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In this work, we study the circular motions of charged particles and their polarized images around the
Kerr black hole immersed in a weak magnetic field. We pay special attention to the case where the magnetic
field and the charge-to-mass ratio are insignificant. Thus, the effective potential along the radial motion
reduces to a cubic form approximately so that we can express the radius of the innermost stable circular
orbit analytically in terms of the energy and angular momentum of charged particles. Moreover, we
computed the polarized radiation of these particles and obtained the polarized images semianalytically for
different spins, observational angles, and prograde and retrograde orbits. In particular, we find that these
parameters significantly impact the polarization rotation and the magnitude of the polarization flux.
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I. INTRODUCTION

Black holes are among the most fascinating predictions
of general relativity, and accumulating evidence supports
their existence in the Universe. Recent detections of
gravitational waves by LIGO and Virgo [1–4] and imaging
of black holes by the Event Horizon Telescope (EHT)
Collaboration [5–10] have increased our confidence in
the accuracy of general relativity and the existence of
black holes. General relativity and other theories of gravity
predict various types of black holes, including neutral,
charged, magnetic, or both charged and magnetic.
Astrophysical black holes are typically expected to be
neutral, because they selectively accrete ambient matter.
Despite this, these black holes can still generate a strong
electromagnetic field that creates charged particles through
pair production, as explained by Blandford and Znajek
[11]. Furthermore, weakly charged black holes may exist in
the Universe, and one possible mechanism for charging
them is the accretion of free charged particles to neutralize
the electric field generated by a rotating black hole
immersed in a magnetic field [12].
The environment surrounding an astrophysical black

hole is highly complex, containing plasma that generates

magnetic fields and forms an accretion disk. Numerous
observations have suggested the existence of magnetic
fields outside black holes, including bright “flares,” polar-
ized broad Hα lines, and polarization of accretion disk
radiation near active galactic nuclei [13–16]. Recently,
the EHT Collaboration published a polarized image of the
M87 black hole which provides further evidence of a
magnetic field around the black hole [17–20], as is
consistent with specific models of the magnetic field.
Studying the effects of the magnetic field around a black

hole is crucial for interpreting information obtained from
polarized images of the black hole. In this study, we are
using a simplified model that disregards the interaction
between charged particles and approximates their motions
as pointlike. We then examine the polarized radiation
resulting from the accelerated motion of the charged
particle in a magnetic field, approximating it as electro-
magnetic radiation from point particles. Especially when
the charged particles are in relativistic motion, the resulting
radiation is commonly referred to as synchrotron radiation.
Moreover, we assume that charged particles are confined to
move in circular paths on the equatorial plane beyond the
innermost stable circular orbit (ISCO). Factors such as the
influence of the Lorentz force on charged particles’ ISCOs
and the polarized image of radiation in the presence of
magnetic fields are essential. The ISCOs of charged
particles around a Schwarzschild and Kerr black hole
immersed in a weak, axially symmetric magnetic field
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have been widely studied, with many exciting results
found [21–24]. For strong magnetic fields, spacetimes
can be modeled by Schwarzschild and Kerr black holes
that are embedded in the Melvin universe [25,26], and the
corresponding ISCOs for massive particles have also been
studied in the literature [27–29]. In addition, the polarized
image of radiation originating from circularly orbiting
charged particles acted upon by Lorentz force has been
investigated in Schwarzschild and Kerr black holes with
weak or strong magnetic fields [28,30–37].
In this work, we revisit the ISCOs of charged particles

around a Kerr black hole with a weak magnetic field,
originally discovered by Wald in Ref. [12]. In contrast to
previous research, we focus on the case B ¼ qB

2m ≪ 1, where
q,m, and B are the charge, mass, and strength, respectively,
of the magnetic field. This condition allows us to obtain an
analytical expression for the radius of the ISCO that
involves the energy E and angular momentum L of charged
particles. As many astrophysical clouds of dust or fluids in
our Universe do not have an extreme charge-mass ratio,
the ubiquitous satisfaction of the B ≪ 1 condition makes
our results useful in practical situations. In addition, we
examine the polarized image of charged particles in circular
motion on the equatorial plane observed by an observer at
infinity. Unlike typical treatments of synchrotron radiation
of a charged particle around a black hole, which rely on
radiation study in the local inertial frame, we apply the
covariant formulas of electromagnetic radiation that encode
the intensity and polarization direction of radiation in
curved spacetime. These formulas were recently developed
in Ref. [36], building on earlier related discussions found in
Ref. [38]. In addition, it is relevant to note that we have
developed a simplified model in which charged particles
move in circular orbits on the equatorial plane under the
combined influence of gravity and Lorentz force, reminis-
cent of electrons in a ring accelerator. Such motion of
charged particles in a magnetic field produces linearly
polarized radiation, which becomes synchrotron radiation
when the particles move relativistically [36]. However,
when observing a black hole in a real astrophysical system,
the EHT has observed synchrotron radiation originating
from magnetic accretion flows [17–20]. Magnetic fluid is a
plasma made up of charged particles and possesses a
magnetic field. As these charged particles spiral within
the magnetic field at relativistic speeds, they emit synchro-
tron radiation. Because of this difference, our simplified
model cannot entirely account for the polarized images of
black holes observed so far and, thus, is more suited for
theoretical investigation. Nevertheless, if polarized radia-
tion from charged particles can be directly observed, our
model will become more applicable. Building on our
simplified model, we demonstrate the polarization direc-
tions and total flux of the radiation emitted from charged
particles for various spins, observational angles, and orbits.
Our numerical studies on polarized images are not restricted

to the case B ≪ 1, although our primary focus is on
researching ISCOs within this approximation.
The remaining parts of this paper are organized as

follows. In Sec. II, we study the circular orbits of the
charged particles around a Kerr black hole with a Wald
magnetic field. In Sec. III, we review the electromagnetic
radiation in curved spacetime [36] and calculate the
polarized images of the charged particles in circular
motions around a Kerr black hole. The main conclusions
are summarized in Sec. IV. In this work, we have set the
fundamental constants c, G, and the vacuum permittivity ε0
to unity, and we will work in the signature convention
ð−;þ;þ;þÞ for the spacetime metric.

II. CIRCULAR ORBITS OF A CHARGED
PARTICLE AROUND A KERR BLACK HOLE

WITH A WALD MAGNETIC FIELD

In this section, we focus on the circular orbits of a
charged particle around a Kerr black hole with a Wald
magnetic field.

A. Kerr black hole with a Wald magnetic field

The spacetime of a neutral and rotating black hole in
general relativity is described by the Kerr black hole metric,
which is a stationary and axisymmetric solution of the
Einstein equations and takes

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Mra2

Σ
sin2θ

�
dϕ2 −

4Mra
Σ

sin2θdtdϕ

ð2:1Þ

in the Boyer-Lindquist coordinates, where

Σ ¼ r2 þ a2 cos2 θ; Δ ¼ r2 − 2Mrþ a2; ð2:2Þ

with M and a being the mass and spin of the Kerr black
hole, respectively. And the angular momentum of the Kerr
black hole is J ¼ Ma. The horizons are located at
r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, given by the equation Δ ¼ 0. The

outer one is the event horizon of the Kerr black hole, that is,
rh ¼ rþ. Next, we assume that there is a vertical and uniform
magnetic field outside the Kerr black hole, described by the
Wald solution to the source-free Maxwell equations, that is,
∇μFμν ¼ 0. The magnetic field is aligned with the rotation
axis of the black hole and independent of the coordinates t
and ϕ. Considering the two Killing vectors ηa ¼ ð ∂

∂tÞa and
ψa ¼ ð ∂

∂ϕÞa, Wald proved that the field

Aa ¼ 1

2
B

�
ψa þ 2J

M
ηa
�
−

Q
2M

ηa ð2:3Þ
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gives a unique field that is an asymptotically uniform
magnetic field of strength B0, with Q being the charge of
the Kerr black hole. Next, we introduce the electrostatic
injection energy, defined as the difference between the
electric potential at the horizon and infinity, i.e.,

ϵ ¼ eAμη
μjhorizon − eAμη

μj∞; ð2:4Þ

which is a constant over the black hole [12]. For a pure Kerr
spacetime, we should have Q ¼ 0. However, due to non-
vanishing electrostatic injection energy ϵ, an electric field is
induced by the rotation of the black hole in the presence of
the magnetic field. It causes charged particles to be attracted
by the black hole, a process called charged accretion. As a
result, to reach a steady state, the black hole has to gain a
nonzero net charge to reach equilibrium, that is, ϵ ¼ 0,
which gives

Q ¼ 2BJ: ð2:5Þ

In the following, we focus mainly on this equilibrium
situation. Note that, in Ref. [39], they also paid attention
to the nonequilibrium situations. It is worth mentioning that
Eq. (2.5) holds for an arbitrary stationary, axisymmetric
black hole; that is, the condition is not limited to Kerr black
holes. In principle, the charge and magnetic field would react
upon the background spacetime. If we want to ignore the
contribution of the magnetic field to the background
spacetime for simplicity, we need to consider the weak field
approximation:

BM ≪ 1: ð2:6Þ

On the other hand, the characteristic length scale given
by the charge of the black hole is comparable with the
gravitational radius when

ffiffiffiffiffiffiffiffiffiffi
Q2

GG
c4

s
¼ 2GM

c2
; ð2:7Þ

so that the gravitational effect of the charge Q on the
background can be ignored if

Q ≪ QG: ð2:8Þ

Note that we have restored G and c in Eq. (2.7), making the
physical meaning of the formula more explicit. In addition,
considering J ≤ M2, from Eq. (2.5) we have

Q
QG

¼ Q
2M

¼ Ba ≤ BM ≪ 1; ð2:9Þ

which means we are allowed to omit the charge’s influence
on the spacetime metric, although there is a nonzero net

charge so that we can stick to the Kerr metric under the weak
field approximation. In fact, in the Gauss units, we find

BGauss ¼
c4

G3=2M
ðBMÞ≃ 2.36× 1019

M⊙

M
ðBMÞ G: ð2:10Þ

Here, ðBMÞ is a dimensionless number and can also be seen
as the value of B in our simplified unit after setting c, G, ϵ0,
andM to 1, andM⊙ is the mass of the Sun. For supermassive
black holes M ∼ 109M⊙, the dimensionless BM¼0.01≪1

corresponds to BGauss ∼ 108 G, which is already a very
significant value for an astrophysically appropriate magnetic
field around an astronomical black hole. Thus, the weak field
approximation BM ≪ 1 can be imposed for most real
astronomical black holes with magnetic fields and deserves
careful study.

B. Motions of charged particles
on the equatorial plane

In this subsection, we move to study the motions of
charged particles on the equatorial plane under the weak
field approximation employing the standard approach. In
the Boyer-Lindquist coordinates, the generalized four-
momentum Pμ can be written as

Pμ ¼ pμ þ qAμ; ð2:11Þ

where pμ ¼ muμ is the four-momentum for the charged
particle with m being the mass, Aμ is the electric vector
potential, and q is the charge of the particle. From Eq. (2.3),
we have

Aμ ¼
�
aB −

Q
2M

; 0; 0;
B
2

�
: ð2:12Þ

Note that the Lie derivatives of Aμ with respect to the
Killing vectors ημ and ψμ are zero, that is,

LηAμ ¼ 0; LψAμ ¼ 0; ð2:13Þ

and, thus, we can construct two conserved quantities along
the motions of charged particles:

E ¼ −
Pμ

m
gμνην ¼ −Pt=m;

L ¼ Pμ

m
gμνψν ¼ Pϕ=m: ð2:14Þ

Note that the energy can be explicitly written out as

E ¼
�
1 −

2Mr
Σ

��
qðaB − Q

2MÞ
m

þ dt
dτ

�

þ aMrsin2θðBqþ 2m dϕ
dτÞ

mΣ
; ð2:15Þ
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so it is not necessarily positive. Similarly, L would not be
necessarily positive even if ∂ϕ

∂τ > 0.
Since we are interested in the circular motions confined

to the equatorial plane as illustrated in Fig. 1, the four-
velocity of the charged particle takes

uμ ¼ ð _t; _r; 0; _ϕÞ; ð2:16Þ

where “ _ ” denotes derivative with respect to the proper
time τ. From Eq. (2.14), we can obtain

dt
dτ

¼ gϕϕðEþ q
mAtÞ þ gtϕðL − q

m AϕÞ
g2tϕ − gttgϕϕ

; ð2:17Þ

dϕ
dτ

¼ gttð−Lþ q
mAtÞ þ gtϕð−E − q

m AtÞ
g2tϕ − gttgϕϕ

: ð2:18Þ

Note that the four-velocity of a charged particle is future
directed; thus, we have _t > 0, which gives us

E >
2aL

r3 þ a2rþ 2a2
; ð2:19Þ

where we have used the equilibrium condition, that is,
Q ¼ 2BJ, and set the mass of the black hole M ¼ 1 here
and hereafter. Moreover, the four-velocity of the charged
particle is normalized, that is, uμuμ ¼ −1. Then, combining
Eq. (2.14) and the normalization condition of the four-
velocity, we can obtain

_r2 þ Veff ¼ 0; ð2:20Þ

where we have defined the effective potential Veff as

Veff ¼
B2Δða2rþ r3 þ 2a2Þ − 2LrΔB − ð2a2 þ a2rþ r3ÞE2 þ 4aLEþ rΔ − 2L2 þ L2r

r3
: ð2:21Þ

Here, we have introduced a new parameter

B ¼ qB
2m

: ð2:22Þ

It can be explicitly written as Veff ¼ P5ðrÞ
r3 , where P5ðrÞ is a

fifth-order polynomial of r. To write out the coefficients
explicitly, we have

P5ðrÞ ¼ c5r5 þ c4r4 þ c3r3 þ c2r2 þ c1rþ c0;

c0 ¼ −2ðL − aEÞ2 þ 2a4B2;

c1 ¼ a2 þ ð−4a2 þ a4ÞB2 − 2a2BLþ L2 − a2E2;

c2 ¼ −2þ 4BL; c3 ¼ 1þ 2a2B2 − 2BL − E2;

c4 ¼ −2B2; c5 ¼ 2B2: ð2:23Þ

In addition, it will useful to evaluate Veff at the horizon
x ¼ 1

rh
, and the result reads

−r3þVeffðr ¼ rhÞ ¼ 4E2rþ þ L2r− − 4aEL: ð2:24Þ

Here, the terms regarding B have become zero. This also
implies that, around the horizon, the impact of the magnetic
field on particles would become small. Also,

4E2rþ þ L2r− − 4aEL ≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2L2rþr−

q
− 4aEL ¼ 0;

ð2:25Þ

therefore, we can see that the effective potential is always
non-negative at the horizon. The equation holds if and only
if 4E2rþ ¼ L2r−, which gives L

E ¼ � 2rþ
a .

C. Circular orbits of charged particles

Next, we turn to calculate the circular orbits of
charged particles in the Kerr spacetime with a Wald
magnetic field. For simplicity, we set B > 0 and let the
spin a vary from −1 to 1. To find the energy E and angular
momentum L at a radius r, we need to solve the following
equations:

Veff ¼ 0 and ∂rVeff ¼ 0; ð2:26Þ

FIG. 1. A diagram of charged particles moving in circular orbits
on the equatorial plane of the Kerr spacetime with a vertical and
uniform magnetic field. We assume that the spin of the Kerr black
hole and the magnetic field are in the same direction when a and
B have the same sign.
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and the ISCO can be determined by further requiring

∂
2
rVeff ¼ 0: ð2:27Þ

It is easy to see that Veff ¼ 0 can be reduced to a quintic
equation for r, which cannot generally be solved analyti-
cally. And, thus, one has to solve Eqs (2.26) and (2.27)
numerically to gain insights into the ISCOs of charged
particles in the Kerr spacetime with a Wald magnetic field;
see examples in Ref. [39].
However, one can see that Veff ¼ 0 reduces to a cubic

equation for r if the term including B2 can be dropped,
which is legal when B ≪ 1. Considering that a cubic
equation can be solved analytically and an analytical
expression is useful for better understanding the circular
orbits of charged particles in the Kerr spacetime with a
Wald magnetic field, we carefully study the case B ≪ 1.
Let us start by discussing when the approximate condition
holds in the Gauss units. Note that, in the present
convention, B ¼ k means B ¼ kM−1, where k is a dimen-
sionless number; we can recover the full expression of
B ¼ k in the Gauss units:

�
qB
2m

�
Gauss

¼ k
c4

GM
; ð2:28Þ

and this gives

�
q
e

��
mp

m

�
¼ 43

BGauss

M⊙

M
k ¼ 1.8 × 10−18

ðBMÞ
ðBMÞ ; ð2:29Þ

where mp is the proton mass, e is the unit charge, and we
have plunged Eq. (2.10) in the last “¼ :” Thus, the
approximate condition B ≪ 1 corresponds to

�
q
e

��
mp

m

�
ðBMÞ ≪ 1.8 × 10−18: ð2:30Þ

As a result, we can see that the approximate condition
B ≪ 1 is applicable for an object with a unit charge whose
mass is much larger than 1018ðBMÞmp. For example, from
Eq. (2.10), we find BM ¼ 10−9 if we consider a super-
massive black hole with M ∼ 109M⊙ immersed in a
magnetic field with B ¼ 10 G, then the mass of the object
with a unit charge should be much larger than m ¼
109mp ¼ 10−18 kg in the international system of units if
we require that the approximate condition B ≪ 1 holds in
our present convention. To be precise, the charge-to-mass
ratio of an electron is 1.7 × 1011, which is too extreme for
our approximation in Eq. (2.30), as an electron would have
B ¼ 8.6 × 1010. However, the charge-to-mass ratio of
ionized gas molecules is much lower, ranging from 106

to 108, making it easier to satisfy the approximation
condition B ≪ 1. This approximation is particularly

helpful for studying charged astrophysical dust clouds
and weakly magnetized black holes with low mass.
Now, we move to study the orbits of charged particles

in the case B ≪ 1. We dropped the second-order terms
for B in the effective potential, and Eq. (2.21) can be
simplified as

−Veff ¼ 2ðL − 2aEÞ2x3 þ ð−a2 þ 2a2BL − L2 þ a2E2Þx2
þ ð2 − 4BLÞxþ E2 þ 2BL − 1; ð2:31Þ

where a new parameter x ¼ 1=r is introduced for
simplicity. The equations for a circular orbit

Veff ¼ ∂rVeff ¼ ∂
2
rVeff ¼ 0 ð2:32Þ

correspond to the equations

Veff ¼ ∂xVeff ¼ ∂
2
xVeff ¼ 0: ð2:33Þ

This would be true except for two points: r ¼ 0 inside
the horizon and r ¼ ∞, so we can obtain the ISCOs by
solving Eq. (2.33).
In the following subsections, we will analyze the

effective potential’s form and root structures under this
approximation.

1. Quadratic form

Next, let us begin with the first equation, Veff ¼ 0. It is
easy to see that the cubic equation is simplified into a
quadratic equation when L ¼ aE. Then, the effective
potential function becomes

−Veff ¼ð−1þ2BLÞa2x2þ2ð1−2BLÞxþE2þ2BL−1

ð2:34Þ

¼ð−1þ2BLÞ
�
ax−

1

a

�
2

þE2þð2BL−1Þ
�
1þ 1

a2

�
:

ð2:35Þ

When −1þ 2BL ¼ 0, that is, L ¼ 1
2B, we find Veff ¼ −E2,

which implies no stable circular orbits of charged particles
exist in this situation.
When −1þ 2BL > 0, we find

−Veffðx ¼ 0Þ ¼ E2 þ 2BL − 1 > 0;

−Veff

�
x ¼ 1

rþ

�
> 0;

1

a2
≥ 1 ≥

1

rþ
; ð2:36Þ

so that −Veff is a monotonic decreasing function and
−Veff > 0 is always true in the region x ∈ ð0; 1=rþÞ, which
implies there are no circular orbits of charged particles.
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At last, we focus on the case 2BL − 1 < 0. In addition,
combining Eq. (2.19) with L ¼ aE, we can find the energy
satisfies

0 < E <
1

2Ba
with 0 < a ≤ 1; ð2:37Þ

thus, we can obtain

−1 < −Veffðx ¼ 0Þ ¼ E2 þ 2BaE − 1 <
1

4B2a2
: ð2:38Þ

On the other hand, we find −Veff is a monotonic
increasing function in the region x ∈ ð0; 1=rþÞ in the case
2BL − 1 < 0, and so

−Veffðx ¼ 0Þ < −Veff < −Veffðx ¼ 1=rþÞ ð2:39Þ

in the region x ∈ ð0; 1=rþÞ. Thus, when 0 < E <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2B2

p
− a2B2, we have −Veffðx ¼ 0Þ < 0 and there

must be a r0 such that Veffðr0Þ ¼ 0. This implies there is a
forbidden zone ðr0;þ∞Þ for charged particles when 0<
E<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2B2

p
−a2B2. When

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2B2

p
−a2B2≤E< 1

2Ba,
we have −Veffðx ¼ 0Þ > 0 and there is no forbidden zone
for charged particles. In both cases, there are no circular
orbits for charged particles.
In conclusion, now we can ensure that there are no

circular orbits for charged particles when L ¼ aE.

2. Cubic form

Then let us pay attention to the more general situation in
which L ≠ aE and the effective potential function is cubic.
To investigate the structure of the potential, it is convenient
to define a new variable y by

x ¼ yþ d
3ã

; ð2:40Þ

where we set

d ¼ L2 þ a2ð1 − 2BL − E2Þ;
ã ¼ 2ðL − aEÞ2; ð2:41Þ

and then we get a compact form

fðyÞ ¼ −Veff ¼ ãy3 þ byþ c; ð2:42Þ

where

b ¼ 2 − 4BL −
d2

3ã
;

c ¼ −1þ 2BLþ E2 þ 2ð1 − 2BLÞd
3ã

þ d3

27ã
: ð2:43Þ

Then, we find

−∂xVeffðxÞ ¼ ∂yfðyÞ ¼ 3ãt2 þ b: ð2:44Þ

A circular orbit has to satisfy ∂xVeffðxÞ ¼ 0, such that
we have b < 0 since ã is always positive. Furthermore,

y ¼
ffiffiffiffiffi
−b
3ã

q
gives us a local maximum of the effective

potential Veff , while y ¼ −
ffiffiffiffiffi
−b
3ã

q
corresponds to a local

maximum. Then the necessary and sufficient conditions for
the existence of a future-directed stable circular orbit are

0 < y0 ¼
ffiffiffiffiffiffi
−b
3ã

r
þ d
3ã

<
1

rþ
ð2:45Þ

and

f

� ffiffiffiffiffiffi
−b
3ã

r �
¼ 0; ð2:46Þ

as well as Eq. (2.19). In addition, the condition

fð
ffiffiffiffiffi
−b
3ã

q
Þ ¼ 0 is equivalent to

c2

4
þ b3

27ã
¼ 0; ð2:47Þ

which gives a constraint for the conserved quantities L and
E. That is to say, when Eqs. (2.45), (2.47), and (2.19) hold,
a stable future-directed circular orbit for a charged particle
must exist, and the radius is given by

r0 ¼ 1=y0; ð2:48Þ

where y0 is given in Eq. (2.45).
We can push our calculations to determine the ISCO of

the charged particle. Considering the equation ∂
2
xVeffðxÞ ¼

∂
2
yfðyÞ ¼ 0, we can easily find the following conditions:

b ¼ c ¼ 0; ð2:49Þ

rISCO ¼ 1=yISCO ¼ 3ã
d

¼ 6ðL − aEÞ2
a2 − 2a2BLþ L2 − a2E2

ð2:50Þ

are true if there is an ISCO of the charged particle on the
equatorial plane in the Kerr spacetime with a weak
magnetic field under the approximate condition B ≪ 1.
Here, it is worth emphasizing that the energy E and angular
momentum L can be obtained by solving Eq. (2.49), and
then Eq. (2.50) can give us the value of the radius of
the ISCO. While, for B ≫ 1 and B ∼Oð1Þ, we have to
obtain the ISCO and orbits of charged particles numeri-
cally. Note that, in numerical calculations, we can use the
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fact that if Eqs. (2.26) and (2.27) hold, then the fifth-order
polynomial (2.23) that we mentioned should also satisfy

P5ðrÞ ¼ 0; ∂rP5ðrÞ ¼ 0; ð2:51Þ

which will greatly simplify the computation.

III. POLARIZED IMAGES OF CHARGED
PARTICLES IN CIRCULAR ORBITS

In this section, we move to study polarized images
of charged particles that move in circular motions on the
equatorial plane of the Kerr spacetime with a Wald
magnetic field. The observer is located at infinity with
an inclination angle θo as shown in Fig. 1.

A. Polarization of electromagnetic radiation
and propagation of light

In this subsection, we introduce the necessary formulas
to calculate the polarization of electromagnetic radiation
originating from the charged particle and propagation of
light following our previous work [36]. When charged
particles are affected by Lorentz forces, they are obliged to
move in nongeodesic trajectories and generate electromag-
netic radiation with nice polarization properties. The
polarization vector of the electromagnetic radiation takes

fμ ¼ N−1½δμαðkβDτu½βuα�Þ�; ð3:1Þ

where uα has been introduced to be the four-velocity of the
charged particle in the last section, kβ is the wave vector of
the polarized radiation and normalized by kβuβ ¼ 1, Dτ is
derivative operator along the vector uβ, that is, Dτ ≡ uα∇α

with τ being the proper time of uα, and N−1 is a
normalization factor in ensuring fμfμ ¼ 1. In addition,
the luminosity of the polarized radiation is given by

L ¼ 4πjkβDτuβuα −Dτuαj2: ð3:2Þ

Next, we consider the photon’s position that hits the
observer’s screen with coordinates ðto; ro; θo;ϕoÞ. In terms
of celestial coordinates, the position can be described by

α ¼ −
λ

sin θo
; β ¼ �o

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘðθoÞ

p
; ð3:3Þ

where �o ¼ sgnðkθoÞ represents the sign of kθ in the
observer’s frame and λ ¼ l=ω is an impact parameter with
l and ω being the angular momentum and energy of the
photon, respectively. ΘðθÞ is the angular potential of the
photon, which reads

ΘðθÞ ¼ ηþ a2 cos2 θ − λ2 cot2 θ; ð3:4Þ

where η ¼ Q=ω2 is the other impact parameter with Q
being the Carter constant in the Kerr spacetime. On the
other hand, charged particles as the light source are located
on the equatorial plane with coordinates ðts; rs; π=2;ϕsÞ. In
principle, with the help of null geodesic equations in Kerr
spacetime, one can obtain the trajectories of photons
connecting the source and the observer, and then we can
find the images of the source; that is, we know the
coordinates ðα; βÞ on the screen of the observer. We want
to stress that there is more than one trajectory of lights
starting at the source and ending at the observer, since the
lights may turn around the black hole more than once
before reaching the observer. We use m to denote the
number of times the trajectory crosses the equatorial plane
between the source and the observer; different values of m
correspond to the (mþ 1)th image on the observers’ screen.
In particular, the image formed by the trajectories with
m ¼ 0 is often called the primary image, the image with
m ¼ 1 is called the secondary image, and so on. For more
details, one is suggested to refer to Ref. [40].
Furthermore, we also need to obtain the polarization

information of the image. Following Ref. [36], the
polarization information can be transmitted from the
source to the observer by using the Penrose-Walker (PW)
constant

κ ¼ 2kμfνðl̂½μn̂ν� − m̂½μ ˆ̄mν�Þðr − ia cos θÞ≡ ωðκ1 þ iκ2Þ;
ð3:5Þ

which is a conserved quantity along the null geodesics for
Kerr spacetime. In the above formula, κ1;2 are the rescaled
real and imaginary parts of the PW constant, respectively.
And l̂, n̂, m̂, and ˆ̄m are the Neumann-Penrose tetrads which
can be chosen as

l̂ ¼ 1ffiffiffiffiffiffi
2Δ

p
Σ
½ðr2 þ a2Þ∂t þ Δ∂r þ a∂ϕ�;

n̂ ¼ 1ffiffiffiffiffiffi
2Δ

p
Σ
½ðr2 þ a2Þ∂t − Δ∂r þ a∂ϕ�;

m̂ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ

�
ia sin θ∂t þ ∂θ þ

i
sin θ

∂ϕ

�
;

ˆ̄m ¼ 1ffiffiffi
2

p ðr − ia cos θÞ

�
−ia sin θ∂t þ ∂θ þ

i
sin θ

∂ϕ

�
:

ð3:6Þ

Thus, employing Eq. (3.5), at the observer, we can decode
the information of fμ given at the source, and on the
polarization, the vector can be read from the PW constant as

E⃗ ¼ ðEα; EβÞ ¼
1

ωðβ2 þ γ2Þ ðβκ2 − γκ1; βκ1 þ γκ2Þ;

γ ¼ −ðαþ a sin θoÞ: ð3:7Þ
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On the other hand, we still need to know the total fluxes
of the image considering charged particles have a finite
size. We omit the details and give the result of the total
fluxes instead, which takes

Fo ¼
g4L

4πr2ojk̂j · X

���� ∂ðα; βÞ
∂ðYs; ZsÞ

����; ð3:8Þ

where j ∂ðα;βÞ
∂ðYs;ZsÞ j denotes the Jacobian determinant between

the coordinates ðα; βÞ and ðYs; ZsÞ. Thereinto, ðYs; ZsÞ
are coordinates defined on the “source screen” with
T ¼ X ¼ 0. fT; X; Y; Zg is a local Minkowski coordinate
system in the neighborhood of the source, which is
defined as

TeðtÞ þ XeðrÞ þ YeðϕÞ − ZeðθÞ ¼ ðxμ − xμ�Þ∂μ; ð3:9Þ

where xμ� are the coordinates of the source and eðμÞ are the
tetrad of the source. For a Kerr metric, we choose

eðtÞ ¼ γ

ffiffiffiffiffiffiffi
Ξ
ΔΣ

r
ð∂t þΩs∂ϕÞ; eðrÞ ¼

Δ
Σ
∂r; eðθÞ ¼

1ffiffiffi
Σ

p ∂θ;

eðϕÞ ¼ γvs

ffiffiffiffiffiffiffi
Ξ
ΔΣ

r �
∂t þ

2aMr
Ξ

�
þ γ

ffiffiffiffi
Σ
Ξ

r
; ð3:10Þ

where we have introduced

Ξ ¼ ðr2 þ a2Þ2 − Δa2 sin2 θ ð3:11Þ

and

vs ¼
Ξ

Σ
ffiffiffiffi
Δ

p
�
Ωs −

2aMr
Ξ

�
; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2s
p ; ð3:12Þ

with Ωs ¼ dϕs
dts

being the angular velocity of the source.

In addition, the unit vector k̂ is given by

k̂ ¼ 1

kðtÞ
ðkðrÞX þ kðϕÞY − kðθÞZÞ; ð3:13Þ

and g is the redshift factor which is given by

g ¼ ωo

ωs
; ð3:14Þ

where ωo;s are the frequencies of the photon in the observer
and the source frame, respectively. Now, we are ready
to calculate some specific polarized images of charged
particles orbiting the Kerr black hole with a Wald mag-
netic field.

B. Results

Based on our model, in this subsection, we show some
results for our calculations with the observation angle at
θo ¼ 17° and θo ¼ 80°. In our computations of the polar-
ized images, we use the full form of the effective potential
to numerically determine the parameters for stable circular
orbits without approximation. According to the previous
analysis, when B and a are given, only one degree of
freedom is left among r, E, and L for stable circular orbits.
In our following calculations, we usually set rs ¼ 6 and
compare the results with other different parameters; that is,
we fix the radius of the orbit for charged particles and
discuss the influence of the other parameters. The reason
why we choose rs ¼ 6 is that the ISCO for a neutral particle
in a Schwarzschild black hole spacetime is at rs ¼ 6, and
we still hope to focus on polarized images of the source in
this region. Our main interest is in the effects of the spin a,
the observational angle θo on the polarized images, and the
difference between the retrograde or prograde orbiting
source.1 In the following studies, we will vary a and θo
and make plots in retrograde or prograde cases. In addition,
as pointed out in Ref. [36], empirically, the strength of B
does not affect the direction of the polarization vector fμ

and changes only the overall intensity of flux. It is also the
case with Kerr spacetime. Sowe also fixB ¼ 2 in our work.
At first, we look at the difference in the polarized images

between the prograde and retrograde orbits. We fix
a ¼ 0.94, which is a potential value of the spin of the
supermassive black hole in M87 predicted by EHT [5–9].
The results are shown in Fig. 2, in which blue circles are
the images of charged particles and red lines denote the
polarization directions and total flux with the length. From
Fig. 2, one can see that, for the prograde case in the left
panel, there is barely any difference between the lengths of
red lines on the left and right sides. However, for the
retrograde case in the right panel in Fig. 2, we can find that
the fluxes are much stronger on the right side than those on
the left side. The main reason for this phenomenon is the
so-called Doppler beaming (sometimes called the headlight
effect). The radiation from moving particles concentrates
upon the vicinity along the direction of the motion of
particles, which becomes more significant when the veloc-
ity of moving particles is higher. Qualitatively, when B and
L are in opposite directions, charged particles would have
higher energies to stay in a circular orbit, so that the
Doppler beaming is more substantial in the retrograde case.
In addition, we can infer that the phenomenon would be
more distinct when the observer is closer to the equatorial
plane.

1Note that prograde (retrograde) is defined by _ϕ > 0 ( _ϕ < 0)
instead of L > 0 (L < 0), since the sign of the angular momen-
tum L is not necessarily as same as the sign of _ϕ, when there is an
external magnetic field.
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Next, we turn to study the influence of the spin on the
polarized images. In Fig. 3, we fix θo ¼ 17° and rs ¼ 6 and
vary a for retrograde orbits. The length ratio to the flux is
200 for the five plots. We can see evident changes in the
magnitude of the flux, while the corresponding polarized
directions show no significant changes as the spin a
increases. In addition, we also checked the prograde orbits
and found that, when we vary a, the changes in polarization
and intensity are minor. Hence, we do not wish to present
these results here.
Now we move on to the case that the observational angle

is fixed at θo ¼ 80°, that is, the observer is close to the
equatorial plane, and the spin a is varied from −0.99 to
0.99. The images of orbits deviate from circles a lot in this
case. The results for the prograde case are shown in Fig. 4,
where we have scaled the length of the polarization flux by
length=flux ¼ 4000. From the plot with a ¼ 0, it seems
that the polarizations of both sides centered on α ¼ 0 are
approximately symmetric, which means that the Doppler
beaming is not apparent. However, there is a significant
difference in the flux between the upper and lower parts of
the plot, which is caused by the curvature of the strongly
curved spacetime. Meanwhile, at the top of the orbit, where
α ¼ 0, the flux of the polarization is much smaller than
those in neighboring places. The reason is that the position
ðα ¼ 0; β ¼ βmaxÞ on the screen corresponds to the lights
that radiate from the source with the four-momentum
perpendicular to the velocity of charged particles in the
local frame of the source, and they are much weaker than
radiation going in other directions. This phenomenon can
usually be observed when θo is bigger. Moreover, the spin

of the Kerr black hole also significantly impacts the image.
When a is positive, the right side of the image is brighter
than the left side and vice versa.
The results for the retrograde case are shown in Fig. 5,

where we let θo ¼ 80°, r ¼ 6, and B ¼ 2 and the spin a
go from −0.99 to 0.99. In this case, one of the most
obvious phenomena is that the Doppler effect is power-
ful, because the observational angle θo and the energy of
the charged particles E are large. Thus, for the sake of
visualization, we take a logarithm of the flux for the
plots. In addition, the right side of the plot, where the
particle moves toward the observer, has much stronger
radiation. Also, in this case, the black hole spin a has a
much larger impact on the polarization. Furthermore, in
these plots, we can see a pronounced clockwise rotation
of the polarizations as the spin a increases, while this
rotation is unapparent for prograde orbits. Besides, we
also find that this rotation happens but it is minimal for
both prograde and retrograde orbits when θo is small
such as θo ¼ 17°.
It is noteworthy that, in actual observations, the detectors

or telescopes can detect electromagnetic radiation of only a
certain frequency range. Therefore, let us make an estima-
tion of the frequency of the particle moving on the ISCO.
When discussing Kerr black holes, the velocity of the
particles on the ISCO increases with the spin parameter a.
In the case of a near extreme Kerr black hole, the particle
velocity approaches the speed of light c on the ISCO, with
the radius of the orbit only slightly larger than the black
hole mass, that is, rISCO ∼M [41]. In the international
system of units, we have

FIG. 2. Comparisons of polarized images between the prograde and retrograde orbits with θo ¼ 17°, a ¼ 0.94, rs ¼ 6, and B ¼ 2. The
left plot is for prograde orbit, while the right is retrograde. The corresponding energy E and angular momentum L for stable circular
orbits are also shown in each plot. Blue circles give shapes of the images of charged particles, and red lines denote polarization
information. In particular, the length of the red line signifies the magnitude of the total flux. Note that the lengths of the flux are scaled
differently to make the lengths of lines in the two plots of the same order of magnitude.
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FIG. 4. Polarized images of charged particles in prograde orbits are produced with θo ¼ 80°, B ¼ 2, and rs ¼ 6. We let the spin a vary
from −0.99 to 0.99. In this set of plots, we set length=flux ¼ 4000.

FIG. 3. Polarized images of charged particles in retrograde orbits are produced with θo ¼ 17°, B ¼ 2, and rs ¼ 6. We let the spin a
vary from −0.99 to 0.99. The energy E and the angular momentum L are directly calculated from the conditions of the stable circular
orbit. Blue lines show the shapes of the images of the stable orbits. The inclinations of red lines denote the polarization directions
of radiation, while the lengths represent the total flux. In this set of plots, we set length=flux ¼ 4000 to make the plots more
ornamental.
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ðrISCOÞSI ¼ 1.5 × 103
M
M⊙

: ð3:15Þ

For a solar-mass black hole, the frequency of the particle
would be

f ∼
c

2πrISCO
≃ 30 kHz; ð3:16Þ

which may be at least technically observable. Nonetheless,
for the supermassive black holes with a mass of
M ∼ 109M⊙, the frequency is roughly f ∼ 3 × 10−5 Hz,
which is conceivably unobservable for the ground-based
telescope. Hence, it is more likely that the research in the
present work can be applied only to the case of black holes
of solar mass, from an observational perspective.2

IV. SUMMARY

In this work, we studied the circular motions and the
polarized images of charged particles in the Kerr spacetime
with a weak magnetic field. We focused on the case that the
magnetic field and the charge-to-mass ratio are not large,
which applies to many charged astrophysical clouds of
dust and objects. In this case, the effective potential gets
simplified and allows analytical treatment. We found an
analytical expression of the radius of the ISCOs in terms of
the energy density E and the angular momentum density L
and obtained the constraints that E and L should satisfy.
It is worth emphasizing that astrophysical objects widely
exist in the Universe which help the condition B ≪ 1.

Thus, our simplified treatment and analytical results are
helpful to relevant studies.
Moreover, we revisited how to calculate the polarized

images, including the orbits of charged particles, polari-
zation direction, and flux of the synchronize radiation
following our previous work [36] to prepare for numerical
computations. We obtained the images of circular orbits
through the ray-tracing method. We presented several
figures to show the polarized images of charged particles
at fixed B and rs, where rs was the orbit radius of the
source. We stress that, in studying the polarized images
with the numerical method, we did not assume the
approximate condition B ≪ 1, and our polarized photos
were not limited to the case B ≪ 1.
From our study, we read the influences of the orbit

directions, the spins of the black hole, and the observational
angles on the polarized images. The images for the
prograde and retrograde orbits are very different for the
same orbit radius. For example, we found that the so-called
Doppler beaming was evident for the retrograde orbits. In
addition, we observed a significant influence of the spin a
on the polarized images. More precisely, when a increases,
the polarization angle rotates clockwise. This phenomenon
becomes especially visible for retrograde orbits. The spin a
also has a non-negligible effect on the magnitudes of the
polarization fluxes. Moreover, we showed the impacts of
the observational angle on the polarized images.
It would be illuminating to compare our results with the

ones in Ref. [33], which also studied the polarized images
of equatorial emission in the Kerr geometry. In our study,
we focused on a vertical magnetic field corresponding to
ðBr ¼ 0; Bϕ ¼ 0; BðθÞÞ in Ref. [33]; somehow, however, our
results were closer to the ones in their case ðBr ¼ 0;

FIG. 5. Polarized images of charged particles in retrograde orbits are produced with θo ¼ 80°, r ¼ 6, and B ¼ 2. We also let the spin a
vary from −0.99 to 0.99. The red line is scaled by taking the logarithm of flux for the sake of visualization, since the Doppler effect is
powerful in this case.

2We express our utmost gratitude to the anonymous reviewer
for drawing our attention to this issue.
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Bϕ; BðθÞ ¼ 0Þ. The main reason is that the electromagnetic
radiation in our model is purely from charged particles
without self-interactions. At the same time, Ref. [33]
assumed that the synchrotron radiation was from charged
fluids, and, thus, the formulas of the polarization vector of
the radiation are different. In addition, the configuration of
the magnetic field is chosen in the frame of the source in
Ref. [33], while we pick the configuration observed by the
observers at infinity.
Moreover, the formula Eq. (3.1) for the polarization

vector, which was directly derived from the Maxwell
equation in curved spacetime, takes a covariant form

and can easily be used in numerical studies. In contrast,
the polarization vector in Ref. [33] is determined in a
local frame.
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