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Symplectic charges in the Yang-Mills theory of the normal
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It is known that a source-free Yang-Mills theory with the normal conformal Cartan connection used as the

gauge potential gives rise to equations of motion equivalent to the vanishing of the Bach tensor. We

investigate the conformally invariant presymplectic potential current obtained from this theory and find that

on the solutions to the Einstein field equations, it can be decomposed into a topological term derived from the
Euler density and a part proportional to the potential of the standard Einstein-Hilbert Lagrangian. The
pullback of our potential to the asymptotic boundary of an asymptotically de Sitter spacetime turns out to

coincide with the current obtained from the holographically renormalized gravitational action. This provides

an alternative derivation of a symplectic structure on scri without resorting to holographic techniques. We also

calculate our current at the null infinity of an asymptotically flat spacetime and in particular show that it

vanishes for variations induced by the Bondi—-Metzner—Sachs group of asymptotic symmetries. In addition,

we calculate the Noether currents and charges corresponding to gauge transformations and diffeomorphisms.
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I. INTRODUCTION

The interest in the conformal completions of Einstein
spacetimes [1-8] stems from their applications in the
analysis of the asymptotics of solutions, as well as the
holographic theory. It leads to considerations that use both
Einstein’s equations and conformal geometry simultane-
ously. This is not straightforward since Einstein’s equations
are not conformally invariant. In fact, they become singular
at the conformal boundary, which makes the analysis of the
equations complicated. Moreover, natural structures such
as the symplectic potential and Noether charges cannot be
defined at the boundary in a straightforward way. For
example, one needs to perform a renormalization procedure
to obtain a symplectic potential at the conformal boundary
[3,9]. The regularization is defined in a specific gauge, the
so-called Fefferman-Starobinski coordinate system [3,5]. It
is interesting to try to find another, more natural way of
obtaining the pullback of the potential.

In four-dimensional spacetimes, a conformally invariant
condition for satisfying vacuum Einstein’s equations with a
(possibly vanishing) cosmological constant A is the van-
ishing of the Bach tensor [10]. This way, the space of
Einstein metrics is naturally immersed in the space of Bach
flat metrics. Bach’s equations were used to study the
structure and stability of the conformal boundary in
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Einstein spacetimes [11-13]. They share many properties
with Einstein’s field equations. In particular, they form a
well-posed evolution system [13,14] and are obtained from
a Lagrangian [15]. The success of the application of these
equations to general relativity leads to a natural question of
whether the symplectic potential or Noether currents of this
auxiliary theory can be of some use in the Einstein theory.

In this paper, we propose a possible way of exploiting the
relation between the spaces of Einstein and Bach flat
metrics by pulling back into the former the geometrical
conformally invariant structure with which the latter is
equipped. We construct a conformally invariant presym-
plectic potential current for the Bach theory and show that
its pullback to the space of Einstein metric tensors with a
nonvanishing cosmological constant differs from the pre-
symplectic potential current for the Einstein theory by
trivial terms. The advantage of this approach is that due to
the conformal invariance, our current is automatically
finite at the conformal boundary (scri) of asymptotically
(anti-)de Sitter spacetimes. This way, one can obtain
currents that are well defined at all spacetime points
simultaneously, both in the bulk and on scri. We show,
using the Fefferman-Graham coordinates, that the pullback
of this current to scri of an asymptotically de Sitter
spacetime coincides with the symplectic potential current
obtained by the method of holographic renormalization
[3,5]. For the sake of completeness, we also consider the
case of an asymptotically flat spacetime and calculate the
new symplectic potential on its null boundary. However,
since in the case of a vanishing cosmological constant the
potential only consists of a trivial, topological term, the

© 2023 American Physical Society
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result lacks a clear physical meaning and in fact vanishes
for variations generated by the diffeomorphisms belonging
to the Bondi—-Metzner—Sachs (BMS) group of asymptotic
symmetries of an asymptotically flat spacetime.

To achieve this, we will use two different Lagrangians for
the Bach theory, both of which have interesting but different
properties. They differ by a topological term (the Euler-
Gauss-Bonnet term [16]), and thus their symplectic currents
are related. The first Lagrangian is conformally invariant,
which we ensure by using the normal conformal Cartan
(NCC) connection [17-22] (closely related to the local
twistor connection [21-23] as well as to the tractor calculus
[20,24,25]) as the gauge potential in the (also conformally
invariant) Yang-Mills Lagrangian. The corresponding
symplectic potential current defined in terms of the Cartan
connection is conformally invariant. The second Lagrangian
is not conformally invariant; however, its symplectic current
restricted to the space of solutions of Einstein field equations
with a cosmological constant is proportional to the sym-
plectic potential of general relativity. The pullback of the
Yang-Mills symplectic potential current to the space of
Einstein metric tensors with a nonvanishing cosmological
constant becomes a linear combination of symplectic poten-
tial currents of the gravitational Lagrangian and the Euler
Lagrangian, respectively.

A. Notation and conventions

We consider a four-dimensional manifold equipped with
a (pseudo-)Riemannian metric. In Secs. I and III the metric
can have any nondegenerate signature, while in Sec. IV we
restrict ourselves to spacetimes with the Lorentzian sig-
nature diag(—, +,+, +).

To express fields on the manifold we will use both
orthonormal tetrads, as well as holonomic tetrads corre-
sponding to a coordinate system. In the first case, we shall
use the indices a,b,c,... =0, 1, 2, 3 to enumerate the
elements of the tangent and cotangent tetrads, components
of tensors with respect to those tetrads, and tetrad con-
nection one-forms. On the other hand, to express tensors
and the metric connection in terms of a coordinate system
we will use greek letters @, 3,7, ... = 0, 1, 2, 3. The normal
conformal Cartan connection and its curvature have values
in a 6 by 6 matrix algebra—we will use the uppercase
indices 1,J, K, ... =0, ...,5 to identify their components.
In Sec. IV we also use indices i, j,k,... =1, 2, 3 and
A,B,C,... =2, 3 to identify subsets of the Fefferman-
Graham and Bondi-Sachs coordinates, in a way which is
explained in more details in the corresponding subsections.

II. NORMAL CONFORMAL
CARTAN CONNECTION

A. Definition

We will now provide a working definition of the NCC
connection. A more elegant geometric definition of this

structure can be found in [18], and the relation between the
two formulations is explained in [19]. It is also worth
mentioning that Penrose’s notion of the local twistor
connection [21-23] is simply the spinorial version of the
NCC connection.

We start by considering a four-dimensional manifold M
endowed with a spacetime metric tensor

g=nu,0"® 6", (1)

where 7, is a constant, nondegenerate, symmetric matrix
of signature (p,q) and (6°,...,6%) is a locally defined
cotangent frame dual to a tangent frame (e, ..., e3). The
matrix 77, and its inverse 7?? will be used to raise and lower
the tetrad indices a, b, c,.... The choice of a coframe
defines a volume form

1
VOl = 47 \/ |det17|£abcd9“ A 9b N HC AN 9d

=/|detn]|® A O' A O? A O, (2)

whose components we will denote by €,,.¢ = /| detn|e peq-
The NCC connection corresponding to a given choice of
tetrad ¢ is defined as a matrix of one-forms,

0 6, 0
A= |Pe T9, ¢°|, (3)
0 P, O

where I'%;, are the tetrad connection one-forms defined by
the properties

dH“ + Fab AN 9b - O, Fub - _Fha’ (4)

while the one-forms P, = P,,0” are defined by minus the
Schouten tensor, that is,

1 1
P,:=—Rn,, —=R,, |6”
a (12 Nab ) ab) ’ (5)

where R,, and R are the Ricci tensor and Ricci scalar,
respectively. In this notation, the Riemann tensor of g can
be represented as a two-form

1
Rab = ERadeHC AQd:dF“b +Fac /\Fcb. (6)

B. Conformal rescalings and Lorenz transformations

The special property of the NCC connection is the way it
transforms upon rescalings [19]
g =1

0 =fo".  fec>M). (7)
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namely
A" = h7'Ah + h7dh, (8)
with
% 0 O
h=| % &y 0], 9)
E
where
f..04=4df. (10)

Of course, for the local (pseudo)rotations, that is
J =g 0 = A, 6°, (11)

where 71,,A? . A’; = 5.4 the transformation law (8) still
applies, with

0 0
h=10 A% 0]. (12)
0 0 1

Both the matrix (9) corresponding to the conformal
rescaling of the tetrad and (12) associated with a (pseudo)
rotation represent elements of the group SO(p + 1, + 1)
identified with the group SO(Q) of 6 by 6 matrices & which
preserve the form Q,

W xh! Q1 = Oy, (13)
with
0 0 -1
o=110 »n 0. (14)
-1 0 O

C. Curvature

The curvature of the NCC connection is represented by a
matrix obtained from A by the standard formula

F=dA+ANA, (15)

and a calculation yields

0 0 0
F=|DP" C% 0], (16)
0 DP, 0

where

1
DP*=dP*+T9, A P>, C9, Zicamﬂc AO4(17)

and C%,., stands for the Weyl tensor of g. The curvature
satisfies the Bianchi identity

D,F:=dF+AANF-FAA=0 (18)
and the transformation law
F' =h~'Fh (19)

under a transformation of A given by (8) for
any h € SO(Q). As a result, complex identities of
Riemannian geometry satisfied by the Weyl tensor can
be written in an elegant and graceful way.

D. Relation with the Bach tensor

Another conformally invariant operation in four-dimen-
sional geometry is the Hodge dual of a differential two-
form. We can apply it to the curvature F' and find that
[19,21]

Dy*F :=dxF+AAXF—-—%xFAA
0 0 0
= | BU%0, 0 0], (20)
0 B,‘x6, 0

where B, is the Bach tensor,
By = 2vcv[ch]a - 2PCdCcadb' (21)

What is particularly important from the point of view of
applications to Einstein’s theory of gravity is that

Rab = Aﬂab = Bab =0 (22)

and that the second equality above is conformally invariant.
Hence, the Bach tensor is an obstacle to the metric tensor
being conformally Einstein. Its vanishing is not a sufficient
condition, though—there are known examples of space-
times with B,, = 0 which are not conformally Einstein
[19,26,27], found among the homogeneous Fefferman
metric tensors. As we can now see, in terms of the NCC
connection, this obstacle becomes D F'.

III. CARTAN-YANG-MILLS THEORY

A. Cartan-Yang-Mills Lagrangian

Inspired by (20) and (22) we define on the space of
n-orthonormal coframes 6“ (1) a Lagrangian by inserting
the NCC connection A into the standard Yang-Mills
Lagrangian,
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1
Leym(0) = EF’, A xF7), (23)

and name it the Cartan-Yang-Mills Lagrangian. The
coframes are defined locally on M; however, the
Lagrangian is independent of the transformations (8)—
hence, it is uniquely defined on the entire M. Moreover,

Leym(0) = Leym(f9), fe (M) (24)

hence, the Lagrangian is manifestly conformally invariant.
As a matter of fact, it follows from (16) that

1 1
LCYM<9) - EFIJ AN *FJI - Ecab AN *Cba

1
= Z Cabch“deVol, (25)

which makes it clear that despite Loy being defined as a
function of ¢, it depends only on g = 7,,06". The right-
hand side (RHS) of (25) is encountered in literature.
However, we want to take advantage of the particular

properties of the NCC connection and the Yang-Mills
Lagrangian.

B. Variations and the field equations

Varying the Lagrangian with respect to ¢ and “integrat-
ing by parts,” we obtain

1
5LCYM(9) == 5AIJ VAN DA*FJ[ +§FIJ AN (5*)FJ[
+d(8AT; A xF7)). (26)

The term involving 6% vanishes due to the fact that the left
and right duals of the Weyl tensor coincide [28]:

1
*C), = §€“bcdccd’ (27)

where €,,.¢ = /| detn|e,peq; hence, it is constant, inde-
pendent of 0“. Breaking down the first term, we obtain [19]

SLeym(0) = 280% A B,x6° + d(SAT; A xF’)).  (28)
From the first term, we obtain the equations of the theory,
B, =0, (29)

equivalent to

D,xF = 0. (30)

C. Symplectic current potential

From the second, exact term in the RHS of (28) we
obtain the symplectic current potential

®CYM(0; 59) = 5A[j A *F'II. (31)
It is conformally invariant due to (8) and (19),

(BAL, A %F’,)(f0; £50)
= ((h"'6AR)!, A *(h"'Fh)’,)(0;560)
= (SA1, A *F})(6;50). (32)

A short calculation, using the explicit form of the NCC
connection and its curvature associated with a given
orthonormal tetrad (3), (16), gives the detailed form

Ocym(6;80) =250 A xDP, + 619, A %Ct,.  (33)

D. O¢cym at Einstein metrics

When 6“ defines an Einstein metric tensor, that is when
Rab = Analw (34)

our very symplectic current potential (33) takes a simpler
form,

®CYM(9; 59) = 5Fab VAN *Cba, (35)

where the first term in (33) vanishes due to the fact that (34)
implies P, = —%Qa and DO, = 0.

Since the Einstein metric tensors satisfy the equations of
the Cartan-Yang-Mills theory (as their Bach tensor van-
ishes), all currents obtained from the three-form ¢y also
apply to them. Therefore, a natural question arises: what is
the relation between Ocyy and the symplectic current
potential Oy of the Einstein-Hilbert action extended to the
space of the n-orthonormal coframes?

To answer this question, we will decompose Lcyy into
two parts,

1
Lcym 215'1"111, (36)
where the Euler term [16]
E(0) = "Ry A Req (37)

is a topological Lagrangian whose variation only yields the
boundary term:
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5E(0) = 26™45R 1y A Ry

— 264D (5T 1) A Reg

= 2€aded(5Fab AN Rcd) + 2€ade5Fab AN DRCd

— d(2ePd5T A Roy), (38)
where we used the property De®* = (0 which follows

from metric compatibility I",;, = —I";, and the Bianchi
identity DR%;, = 0. Let us also define

O (0;80) = 25T 4y A Ry, (39)

so that 6 = dO®,. The remaining part of the Cartan-Yang-
Mills Lagrangian is

1
Li(0) =Lcym — 15

L e

= Zeade(Cub A Ccd - Rab A Rcd)

:€ab0d0a /\Pb AN Ccd—eab”{é’a /\Pb /\66‘ /\Pd

= —e®p NP, ANO. NGO,

= —4pPle PP, Vol. (40)
That decomposition is not unique; however, this is the one
that will work for us and provide a suitable decomposition
of our symplectic current potential.

Because of (38), L gives the same equations of motion

as Loy, which are equivalent to the vanishing of the Bach
|

tensor—see (28). The symplectic current potential Ocyy
(31), on the other hand, splits into two parts:

1
Ocym 21@54‘@1, (41)

where

1
©1(0:50) 1= Ocyui(0:50) — Oc(6:50)

1
= 2660% N *DPa —+ EGadeérab AN (Ccd — Rcd)
—260° A %DP, + €T, A O, A Py (42)

From the decomposition (36) and variations (28), (38)
follows

SL1(0) = 260" A B,,*60" +dO,. (43)

Hence, ®; is a possible choice of the presymplectic
potential current associated with the Lagrangian L;.

Let us compare ©; with a presymplectic potential current

Opy obtained from the FEinstein-Hilbert Lagrangian
* 1o (R — 2A), which can also be written as

1 1
Lpg =—— | =€ A0, AR,.;—2AVol |. (44
BH = 162G (2€ a b cd 0> ( )

We have

1
167[G5LEH(6) = Eeade(Zéga AN Hb A Rcd + Ha AN gb AN 5Rcd) — 2/\59“ A *0¢

1
= 56“””‘1(25@ AN Oy AReg+0, A0y ADST,,) — 2080, A *0°

1
= 59a A (eadeHb AN Rcd - 2A*9a) + d(i 6"de90 AN (91, AN 5rcd>, (45)

where in the last equality we used the property DO = 0
which follows from I'%;, being torsion-free. One can check
that [29]

1
Eeuhcdgh A Rcd — (R,]ub _ ZRab)*eb; (46)

therefore, the first term in (45) yields the vacuum Einstein
equations, while the second gives the presymplectic po-
tential current [30]

®EH(9; 59) = eadeQa A (9;, VAN 5FCd' (47)

322G

If g = 1,0 ® 6" satisfies the vacuum Einstein equations,
we have P, = P,,0° = —%0,. Therefore, DP* = 0 and
0, from (42) reduces to

A
©,(0;60)|py = —g€ab6d9a ANOy AOTeq,  (48)

and hence, for those tetrads, @ = — 1202 @y Therefore,
on solutions of the vacuum Einstein’s equations,

1 167GA
Ocym = O¢ —

1 3 Own (49)
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In this way, on the Einstein spacetimes, ®¢ can be thought
of as a “correction” to the Finstein-Hilbert presymplectic
potential which makes it conformally invariant.

E. Noether currents of Lcyy the
Cartan-Yang-Mills Lagrangian

Let L(®) be a Lagrangian form describing a general
theory of fields (®;),e;. Its variation with respect to the
fields gives rise to the equations of motion and the
presymplectic potential current

SL(®) = E(®),5¢" + dO(D; 5D). (50)

A variation Jg is a symmetry of the theory if the corre-
sponding variation of the Lagrangian is an exact form

SsL(®) = dZs(®). (51)

For each such symmetry, we can define an associated
Noether current [31,32]

Js(®@) = O(D: 65P) — Zs (D). (52)

If @, satisfies the equations of motion, E(®j) = 0, from
(50) and (51) follow that dJg(®,) = 0 for any symmetry g
of L. The Noether current is determined up to the addition
of an exact three-form [33] and depends on the particular
choice of the presymplectic potential and Z. If we consider
a gauge transformation defined by a spacetime-dependent
parameter /A, then by results of [33], as explained in [31],

J;(0) = dQ; (53)

for some two-form Q, when the background satisfies the
variational equations. The form Q,, called the Noether
charge, is not uniquely determined by J,, since one can
freely add to it any closed two-form.

Let us now turn to our Lagrangian Lcyy,. First, we will
calculate the Noether current associated with the pseudor-
otations and conformal rescalings of the tetrad §¢. Under
such a transformation we have 6L = 0; therefore, we only
need to consider the presymplectic potential part of (52). As
explained in Sec. II B, the effects of both pseudorotations
and conformal rescalings on the Cartan connection A’ can
be encoded in a subgroup of the group SO(p + 1,q + 1) of
matrices preserving the quadratic form (14) according to
the transformation law (8). Hence, the variation of the
connection can be expressed by the element of the algebra
8o(p + 1,q + 1) generating the particular transformation.
Let us denote this generator by ;. Then

d
5, ==
e

+ exp(—y1)' gdexp(r1)* )
= Algy®, =y kAR + dy,
=Dy (54)

(exp(—yt)! cAX Lexp(yt)",

Thus

J,(0) = Ocym(0; 5;/9)
= DA)/IJ A *FJI
=d(y'y AXF)) +y' ) A DyxF? (55)
In the case when y generates a conformal rescaling
0% > exp(at)6?, which is when the matrix exp(y?) is of

the form (9), one can check that this current vanishes
identically (including off-shell):

Jo(6) = 0. (56)

This follows from (16), (20), and the fact that such matrices
y have the form

k
y=1x 0 0]. (57)
ko ok ok

On the other hand, in the case when y generates a matrix
representing a pseudorotation of the form (12), we obtain

Jo(0) = d(@%, A *xC?)), (58)
where @ € 80(p, q) is the generator of the pseudorotation.

Here again we use (16), (20), as well as the form of the
matrix y:

0O 0 O
y=10 % O0]. (59)
0O 0 O

While not zero, this current is conserved for all tetrads, not
only those satisfying the equations of motion D % F = 0.

Next, we will calculate the Noether current associated
with a diffeomorphism generated by a vector field &. Since
our theory is diffeomorphically invariant, the variation of
Lcyy induced by a variation 6:0 = L0 is simply the Lie
derivative of Lcyw:

SeLoym(0) = LeLoym(0) = &1 Leywm(0)

=¢a (%F’,/\*FJ,), (60)
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where in the second equality we used the fact that the
Lagrangian is a top form. Using the expression for
the presymplectic potential current ®cyy in terms of the
normal conformal Cartan connection and its curvature (23),
(31), we obtain from (52)

1
Jg(e):ESAIJ/\*FJI—§J<§FIJ/\*FJI). (61)

Note that this current is conformally invariant. Next, we use
the fact that the left and right duals of the Weyl tensor
coincide [28] [see also (27)] to show that

Je(0) = (
|
=
=Dy (ELAT)) A XFY ).

Integrating by parts we obtain the decomposition

Je(0) = d((§aAT))xF/ ) = (E5A ) Dy FY
=:dQ; + C,, (64)
where C, = —A’,;,D*F’, are constraints that vanish

whenever the equations of motion DxF =0 hold
and

Q:(0) = (E1A!)*F/, (65)
J

L:AIJ—SJFI‘/) /\*F"I
(gJAI‘/) +§JdAI‘] —fJ(dAIJ +A1K /\AKJ)> A *FJI
(SaAl)) — AR (EaA ) + ATk (E5AK ) A %F,

1 1
§J <§F1] AN *FJ]> - §J <§Cab AN *Cba>
1
= gJ <Z€ba{3dcab AN Ccd>

1
= Eebacd(é:J Cab) A\ Ccd

= (E3F)) A RF, (62)

and hence,

(63)

|

is a possible choice for the Noether charge associated with
£. Using it, we can also calculate the associated Iyer-Wald
charge Hamiltonian charge [7,31,32]

FH(0.60) = 6Q¢(0) = 10cym(60:50)
= (EaAT))S(XF’ )+ AT A (EaxF7}).  (66)

Let us examine the behavior of this current under
pseudorotations and conformal rescalings of the tetrad.
Let 8 — T,0” be such a transformation, that is, 7¢,6" =
f0* for f € C®(M) or T%, € SO(p, q). Then we have

Jf(Tabgb) = ®CYM(Tab9b; »Cf(Tabab)) - 'CéLCYM(Tabeb)

= ®CYM(Tab‘9b; Tabﬁéab) + ®CYM(Tab9b; f(
= Ocym (0% Lc0Y) + Ocym (0 (T71) &(

= Jg(@“) + JTflf(T) (9“),

where J7-157) is the current J, from (55), where y is the
element of 80(p + 1, g + 1) corresponding to the generator
of pseudorotations/rescalings 7~'&(T). This, together with
(56) and (58) means that J(6) is invariant under conformal
rescaling of the tetrad, while under a pseudorotation it
changes by the exact three-form (58).

One could also try to obtain an invariant current by using
a covariant Lie derivative [30]

[,29“ = 559‘1 + (gJFab)Qb, (68)

74,)0") = LeLeym(T0")
T¢4)0") = LeLoym(67)
(67)

|

The geometric meaning of this operation is that we lift the
vector field £ to the frame bundle of M horizontally with
respect to 1'%,, consider the pullback of the differential
forms 6“ to this frame, and calculate the Lie derivative on
the bundle instead of on the base space M. The variation of
the tetrad connection associated with 60¢ = Lgea is

LT = L0 + (4T, — (£4T¢,)T9,

=&, (; R,.40° A 9"), (69)
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which one can verify either by considering the tetrad
connection as a one-form on the frame bundle or by
directly checking that

d(L567) +T9, A (L56P) + (LIT9,) A 6P =0,
nac‘cgrcb = _nbcﬁgrca' (70)

Consider now a pair of orthonormal tetrads 6¢ and
@¢ = T*,0°. The corresponding tetrad connections are
related by the transformation

e, =TI (T "), — (T71),dT*,. (71)
Using (68), we obtain
LYo =T, LL0". (72)

Hence, the presymplectic potential current ®cyy; associ-
ated with the variation 66 = LEG“ is invariant with respect
to arbitrary (pseudo)rotations and conformal rescalings.
Moreover, since the modified Lie derivative Eg agrees with
L: on objects without free tetrad indices, we have

1
EgLCYM(G’) = EgLCYM(e) = d(gJ EFIJ AN *FJ[>
=d((E2F!)) A %F')) (73)
(see (62)). Hence, the associated Noether current
75(‘9) = Ocym(0; 5};9) - EELCYM(Q)
=2L.0* A XDP, + (LT, —E1C%,) A *CP,
(74)

depends only on g = 7,,6°0” and is conformally invariant.
Since

LTy =£1Cop =81 (Rup — Cup) = €120, A P,
= 20,Py & — 26, Py) (75)
and
ﬁl"gga — ﬁgga + (ngab)gb
=d¢" +&£.d0° + (£.19,)00 = Dee,  (76)
we can rewrite the current (74) as
J=(0) = 2DE A %P, —2£P, A *CP,
= d(2E°%DP,) — 2E°B , x 6"
=t dQé - gaéa’ (77)

where

Qg :=2£9%DP, (78)

is the Noether charge and C, := B, 6" are constraints that
vanish when the Bach tensor vanishes. Note that on the
solutions of the vacuum Einstein equations DP, = 0 and
thus the current vanishes.

IV. CARTAN-YANG-MILLS PRESYMPLECTIC
POTENTIAL CURRENT ON THE
CONFORMAL BOUNDARY

A. Asymptotically de Sitter spacetimes

In this section, we restrict our considerations to metric
tensors of the signature (—, +, 4+, +) on the manifold M.
Moreover, we assume that the corresponding spacetime is
asymptotically de Sitter, and therefore, the cosmological
constant is positive throughout this section,

A>0. (79)

A metric tensor g that is asymptotically de Sitter can be
written (or defined) in the Fefferman-Graham gauge, that
is [5],

2 I o
9= 5 (—dpz +3 0 (. x3>dxldxf), (80)
n=0

where the asymptotic expansion amounts to expanding in
p > 0 around the boundary Z defined by the equation

p =0, (81)

contained in the conformal completion of (M, g). The goal of
this section is to calculate the symplectic current potential
Ocym at Z. By comparison, the symplectic current potential
Ogy is known to be ill-defined in that limit. However, it
follows from the conformal invariance that Ocyy is well
defined at 7.

It will be convenient to use a conformally rescaled metric
tensor that is finite at p = 0:

2 o0
. p S v
g = Pg: —dp2+ P g,(J)dx dx/ (82)

n=0

and its inverse
990, ® 0y = —0, ® 9, + Zp'lgE{;)ai ®9d; (83)
n=0

(0)

where the matrix gé{» is the inverse of g; i while

ij i = m) [j
g(i,) - —9(16) Zgéz )g(jn—m)’ (84)
m=1
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We will use the metric § and its inverse to raise and lower
indices a,f,7,... on tensors with a hat and g on the
unhatted ones.

We will denote the pullback of the rescaled metric g, to
7 by §i - If gop has the Fefferman-Graham form (82), we
have

E]ij = 95?)- (85)

Einstein’s equations (34) imposed on the metric tensor (82)
imply [5,7]

() _ @ _ g5 Lo & ¢
9;; =0, 9ij = Rij — ZQ;’,’R =:5ij,

where S;;, R;;, R are, respectively, the Schouten tensor,
Ricci tensor, and Ricci scalar of &,» j» and D; is the metric-
compatible, torsion-free connection defined by the metric

tensor §ij. We will also use the notation

g 3
T;; = 95,‘)' (87)

Equation (84) implies

ij ij J ii °ij
Iy =0, gh=-S. gy =-T. (88)
(Indices i,j,... on §;; and %[j are raised with ¢” and
lowered with g; ;).
Let us consider a coframe #“ such that

g = 106", (89)

where 7,, = diag(—, +,+,+). We will denote its dual

frame by e,. From (80) it follows that for any such tetrad
04 = /—’;9“ and e, =%¢,, where 6“ and 2, are the ortho-
normal coframe and the dual frame associated with the
rescaled metric § from (82). Let us calculate the pullback of
Ocym to Z for this particular choice of 8. Since we are
considering an Einstein spacetime (34), we can use the
formula (35)

GCYM(eas 59a) = Srbc A *ch. (90)
The tetrad connection of ¢ is [34]
Fab = ﬂacege€<caﬂy + Chya — Cya/)’)dxy’ (91)

where

Caﬂ}, ES l’[abegawgf]. (92)

Let us expand the one-forms I'%;, in terms of p. First of all,
since 0 =26 and e, =%2,, we have
P

2
_ na Nb —
Copy = —;'Iabgangy] +0(p™?)

o )
= —;5" B+ O(p~) (93)

and from (91) follows

[, = —p~ 28N (& 0 + & [0y — & by, ) A7 +O(1)
=2p~ 088 4, dx" + O(1)

=2p~Ipecet, éi]&”agﬂydxy +0(1)

=2p~ 'y el &) g dar + O(1). (94)

Moreover, the Weyl tensor is conformally invariant,
Chro = Cpyss (95)

and the relation between the volume forms of g, and g, is
as follows:

4 4
N ~ P P
Eapys = \/ | detgleqp,s = 7V |detgleqss = ﬁeaﬁyﬁ- (96)
Therefore,
é(lﬁ}/a = G{Iﬁy(; (97)

(since we use §* to raise indices on the hatted quantities
and g®—on the unhatted). Consequently

1
*Caﬂ == anﬂ},aé'yésé‘dxg VAN dxg

1. —~ A
= anﬁy(géyéegdxe AN dxé = *Ca/;. (98)

Since
§=—dp* + gydx'dx/ + O(p?), (99)
we have
detj = —detg + O(p?), (100)
and thus
VIdetg] = Jdetg+ 0. (101)
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Therefore,
Epijk = /| detgle i =/ det&«’?ijk +0(p?) = 2ijk +O(p?).
(102)

where ¢; k= \/ge,» jk 18 a three-form defined on a neighbor-

hood of Z, whose pullback to 7 is the volume form on 7
induced by the conformal metric §. As a consequence of
(102), we have

The pullback of (90) to Z is
Ocyy = lim 8T%,,0900dx1 A (L8P 102, dw A dik
CYM — [JITO bi€a p XA E (1 yﬁ/k X7 A dx
(104)

Using the formula for the variation of the tetrad connection
(94), we get

Ocym = 13210 5(2p~ n“cef ]ggl)e Hﬁdx

% O 2 — O+ O = o+ O, A G &P 1% 5l A dxk>, (105)
(103) Next, we use (103) to obtain
|
Ocym = —hm 5(2p7"ne, et gg,)@aaﬂdx A (€, e5dx7 A dx¥)
= —lim 5(2p™" "2 2 AEHe Vol
= —1390 8(2p7" e, 25,0:1)0505C, ol
= lim 5(2p° 16025 5:,) 005 PV ol
= lim 2™ (6225 + 2405 Nep)040LEP 1V ol
= 1390 2071 (680,G,05CP" + 50¢n. bebc/’/’ﬂ')Vol (106)

where Vol 3, ; jkdx A dx/ A dx*. Using the fact that the
Weyl tensor is traceless in every pair of indices, we get

q ﬁl_é‘ﬁapi _ gﬁyéﬂaﬂ}’ _ gﬁpéﬂaﬂp _ ?]ﬂp Chavr — ). (107)

Thus the first term in the last line of (106) vanishes, and we
are left with

Ocym(0;80) = lim0 2/0_159?’7cb926ﬂpin01
p—
= lim 2p_1§éfncbé]b.é‘jﬂpivol
p—0
= lim p_légijé‘iﬂﬂjvol
p—0
o lj

3
5gUT Vol

=3 (108)

where in the last step we used Eq. (A22) from Appendix A.
Notice that although in general, the presymplectic potential

I
current depends on the tetrad used to define the normal
conformal Cartan connection and its variation, it turns out
that at the conformal boundary of de Sitter spacetime,
this dependence only manifests through the metric,
g = n.,0°0°, and the variation of the metric induced on
7 by the conformally rescaled metric g.

Moreover, note that here 53,» ; means simply the variation
of the intrinsic metric on Z induced by a general variation
og = %6@. It does not mean that dg has to preserve the
Fefferman-Graham gauge (in which case we could write
8 = 59,(';)))-

The standard definition of the holographic energy-
momentum tensor on the boundary is [6]

3¢ 2

i = TenG (109)

which implies
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~ 827G o ... °
®CYM = LégUT”Vol

7 (110)

On the other hand, the variation of the holographically
renormalized Einstein-Hilbert action,

1 1 4 o\
= [(R=2A)WVol+—— [ (2K +2—R) Vol
Ser 167;G/( Vot T6eG ( 7 > o
M T

(111)

yields the following presymplectic potential current
on Z [6]:

9aa = goa =0,

1
Juo = Q7% - ECABCAB +0(Q),

guu — guA — 0’

1 1
qu :QZ+ECABCABQ4+O(QS), gQA = —EDBCBAQ4+O(QS).

Here M is the Trautman-Bondi mass aspect, N p := 0,Cyp
is the Bondi news tensor, 7, is a unit sphere metric, D is its
covariant derivative, and indices A, B, ... on those objects
are raised with yA. Similar to the asymptotically de Sitter
case, let us define § := Q?g. Let us also use indices i, j, ...
to go over the three coordinates u, x* and define é to be the
pullback of g to Z (i.e., the surface Q = 0).
From (114) and § := Q?g, we obtain

§=2dudQ + y,5dxAdxB + O(Q),  (116)

so the pullback of g to Z, which we denote by 5, is

&Z yapdx’dx’. (117)

Therefore,
det j = —det g + O(Q), (118)
V| detg| = /dety + O(Q), (119)

Eaijn = /| detgleq;x = \/detye; + O(Q) = €, + O(Q),
(120)

where, as in the previous section,

Guu = =1 +2MQ + O(Q?),

1
Gua =5 DBCps + O(Q),

2 = Q4 —2MQ° + O(Q),

~ f o .. ©
@GR = —E(sgI/TUVOI (112)
Hence,

- 167GA ~
cYm = — Ogr- (113)

B. Asymptotically flat spacetimes

We describe an asymptotically flat spacetime using the
Bondi-Sachs gauge (in coordinates Q, u, x, where é is the
luminosity distance) [35-37]:

gap = Qs +Q7'Cyp + O(1),

(114)
g8 = QXA — Q3CHE + O(QY),
(115)
[
Vol._ 1 o dxl dxl d k
0 ._ieijk A SN dX
= 3 detyeijkdxi A dx/ A dx* (121)

is a three-form defined in the neighborhood of Z, whose
pullback to Z is the volume form induced on Z by g

Since our spacetime satisfies R,;, = 0, we can calculate
Ocyym using

®CYM - 5Fab AN *Cba. (122)

The peeling theorem implies that C%,5 = C%y5 = O(Q).
Also,

Iy = Q7222 (6% + 5% dap — 3l )
+0(1)

= 2071 yeefe) gy, dxt + O(1). (123)

Hence,
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A : —-15Q450 A iINDap 14 ayd j
Ocym = }2151)5(29 12225 g,dx') 040 A (5 CPorog 5idx/ A dxk>

= lim20! (935@5}@51- n 5%;76,,5959;)@" A (CPe0E L dxd A dat)

Q-0

- hmZQ_l (ég&ézzg/}l + 5Qa’7ch691?é?}> éﬂaQiVOI

= limQ~'69,,C*** Vol
Q-0 '

= g_%g—légji@fw%l.

Inserting the components of the Weyl tensor calculated in
Appendix B, we obtain

- o 1 1 . °
Ocym = {5914“ <4_1 CABN,p + 2M> + §5QAB‘3uNAB] Vol.
(125)

In this case there is no contribution from the Einstein-
Hilbert potential, since that part of the decomposition (49)
has a proportionality constant of A, and thus vanishes for
asymptotically flat spacetimes.

In the special case when 55 = Efé for some BMS vector
&, we have

L:g=2ay, (126)

SO

(;jCYM(‘C.f;]) = CWABauNABVOOl =0, (127)

since the Bondi news tensor is traceless.

V. SUMMARY

Using the normal conformal Cartan connection as a
gauge potential of a Yang-Mills theory allowed us to obtain
a conformally invariant presymplectic potential current
(33). Because of the fact that the Yang-Mills current of
our theory encodes the Bach tensor of the underlying
spacetime (20), the theory’s equations of motion are
satisfied by any tetrad that generates a metric conformally
equivalent to a solution to the vacuum FEinstein field
equations. This made it viable to use our potential current
to derive Noether currents and charges (52), (55), (64)
conserved on such tetrads. In particular, we showed that the
current associated with diffeomorphisms is conformally
invariant. Additionally, we described the way in which, on
the solutions to the vacuum Einstein’s equations, the
potential decomposes into a part proportional to the

(124)

Einstein-Hilbert presymplectic potential and the topologi-
cal (Euler) term (49). As an example of an application of
this formalism, we calculated the presymplectic potential
current induced by our theory on the conformal boundary
of asymptotically de Sitter spacetime and found out that the
result is proportional to the potential one obtains using a
holographically renormalized gravity action (113). This
provides a mathematically elegant way of obtaining a
symplectic structure on that boundary without resorting
to renormalization techniques. On the other hand, the
potential obtained at the null infinity of an asymptotically
flat spacetime does not seem to have a clear physical
relevance and in fact vanishes for variations induced by the
BMS diffeomorphism group (127), which is to be expected
since in the case of A = 0 only the topological part of the
decomposition (49) remains.
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APPENDIX A: ASYMPTOTICALLY
DE SITTER SPACETIMES IN THE
FEFFERMAN-GRAHAM GAUGE

We consider the metric

NS ()i
g:p—2 —dp —l—Zp g;; dx'dx/
n=0

with an inverse

(A1)

e

ga/)’aa ® aﬁ = P (—0/) ® aP + angéfl)ai ® aj) ’ (AZ)
n=0

(0)

where the matrix géé) is the inverse of g;;” and for n > 1 we

have
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ij ik . (m) 1
Iy = ~9(0) 2_ 9k

m=1

(A3)

(n m)’

Imposing vacuum Einstein’s equations
(A1) with A

R(X[f = Agaﬁ on
= % leads to the following constraints [5,7]:

G) _p

1 o 1o i (3) &
g =0. g7 =Ry—2Rgy. ¢"gy =Dig;

4 i
(Ad)

where R, s R, and D; are, respectively, the Ricci tensor,

Ricci scalar, and the metric-compatible, torsion-free covar-
iant derivative of g,(»?).

To calculate the potential Ocyy, we need the Weyl tensor
of the metric g,4. Since it is conformally invariant, we will
calculate the Weyl tensor of a simpler metric,

2 o0
P — 2 no (1) 4 iq
297 —dp +ZOP g;; dx'dx’.

g (AS)

First, let us introduce the following notation to simplify
expressions:

o 0 o o 1 OO o 3
gij = g§j>, Sij = gy :Rij_ZRgij’ Tij = ggj).
(A6)

From (A5) we derive the following Christoffel symbols

(below D is the covariant derivative of gl ; and F jk are its
Christoffel symbols):

A

F"’W, = F”[,i = F’W =0, (A7)
o 3 a5 3
17, = pSi; +§P T+ O(p%), (A8)
i @i 3 2% 3
FijPSj‘f'EP T'; + O0(p°), (A9)

fijk—rijk+p2(slrlk+ 9”(2(3 Sk -0 Jk)>+o( ?)

o . o o . 1 o _O
:Fljk +p2 <D(jSk>l—§DlSjk> +O([)3) (AIO)
Next, we calculate the Riemann tensor:
]Aepi/)j = a/)I,;pij f‘ k/ - Sl] + 3pTl/ + O( )7 (Al 1)

Rpijk == 20[]F/ ] + 2F/ [ k]
= p(ajSkt

= p<DjSki - Diji) +O(p?)

akS]l+Slj k_SlkF )+O( )

= 2pD};Sy; + O(p?), (A12)

Ry = 20p 0 4+ 20,1 ™ = Ry + O(p?). (A13)

Lowering the first index, we get the only (up to symmetries)
nonzero components of the Riemann tensor:

Ryip; = =Sy = 3pTi; + O(p?), (A14)
Rpijk = =2pD;Sy; + O(p?). (A15)
Rijkl = Rju + O(p?). (Al6)

By virtue of (Al4) the fact that gUT =0 [7] and
S g'JS,] R we have

(A17)

Furthermore, from (A15) and the Bianchi identity

D(iRjjim = O follows that

Rpi = gjkk/)jik = —p(D;S—DIS;) + O(p*) =

Finally,

= 97R,ij + §' Ry = Sij +3pT i + Rij + O(p?)
2

o 1 o o o
=2R;; - Zgin +3pTy; + O(p?) (A19)
and
R="R,, + iRy = SR+ 0(?).  (A20)

Next, we calculate the Weyl tensor using

1.

(ga[ykﬁ]f)’ - gﬂ[ykﬁ]a) +z R

3 [}/gé]/% (A21 )

C(l/}y(‘)' = R(1/1y5 -
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) A U S
Cpi/)j = R/)i/)j + ERU - Egin/)/) - gRgij
o o o 1 o o 3 o
==8;;—=3pT;; + R;j — gRgij + QpTij
leo 1o, ,
+ gRgij - ZRgij + O(p?)

3 o
=—5rTi; + O(p?), (A22)

Coiji = Ryiji + 9ijRu, = —2pD(iSyi + O(p?),  (A23)

A

N . oA 1., .
Cijui = Riju — (gi[le]j - gj[le]i) + gRgi[kgz]j
=Rjju— 2(§i[kR1]j - éj[le]i) + Réi[k;l]j

- 3p(§i[le]j - EJj[le]i) + O(p?)

= Ciju = 3p(9iTy; — .aj[le]i) + O(p?)

= _3p(§i[le]j - .aj[le]i) + O(p?). (A24)
where we used the fact that the Weyl tensor vanishes in
three dimensions.

APPENDIX B: ASYMPTOTICALLY FLAT
SPACETIMES IN BONDI-SACHS GAUGE

One of the ways of describing an asymptotically flat
spacetime in the neighborhood of Z (where 7 is either the
future or past null infinity) is using the Bondi-Sachs
coordinates, where the physical metric satisfies [35-37]

2M

9rr = 9ra = O’ Guu = -1 +T + O(r—Z),

gap = r*7ap +rCap + O(1),

1
Gur = =1+ WCABCAB + O(r ),

1
Gua = = DBCpy + O(r™1),

; (B1)

where M is the Bondi mass aspect and C,p contains the
information about radiation at Z (it is equivalent to the
asymptotic shear ¢° in the notation of Ashtekar). The radial
coordinate r satisfies the condition

det(gap) = r* det(yap). (B2)
from which follows
rA8Cpp = 0. (B3)

Moreover, the Bondi news tensor is

Nyp = 0,Cpp. (B4)

This formalism is equivalent to the method of conformal
completion [1,2,38,39]. After attaching the null boundary,
one can introduce a coordinate system (u,Q,x*) on a
neighborhood of Z which is related to the Bondi-Sachs by
keeping the functions u and x* the same and taking Q = L.
In those coordinates, we have

9oa = Joa =0, Guu = =1 +2MQ + O(Q?),
gap = Q2 + Q7 'Cyup + O(1),

1
Jug = Q7% — 16 CABCyp + O(Q),

1
Gua = EDBCBA +0(Q), (BS)

so the conformally rescaled metric § = Q?¢ extends to Z.
The inverse metric components satisfy

Uuu

g = g =0, g = QF —2MQ + O(Q°),
gAB — szAB —Q3CAB + 0(94)’

1
gmzm+R@%MM+mmy

1
P = =2 DRCHQ! 1 O(2). (B6)

From (B5) and (B6) we calculate the Christoffel symbols
of g:

M =T"0 =T"1 =0, (B7)
u 1 uQd
r uu — Eg (zauguﬁ - anuu)
1 1
:EQZ <_ZCABNAB —ZM) +O(Q3), (Bg)
u 1 u<2 2
M= 59 (0a9ua — 9agua) = O(Q7), (B9)
u 1 u2 -1
[Map = —59 dagap = O(Q7), (B10)
1 1
Fguu = Egguauguu + Eggg(zauguﬁ - aﬂguu)
1
+ EgQB<2auguB - aBguu) = O(Q%>’ (Bll)
Q 1 u 1 QQ
a= EQQ 4 Guu + 59 (049u2 — 92 Gua)
1
+ EQQB(augAB + 20 98u) = o), (B12)
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1

FAuu = EQAQ(ZQAQMQ - agguu) = 0(94)’ (B13)
1

Mo = EQAB(anMB — 0ggu) = O(Qz)v (B14)

1 1
M= EQAC(auch +20;39c) = ENABQ +0(Q%),

(B15)

1
Mop = EQAC()QQBC =0Q™), (B16)

1 1
FABC = EQAD(ZG(BQC)D - 0DgBC) - EQAQ%QBC = 0(1)-

(B17)

Next, we derive some components of the Riemann tensor of
YGab*

R o = 2a[uFuQ]u + zrua[uraﬁ]u

= QG C*BN 5 + 2M> + O(Q?), (B18)

RuuuA = 26[L¢FMA]M + Q'Fua[uraA]u = O(Qz)’ (Blg)

1
RAuuB = 2a[uFAB]u + ZFA(I[uFaB]u = O(Qz) = EQaMNAB-

(B20)

Since Raﬁ =0, we have C¢

Bys = R/”;yg. Therefore,

A 1
Cl = Cug +0(Q) =Q (ZCABNAB +2M> +0(@2).
(B21)

CuuuA = gABCuIAMB = (yAB + O(Q))CMMIAB + O(Qz)

CAuuB = ABCCAMMC = (VBC + O(Q))CAMMC + 0(92)

= %Q()MNAB +0(Q). (B23)
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