv.org/abs/2211.01766
https://arXiv.org/abs/2211.01766
https://doi.org/10.1088/1475-7516/2018/10/054
https://doi.org/10.1103/PhysRevD.79.084031
https://doi.org/10.1103/PhysRevD.79.084031
https://doi.org/10.1103/PhysRevD.84.043503
https://doi.org/10.1103/PhysRevD.84.043503
https://doi.org/10.1103/PhysRevD.85.104040
https://doi.org/10.1103/PhysRevLett.108.051101
https://doi.org/10.1103/PhysRevLett.108.051101
https://doi.org/10.1103/PhysRev.166.1263
https://doi.org/10.1103/PhysRev.166.1272
https://doi.org/10.1088/1367-2630/7/1/204
https://arXiv.org/abs/gr-qc/0411004
https://doi.org/10.1103/PhysRevD.83.064038
https://doi.org/10.1103/PhysRevD.83.064038
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1098/rspa.1981.0109
https://arXiv.org/abs/2201.11634
https://doi.org/10.1103/PhysRevD.77.123541
https://doi.org/10.1103/PhysRevD.77.123541
https://doi.org/10.1063/1.4756964
https://doi.org/10.1016/j.physrep.2016.04.003


[107] S. Endlich, V. Gorbenko, J. Huang, and L. Senatore, An
effective formalism for testing extensions to general
relativity with gravitational waves, J. High Energy Phys.
09 (2017) 122.

[108] H. Motohashi and T. Suyama, Black hole perturbation in
non-dynamical and dynamical Chern-Simons gravity,
Phys. Rev. D 85, 044054 (2012).

[109] D. Pirtskhalava, L. Santoni, E. Trincherini, and F. Vernizzi,
Weakly broken Galileon symmetry, J. Cosmol. Astropart.
Phys. 09 (2015) 007.

[110] L. Heisenberg, J. Noller, and J. Zosso, Horndeski under the
quantum loupe, J. Cosmol. Astropart. Phys. 10 (2020) 010.

[111] A. D. Kovács and H. S. Reall, Well-Posed Formulation of
Scalar-Tensor Effective Field Theory, Phys. Rev. Lett. 124,
221101 (2020).

[112] J. L. Ripley, Numerical relativity for Horndeski gravity,
Int. J. Mod. Phys. D 31, 2230017 (2022).

[113] A. D. Kovács and H. S. Reall, Well-posed formulation of
Lovelock and Horndeski theories, Phys. Rev. D 101,
124003 (2020).

[114] L. Heisenberg, Generalization of the Proca action,
J. Cosmol. Astropart. Phys. 05 (2014) 015.

[115] L. Heisenberg, R. Kase, and S. Tsujikawa, Cosmology in
scalar-vector-tensor theories, Phys. Rev. D 98, 024038
(2018).

[116] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Gener-
alized G-inflation: Inflation with the most general second-
order field equations, Prog. Theor. Phys. 126, 511 (2011).

[117] G.W. Horndeski, Second-order scalar-tensor field equa-
tions in a four-dimensional space, Int. J. Theor. Phys. 10,
363 (1974).

[118] A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as
a local modification of gravity, Phys. Rev. D 79, 064036
(2009).

[119] T. Kobayashi, Horndeski theory and beyond: A review,
Rep. Prog. Phys. 82, 086901 (2019).

[120] G.W. Horndeski, Conservation of charge and the Einstein-
Maxwell field equations, J. Math. Phys. (N.Y.) 17, 1980
(1976).

[121] J. D. Barrow, M. Thorsrud, and K. Yamamoto, Cosmol-
ogies in Horndeski’s second-order vector-tensor theory,
J. High Energy Phys. 02 (2013) 146.

[122] J. M. Bardeen, Gauge invariant cosmological perturba-
tions, Phys. Rev. D 22, 1882 (1980).

[123] S. M. Carroll, Spacetime and Geometry: An Introduction
to General Relativity (Cambridge University Press,
Cambridge, England, 2019).

[124] M. J. Koop and L. S. Finn, Physical response of light-time
gravitational wave detectors, Phys. Rev. D 90, 062002
(2014).

[125] D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner,
and C. M. Will, Gravitational-Wave Observations as a Tool
for Testing Relativistic Gravity, Phys. Rev. Lett. 30, 884
(1973).

[126] D. M. Eardley, D. L. Lee, and A. P. Lightman, Gravita-
tional-wave observations as a tool for testing relativistic
gravity, Phys. Rev. D 8, 3308 (1973).

[127] S. Hou, Y. Gong, and Y. Liu, Polarizations of gravitational
waves in Horndeski theory, Eur. Phys. J. C 78, 378 (2018).

[128] L. Blanchet, G. Compère, G. Faye, R. Oliveri, and A.
Seraj, Multipole expansion of gravitational waves:
Memory effects and Bondi aspects, arXiv:2303.07732.

[129] C. Talbot, E. Thrane, P. D. Lasky, and F. Lin, Gravitational-
wave memory: Waveforms and phenomenology, Phys.
Rev. D 98, 064031 (2018).

[130] B. Bertotti, L. Iess, and P. Tortora, A test of general
relativity using radio links with the Cassini spacecraft,
Nature (London) 425, 374 (2003).

[131] P. Wagle, A. Saffer, and N. Yunes, Polarization modes of
gravitational waves in quadratic gravity, Phys. Rev. D 100,
124007 (2019).

[132] T. Narikawa, T. Kobayashi, D. Yamauchi, and R. Saito,
Testing general scalar-tensor gravity and massive
gravity with cluster lensing, Phys. Rev. D 87, 124006
(2013).

[133] M. A. H. Maccallum and A. H. Taub, The averaged
Lagrangian and high-frequency gravitational waves,
Commun. Math. Phys. 30, 153 (1973).

[134] Relativistic Fluid Dynamics, edited by C. Cattaneo
(Springer, Berlin, 2011).

[135] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014), p. 3.

[136] D. Comelli, M. Crisostomi, and L. Pilo, Perturbations in
massive gravity cosmology, J. High Energy Phys. 06
(2012) 085.

[137] A. De Felice, T. Nakamura, and T. Tanaka, Possible
existence of viable models of bi-gravity with detectable
graviton oscillations by gravitational wave detectors, Prog.
Theor. Exp. Phys. 2014, 43E01 (2014).

[138] J. Beltran Jimenez and L. Heisenberg, Generalized multi-
Proca fields, Phys. Lett. B 770, 16 (2017).

[139] N. Dimakis, A. Paliathanasis, P. A. Terzis, and T.
Christodoulakis, Cosmological solutions in multiscalar
field theory, Eur. Phys. J. C 79, 618 (2019).

[140] M. Henneaux and C. Teitelboim, P-form electrodynamics,
Found. Phys. 16, 593 (1986).

[141] A. Zee, Quantum Field Theory in a Nutshell, 2nd ed.
(Princeton University Press, Princeton, NJ, 2010).

[142] L. Heisenberg and G. Trenkler, Generalization of the
2-form interactions, J. Cosmol. Astropart. Phys. 05
(2020) 019.

[143] I. Bandos, F. Farakos, S. Lanza, L. Martucci, and D.
Sorokin, Higher forms and membranes in 4D supergrav-
ities, Fortschr. Phys. 67, 1910020 (2019).

[144] M. J. Duncan and L. G. Jensen, Four forms and the
vanishing of the cosmological constant, Nucl. Phys.
B336, 100 (1990).

[145] C. Deffayet, S. Deser, and G. Esposito-Farese, Arbitrary
p-form Galileons, Phys. Rev. D 82, 061501 (2010).

[146] C. Deffayet, S. Mukohyama, and V. Sivanesan, On p-form
theories with gauge invariant second order field equations,
Phys. Rev. D 93, 085027 (2016).

[147] N. Yunes and F. Pretorius, Dynamical Chern-Simons
modified gravity. I. Spinning black holes in the slow-
rotation approximation, Phys. Rev. D 79, 084043 (2009).

[148] C. de Rham, Massive gravity, Living Rev. Relativity 17, 7
(2014).

HEISENBERG, YUNES, and ZOSSO PHYS. REV. D 108, 024010 (2023)

024010-38

https://doi.org/10.1007/JHEP09(2017)122
https://doi.org/10.1007/JHEP09(2017)122
https://doi.org/10.1103/PhysRevD.85.044054
https://doi.org/10.1088/1475-7516/2015/09/007
https://doi.org/10.1088/1475-7516/2015/09/007
https://doi.org/10.1088/1475-7516/2020/10/010
https://doi.org/10.1103/PhysRevLett.124.221101
https://doi.org/10.1103/PhysRevLett.124.221101
https://doi.org/10.1142/S0218271822300178
https://doi.org/10.1103/PhysRevD.101.124003
https://doi.org/10.1103/PhysRevD.101.124003
https://doi.org/10.1088/1475-7516/2014/05/015
https://doi.org/10.1103/PhysRevD.98.024038
https://doi.org/10.1103/PhysRevD.98.024038
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1063/1.522837
https://doi.org/10.1063/1.522837
https://doi.org/10.1007/JHEP02(2013)146
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1103/PhysRevD.90.062002
https://doi.org/10.1103/PhysRevD.90.062002
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1140/epjc/s10052-018-5869-y
https://arXiv.org/abs/2303.07732
https://doi.org/10.1103/PhysRevD.98.064031
https://doi.org/10.1103/PhysRevD.98.064031
https://doi.org/10.1038/nature01997
https://doi.org/10.1103/PhysRevD.100.124007
https://doi.org/10.1103/PhysRevD.100.124007
https://doi.org/10.1103/PhysRevD.87.124006
https://doi.org/10.1103/PhysRevD.87.124006
https://doi.org/10.1007/BF01645977
https://doi.org/10.1007/JHEP06(2012)085
https://doi.org/10.1007/JHEP06(2012)085
https://doi.org/10.1093/ptep/ptu024
https://doi.org/10.1093/ptep/ptu024
https://doi.org/10.1016/j.physletb.2017.03.002
https://doi.org/10.1140/epjc/s10052-019-7130-8
https://doi.org/10.1007/BF01889624
https://doi.org/10.1088/1475-7516/2020/05/019
https://doi.org/10.1088/1475-7516/2020/05/019
https://doi.org/10.1002/prop.201910020
https://doi.org/10.1016/0550-3213(90)90344-D
https://doi.org/10.1016/0550-3213(90)90344-D
https://doi.org/10.1103/PhysRevD.82.061501
https://doi.org/10.1103/PhysRevD.93.085027
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.12942/lrr-2014-7


[149] T. Jacobson and D. Mattingly, Einstein-Aether waves,
Phys. Rev. D 70, 024003 (2004).

[150] K. Hayashi and T. Shirafuji, Gravity from Poincare gauge
theory of the fundamental particles. 1. Linear and quadratic
Lagrangians, Prog. Theor. Phys. 64, 866 (1980); 65, 2079(E)
(1981).

[151] K. Hayashi and T. Shirafuji, Gravity from Poincare gauge
theory of the fundamental particles. 2. Equations of motion
for test bodies and various limits, Prog. Theor. Phys. 64,
883 (1980); 65, 2079(E) (1981).

[152] P. Amaro-Seoane et al., Laser Interferometer Space An-
tenna, arXiv:1702.00786.

[153] M. Punturo et al., The Einstein Telescope: A third-
generation gravitational wave observatory, Classical Quan-
tum Gravity 27, 194002 (2010).

[154] D. Reitze et al., Cosmic Explorer: The U.S. contribution to
gravitational-wave astronomy beyond LIGO, Bull. Am.
Astron. Soc. 51, 035 (2019),

[155] K. Chatziioannou, N. Yunes, and N. Cornish, Model-
independent test of general relativity: An extended post-
Einsteinian framework with complete polarization content,
Phys. Rev. D 86, 022004 (2012); 95, 129901(E) (2017).

[156] N. J. Cornish and T. B. Littenberg, BAYESWAVE: Bayesian
inference for gravitational wave bursts and instrument
glitches, Classical Quantum Gravity 32, 135012 (2015).

[157] N. Yunes and F. Pretorius, Fundamental theoretical bias in
gravitational wave astrophysics and the parameterized
post-Einsteinian framework, Phys. Rev. D 80, 122003
(2009).

[158] N. Yunes, Frankenstein’s glue: Transition functions for
approximate solutions, Classical Quantum Gravity 24,
4313 (2007).

[159] V. ZBraginsky and K. Thorne, Gravitational-wave bursts
with memory and experimental prospects, Nature
(London) 327, 123 (1987).

[160] J. P. B. Almeida, A. Guarnizo, L. Heisenberg, C. A.
Valenzuela-Toledo, and J. Zosso, Topological mass gener-
ation and 2-forms, Phys. Rev. D 102, 063521 (2020).

[161] D. Garfinkle, S. Hollands, A. Ishibashi, A. Tolish, and
R. M. Wald, The memory effect for particle scattering in
even spacetime dimensions, Classical Quantum Gravity
34, 145015 (2017).

[162] E. Kilicarslan and B. Tekin, Graviton mass and memory,
Eur. Phys. J. C 79, 114 (2019).

[163] A. Seraj, Gravitational breathing memory and dual sym-
metries, J. High Energy Phys. 05 (2021) 283.

[164] D. A. Nichols, Spin memory effect for compact binaries in
the post-Newtonian approximation, Phys. Rev. D 95,
084048 (2017).

[165] L. Blanchet and T. Damour, Radiative gravitational fields
in general relativity I. General structure of the field outside
the source, Phil. Trans. R. Soc. A 320, 379 (1986).

[166] K. Mitman, J. Moxon, M. A. Scheel, S. A. Teukolsky,
M. Boyle, N. Deppe, L. E. Kidder, and W. Throwe,
Computation of displacement and spin gravitational
memory in numerical relativity, Phys. Rev. D 102,
104007 (2020).

[167] J. Navarro and J. B. Sancho, Energy and electromagnetism
of a differential form, J. Math. Phys. (N.Y.) 53, 102501
(2012).

[168] T. Strobl, Non-Abelian Gerbes and enhanced Leibniz
algebras, Phys. Rev. D 94, 021702 (2016).

[169] L. Breen andW.Messing, Differential geometry of Gerbes,
Adv. Math. 198, 732 (2005).

GRAVITATIONAL WAVE MEMORY BEYOND GENERAL … PHYS. REV. D 108, 024010 (2023)

024010-39

https://doi.org/10.1103/PhysRevD.70.024003
https://doi.org/10.1143/PTP.64.866
https://doi.org/10.1143/PTP.65.2079a
https://doi.org/10.1143/PTP.65.2079a
https://doi.org/10.1143/PTP.64.883
https://doi.org/10.1143/PTP.64.883
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1103/PhysRevD.86.022004
https://doi.org/10.1103/PhysRevD.95.129901
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1103/PhysRevD.80.122003
https://doi.org/10.1103/PhysRevD.80.122003
https://doi.org/10.1088/0264-9381/24/17/004
https://doi.org/10.1088/0264-9381/24/17/004
https://doi.org/10.1038/327123a0
https://doi.org/10.1038/327123a0
https://doi.org/10.1103/PhysRevD.102.063521
https://doi.org/10.1088/1361-6382/aa777b
https://doi.org/10.1088/1361-6382/aa777b
https://doi.org/10.1140/epjc/s10052-019-6636-4
https://doi.org/10.1007/JHEP05(2021)283
https://doi.org/10.1103/PhysRevD.95.084048
https://doi.org/10.1103/PhysRevD.95.084048
https://doi.org/10.1098/rsta.1986.0125
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1063/1.4754817
https://doi.org/10.1063/1.4754817
https://doi.org/10.1103/PhysRevD.94.021702
https://doi.org/10.1016/j.aim.2005.06.014

