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Fifth forces are ubiquitous in modified theories of gravity. To be compatible with observations, such a
force must be screened on Solar System scales but may still give a significant contribution on galactic
scales. If this is the case, the fifth force can influence the calibration of the cosmic distance ladder, hence
changing the inferred value of the Hubble constantH0. In this paper, we analyze symmetron screening and
show that it generally increases the Hubble tension. On the other hand, by doing a full statistical analysis,
we show that cosmic distance ladder data are able to constrain the theory to a level competitive with Solar
System tests—currently the most constraining tests of the theory. For the standard coupling case, the
constraint on the symmetron Compton wavelength is λC ≲ 2.5 Mpc. Thus, distance ladder data constitutes
a novel and powerful way of testing this, and similar, types of theories.
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I. INTRODUCTION

During the last decade, the cosmological standard model
has entered a small crisis involving the present expansion
rate of the Universe, parametrized by the Hubble constant
H0. The SH0ES team derive H0¼ð73.0�1.0Þ km=s=Mpc
[1], using type Ia supernovae (SNIae) calibrated with
Cepheid variable stars and anchor galaxies with direct
distance measurements. This is commonly referred to as a
local Hubble estimate. On the other hand, the value inferred
from observations of the cosmic microwave background
with the Planck satellite is H0 ¼ ð67.8� 0.5Þ km=s=Mpc
[2]. These two results are discrepant to a degree of ∼5σ,
commonly referred to as the Hubble tension.
Potentially, the difference can be partly attributed to

systematic uncertainties, see for example Refs. [3,4], but
may signal the need to reevaluate the assumptions of the
cosmological standard model. An intriguing possibility is
that the discrepancy is due to new physics modifying the
expansion history of the Universe, thus affecting the
inferred value of H0 from the Planck data. A common
idea is that this can be achieved via a new theory of gravity.
A successful model would push up the “low” Planck value

towards the SH0ES result without violating other cosmo-
logical data sets, see Ref. [5] for some examples. So far,
there is no such consensus solution. An alternative way to
modify the expansion history is to add a new component to
the energy budget of the Universe. Early dark energy may
be a promising candidate (see, e.g., Refs. [6–11]).
Another possibility is that we are located in an under-

dense region of the Universe. This is (at least to some
degree) supported by data [12–16] and would result in a
locally increased expansion rate compared with the cosmo-
logical background (see, e.g., Ref. [17]), potentially
explaining the higher value for H0 obtained from local
observations by the SH0ES team. This is an attractive
resolution in the sense that it does not require the intro-
duction of new physics. Unfortunately, when taking the
full range of cosmological observations into account, the
solution is ruled out [18–22].
In this paper, we take a different approach and explore

how the SH0ES value forH0 is affected by the presence of a
fifth force; an extra degree of freedommodifying the laws of
gravity. If the fifth force is stronger in SNIa host galaxies
compared with anchor galaxies with direct distance mea-
surements, then the local H0 measurement will be biased to
a higher value. Thus, correcting for the fifth force decreases
the inferred value of H0, potentially harmonizing it with
the Planck value, as first suggested in Ref. [23]. Since fifth
forces are ubiquitous in modified theories of gravity, this
could be an attractive candidate solution to the tension.
In Ref. [23], the authors find that an additional fifth force

strength of 5%–30% in the SNIa host galaxies can alleviate
the H0 tension. Here, we further develop the idea presented
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in this seminal work. First and foremost, in Ref. [23], the
strength of the fifth force was parametrized using proxy
fields (such as the gravitational potential). Here, we assume
a symmetron screening model and explicitly estimate the
strength of the fifth force from the theory itself, for each
source entering the local distance ladder. Another difference
with Ref. [23] is that they estimated the effect of the fifth
force onH0 using an effective rescaling ofH0. In this paper,
we infer the value ofH0 using a full statistical data analysis.
This also opens up for the possibility of using the distance
ladder data to constrain fifth force models observationally, a
possibility we capitalize on in this paper.

II. EXECUTIVE SUMMARY

The symmetron is a fifth force mediated by a scalar field.
The effective potential of the scalar field depends on the
ambient energy density, resulting in the force being
screened on Solar System scales and unscreened in less
dense environments such as in galaxies. In this paper, we
(re)calibrate the Cepheid-based cosmic distance ladder in
the presence of a symmetron fifth force, performing a full
statistical data analysis. In unscreened (i.e., small mass)
galaxies, the fifth force effectively increases the gravita-
tional constant, modifying the Cepheid astrophysics. Rather
than approximating the fifth force using some proxy field,
we calculate it by solving the equations of motion under the
relevant conditions. This results in systematic differences in
the period-luminosity relation (PLR) between screened and
unscreened galaxies. Taking the fifth force into account
ultimately leads to a different inferred value for the Hubble
constant, H0. However, it turns out that the value of H0

shifts in the “wrong” direction, further exacerbating the
Hubble tension rather than solving it.
On the other hand, since we are doing a full statistical

data analysis, it results in new observational constraints on
the parameter space that the theory must satisfy in order to
be compatible with the distance ladder data. Here, we
analyze the full three-dimensional parameter space of the
symmetron model. We also compare the inferred distances
to galaxies where there are observations of both Cepheids
and tip of the red-giant branch stars (TRGBs). Since the
distance modification due to the fifth force acts in opposite
directions using Cepheids versus TRGBs, this allows for a
consistency tests. The resulting constraints are similar to
those from the Cepheid-based distance ladder, see Figs. 1–3.
For the standard coupling case, we constrain the

Compton wavelength of the scalar field to λC ≲ 2.5 Mpc,
comparable to the constraints from Solar System tests.

III. THEORY

Generically, a modification of general relativity (GR)
introduces an additional degree of freedom [24]. In a wide
range of modified gravity theories, this new degree of
freedom is encoded in a scalar field that couples to gravity.

The coupling of the scalar to matter introduces a fifth force
that effectively enhances the gravitational force. To be
compatible with Solar System tests of gravity, these scalar
fields must exhibit a screening mechanism suppressing the
fifth force in our (on average, dense) vicinity. However, in
less dense environments, fifth forces can be significant,
leading to potentially observable effects.
The symmetron model was first suggested in Ref. [25]

(see [26,27] for earlier works on similar models). Currently,
the tightest constraints on the symmetron model comes
from Solar System tests. Since the surface gravitational
potentials of the Sun and the Milky Way (MW) are of the
same order of magnitude, the requirement that Solar
System tests are satisfied coincides with our Galaxy being
mostly screened, see Ref. [25] for details. If the MW is on
the verge of being screened, then some sources in other
galaxies in the distance ladder will be screened and others
will not. Thus, the symmetron model can exhibit effects
with consequences for the calibration of H0, while still
satisfying Solar System tests. This is the reason why we
study this model in particular detail.
In the symmetron model, the fifth force is mediated by a

scalar field ϕ with a matter coupling that depends on the
local matter density; effectively coupling to matter only in
low-density environments. In high-density environments,
such as inside a star, the coupling to matter is negligible and
the Newtonian force of gravity is restored. This feature is
realized by postulating the following effective potential for
the scalar field,

VeffðϕÞ ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ λ

4
ϕ4; ð1Þ

where ρ is the matter density (here, we restrict ourselves to
nonrelativistic matter contents). There are three theory
parameters: M and μ are mass scales whereas λ is
dimensionless. In low-density regions where ρ < μ2M2,
the effective potential takes the form of a “mexican hat”
with the vacuum expectation value of ϕ given by

ϕ̄ ¼ μ=
ffiffiffi
λ

p ≡ ϕ0; ρ < μ2M2; ð2Þ

thereby breaking the Z2 symmetry ϕ → −ϕ. In regions of
high matter density where ρ > μ2M2, the minimum of the
potential is

ϕ̄ ¼ 0; ρ > μ2M2; ð3Þ

thereby restoring the Z2 symmetry in high-density envi-
ronments (hence, the name “symmetron”).
The density for which the scalar field becomes tachyonic

is ρ ¼ μ2M2, set by the magnitude of the dimensionless
parameter,
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sα ≡ ρc
3M2μ2

: ð4Þ

Here, ρc ≡ 3M2
PlH

2
0 is the present-day critical density of the

Universe and MPl ¼ ð8πGNÞ−1=2 is the Planck mass. For
the symmetron field to act as dark energy driving the
accelerated expansion of the Universe, one should set
sα ∼ 1, making the scalar field becoming tachyonic for
cosmological densities ρ ∼ ρc=3. Since we are interested in
the effects of the scalar field on galactic scales, we let sα be
a free parameter.
The coupling of the symmetron to matter is determined

by ϕ̄=M2, vanishing in high-density regions where ϕ̄ ¼ 0 in
which GR is restored. On the other hand, in low-density
environments where ϕ̄ ¼ μ=

ffiffiffi
λ

p
, a fifth force is mediated.

We make use of the dimensionless parameter, g, to set the
absolute scale for the strength of the fifth force

g≡ μMPlffiffiffi
λ

p
M2

; ð5Þ

where g ∼ 1 corresponds to the fifth force being compa-
rable to the gravitational force in low-density environ-
ments (cf. [25]).
Finally, the range of the fifth force in vacuum is set by

the Compton wavelength associated with the mass scale of
the theory, λC ≡ μ−1 [25].
To summarize, we have reparametrized the symmetron

model from ðM; μ; λÞ to a set of parameters ðsα; λC; gÞ with
immediate physical interpretations:

sα ≡ ρc
3M2μ2

; ð6aÞ

λC ≡ 1

μ
; ð6bÞ

g≡ μMPlffiffiffi
λ

p
M2

; ð6cÞ

where sα sets the density for which the screening mecha-
nism becomes effective, λC is the Compton wavelength
giving the range of the fifth force, and g is the coupling
constant setting the absolute scale for the strength of the
fifth force relative to the gravitational force.1

IV. DATA DESCRIPTION

With the exception of a few additions and modifications
to accommodate symmetron model modifications as
explained in subsequent sections, we will make use of

the same datasets and methods as employed, and described
in more detail, in Refs. [3,4].
To summarize, for anchor galaxies, we use a distance

modulus to the Large Magellanic Cloud (LMC) of μLMC ¼
18.477� 0.0263 derived from double eclipsing binaries
[28–30]. For the distance to N4258, we use μN4258 ¼
29.397� 0.032 derived from mega-maser observations
[31]. MW Cepheids data, including GAIA parallax mea-
surements, are from Table 1 in Ref. [32].
Data for Cepheids in the LMC, come from Table 2 in

Ref. [30], and for Cepheids in M31 and beyond, from
Table 4 in Ref. [33]. For all galaxies, the Cepheid data
includes the sky positions (RA and Dec) necessary for
estimating the symmetron screening effect on a source-to-
source basis. The galaxy velocity dispersions are obtained
from the Extragalactic Distance Database (EDD [34]) and
listed in Table I. Type Ia SN peak magnitudes are from
Table 5 in Ref. [33]. TRGB data comes from Ref. [35]. We
estimate the average positions of the RGB stars in each host
galaxy from the location of the hatched regions of the
galaxy fields depicted in Figs. 1–2 in Ref. [35].
Given the anchor distances and MW Cepheid parallaxes,

the Cepheid magnitudes, color excesses, periods, and
metallicities, together with the SNIa peak magnitudes, we
can derive (among other parameters such as the Cepheid
absolute magnitude) the SNIa absolute magnitude, MB.
Since we are focusing on the impact of the symmetron
model, we assume a fixed universal color-luminosity
relation (corresponding to RH ¼ 0.386) when standardizing
Cepheid luminosities, similar to the SH0ES team.
The Hubble constant is finally calculated as

H0 ¼ 10MB=5þaBþ5; ð7Þ

where aB ¼ 0.71273� 0.00176 is the intercept of the SNIa
magnitude-redshift relation [33].

V. METHODS I: CALCULATING ΔG=GN

When the cosmic distance ladder is calibrated, it is
assumed that there is no (unaccounted for) systematic
offset between the Cepheid and SNIa magnitudes between
anchor, host, and cosmic flow galaxies. However, if there
are fifth forces active on galactic scales, this assumption
can be violated. A fifth force is typically parametrized as an
effective relative shift of Newton’s gravitational constant
GN according to

F5

FN
¼ G −GN

GN
≡ ΔG

GN
; ð8Þ

where F5 is the fifth force and FN is the Newtonian force
(both per unit mass). Equation (8) can be regarded as the
definition of the (modified) effective gravitational constant
G. To calculate ΔG=GN, two steps must be carried out in

1Here, we distinguish between the gravitational force and the
fifth force. An alternative perspective that we will also take is to
view the symmetron field as modifying the strength of the
gravitational force. See Sec. V for the mathematical details.
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the following order: (1) Calculating the scalar field ϕ in the
galaxy. (2) Calculating ϕ and ΔG=GN for the stars that we
use in the distance ladder.
Common for these two steps is that the equations of

motion (EoM) for the scalar field must be solved. It is
convenient to write the EoM in terms of the dimensionless
scalar field,

ψðrÞ≡ ϕðrÞ=ϕ0; ð9Þ

and expressing the length scales in units of some scale R
(which we will later take to be the radius of the source that
we are interested in),

λ̂C ≡ λC=R; r̂≡ r=R: ð10Þ

Assuming spherical symmetry, the EoM for the scalar
field reads

∂
2
r̂ψðr̂Þ þ

2

r̂
∂r̂ψðr̂Þ ¼

�
αðr̂Þ− 1

λ̂2C

�
ψðr̂Þ þ 1

λ̂2C
ψ3ðr̂Þ; ð11Þ

where we have defined the rescaled (dimensionless) energy
density,

αðr̂Þ≡ 3sα
1

λ̂2C

ρðr̂Þ
ρc

: ð12Þ

Note that sα and ρ only appear in the combination sαρ, so a
rescaling of the theory parameter sα corresponds to an
overall rescaling of all densities.

A. Calculating ϕ in the galaxies

As an approximation for the mass density of a galaxy,
we assume an isothermal sphere. We truncate the mass
density at a radius of R300, defined as the radius at which
ρ ¼ 300ρc, implying the following relation:

R300 ≃ 67
σ

100 km=s
h−1 kpc; ð13Þ

where σ is the galaxy velocity dispersion and h ¼ H0=
ð100 km=s=MpcÞ.
If λ̂C is small enough for a given density profile ρðrÞ,

then the EoM (11) can be solved analytically. If not, they
are solved numerically, see Appendix A 1 for details. As
boundary conditions we impose ∂r̂ψ ¼ 0 at the center
(r̂ ¼ 0) and that ψ should approach some value ψ env;gal

asymptotically as r̂ → ∞.
Except for the LMC and the MW, we set ψ env;gal ¼ 1 for

all galaxies, i.e., we assume that the scalar field reaches its
vacuum value asymptotically outside each galaxy. For
the LMC, ψ env;gal is set by the local value of ψ in the MWat
the position of the LMC. Similarly, the MW lies in the
proximity of M31. To take this into account, we make a

simple estimate, computing the value of the scalar field due
to M31 at the position of the MW (assuming vacuum
outside M31 as a first approximation).

B. Calculating ϕ and ΔG=GN for stars

For simplicity, the stars are modelled as being homo-
geneous ρðrÞ ¼ const. For this case Eq. (11) can be solved
analytically, as outlined in Appendix A 2. To fully specify
the solution, we need the dimensionless density α, the
radius of the star, and the environmental value of the scalar
field in the vicinity of the star, ψ env, which is set by the
solution for the scalar field of the galaxy at the position of
the star.
For Cepheids, we use the relations in Refs. [36,37] to

estimate their radii and masses from their periods. From
this, we can calculate their density using Eq. (A6). As
outlined in the previous section, ψ env can be obtained by
evaluating the host galaxy scalar field ψ at the positions of
the stars. In Appendix B 1, we described how to obtain
these positions.
In spherical symmetry, the fifth force (per unit mass) is

F5 ¼ g2
H2

0λ
2
C

sα

1

R
ψðr̂Þ∂r̂ψðr̂Þ; ð14Þ

see for example Ref. [38]. With the solution for ψ, we can
finally obtain ΔG=GN.
Since we only know the 2D projected distances of the

Cepheids from their galaxy center (except in the MW
where we know the physical distances directly via paral-
lax), this is a source of uncertainty in the value of ΔG=GN.
To take this into account in the statistical data analysis, we
implement the uncertainty by simulating different realiza-
tions of the physical distance of each individual Cepheid
using a Monte Carlo method. The details can be found in
Appendix B 1.
Another source of uncertainty when estimating ΔG=GN

is the uncertainty in the velocity dispersion of the host
galaxy. Similar to the physical distance, this is implemented
using a Monte Carlo method. See Appendix B 2 for details.

VI. METHODS II: (RE)CALIBRATING
THE COSMIC DISTANCE LADDER

There are three steps in the Cepheid-based distance
ladder and in each of these, a fifth force can potentially
affect the calibration, ultimately leading to a different value
of H0. The effect of a fifth force can be understood by
expressing the Hubble constant as

5 log10H0 ¼ 5 log10 rðzÞ − 5 log10Danch

þ ΔmSN − ΔmCeph; ð15Þ

see Refs. [3,4]. Here, ΔmSN represents a systematic offset
in SNIa magnitudes between host galaxies and cosmic flow
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galaxies and ΔmCeph is a systematic offset in Cepheids
magnitudes between the host galaxies and anchor galaxies.
In the absence of a fifth force, these offsets are assumed to
be zero.
From Eq. (15), we see that the inferred value of H0

decreases if
(1) We increase the independent anchor distances,Danch.
(2) ΔmCeph > 0. This is achieved if the SNIa host

galaxies are less screened than the anchor galaxies,
i.e., if the fifth force is stronger in the host galaxies.
In this case host Cepheids appear brighter which
must be corrected for by raising mhost

Ceph.
(3) ΔmSN < 0. If SNIa in the Hubble flow are more

unscreened than those in Cepheid hosts, they
appear brighter and we need to correct for this by
raising mflow

SN .
For a detailed description of the calibration process
employed here, see Refs. [3,4].

A. Anchor distances

In Ref. [23], the MW and N4258 are used as anchor
galaxies. Here, we include also a distance estimate to the
LMC. In the following, we analyze how the geometrical
distance anchors are affected by a fifth force.

1. MW

The distances to the Cepheids in the MW are derived
from their observed parallax. Since this is a geometrical
measurement, it is independent of G.

2. N4258

The distance estimate to N4258 is based on observations
of the position, (line of sight) velocity, and (line of sight)
acceleration of water masers close to the center of this
galaxy. The model prediction of the velocity and acceler-
ation is based on Keplerian motion of the masers (plus
relativistic corrections) in which the mass of the central
black hole, MBH, and the gravitational constant, G, always
enter in the combination GMBH, including the relativistic
correction due to gravitational redshift which depends on the
Schwarzschild radius 2GMBH, see for example Ref. [39].
Hence,G andMBH are degenerate and only the combination
GMBH is observationally constrained; an increase in G is
compensated by a decrease in MBH. Thus, a value of G
different from GN does not influence the estimated distance
to N4258. In any case, due to the dense environment around
the water masers, we expect the fifth force to be fully
screened there.

3. LMC

The distance to the LMC is estimated based on obser-
vations of detached eclipsing binaries (DEBs). The inferred
distance to a DEB is based on the orbital velocity and
photometric light curve of the system which gives the

physical size of the individual stars [28]. Together with the
DEB temperatures, one can infer their luminosity and
hence obtain the distance to the system, without assuming
any particular value of G. The estimated distance to the
LMC is therefore not affected by a modified gravitational
constant.

B. Cepheids

Cepheid pulsation periods are proportional to their
luminosities, making them standardizable candles (after
correcting also for their color and potentially metallicity).
The pulsation period of Cepheids is dictated by processes in
the envelope of the star. If the envelope is unscreened (i.e.,
having G > GN), then the dynamics driving the pulsation
is modified as the free-fall time is reduced by a factorffiffiffiffiffiffiffiffiffiffiffiffiffi
GN=G

p
[40]. We assume that the pulsation period is

reduced by the same factor, an approximation confirmed by
models using the linear adiabatic wave equation [41].
In galaxies where Cepheid envelopes are unscreened, the
PLR is shifted compared with the galaxies where Cepheid
envelopes are screened. This shift has the same effect as an
increase in the Cepheid luminosity,

Δ log10 L ¼ A
2
log10

�
1þ ΔG

GN

�
: ð16Þ

Here, we adopt A ¼ 1.3 in line with Ref. [23]. The value for
ΔG=GN that goes into Eq. (16) is computed as a weighted
average of ΔG=GN throughout the Cepheid, where the
weighting function is obtained from Ref. [42], prioritizing
regions that are more important in driving the pulsations.
The luminosity of a Cepheid is due to hydrogen burning

in a thin shell outside the helium core. If the thin shell is
unscreened, then it must burn more fuel to balance the
increased gravitational field, thus being more luminous. In
this case, a modified stellar structure code [43] can be used
to derive

Δ log10 L ¼ B log10

�
1þ ΔG

GN

�
; ð17Þ

where B is determined by the mass of the Cepheid and
depends on whether it is at the second or third crossing of
the instability strip. Generally B ∼ 4, which we adopt here.
The value of ΔG=GN that goes into Eq. (17) is the value in
the thin shell surrounding the core.
To summarize, there are two fifth force effects contrib-

uting to a shift in the Cepheid PLR. The first due to
modified dynamics in the envelope and the second due to a
modified burning rate close to the core. Since the envelope
and the core represent different environments, we expect
generically different values for ΔG=GN in the envelope and
close to the core. For chameleon [44], symmetron [25], and
similar models exhibiting a thin-shell screening mechanism,
the Cepheid core is more screened than the envelope.
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C. Type Ia supernovae

If the gravitational force is effectively increased due to
the presence of a fifth force in an unscreened white dwarf,
then its Chandrasekhar mass will be reduced. This results in
less fuel available for a possible SNIa explosion. Together
with the modified Ni56 mass and the standardization of
the luminosity, it results in a change of the SNIa absolute
magnitude,

ΔMSN ¼ −2.5Clog10

�
1þ ΔG

GN

�
; ð18Þ

with C ¼ 1.46 [45]. The inferred value of H0 will decrease
if Hubble flow SNIa are more unscreened than those in the
host galaxies.
Since white dwarfs are much denser than Cepheids, the

relative increase in the gravitational constant ΔG=GN in
Eq. (18) is negligible in the range where the fifth force
affects the Cepheids in the calibration of H0. For example,
for a symmetron model with a Compton wavelength of
λC ¼ 10 Mpc and coupling constant g ¼ 1, typically
ΔG=GN ≲ 10−6.

D. Consistency test

1. TRGB

When the hydrogen at the core of a solar mass star is
exhausted, energy will mainly be generated by hydrogen
fusion in a shell around the core. As the pressure and
temperature of the core increases, for stars with masses less
than 1.8M⊙, helium will undergo a rapid nuclear fusion
process—the helium flash—resulting in a break in the
luminosity evolution of the star. This discontinuity is called
the TRGB. When measured in the near infrared I band
(∼800 nm), this tip is a standard candle with an absolute
magnitude of MI ≃ −4.0. The TRGB can be used as an
alternative way of constructing a distance ladder, ultimately
leading to a value of H0 as in Ref. [46]. Here however, we
use it as a consistency test, comparing Cepheid and TRGB
distance estimates to the same galaxies, as in Ref. [23]. We
make use of TRGB data from Ref. [35], where the TRGB
distance from the galaxy centers are estimated from the
images of the TRGB galaxy fields and the velocity
dispersion are obtained from the HI linewidth W20 as
tabulated in the EDD. Given that the TRGB distance
estimates in Ref. [35] are calibrated using the TRGB in
the LMC, we include screening effects in the LMC,
estimating TRGB galactocentric distances using the
TRGB galaxy fields depicted in Ref. [47] along with the
exclusion region described in Ref. [35].
The luminosity of the RGBs is determined by a thin

shell of hydrogen surrounding the helium core. A modified
gravitational constant in this region results in a distance
modification that is well fit by [48]

Dtrue

DGR
¼ 1.021

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.04663

�
1þ ΔG

GN

�
8.389

s
: ð19Þ

To estimate ΔG=GN, we assume fiducial values of the mass
and radius of the RGBs: M ¼ 0.6M⊙ and R ¼ 207R⊙.
When λC ¼ 1 Mpc, typically ΔG=GN ≪ 10−6, but with
ΔG=GN varying over many orders of magnitude depending
on the velocity dispersion of the host galaxy and the
distance of the RGBs from the center of the galaxy. For
λC ¼ 10 Mpc, ΔG=GN ∼ 0.1, varying one order of magni-
tude up or down between RGBs in different galaxies. When
λC ¼ 100 Mpc, ΔG=GN ≃ 1.9. Here, we have assumed
that g ¼ sα ¼ 1.
Since the Cepheid and TRGB distance modifications

have opposite directions, they should disagree systemati-
cally in the presence of significant fifth forces, making it
possible to constrain the size of the effect.

VII. RESULTS

Figure 1 summarizes the main result. The color coding
indicates the inferred value of H0 by the Cepheid/SNIa-
based distance ladder, assuming a symmetron model with
sα ¼ 1. As can be seen, the inferred value of H0 with the
symmetron model is always greater than the SH0ES value
unless λC is very large or very small or if g is small, in which
case we approach the SH0ES value H0 ¼ 73.0 km=s=Mpc.
Hence, the symmetron model does not solve the Hubble
tension, rather the opposite. As we argue in the discussion,
this is explained by the fact that the anchor galaxies span
almost the same range of velocity dispersions as the host
galaxies, which means that the anchor galaxies are not
unusually screened compared with the host galaxies. The
only possibility of easing the tension is to use N4258 as the
only anchor galaxy, since it is unusually screened compared
with most host galaxies. The result of this scenario is
presented in the right panel of Fig. 1. In this case, values
down to 70 km=s=Mpc are allowed, easing the tension to
some degree. In Appendix D, we show the results when
using the MW or the LMC as the only anchor galaxy.
Interestingly, for the model to be consistent with the

distance ladder data, we obtain significant constraints
on the theory. These constraints are independent of
Solar System tests. The dashed curves in Fig. 1 indicate
68.3% confidence contours such that everything above it is
excluded to this level. The black curve corresponds to the
local Cepheid/SNIa distance ladder, including the uncer-
tainty in the physical position of the Cepheids as well as the
uncertainty in the velocity dispersion of the galaxies. The
white curve is derived comparing Cepheid and TRGB
distances. Notably, it follows the distance ladder constraints
rather closely.
In Fig. 1, we also include the parameter space excluded

by Solar System tests that are currently the most
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constraining tests of the symmetron model.2 In Ref. [25],
the authors analyze constraints from Solar System tests and
binary pulsars. Assuming g ≃ 1, they infer M ≲ 10−3MPl
or, equivalently,

λC ≲ 3
ffiffiffiffiffi
sα

p
Mpc: ð20Þ

To facilitate comparison with the full constraints from the
cosmic distance ladder in Fig. 1, we generalize the analysis
in Ref. [25] by allowing for a general value of g, see
Appendix C for details. The result is

g≲
�
3

ffiffiffiffiffi
sα

p
Mpc

λC

�
2

: ð21Þ

From Fig. 1, we conclude that the observational constraints
from the cosmic distance ladder is not only a new and
independent probe of the theory but also competitive
with respect to the its constraining power in the parameter
space.
In particular, in the standard coupling case when

g ¼ sα ¼ 1, the region λC ≳ 3 Mpc is excluded by Solar

System tests. This should be compared with 2.5 Mpc≲
λC ≲ 400 Mpc being excluded by the cosmic distance
ladder at 95% confidence level in the standard coupling
case.3 The upper bound on λC from Solar System tests
coincides with the region of the parameter space where we
have the greatest effect of the fifth force on the distance
ladder and thus the strongest constraints from these data.
This is due to the fact that the Solar System constraints
coincide with the requirement that the MW is on the edge of
being screened.
In Fig. 1, we have assumed sα ¼ 1. In Fig. 2, we show

the same results for sα ¼ 0.1 and sα ¼ 10. In Fig. 3, we
show a combined exclusion plot, including the cases
sα ¼ 0.1, sα ¼ 1, and sα ¼ 10 together with the Solar
System tests for the same parameters. Decreasing sα has the
same effect as an overall decrease in the energy density by
the same factor [cf. Eq. (12)]. In this case, all galaxies are
more unscreened, effectively shifting the “U-shaped” con-
fidence contour towards the left. Correspondingly, increas-
ing sα shifts the confidence contour to the right. The
amount of shift of the contours towards the left/right scales
roughly as

ffiffiffiffiffi
sα

p
(cf. the discussion about the scaling of the

thin-shell mechanism in Sec. VIII).

FIG. 1. DerivedH0 as a function of λC and g for the symmetron model. The color coding indicates the value ofH0 (note the difference
in scales between the left and right panels). The dashed curves indicate 68.3% confidence contours such that everything above them are
excluded by the cosmic distance ladder data to this level. Black curve: constraints from the local Cepheid/SNIa distance ladder. White
curve: tension between Cepheid-based and TRGB distances. Red curve: Solar System constraints. Left: including all anchor galaxies
(MW, LMC, and N4258). For all theory parameters, H0 is greater than or equal to the SH0ES value H0 ¼ 73.0 km=s=Mpc, worsening
the tension with Planck data. Right: using only N4258 as anchor galaxy. In this case, the value of H0 decreases, easing the Hubble
tension. Values down to H0 ¼ 69.6 km=s=Mpc are allowed.

2Imposing Solar System tests, the requirement Eq. (20) limits
the energy scale of the symmetron potential to such an extent that
it cannot act as dark energy [49]. Accordingly, under these
constraints, the symmetron model does not influence the value of
the Hubble constant inferred from cosmic microwave back-
ground data.

3In our analysis, the exact numbers for the 95% confidence
level are limited by the grid density in the parameter space. Close
to the lower limit (2.5 Mpc), the grid spacing is 0.5 Mpc and close
to the upper limit (400 Mpc), the grid spacing is 100 Mpc.
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VIII. DISCUSSION

In Ref. [49], they show that α is inversely related to the
so-called thin-shell factor,

ΔR
R

¼ 1

α
; ð22Þ

where α is the dimensionless density, defined in Eq. (12).
As the name suggests, when ΔR=R ≪ 1, there is a thin
shell at the radius of the source where the scalar field
transits from zero to the vacuum expectation value, similar
to the chameleon mechanism. For the symmetron model,
the thin-shell factor depends both on the theory parameters
sα and λC, as well as the density of the source, cf. (12).
When ΔR=R ≪ 1, the strength of the fifth force relative to
the Newtonian force is

F5

FN
¼ ΔG

GN
≃ 6g2ψ2

env
ΔR
R

; ð23Þ

and thus the fifth force is screened (unless g ≫ 1), see for
example Ref. [49]. Here, ψ env is the value that the scalar
field approaches faraway from the source. In Appendix A,
we show in detail how we solve the EoM.
Since we can write Eq. (22) as

ΔR
R

¼ 1

3sα
λ̂2C

ρc
ρ
; ð24Þ

the thin-shell mechanism is effective when

λ̂2C
ρc
ρ
≪ 3sα: ð25Þ

In this case, the source is screened. For a galaxy of (halo)
radius R ∼ 100 kpc, this happens when λC ≪ 3

ffiffiffiffiffi
sα

p
Mpc.

On the other hand, since ΔR=R ≫ 1 when
λC ≫ 3

ffiffiffiffiffi
sα

p
Mpc, there is a gradual increase of the value

of the scalar field from the region inside the source to the

FIG. 2. Derived H0 as a function of λC and g for the symmetron model. All anchor galaxies included. The color coding indicates the
value of H0. The dashed curves indicate 68.3% confidence contours such that everything above them are excluded by the cosmic
distance ladder data to this level. Black curve: constraints from the local Cepheid/SNIa distance ladder. White curve: tension between
Cepheid-based and TRGB distances. Red curve: Solar System constraints. Left: sα ¼ 0.1. Right: sα ¼ 10.

FIG. 3. Exclusion plot in the symmetron parameter space for
three different values of sα. The gray scale regions are excluded
based on cosmic distance ladder data. The red curves represent
the corresponding contours for Solar System test such that, for
each respective value of sα, everything above them is excluded.
We see that cosmic distance ladder constraints are competitive
with Solar System tests at the lower end of λC.
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region outside the source and the fifth force strength
approaches values of

F5

FN
¼ ΔG

GN
≃ 2g2ψ2

env;
ΔR
R

≫ 1; ð26Þ

see for example Ref. [49]. In this case, the fifth force is
unscreened and there is no thin-shell mechanism at work.
From Eqs. (A1) and (24), we see that the thin shell factor

is inversely proportional to ρR2 ∝ σ2 for a source with
an isothermal sphere profile (assuming R300 ≫ r0). This
means that galaxies with small velocity dispersion have a
less pronounced thin-shell mechanism and thus are more
unscreened compared with galaxies with large velocity
dispersion. This implies that the relative spread of ΔG=GN
is greater in galaxies with large σ where ΔG=GN has a
strong distance dependence. In absolute terms however, this
effect is counteracted by the fact that ΔG=GN is suppressed
in galaxies with large σ.
These results are exemplified in Fig. 4. As expected,

ΔG=GN is greater in less massive galaxies (i.e., galaxies
with small velocity dispersion). However, for large values

of the Compton wavelength (such as λC ¼ 100 Mpc in
Fig. 4), the thin-shell mechanism is broken in all galaxies
and the fifth force approaches the same value, ΔG=GN ≃
2g2 ¼ 2, in all galaxies. Accordingly, the spread in ΔG=GN
is small, as indicated by the “error bars” in the figure. For
these Compton wavelengths, the distance dependence of
ΔG=GN is the strongest in the galaxies with the largest
values of σ (such as N4258).
For smaller values of the Compton wavelength

(cf. λC ¼ 5 Mpc in Fig. 4), ΔG=GN is smaller and the
thin-shell mechanism becomes effective. The largest gal-
axies (such as the N4258) exhibit pronounced thin-shell
mechanisms and thus have the strongest distance depend-
ence of ΔG=GN. On the other hand, they have the smallest
absolute values of ΔG=GN. It turns out that for these
Compton wavelengths, the smaller galaxies (such as the
LMC) have the largest spread in ΔG=GN.
From these observations we can understand qualitatively

how the fifth force affects the calibration of the cosmic
distance ladder for different values of the theory parameters
ðsα; λC; gÞ. When λC ≫ 3

ffiffiffiffiffi
sα

p
Mpc, the thin-shell mecha-

nism is broken in all galaxies and all galaxies exhibit

FIG. 4. Mean value ofΔG=GN for each galaxy. The mean is calculated with respect to all distance ladder Cepheids in the galaxy. Here,
we calculate ΔG=GN using r ¼ πR=2 and σ ¼ σmean, see Sec. V. The “error bars” denote the largest and smallest value assumed by the
Cepheids in that galaxy. The numbering of the host galaxies is the same as in Table I. From top to bottom, the Compton wavelengths are
λC ¼ 5 Mpc, λC ¼ 10 Mpc, λC ¼ 20 Mpc, λC ¼ 100 Mpc. Left: sα ¼ 1. Right: sα ¼ 0.1. When the Compton wavelength is small,
ΔG=GN spans several orders of magnitude between the different galaxies. Note however that for all of them, ΔG=GN is small. When the
Compton wavelength is large, ΔG=GN ≃ 2g2 for all galaxies.
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similar values of ΔG=GN. Since the fifth force effect is
almost the same in all galaxies, the calibration of H0 is not
affected in this case. When λC ≪ 3

ffiffiffiffiffi
sα

p
Mpc, all galaxies

exhibit a thin-shell mechanism and, although the relative
spread in ΔG=GN will be large, we retain GR results with
no effect on H0 since the fifth force is suppressed in all
galaxies.
Hence, we expect to find the greatest effect on the

inferred value of H0 in the intermediate region where the
Compton wavelength is λC ∼ 3

ffiffiffiffiffi
sα

p
Mpc in which case

small galaxies such as the LMC have a relatively large
values of ΔG=GN while larger ones such as N4258 do not.
These considerations explain the “U-shaped” confidence
contours in Figs. 1–3. High values of g are allowed if λC is
small or large enough. On the other hand, since g sets the
overall scale of the fifth force, all values of λC are allowed
for small enough g.
For fixed theory parameters, the value of ΔG=GN in a

galaxy is mainly determined by the velocity dispersion of
the galaxy. The anchor galaxies (MW, LMC, and N4258)
span a large range of velocity dispersions, from 10 km=s
for the LMC to 442 km=s for N4258. To alleviate the
tension, anchor galaxies should be screened to a larger
extent compared to host galaxies. If we calibrate the
distance ladder using only one of the anchors, in case of
the LMC, since it is unusually unscreened we get a greater
value for H0 compared with the nominal 73 km=s=Mpc
(right panel of Fig. 9). Calibrating with only the MW, we
also expect H0 to be somewhat higher since it is more
unscreened than most of the hosts. On the contrary, with
only N4258, H0 should decrease due to this galaxy being
unusually screened (right panel of Fig. 1). When using all
three anchors, as evident from the left panel of Fig. 1, the
net effect is that the inferred H0 increases when including
screening effects.
In Ref. [23], the authors analyze the effects of fifth forces

on the calibration of the cosmic distance ladder, focusing
on effective models which parametrize the strength of the
fifth force using proxy fields. Their result is that the local
effects of a fifth force may help solve the Hubble tension.
Here instead, we focus on symmetron screening, calculat-
ing the fifth force from the theory. In this case, we show that
the tension is not solved when employing all three anchor
galaxies, rather it gets worse. On the other hand, fitting the
symmetron model to the cosmic distance ladder data allows
to set new limits on the parameter space of the theory which
turn out to be competitive with Solar System tests.
Obviously, this does not rule out the possibility that another
screening mechanism (such as those in Ref. [23]) could
solve the tension. More specifically, to solve the tension,
the anchor galaxies should (on average) be significantly
more screened than the host galaxies.
This raises the question whether we could use the cosmic

distance ladder data to impose significant constraints on
other screening mechanisms as well. The answer should

depend on the details of the screening mechanism in
question. For example, a chameleon model is already
heavily constrained and we do not expect the cosmic
distance ladder to be competitive [23,50]. In a follow-up
paper, we plan to evaluate this in detail for a larger number
of models.
We have analyzed how a fifth force affects the Cepheids

and TRGBs when calibrating the cosmic distance ladder.
Since WDs are more compact than Cepheids, we expect the
effect to be less important in the range where the fifth force
has a significant impact on the Cepheids and TRGBs. For a
WD far out in the halo (where the fifth force is the
strongest) in a galaxy with σ ¼ 200 km=s, ΔG=GN < 1%
even for λC ¼ 50 Mpc. Here, we have set sα ¼ g ¼ 1 and
set the mass to the Chandrasekhar mass M ≃ 1.4M⊙ and
the radius to R ¼ 0.01R⊙ [51]. Therefore, we assume that
the fifth force does not affect the SNIa magnitudes and set
ΔmSN ¼ 0 [cf. Eq. (15)].

IX. CONCLUSIONS

In this paper, we analyze the effects of a symmetron fifth
force on the calibration of the cosmic distance ladder.
In particular, we infer the value of the Hubble constant from
a full statistical data analysis to see whether the tension
between this local value and Planck can be alleviated.
To calculate the strength of the fifth force, we solve the
symmetron equations of motion for each source in the
cosmic distance ladder.
In addition to considering standard uncertainties (e.g.,

related to Cepheid and SNIa photometry), we also account
for the uncertainty in the physical distance of the Cepheids
from the galactic center and the uncertainty in the velocity
dispersion of the galaxies. These factors affect the strength
of the fifth force acting on each Cepheid.
By employing a state-of-the-art statistical analysis, we

infer the value of the Hubble constant and find that the
tension between the local value and Planck is actually
worsened by the inclusion of this fifth force. Specifically,
for the symmetron model, we find thatH0 ≳ 73 km=s=Mpc.
We base our analysis on the MW, the LMC, and N4258 as
anchor galaxies. Notably, with N4258 as the only anchor
galaxy, the value of H0 aligns more closely with the Planck
value. This is due to the fact that N4258 is an unusually
screened galaxy.
It is important to emphasize that these conclusions are

specific to the symmetron model, and we do not exclude the
possibility that another type of fifth force might provide a
resolution to the tension. Numerous other models warrant
their own dedicated analyses, which should be the subject
of future work.
We fit the symmetron model to the data from the cosmic

distance ladder and obtain new constraints on the model.
The results are summarized in Fig. 1. In the small λC limit,
the fifth force becomes suppressed and ΔG=GN ≃ 0. In the
large λC limit, the fifth force takes the same value (2g2) for
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all sources, hence not affecting the calibration of the
distance ladder. This explains the distinctive “U-shape”
of the excluded region in the figure, indicating that any
value of the coupling constant g is permissible for suffi-
ciently small or large Compton wavelengths.
For the standard coupling case (g ¼ sα ¼ 1), the distance

ladder data excludes a range of Compton wavelengths, with
2.5 Mpc≲ λC ≲ 400 Mpc, at a confidence level of 95%.4

The lower limit is competitive with the results of Solar
System tests, which are currently the most constraining
tests of this model.
As a consistency check, we compare distances to the

same galaxies using both the Cepheid-based distance
ladder and a TRGB-based distance ladder. Since the
modifications in distance move in opposite directions for
these two methods, it imposes additional constraints on
the symmetron model. Notably, these constraints closely
resemble those obtained from Cepheid-only data, as illus-
trated in Fig. 1.
In conclusion, we show that the symmetron model does

not resolve the Hubble tension. Nevertheless, the cosmic
distance ladder data proves to be a novel and powerful tool
for testing this model as well as similar theories.
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APPENDIX A: SOLVING THE EQUATIONS
OF MOTION

1. Galaxies

As an approximation for the mass density of a galaxy,
we assume an isothermal sphere with a core,

ρðrÞ ¼ σ2

2πGN

1

r2 þ r20
; ðA1Þ

where σ is the velocity dispersion and r0 is the radius of the
core. In this case, the EoM (11) can be solved analytically if
the Compton wavelength is small enough (satisfying the
requirement λ̂C < 15

ffiffiffiffiffiffiffi
2sα

p
) and setting r0 ¼ 0. Recall that

λ̂C ¼ λC=R300. The solution is

ψðr̂Þ ¼ c1jnðr̂=λ̂CÞ; r̂ < 1; ðA2aÞ

ψðr̂Þ ¼ c2
e−

ffiffi
2

p
r̂=λ̂C

r̂
þ ψ env;gal; r̂ > 1; ðA2bÞ

where jn is the spherical Bessel function of order n and

n ¼ 1

2

2
4−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
60

ffiffiffiffiffi
sα

p
λ̂C

�
2

s 3
5: ðA3Þ

The coefficients c1 and c2 are set by the boundary
conditions and can be provided on demand. When the
analytical solution is not applicable, the EoM is solved
numerically using a shooting method with boundary con-
ditions ∂r̂ψ jr̂¼0.1r̂0 ¼ 0 where r̂0 is the radius of the core
(in units of R300) and ψ jr̂¼10 ¼ ψ env;gal. Here, ψ env;gal is the
environmental value that the scalar field of the galaxy
should approach far away from the galaxy itself. For the
MW, ψ env;gal is set by the value of the scalar field provided
by M31 and for the LMC, the environmental value is set by
the value of the scalar field for the MWat the position of the
LMC. For all other galaxies, we set ψ env;gal ¼ 1. For the
numerical solution to be well behaved, we set a finite core
radius, here 1% of the radius of the galaxy.

2. Stars

For simplicity, stars are modelled with a homogeneous
mass density profile ρðrÞ ¼ const. In this case, Eq. (11) can
be solved analytically with the result [25]

ψ inðr̂Þ ¼
c1
r̂
sinh

0
@r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α −

1

λ̂2C

s 1
A; r̂ < 1; ðA4aÞ

ψoutðr̂Þ ¼
c2
r̂
e−

ffiffi
2

p
r̂=λ̂C þ ψ env; r̂ > 1: ðA4bÞ

Hats denote length scales measured in units of the radius of
the source (here, the star). In (A4), c1 and c2 are integration
constants set by the requirement that the field and its first
derivative is continuous across the boundary r̂ ¼ 1. They
can be solved for analytically but the expressions are
somewhat lengthy. Formally,

c1 ¼ ψ envf1ðα; λ̂CÞ; ðA5aÞ

c2 ¼ ψ envf2ðα; λ̂CÞ; ðA5bÞ

for some functions f1 and f2. The full expressions are
available on demand. Here, ψ env is the environmental
background value that ψ approaches well outside the radius
of the source (i.e., when r̂ ≫ 1). For a star in a galaxy, this
is the field value set by the galaxy itself in the neighborhood
of the star. In the section above, we described how to
calculate that. Hence, the screening properties depend not
only on the compactness of the source, α, but also on the
galactic environment, entering via ψ env. Note that for a
homogeneous source (and only in this case), α is a constant
[cf. Eq. (12)], which can be rewritten as

4The grid size is 0.5 Mpc at the lower limit and 100 Mpc at the
higher limit, so this exclusion region is approximate.
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α ¼ 400sα

�
λC
Mpc

�
−2M=M⊙

R=R⊙
: ðA6Þ

Inside a homogeneous, spherically symmetric source, the
gravitational force (per unit mass) is

FN ¼ 1

8πM2
Pl

M⋆ð< rÞ
r2

¼ 1

6M2
Pl

ρr; r < R; ðA7Þ

where M⋆ð< rÞ is the total mass enclosed within radius r.
Using Eqs. (8), (12), (14), and (A7), we get

ΔGðr̂Þ
GN

¼ 6g2
1

α

1

r̂
ψðr̂Þ∂r̂ψðr̂Þ; r̂ < 1; ðA8Þ

where ψðr̂Þ is given by (A4). Note that ΔG depends on the
radius. Outside the source,

FN ¼ 1

8πM2
Pl

M⋆

r2
¼ 1

6M2
Pl

ρR
r̂2

; r̂ > 1; ðA9Þ

and ΔG=GN becomes

ΔGðr̂Þ
GN

¼ 6g2
1

α
r̂2ψðr̂Þ∂r̂ψðr̂Þ; r̂ > 1: ðA10Þ

In the case of a homogeneous source with constant α, we let
α denote the dimensionless density inside the source even
when r̂ > 1. Together with the solution for the scalar field
Eq. (A4) this yields the relative shift in the gravitational
constant given the theory parameters ðsα; λC; gÞ and the
radius and mass of the object (star) and the environmental
value of the scalar field. The latter is determined by the
galaxy hosting the star, see Sec. A 1. From Eqs. (A4a)
and (A5a), we see that ΔG=GN ∝ ψ2

env, hence the relative
strength of the fifth force depends on the galactic value of
the scalar field at the position of the star. A greater value
of ψ env, as in vacuum where ψ env ¼ 1, corresponds to a
stronger fifth force, as expected. In other words, for a star in
a galaxy, the fifth force should be the strongest (relative to
FN) towards the edge of the galaxy where the average
energy density is the smallest.
Setting ψ env ¼ 1 and taking the limit λC → ∞ and α → 0

of the solution (A4) yields an estimate of the maximum
modification of G that can be obtained. The result is

ΔG=GNjmax ¼ 2g2; ðA11Þ

in accordance with Eq. (26). So, a maximum effective
increase in the gravitational force by a factor 1þ 2g2 can be
expected in low density environments if λC is large enough.

APPENDIX B: MONTE CARLO SAMPLING

The uncertainty in the physical distance of the Cepheids
from the galactic center results in an uncertainty in

ΔG=GN. The same holds for the uncertainty in the velocity
dispersion of the host galaxies. In this section, we explain
how we account for these uncertainties in ΔG=GN, using
Monte Carlo methods.

1. Physical distance

The angle θ12 between the galactic center and the
Cepheids is calculated using

cos θ12 ¼ sin δ1 sin δ2 þ cos δ1 cos δ2 cosðα1 − α2Þ; ðB1Þ

where δ ¼ DEC and α ¼ RA. The 2D projected distance
(which subtends the angle θ12 on the sky) is given by

R ¼ θ12D: ðB2Þ

Here, D is the angular diameter distance to the galaxy,
which can be obtained from Ref. [33] and is tabulated in
Table II of Ref. [52]. Given the 2D projected distance, the
physical 3D distance from the center of the Galaxy to the
Cepheid can be estimated using

r ¼ π

2
R: ðB3Þ

This is the expectation value of r, assuming a spherically
symmetric distribution of Cepheids in the galaxy. We stress
that the exact value of r is not known, except in the MW,
which is treated as a special case below. Equation (B3) only
gives the expectation value.
To estimate the individual Cepheid distances from the

MW center, we use the fact that the distance is given by the
law of cosines as

r2 ¼ d2Ceph þ d2GC − 2dCephdGC cos θ12; ðB4Þ

where cos θ12 is given by Eq. (B1). Here, dGC ¼ 8.178 kpc
is our distance from the Galactic Center and dCeph is the
distance between us and the Cepheid. The latter is
estimated from the GAIA parallax according to

dCeph ¼
1

π þ zp
; ðB5Þ

with π being the parallax (in mas) and zp the parallax
offset. Using Galactic coordinates, the expression is sim-
plified since δ2 ¼ α2 ¼ 0, giving

cos θ12 ¼ cos δ1 cos α1: ðB6Þ
When we observe a Cepheid within another galaxy, we can
only infer its two-dimensional projected distance R from
the center of the galaxy [the projection is onto the plane
normal to the line of sight (LOS)]. The position of the
Cepheid along the LOS, ẑLOS, is a stochastic variable that
follows a probability distribution. Here, we define ẑLOS ¼ 0
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as the point along the LOS where r ¼ R, see Fig. 5. We
assume spherical symmetry for the spatial distribution of
the Cepheids and that their number density falls off as 1=r2.
With these assumptions, the probability density function
(PDF) for ẑLOS is given by

PDFðẑLOSÞ ¼
8<
:

1
2

R̂
arccotR̂ðẑ2LOSþR̂2Þ ; jẑLOSj <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R̂2

p
;

0; jẑLOSj >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R̂2

p
;

9=
;:

ðB7Þ

Recall, hats denote a length scale measured in units of R300.
The cutoff for the PDF is due to the finite extension of the
galaxy, cf. Fig. 5.
For a given Cepheid at some two-dimensional projected

distance R, we sample 104 values of ẑLOS from the
PDF (B7) and thus obtain a distribution of physical
distances according to the Pythagorean theorem giving

r
R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ẑLOS
R̂

�
2

s
; ðB8Þ

cf. Fig. 5. Using the solution for ΔG=GN, described in
Appendices A 1 and A 2, the sample of physical distances
is turned into a sample of ΔG=GN. For convenience, we
define a “normalized” ΔG=GN as

x ¼ ΔG=GN

ΔG=GNjr¼R
: ðB9Þ

Since ΔG=GN is a monotonically increasing function of r
and the physical distance must be greater than or equal to R,
we must have x ≥ 1. We now have 104 samples of x. This
can then be integrated to yield the cumulative distribution
function (CDF). In Fig. 6, we plot the PDF for ΔG=GN
for some example galaxies. For convenience, we introduce
the variable

y ¼ 1=x; ðB10Þ

which accordingly ranges between 0 < y ≤ 1. Inverting the
CDF, we obtain the function yðCDFÞ. In principle, this
function can be calculated for each individual Cepheid,
but for efficiency we approximate it with an expression of
the form

yðCDFÞ ¼ ð1 − CDFÞn1ð1þ CDFÞn2 : ðB11Þ

For the expression to be well defined at y ¼ 1, we demand
n1 > 0 and for y to be a decreasing function of the CDF
value, we demand n1 > n2. Recall that we started the
construction assuming a Cepheid at a specific R. Hence, the
parameters n1 and n2 in the resulting yðCDFÞ carry an R
dependence. This dependence can be approximated by

n1ðRÞ ¼ aRb; n2ðRÞ ¼ cRd; ðB12Þ

where ða; b; c; dÞ are constants. To calculate ða; b; c; dÞ for
a galaxy, we sample 104 values of y at 10 equidistant values
of R, from the innermost Cepheid to the outermost one.
From this, we obtain yðCDFÞ at each of these R. Then we
fit these exact values of yðCDFÞ with the approximations in
Eqs. (B11)–(B12) and obtain ða; b; c; dÞ as the best-fit
parameters. So, for each galaxy, the parameters ða; b; c; dÞ
define the yðCDFÞ function according to Eqs. (B11)–(B12).
Besides being computationally efficient, this makes it
simple to export the function to any desired programming
language. In Fig. 7, we show some examples of yðCDFÞ,
both exact values and fitted. For small galaxies and large
Compton wavelengths, y is essentially flat, meaning that
almost all random samples of y equals unity. On the other
hand, increasing the galaxy mass or decreasing the
Compton wavelength introduces a slope in y such that a
random sample can take a range of values. The spread in
ðΔG=GNÞ=ðΔG=GNjr¼RÞ, for selected example cases, is
depicted in Fig. 6.

2. Velocity dispersion

The velocity dispersion σ of a galaxy determines the
matter profile according to Eq. (A1) and thus also the
solution for the scalar field ψ . Since σ is only known with
a finite accuracy, it results in an uncertainty in ψ and
consequently an uncertainty in ΔG=GN for the Cepheids
in the galaxy. The values for σ are listed in Table I.
As an example, for N4258 the velocity dispersion is

FIG. 5. Geometry of a Cepheid within a galaxy of radius R300.
The projection plane is identified as the xy plane (orange), r is
the 3D physical distance of the Cepheid (black dot) from the
center of the galaxy, R is the 2D projected distance, and zLOS is
the coordinate of the Cepheid along the line of sight, i.e., along
the z direction. We set zLOS ¼ 0 when the Cepheid lies in the
xy plane.
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FIG. 7. Example plots of yðCDFÞ. The radius is set to some typical Cepheid position in each galaxy. The dots mark out exact values for
yðCDFÞ, calculated directly from the 104 samples of physical distances. The solid lines represent yðCDFÞ using the approximation in
Eqs. (B11) and (B12) with the best-fit values of ða; b; c; dÞ. The exact and approximated values fit well. Left: Compton wavelength
λC ¼ 10 Mpc. In this case, the more massive galaxies exhibit a slope in the function yðCDFÞmeaning that a random realization of y can
take a range of values, hence the spread in ðΔG=GNÞ=ðΔG=GNjr¼RÞ is significant. Right: Compton wavelength λC ¼ 40 Mpc. For a
larger value of λC, yðCDFÞ is flatter meaning that the spread in ðΔG=GNÞ=ðΔG=GNjr¼RÞ is small.

FIG. 6. Example distributions for ΔG=GN due to the uncertainty in the physical distance of the Cepheid from the galactic center. To
generate the plots, we set the projected radius R to some typical value for each galaxy and sample 104 points from the distribution (B7).
Left: Compton wavelength λC ¼ 10 Mpc. In this case, more massive galaxies like N4258 and N1365 have a greater spread while small
galaxies like the LMC have a very sharp peak atΔG=GN ¼ ΔG=GNjr¼R. Right: λC ¼ 40 Mpc. With a greater Compton wavelength, the
spread becomes similar among all galaxies and the PDFs are narrowly concentrated around ΔG=GN ¼ ΔG=GNjr¼R.

TABLE I. The host galaxies are listed and numbered in the same order as in Fig. 4. The anchor galaxies are listed on the last row.
Velocity dispersions are obtained from the EDD.

Number: 1 2 3 4 5 6 7 8 9 10
Name: M101 N1015 N1309 N1365 N1448 N2442 N3021 N3370 N3447 N3972
σ=km=s: 194� 5 188� 10 161� 6 404� 5 414� 7 514� 21 291� 8 287� 12 152� 6 266� 11

Number: 11 12 13 14 15 16 17 18 19
Name: N3982 N4038 N4424 N4536 N4639 N5584 N5917 N7250 U9391
σ=km=s∶ 232� 7 294� 8 95� 5 353� 6 303� 7 215� 5 237� 6 203� 10 140� 15

Name: MW LMC N4258 M31
σ=km=s∶ 169� 50 10� 2 442� 5 301� 1
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σ ¼ ð442� 5Þ km=s. With the higher-end value (here,
447 km=s), the density is greater, hence being more
screened (i.e., smaller ΔG=GN) and vice versa for the
lower-end value. To model this uncertainty, we introduce
the stochastic variable zwhich is the value of ΔG=GN for a
given Cepheid normalized by the value assumed when
σ ¼ σmean, that is when the velocity dispersion equals the
tabulated mean value,

z ¼ ΔG=GN

ΔG=GNjσ¼σmean

: ðB13Þ

The PDF for z is assumed to be a split normal distribution,

PDFðzÞ ¼
ffiffiffi
2

π

r
1

zmax − zmin

(
e−

1
2
ð z−1
zmin−1

Þ2 ; z < 1

e−
1
2
ð z−1
zmax−1

Þ2 ; z > 1

)
: ðB14Þ

Here, zmin and zmax are defined by letting σ assume its
upper and lower limits, respectively. Thus,

zmin ¼
ΔG=GNjσ¼σmeanþΔσ

ΔG=GNjσ¼σmean

; ðB15aÞ

zmax ¼
ΔG=GNjσ¼σmean−Δσ

ΔG=GNjσ¼σmean

; ðB15bÞ

where Δσ is the uncertainty in the velocity dispersion.
Since the PDF is different for each Cepheid, depending on
its position, zmin and zmax depend on r. Ideally, zmin and
zmax should be calculated for each Cepheid (depending on
its position) but for simplicity we model the r dependence
by fitting linear functions for zmin and zmax for each galaxy.
The fit is made with respect to ten equidistant points in the
range of r from the innermost to the outermost Cepheid in
each galaxy. See Fig. 8 for an example.
Integrating the PDF, we obtain the CDF,

CDFðzÞ ¼ 1− zmin

zmax − zmin

8<
:

1− erf
h

z−1ffiffi
2

p ðzmin−1Þ

i
; z < 1

1− zmax−1
zmin−1

erf
h

z−1ffiffi
2

p ðzmax−1Þ

i
; z > 1

9=
;;

ðB16Þ

where “erf” is the error function. This can be inverted,
giving z as a function of the CDF value,

zðCDFÞ ¼
8<
:

1þ ffiffiffi
2

p ðzmin − 1Þerf−1
h
1þ CDF zmax−zmin

zmin−1

i
; CDF < 1−zmin

zmax−zmin

1þ ffiffiffi
2

p ðzmax − 1Þerf−1
h
zmin−1
zmax−1

þ CDF zmax−zmin
zmax−1

i
; CDF > 1−zmin

zmax−zmin

9=
;: ðB17Þ

Here, erf−1 is the inverse error function. An example plot of
zðCDFÞ is shown in Fig. 8. To get a random realization of
ΔG=GN for a given Cepheid, we insert its distance from
the center of the galaxy into the linear fitting functions for
zmin and zmax. Subsequently, we sample a random number

between 0 and 1 which we assign to the CDF value. Using
Eq. (B17) to calculate z and multiplying by ΔG=GNjσ¼σmean

(which we calculate for each Cepheid), we finally obtain a
random realization of ΔG=GN for the Cepheid according to
the distribution. Sampling ΔG=GN like this, there can be a

FIG. 8. Example plots for z for N4258 in the case ðsα; λC; gÞ ¼ ð1; 10 Mpc; 1Þ. Left: zmin and zmax as functions of the radius (the
distance from the galactic center). Dots represent exact values and the lines are fitted. The exact values and the fits agree with excellent
precision. In this example, the value of ΔG=GN can deviate ≃15% from the default value ΔG=GNjσ¼σmean

within the limits
σ ¼ σmean � Δσ. Right: zðCDFÞ for different values of the radius r according to the color coding. Bluer colors denote smaller radii and
vice versa for redder colors. As seen in the figure, if we sample a random number for the CDF within the range [0, 1], the vast majority of
realizations for z is within the range z ∈ ½0.6; 1.4� in this example.
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small fraction of unphysical values, depending on the
number of samples. Therefore, we impose the following
physical cutoffs: 0 ≤ ΔG=GN ≤ 2g2 [cf. Eq. (A11)].

3. Combining CDFs

In the sections above, we have shown how the uncer-
tainties in the physical distance and the velocity dispersion
affect the value of ΔG=GN. Here, we describe how we
account for both effects simultaneously in a Monte Carlo
method. First, we sample a random value of x as in Sec. B 1
from which we obtain

ΔG
GN

0 ¼ x
ΔG
GN

����
r¼R

: ðB18Þ

This is the (sampled) value that ΔG=GN would have if the
velocity dispersion would equal its mean value σ ¼ σmean.
To take the uncertainty in σ into account, we sample a value
of z as in Sec. B 2 and obtain

ΔG
GN

¼ z
ΔG
GN

0 ¼ xz
ΔG
GN

����
r¼R

: ðB19Þ

APPENDIX C: SOLAR SYSTEM TESTS

In Ref. [25], the authors argue that the MW should be
screened for the Solar System tests to be satisfied. In this
case, the MW exhibits a thin-shell mechanism, that is
αMW ≫ 1. In fact, since αMW and α⊙ turn out to be of the
same order of magnitude, this implies also α⊙ ≫ 1. Thus,

the strength of the fifth force compared with the Newtonian
force in the Solar System is given by

F5

FN
¼ 6g2

ψ2
env;⊙

α⊙
; ðC1Þ

see Eqs. (22) and (23). Now, we want to see how Eq. (C1)
scales with λC. From Eq. (12), it follows that α⊙ ∝ 1=λ2C.
Further, note that ψ env;⊙ ∝ 1=

ffiffiffiffiffiffiffiffiffi
αMW

p
(see Ref. [25] for

details) and that αMW ∝ 1=λ2C. From this, we conclude that

F5

FN
∝ g2λ4C: ðC2Þ

Assuming that Solar System tests constrain the fifth force
relative to the Newtonian force we can generalize the
constraint of Ref. [25] (i.e., λC ≲ 3

ffiffiffiffiffi
sα

p
Mpc at g ¼ 1) to

g≲
�
3

ffiffiffiffiffi
sα

p
Mpc

λC

�
2

: ðC3Þ

APPENDIX D: INDIVIDUAL ANCHORS

In Fig. 9, we show the results when using only the MW
as the anchor galaxy (left panel) and using only the LMC as
the anchor galaxy (right panel). In the latter case, the
inferred value of H0 is similar to when using all anchor
galaxies (cf. Fig. 1). In the former case with only LMC, H0

assumes larger values, increasing the Hubble tension even
further. This is due to LMC being an unusually unscreened
galaxy compared with the host galaxies.

FIG. 9. Derived H0 as a function of λC and g for the symmetron model. Left panel: MW anchor. Right panel: LMC anchor. The color
coding indicates the value of H0. The dashed curves indicate 68.3% confidence contours such that everything above them are excluded
by the cosmic distance ladder data to this level. Black curve: constraints from the local Cepheid/SNIa distance ladder. White curve:
tension between Cepheid-based and TRGB distances. Red curve: Solar System constraints.
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