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In modified gravity theories, such as the Brans-Dicke theory, the background evolution of the Universe
and the perturbation around it are different from that in general relativity. Therefore, the gravitational
waveforms used to study standard sirens in these theories should be modified. The modifications of the
waveforms can be classified into two categories; wave-generation effects and wave-propagation effects.
Hitherto, the waveforms used to study standard sirens in the modified gravity theories incorporate only the
wave-propagation effects and ignore the wave-generation effects; while the waveforms focusing on the
wave-generation effects, such as the post-Newtonian waveforms, do not incorporate the wave-propagation
effects and cannot be directly applied to the sources with non-negligible redshifts in the study of standard
sirens. In this work, we construct the consistent waveforms for standard sirens in the Brans-Dicke theory.
The wave-generation effects include the emission of the scalar breathing polarization hb and the corrections
to the tensor polarizations hþ and h×; the wave-propagation effect is the modification of the luminosity
distance for the gravitational waveforms. Using the consistent waveforms, we analyze the parameter
estimation biases due to the ignorance of the wave-generation effects. Considering the observations by the
Einstein Telescope, we find that the ratio of the theoretical bias to the statistical error of the redshifted chirp
mass is two orders of magnitude larger than that of the source distance. For black hole-neutron star binary
systems like GW191219, the theoretical bias of the redshifted chirp mass can be several times larger than the
statistical error.

DOI: 10.1103/PhysRevD.108.024006

I. INTRODUCTION

The Hubble constant describes the present expansion rate
of the Universe [1]. The recent local measurement of the
Hubble constant from the type Ia supernovae explosions is a
factor of 9% larger than the large-scale measurement from
the cosmic microwave background data. This discrepancy is
5σ and is called the Hubble tension [2]. In addition to these
methods, gravitational waves (GWs) can be used to deter-
mine the Hubble constant. Since the GWs emitted by the
compact binaries are well modeled and the measured
waveforms can be used to determine their cosmological
distances. Such binaries are called standard sirens [3,4]
which are the GW analog with electromagnetic standard
candles. Combined with the redshift of the GW sources, the

Hubble constant can be measured by the observation of the
standard sirens. The detection of the binary neutron star
merger event GW170817 in both GWs and electromagnetic
waves is the first realization of the measurement of the
Hubble constant by the standard siren [5]. Standard sirens
can provide new insight into the solution of the Hubble
tension [6]. For a review of the standard sirens, please
see [7].
The Hubble tension can also be solved by the modified

gravity theories [8]. It has been shown that the tension
between the local and large scale measurement of the
Hubble constant can be smoothed out if the observational
data are interpreted in the Brans-Dicke theory rather than
in general relativity (GR) [9]. The Brans-Dicke theory is a
scalar-tensor theory which is an extension of GR with a
massless scalar field [10]. A large and growing body of
literature has investigated GWs in scalar-tensor theories
[11–17]. The gravitational waveforms emitted by inspiral-
ing compact binaries have been calculated systematically

*lewton@mail.ustc.edu.cn
†ywang12@hust.edu.cn
‡wzhao7@ustc.edu.cn

PHYSICAL REVIEW D 108, 024006 (2023)

2470-0010=2023=108(2)=024006(17) 024006-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2898-1360
https://orcid.org/0000-0001-8990-5700
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.024006&domain=pdf&date_stamp=2023-07-06
https://doi.org/10.1103/PhysRevD.108.024006
https://doi.org/10.1103/PhysRevD.108.024006
https://doi.org/10.1103/PhysRevD.108.024006
https://doi.org/10.1103/PhysRevD.108.024006


using the post-Newtonian (PN) method [18,19] when the
gravitational fields are weak and the orbital velocities are
small. The leading order Newtonian quadrupole wave-
forms have been obtained in [20]. Then, the higher PN
order contributions to the waveforms were calculated in
different approaches [21–25]. In these PN waveforms, the
binary system is modeled as two-point particles moving
along circular orbits. In recent years, the eccentricity of
the orbit [26], the spins of the components [27,28], and the
tidal interaction between the components [29] have been
incorporated into the waveforms. However, these wave-
forms and other waveforms focusing on wave-generation
effects [15,30,31] cannot be used to study standard sirens
in cosmological distances with non-negligible redshifts
because they are calculated on the Minkowski background.
Focusing on the Brans-Dicke theory as an example, the

present work serves as a first step to coherently construct
gravitational waveforms from compact binaries in the
expanding Universe in the modified gravity theories.
Compared with GR, the modified gravity theories can
predict different expansion history of the background
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
[32] and change the gravitational waveforms which are
perturbations around the background [33]. The modifica-
tions of the waveforms can be classified into two catego-
ries; wave-generation effects [34] and wave-propagation
effects [35]. It is well known that GWs have two tensor
polarizations (hþ and h×) in GR [36]. During wave
generation, the modified gravity can induce extra polari-
zation(s) as well as amplitude and phase corrections to the
tensor polarizations [34]. When the waves propagate
through the Universe, the modified gravity can also
produce amplitude and phase correction to the tensor
polarizations [35,37]. However, all previous studies on
the standard sirens in the modified gravity have ignored
the wave-generation effects and used inconsistent gravi-
tational waveforms [38–49]. For instance, see Eq. (14) in
[38] and Eq. (12) in [48].
To construct consistent waveforms which consider both

the wave-generation and wave-propagation effects, we
follow Thorne’s suggestion [50,51] that divides the wave
zone where the waves propagate into local wave zone and
distant wave zone. The local wave zone is near the GW
source and the effect of the background curvature of the
Universe is negligible. Thus, the background spacetime can
be seen as flat in the local wave zone and the PN method
can be used to solve the field equations to obtain the GW
waveforms. Then, using the geometric optics approxima-
tion [39,40,52–55], the waveforms in the local wave zone
propagate into the distant wave zone in which the curvature
of the universe is important. In this way, the waveforms in
the distant wave zone contain both wave-generation and
wave-propagation effects.
In this paper, we construct the consistent waveforms on

the background of an expanding universe in the Brans-Dicke

theory based on the Newtonian quadrupole waveforms
[16,20]. In particular, we obtain the time domain waveforms
of two tensor polarizations and one scalar polarization
(breathing polarization hb) in the distant wave zone
[cf. Eqs. (67)–(73)]. We incorporate the modifications that
originate from both wave generation and propagation. These
waveforms are new results. As mentioned above, the wave-
generation effects include amplitude correction, phase
correction, and additional polarization to the ones in GR;
but in the Brans-Dicke theory, during wave propagation,
there is only amplitude correction, and this amplitude
correction appears as a modification of the electromagnetic
luminosity distance. The modification of the luminosity
distance in the tensor polarizations is consistent with
previous studies [38–49,56], while the modification of
the luminosity distance in the breathing polarization is a
new result. Furthermore, we analyze the parameter estima-
tion biases due to the inconsistent waveforms which ignore
the wave-generation effects. Considering the observation of
the GWs from the black hole-neutron star (BH-NS) binaries
by Einstein Telescope [57] and setting the source parameters
to be that of the BH-NS candidates detected by LIGO/Virgo
[58], we find that the inconsistent waveforms can bias the
redshifted chirp mass significantly while have negligible
influence on the measurement of the distance when the
Brans-Dicke coupling constant saturates the bound imposed
by the Cassini spacecraft [59]. For BH-NS systems like
GW191219, the theoretical bias of the redshifted chirp mass
can be several times larger than the statistical error.
The paper is organized as follows. In Sec. II, we review

the PN waveforms in the local wave zone in the Brans-
Dicke theory. In Sec. III, we construct the geometric optics
equations for wave propagation in curved background
spacetime in the Brans-Dicke theory. In Sec. IV, we apply
the geometric optics approximation to propagate the waves
through the FLRW universe and obtain the waveforms in
the distant wave zone. In Sec. V, we estimate the theoretical
bias due to the inconsistent waveforms. In Sec. VI, we
summarize the results and discuss the prospects for future
research.
For the metric, Riemann, and Ricci tensors, we follow

the conventions of Misner et al. [36]. We adopt the unit
c ¼ 1, with c being the speed of light. We do not set the
gravitational constant G equal to 1, since the effective
gravitational constant will vary over the history of the
universe in this theory.

II. GRAVITATIONAL WAVEFORMS
IN THE LOCAL WAVE ZONE

The space around the GW source can be divided into
three regions by two length scales rI and rO; a near zone
ðr≲ rIÞ, a local wave zone ðrI ≲ r≲ rOÞ, and a distant
wave zone ðr≳ rOÞ. The inner boundary of the local wave
zone rI is much larger than the GW wavelength so that the
source’s gravity is weak in this region. The outer boundary

TAN LIU, YAN WANG, and WEN ZHAO PHYS. REV. D 108, 024006 (2023)

024006-2



of the local wave zone rO is large enough that this region
contains many wavelengths, but not so large that the
background curvature of the universe influences the propa-
gation of the GWs. Therefore, the GWs can be regarded as
propagating in flat spacetime in the local wave zone. This
zone is the matching region for the problem of wave
generation and wave propagation.1

In this section, we review the wave-generation problem
and present the tensor and scalar waveforms in the local
wave zone. Detailed derivation can be found in [16,20].
The action of the Brans-Dicke theory is [59]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

∂μϕ∂
μϕþM

�
þ Sm½gμν;Ψm�; ð1Þ

where g≡ det gμν and ωðϕÞ is the coupling function [60].
The constant M is associated with the effective cosmo-
logical constant and Ψm denotes the matter fields collec-
tively. The field equations are [59]

Rμν −
1

2
gμνR −

1

2

M
ϕ
gμν

¼ 8π

ϕ
Tμν þ

ωðϕÞ
ϕ2

�
ϕ;μϕ;ν −

1

2
gμνϕ;αϕ

;α

�

þ 1

ϕ
ð∇μ∇ν − gμν□Þϕ ð2Þ

□ϕ −
2M

2ωðϕÞ þ 3
¼ 8π

2ωðϕÞ þ 3
ðT − 2ϕT 0Þ

−
ω0

2ωðϕÞ þ 3
ϕ;αϕ

;α; ð3Þ

where 0 ≡ d
dϕ, the commas denote partial derivative,

and □≡∇ν∇ν. The covariant derivative ∇ν satisfies
∇νgαβ ¼ 0. Tμν is the stress-energy tensor of matter
and T ¼ gμνTμν.
In order to solve the wave generation problem inside the

outer radius ðr≲ rOÞ, the field equations should be
expanded around the Minkowski background ημνdxμdxν ¼
−dt2 þ dr2 þ r2ðdι2 þ sin2ιdσ2Þ and the scalar back-
ground ϕ̄,

ϕ ¼ ϕ̄þ φ; gμν ¼ ημν þ hμν; ð4Þ

θμν ≡ hμν −
1

2
hημν −

φ

ϕ̄
ημν; ð5Þ

where jhμνj ≪ 1 and jφ=ϕ̄j ≪ 1. When we deal with the
wave-generation problem, the scalar background ϕ̄ can be
viewed as a constant, although it will evolve with the
expansion of the Universe. Imposing the harmonic gauge

θμν;μ ¼ 0; ð6Þ

the field equations become

□ηθμν ¼ −16πGτμν; ð7Þ

□ηφ ¼ −16πS; ð8Þ

where □η ¼ ημν∂μ∂ν and τμν ¼ Tμν þ tμν. The source term
tμν denotes the nonlinear perturbations collectively. The
effective gravitational constant is

G≡ 1

ϕ̄
: ð9Þ

The cosmological constant is discarded when dealing with
the wave generation. For the explicit expression of the
source S of the scalar-wave equation, see Eq. (18) in [16].
Consider the waves emitted by a binary system on a

quasicircular orbit with orbital frequency ωe.
2 When the

velocity of the binary system is slow and the gravitational
field is weak, the above wave equations can be solved by
the PN method. The waveforms emitted by the binary
system will depend on the sensitivities of the binary bodies,
defined by

sA ≡ d lnmAðϕÞ
d lnϕ

����
ϕ̄

: ð10Þ

Since the scalar field can influence the gravitational binding
energy of the compact object, the inertial mass mAðϕÞ of
object A is a function of the scalar field [61]. The sensitivity
of a black hole is 1

2
[61] and the typical value of the

sensitivity of a neutron star is about 0.2–0.3 [59,62].
The tensor waves emitted by this binary system are given

by [16]

θTTμν ¼ hþeþμν þ h×e×μν; ð11Þ

where “TT” denotes the transverse and traceless part. In the
local wave zone, the waveforms of the two tensor polar-
izations at the Newtonian quadrupole order are

1For GWs in the millihertz to kilohertz band, rI and rO can be
chosen to be 100 wavelengths and 1000 wavelengths, respec-
tively. Under this choice, the local wave zone is only a subset of
the local wave zone proposed by Thorne, but is sufficient for the
application in this paper. For more information about the local
wave zone, please see Sec. 9.3.1 in [50] and Sec. III in [51].

2The subscript stands for “emission.” The observed orbital
frequency will be redshifted.
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hþ ¼ −4
ðGMcÞ5=3

r
ðg̃ωeÞ2=3

1þ cos2ι
2

cosψ
���
tr
; ð12Þ

h× ¼ −4
ðGMcÞ5=3

r
ðg̃ωeÞ2=3 cos ι sinψ

���
tr
; ð13Þ

where the chirp mass Mc is given by

Mc ≡ μ3=5m2=5 ð14Þ

with m ¼ m1 þm2, μ ¼ m1m2=m, and mA ¼ mAðϕ̄Þ,

g̃≡ 1þ αð1 − 2s1Þð1 − 2s2Þ; α≡ 1

2ωðϕ̄Þ þ 3
: ð15Þ

The factor g̃ originates from the modification of Kepler’s
law [16].
The coordinates are adapted so that the binary system is

at the origin r ¼ 0 and ι is the angle between the line of
sight and the angular momentum of the binary system. The
phase of the tensor wave is given by

ψðtrÞ ¼ 2

Z
tr
ωeðt0Þdt0; ð16Þ

where ωeðtÞ is the orbital frequency of binary system at
time t and the retarded time is

tr ¼ t − r: ð17Þ

In the local wave zone, the polarization tensors are

eμνþ ¼ eμðιÞe
ν
ðιÞ − eμðσÞe

ν
ðσÞ; eμν× ¼ eμðιÞe

ν
ðσÞ þ eμðσÞe

ν
ðιÞ; ð18Þ

where

eðιÞ ¼
1

r
∂

∂ι
; eðσÞ ¼

1

r sin ι
∂

∂σ
: ð19Þ

In the local wave zone, the waveforms of the scalar wave
to the Newtonian quadruple order are

φ ¼ ϕ1 þ ϕ2; ð20Þ

where

ϕ1 ¼ −2α
μ

r
2SðGg̃mωeÞ1=3 sin ι cos

�
1

2
ψ

�����
tr

; ð21Þ

ϕ2 ¼ 2α
μ

r
ΓðGg̃mωeÞ2=3sin2ι cosðψÞ

���
tr
; ð22Þ

with

S ≡ s1 − s2;

Γ≡ ð1 − 2s1Þm2 þ ð1 − 2s2Þm1

m
; ð23Þ

where ϕ1 and ϕ2 represent the scalar dipole and quadrupole
radiation, respectively.
Scalar and tensor waves will carry away the orbital

energy of the binary system, and the orbital frequency will
increase with time. Using the PN method, the time deriva-
tive of the orbital frequency has been obtained [16,20]

dωe

dtr
¼ 96

5
KðGMcÞ53ω

11
3
e þ K1Gμω3

e ð24Þ

with

K ≡ g̃
2
3

�
1þ 1

6
αΓ2

�
; K1 ≡ 4αS2: ð25Þ

The evolution of the phase ψ can be obtained by using the
above equations.

III. WAVE-PROPAGATION AND GEOMETRIC-
OPTICS APPROXIMATION

The last section has solved the wave-generation problem
inside the outer radius ðr≲ rOÞ. This section will establish
the equations governing the wave propagation outside the
inner radius ðr≳ rIÞ. In this region, the tensor and scalar
waves can be seen as small ripples in a curved, slowly
changing background. The frequency of the ripples is high
compared to the time scale of background changes, but
their amplitudes are small. Therefore, outside the inner
radius, tensor and scalar waves can be viewed as linear
perturbations around the background and the high-
frequency approximation, i.e., geometric optics approxi-
mation, can be used to solve the perturbation equations.

A. Linear perturbations

Consider the perturbations over an arbitrary background,

gμν ¼ ḡμν þ hμν; ϕ ¼ ϕ̄þ φ: ð26Þ

The overhead bar denotes the background quantity. Let us
study the perturbations hμν and φ via the field equations (2)
and (3) linearized about the background ḡμν and ϕ̄. Note
that the scalar background ϕ̄ is viewed as a constant when
dealing with the wave generation in the previous section.
But it can evolve in space and time when we consider the
wave-propagation problem on much larger scales.
From the field equations (2) and (3), the linear pertur-

bation equations are
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ϕ̄

�
−
1

2
□ĥμν þ ĥβðμj

β
νÞ −

1

2
ḡμνĥαβj

αβ

�
−∇μ∇νφþ ḡμν□φ − F̄ð2ϕ̄jðμφjνÞ − ḡμνϕ̄jαφjαÞ

þ 1

2
ϕ̄jβ

�
2ĥβðμjνÞ − ĥμνjβ − 2ḡμνĥβρj

ρ − ḡβðμĥjνÞ þ
1

2
ḡμνĥjβ

�
¼ 0; ð27Þ

□φ −
�
1

ϕ̄
−

2ω̄0

2ω̄þ 3

�
ϕ̄jαφjα ¼ 0: ð28Þ

Here∇μ and the slash j denote the covariant derivative such
that ∇μḡαβ ¼ ḡαβjμ ¼ 0 and □≡∇μ∇μ. The background
metric ḡμν is used to raise the indices. The hat indicates the
trace-reversed part of a tensor, e.g., ĥμν ¼ hμν − 1

2
ḡμνḡαβhαβ

and ĥ ¼ ḡαβĥαβ. The function F is given by F≡ ωðϕÞ
ϕ .

Indices placed between round brackets are symmetrized,
e.g., ĥβðμjνÞ ¼ 1

2
ðĥβμjν þ ĥβνjμÞ.

Note that terms that do not contain derivatives with
respect to the perturbation fields are discarded. Since we
focus on the high-frequency wave solutions of the per-
turbations, a term is larger when it contains more deriv-
atives. It will be shown in the following subsection that the
above perturbation equations are adequate for the accu-
racy required in this paper. Because the interaction
between matter and GWs is weak, the perturbation of
the stress-energy tensor δTμν induced by GWs is also
ignored [63]. The tensor-perturbation equation (27) is
consistent with Eqs. (A9)–(A14) and (A21)–(A27) in
[40].3 The scalar-perturbation equation (28) is consistent
with Eqs. (A50)–(A53) and (A57)–(A64) in [40].
The second derivatives of φ in the tensor-perturbation

equation (27) can be eliminated by introducing the eigen-
tensor perturbation [40]

θμν ¼ ĥμν − ḡμν
φ

ϕ̄
: ð29Þ

Imposing the harmonic gauge

θμνjμ ¼ 0; ð30Þ

the tensor-perturbation equation (27) is further simplified to

−
1

2
ϕ̄□ θμν þ

1

2
ϕ̄jβðθβμjν þ θβνjμ − θμνjβÞ

−
1

4
ðϕ̄jμθjν þ ϕ̄jνθjμ − ḡμνθjβϕ̄jβÞ

−
�

3

2ϕ̄
þ F̄

�
ðϕ̄jμφjν þ ϕ̄jνφjμ − ḡμνφjβϕ̄jβÞ ¼ 0; ð31Þ

where θ≡ ḡμνθμν. The above equation is consistent with
Eqs. (A54)–(A56), (A65)–(A67), and (A73) and (A74)
in [40].4

B. Geometric-optics approximation

Now we consider the high-frequency wave ansatz

φ ¼ ℜ½Φeiv�; θμν ¼ ℜ½Θμνeiψ � ð32Þ

of the perturbation equations (28) and (31). HereΦ andΘμν

denote the complex amplitudes of the waves, and v and ψ
are their phases. ℜ denotes the real part of the argument.
Since the waves satisfy the geometric optics approximation
outside the inner radius, their phases vary much more
rapidly than their amplitudes and the background fields,

∂v; ∂ψ≫∂ ln jΦj; ∂ ln jΘμνj; ∂ lnjϕ̄j; ∂ ln jḡμνj: ð33Þ

Therefore, the terms in the perturbation equations can be
sorted according to their power of the wave vectors

qα ≡ −∂αv; kα ≡ −∂αψ : ð34Þ

Note that, for both the tensor and scalar waves, we consider
only one frequency component in this section, although
there are multiple frequency components in realistic sit-
uations [cf. Eq. (20)]. Because different frequency compo-
nents are uncoupled during propagation, they can be treated
separately [40]. It can also be seen from Eq. (20) that the
phase v of the scalar wave is proportional to the phase ψ of
the tensor wave. Consequently, qα and kα are in parallel.
Substituting the wave ansatz (32) into Eq. (31) yields

−
1

2
ϕ̄½−kαkαΘμν − 2ikα∇̄αΘμν − i∇̄αkαΘμν�eiψ

þ 1

2
ϕ̄jβ½−ikνΘβμ − ikμΘβν þ ikβΘμν�eiψ

−
1

4
½−ikνϕ̄jμ − ikμϕ̄jν þ iḡμνkβϕ̄jβ�Θeiψ

þ
�

3

2ϕ̄
þ F̄

�
½−iḡμνqαϕ̄jα þ iqμϕ̄jν þ iqνϕ̄jμ�Φeiv ¼ 0;

ð35Þ

3There is a typo in Eq. (A28) in [40], where −ḡμνĥρσ ;σ should
be replaced by −2ḡμνĥρσ ;σ.

4The right-hand side of Eq. (A68) in [40] misses a term
−2Kμν

ρσðαβÞĈρσ;β.
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where Θ≡ ḡμνΘμν and we have discarded terms without kα
or qα.
To the leading order of the above equation, we have

kαkα ¼ 0: ð36Þ

Therefore,

kμ∇μkν ¼ −kμ∇μ∇νψ ¼ −kμ∇ν∇μψ ¼ 1

2
∇νðkμkμÞ ¼ 0:

ð37Þ

It suggests that the tensor waves travel along the null
geodesics of the background spacetime.
To the next-to-leading order, we have

−
1

2
ϕ̄½2kα∇αΘμν þ∇αkαΘμν�

þ 1

2
ϕ̄jβ½kνΘβμ þ kμΘβν − kβΘμν�

−
1

4
½kνϕ̄jμ þ kμϕ̄jν − ḡμνkβϕ̄jβ�Θ

þ
�

3

2ϕ̄
þ F̄

�
½ḡμνqαϕ̄jα − qμϕ̄jν − qνϕ̄jμ�Φeiðv−ψÞ ¼ 0:

ð38Þ
This equation governs the evolution of the amplitude of
the tensor waves. It is obvious that the terms without
derivatives with respect to the perturbation fields do not
contribute to the geometric-optics equations (36)–(38).
Thus, these terms can be safely discarded in the tensor-
perturbation equation (27). This argument also applies to
the scalar-perturbation equation (28).
Substituting the wave ansatz (32) into the scalar-pertur-

bation equation (28), the leading-order term yields

qαqα ¼ 0; ð39Þ

and the next-to-leading order terms yields

2qμ∇μΦþ∇μqμΦþ
�

2ω̄0

2ω̄þ 3
−
1

ϕ̄

�
ϕ̄jαqαΦ ¼ 0: ð40Þ

This is the scalar amplitude-evolution equation. The scalar
waves also travel along null geodesics.

IV. PROPAGATION THROUGH THE FLRW
UNIVERSE

In the previous sections, we have obtained the tensor
and scalar waveforms emitted by a binary system in the
local wave zone ðrI ≲ r≲ rOÞ, and the geometric-optics
equations for wave propagation from the local wave zone
to the distant wave zone ðr≳ rOÞ. In this section, we apply
the geometrical-optics equations to the situation where the

background spacetime is the FLRW universe.5 The wave-
forms in the local wave zone are used as the initial
conditions of the geometric-optics equations for propa-
gation through the FLRW universe to obtain the wave-
forms in the distant wave zone.

A. Evolution of the phases and amplitudes

The FLRW metric is

ḡμνdxμdxν ¼ a2ðξÞ½−dξ2 þ dχ2 þ Σ2ðdι2 þ sin2ιdσ2Þ�;
ð41Þ

where Σ≡ χ for a spatially flat universe, sin χ for a closed
universe, sinh χ for an open universe. We recall that the
coordinates are adapted so that the binary system is at the
origin χ ¼ 0 and ι is the angle between the line of sight and
the angular momentum of the binary system. The relation
between the conformal time ξ and the physical time t is
given by [1]

t ¼
Z

ξ

ξI

aðξ0Þdξ0; ð42Þ

where ξI corresponds to the beginning of the universe.
Inside the outer radius, when we consider the GW
generation, the scale factor aðξÞ can be seen as a constant,
and the FLRW metric (41) reduces to the Minkowski
metric ημν. Then ft; r; ι; σg become the flat, spherical
coordinates where

r ¼ aχ: ð43Þ

To have a better understanding of the wave-propagation
problem, we rewrite the waveform of hþ in the local wave
zone as

hþ ≡ℜ½Aþeiψ �; ð44Þ

where

Aþ ¼ −4
ðGMcÞ5=3

r
ðg̃ωeÞ2=3

1þ cos2ι
2

ð45Þ

and

ψðtrÞ¼−2
�
tc− tr
5GMc

�
5=8

K−3=8þ 5

56

�
tc− tr
5Gm

�
7=8

K1η
−1=8þψc:

ð46Þ

5Note that the inhomogeneous distribution of matter can distort
the gravitational waveforms [64,65]. We restrict to the homo-
geneous and isotropic FLRW background for simplicity.
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The phase ψ is obtained by integrating Eq. (24) twice. ψc ≡
ψðtcÞ and tc is the retarded time such that ωeðtcÞ ¼ ∞:η≡
μ=m is the symmetric-mass ratio. The retarded time tr is
given by Eq. (17) and K and K1 are given by Eq. (25).
First we study the evolution of the phase ψ in the (local

and distant) wave zone. From the geometric-optics equa-
tion (36), we have

dψ
dλ

¼ 0; ð47Þ

where λ is the affine parameter of the null rays along which
the tensor waves propagate. It shows that the phase ψ is
constant along each ray. In the local wave zone, Eq. (46) of
the phase satisfies this equation. However, Eq. (46) cannot
be directly used in the distant wave zone, since Eq. (17) of
the retarded time applies only in the local wave zone.
Therefore, we need to extend the null rays to the distant
wave zone and obtain the expression of the retarded time in
this zone.
Outside the inner radius, when we consider GW propa-

gation, the rays along which the waves propagate have
constant ι and σ due to the spherical symmetry of the
FLRW metric. The difference between the conformal time
and the radial coordinate, ξe ≡ ξ − χ, is also constant along
each ray since the rays are null. Here, ξe is the conformal
time at which the ray is emitted. Therefore, each ray can be
characterized by ι, σ, and ξe. Since the retarded time on
each ray is the physical time of emission, we have [63,66]

tr ¼
Z

ξe

ξI

aðξ0Þdξ0: ð48Þ

In the local wave zone, the retarded time becomes

tr ¼
Z

ξ

ξI

aðξ0Þdξ0 −
Z

ξ

ξ−χ
aðξ0Þdξ0 ¼ t − aχ ¼ t − r ð49Þ

which is consistent with Eq. (17). Substituting Eq. (48)
into (46) yields the phase throughout the local and distant
wave zone.
Next, we study the evolution of the amplitude in the

(local and distant) wave zone and take Aþ as an example.
In the wave zone, in order to propagate the tensor waves,

we need the following orthonormal basis vectors

eðιÞ ¼
1

aΣ
∂

∂ι
; eðσÞ ¼

1

aΣ sin ι
∂

∂σ
ð50Þ

and the polarization tensors eμνþ and eμν× which are defined
by Eq. (18). It can be shown by straightforward calculation
that they are parallel-transported along the rays

kμ∇μeαðιÞ ¼ kμ∇μeαðσÞ ¼ 0; kμ∇μe
μν
þ ¼ kμ∇μe

μν
× ¼ 0: ð51Þ

The polarization tensors are transverse to the tensor-wave
vector

kμe
μν
þ ¼ kμe

μν
× ¼ 0: ð52Þ

This is compatible with the harmonic-gauge condition (30).
Since qμ is parallel to kμ, the polarization tensors are also
transverse to the scalar-wave vector

qμe
μν
þ ¼ qμe

μν
× ¼ 0: ð53Þ

In the local wave zone, the basis vectors reduce to Eq. (19).
Dalang et al. show that the observational effects of the

tensor waves are determined by the transverse-traceless part
of the tensor waves [39,40]. Therefore we focus on the
evolution of the amplitude of θTTμν ¼ hþeþμν þ h×e×μν.
Contracting eþμν with Eq. (38) yields

ϕ̄½2kα∇αAþ þ Aþ∇αkα� þ ϕ̄jβkβAþ ¼ 0; ð54Þ

where we have used the parallel-transportation condition
(51) and the transverse relations (52) and (53).
To solve the amplitude-evolution equation (54), we shall

dedicate a few lines to the property of the bundle of null
geodesics. Consider a bundle of null geodesics emerging
from the GW source. The cross section of this bundle
extends from ι0 to ι0 þ δι and from σ0 to σ0 þ δσ and its
area is a2Σ2 sin ι0διδσ which satisfies [36,67]

kμ∇μða2Σ2 sin ι0διδσÞ ¼ ða2Σ2 sin ι0διδσÞ∇μkμ: ð55Þ

Since ι and σ are constants along each geodesic, we have

∇μkμ ¼ kμ∇μ lnða2Σ2Þ: ð56Þ

Substituting this equation into Eq. (54) yields

kμ∇μ ln
�
AþaΣϕ̄

1
2

	
¼ d

dλ
ln
�
AþaΣϕ̄

1
2

	
¼ 0: ð57Þ

It shows that the combination of ðAþaΣϕ̄
1
2Þ is constant

along each ray.6 This is a first-order differential equation.
Its solution can be determined by using Aþ in the local
wave zone, Eq. (45), as the initial condition. The evolution
of the scale factor a and the scalar background ϕ̄ is
determined by the background evolution equations (see
Sec. IV C). The solution takes the form

Aþ ¼ gþðtr; ι; σÞ
aðtÞΣ

ffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞ

p : ð58Þ

6Using the amplitude-evolution equation, we have
∇μðjAþj2ϕ̄kμÞ ¼ 0 which can be interpreted as the conservation
law of the graviton number, where jAþj2ϕ̄ is proportional to the
graviton number density [39,53].
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Here gþðtr; ι; σÞ is constant along each null ray and its value
in the distant wave zone can be determined by its value in
the local wave zone. In the local wave zone, using Eq. (45),
we have7

gþðtr; ι; σÞ ¼ Aþr
ffiffiffiffī
ϕ

q
¼ −4

ffiffiffiffī
ϕ

q
g̃
2
3ðGMcÞ53ω

2
3
e
1þ cos2ι

2
:

ð59Þ

Therefore, in the local and distant wave zone, the
waveform of hþ polarization is

hþ ¼ −
4

aðtÞΣ
ffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞ

p 1þ cos2ι
2


 ffiffiffiffī
ϕ

q
g̃
2
3ðGMcÞ53ω

2
3
e cosψ

�
tr

:

ð60Þ

Here the subscript tr denotes that the quantities inside the
curly brackets take the value at the retarded time tr.
Similarly, the waveform of h× polarization is

h×¼−
4

aðtÞΣ
ffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞ

p cos ι


 ffiffiffiffī
ϕ

q
g̃
2
3ðGMcÞ53ω

2
3
e sinψ

�
tr

. ð61Þ

Using the scalar wave (20) in the local wave zone as the
initial condition, the scalar-wave geometric-optics equa-
tions (39) and (40) can be solved in the same way. Since the
breathing polarization hb is proportional to the scalar
perturbation [16], its waveform is

hb ¼ −
φ

ϕ̄ðtÞ ¼ hb1 þ hb2 ð62Þ

with

hb1 ¼
sin ι

aðtÞΣ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞð2ω̄ðtÞ þ 3Þ

p
×



2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ̄ð2ω̄þ 3Þ
p 2SðGg̃mωeÞ13 cos

�
1

2
ψ

��
tr

ð63Þ

and

hb2 ¼ −
sin2ι

aðtÞΣ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞð2ω̄ðtÞ þ 3Þ

p
×



2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ̄ð2ω̄þ 3Þ
p ΓðGg̃mωeÞ23 cosðψÞ

�
tr

: ð64Þ

We recall that ω̄≡ ωðϕ̄Þ.

B. Cosmological redshift effect

The waveforms in the previous subsection contain some
parameters that are not directly observable by GW obser-
vation, such as the scale factor a, the scalar background ϕ̄,
and the orbital frequency ωe. We need to rewrite these
waveforms in terms of parameters that are directly
observable.
The frequency of the tensor waves emitted at the retarded

time tr is 2ωeðtrÞ, while the received frequency will be
redshifted by the expanding Universe. The cosmologically
redshifted wave frequency is

2ω ¼ ∂ψ

∂t
¼ ∂ψ

∂tr

∂tr
∂ξ

=
∂t
∂ξ

¼ 2ωeðtrÞ
aðtrÞ
aðtÞ ¼ 2ωeðtrÞ

1þ z
ð65Þ

with ω the redshifted orbital frequency and z the cosmo-
logical redshift of the GW source. We have used Eqs. (42)
and (48) to obtain the above relation. The time derivative of
the redshifted orbital frequency is

dω
dt

¼ 1

ð1þ zÞ2
dωe

dtr
¼ 96

5
KðGMzÞ53ω11

3 þ K1Gμzω3; ð66Þ

where Mz ≡Mcð1þ zÞ and μz ≡ μð1þ zÞ are the red-
shifted chirp mass and redshifted reduced mass, respec-
tively. Therefore,

ωðtÞ ¼ 1

GMz

�
256

5
K
tz − t
GMz

�
−3=8

−
K1

64Gmz

�
256

5

tz − t
Gmzη

�
−1=8

;

ð67Þ

where tz is the physical time such that ωðtzÞ ¼ ∞ and
mz ≡mð1þ zÞ. It can be seen that the evolution of ωðtÞ is
directly related to the redshifted masses, similar to that in
GR. In terms of the redshifted masses, the phase (46) can be
rewritten as

ψðtÞ¼−2
�
tz− t
5GMz

�
5=8

K−3=8þ 5

56

�
tz− t
5Gmz

�
7=8

K1η
−1=8þψc:

ð68Þ

For ease of application, it is necessary to express the
waveforms in terms of the quantities which have taken into
account the cosmological redshift effect. The waveforms
(60)–(64) become

hþ ¼ −
4

DG
g̃
2
3ðGMzÞ53ω2

3
1þ cos2ι

2
cosψ ; ð69Þ

h× ¼ −
4

DG
g̃
2
3ðGMzÞ53ω2

3 cos ι sinψ ; ð70Þ

and

7Actually, gþðtr; ι; σÞ has a phase factor e−2iσ [cf. Eq. (27.71)
in [66]]. For a fixed observer, this phase factor can be absorbed by
the constant ψc in Eq. (46). Therefore, we ignore this phase factor
in this paper.
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hb ¼ hb1 þ hb2 ð71Þ

with

hb1 ¼ 2α
Gμz
DS

2SðGg̃mzωÞ13 sin ι cos
�
1

2
ψ

�
ð72Þ

and

hb2 ¼ −2α
Gμz
DS

ΓðGg̃mzωÞ23sin2ι cosðψÞ: ð73Þ

Here G, α, and g̃ take the value at the retarded time tr. We
recall that G≡ 1

ϕ̄
, α≡ 1

2ωðϕ̄Þþ3
, and g̃≡ 1þ αð1 − 2s1Þ

ð1 − 2s2Þ. We have introduced two cosmological distances,
the gravitational distance

DG ≡ aðtÞΣð1þ zÞ
ffiffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞ
ϕ̄ðtrÞ

s
ð74Þ

and the scalar distance

DS ≡ aðtÞΣð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄ðtÞαðtrÞ
ϕ̄ðtrÞαðtÞ

s
: ð75Þ

These two distances are proportional to the electromagnetic
luminosity distance DL ≡ aðtÞΣð1þ zÞ. The difference
between DG and DL originates from the time variation of
the effective Planck mass. The gravitational distance (74) is
consistent with previous studies, e.g., Eq. (97) in [40] and
Eq. (14) in [38]. However, the scalar distance (75) is
different from the scalar distance defined by Eq. (103) in
Dalang et al. [40], since we focus on the breathing
polarization hb which is directly observable but they discuss
the scalar perturbation.8

The above time domain waveforms (67)–(73) are new
results. Compared with the previous studies in modified
gravity theories, our technical improvement is that we
reveal the initial conditions of the geometric-optics equa-
tions explicitly and use the initial conditions to solve these
equations. To our best knowledge, the previous studies on
the waveforms in the local wave zone have never attempted
to propagate the waveforms to the distant wave zone; while
the previous studies on the wave-propagation effects have
never attempted to find the initial conditions by solving the
wave-generation problem.
Compared with the gravitational waveforms in GR

[Eqs. (4.191)–(4.195) in [68]], the waveforms (67)–(73)
have amplitude correction g̃

2
3, phase correction due toK and

K1, an extra polarization hb, and different cosmological

distances DG and DS. Here g̃
2
3, K and K1, and hb represent

wave-generation effects, while DG and DS are wave-
propagation effects. Note that the factor g̃

2
3 is not absorbed

into the definition of gravitational distance DG, since g̃
defined by Eq. (15) depends on the properties of the binary
system, besides its location in the Universe. We recall that g̃
corresponds to the modification of Kepler’s law [16].

C. Background evolution

Substituting the FLRWmetric and the scalar background
into the field equations (2) and (3) yields the background
evolution equations [9]

3H2 þ 3H
_̄ϕ

ϕ̄
−
1

2
ωðϕ̄Þ

� _̄ϕ

ϕ̄

�2

þ 1

2

M

ϕ̄
¼ 8π

ϕ̄
ρT; ð76Þ

2 _H þ 3H2 þ
̈ϕ̄
ϕ̄
þ 2H

_̄ϕ

ϕ̄
þ 1

2
ωðϕ̄Þ

� _̄ϕ

ϕ̄

�2

þ 1

2

M

ϕ̄
¼ −

8π

ϕ̄
pT;

ð77Þ

̈ϕ̄þ 3H _̄ϕþ ω0ðϕ̄Þ
2ωðϕ̄Þ þ 3

_̄ϕ
2 þ 2M

2ωðϕ̄Þ þ 3

¼ 8π

2ωðϕ̄Þ þ 3
ðρT − 3pTÞ; ð78Þ

where the dot denotes derivative with respect to the
physical time t and H ≡ _a

a is the Hubble rate. ρT is the
total density of the dust and radiation in the Universe and
pT is the total pressure. Here we have assumed a spatially
flat FLRW universe, although the waveforms in the
previous subsection apply to a general FLRW universe.
If ϕ̄ does not evolution with the expansion of the

universe, then the above equations reduce to that in GR.
The last equation requires ωðϕ̄Þ → ∞ for consistency. In
this limit, we have g̃ ¼ K ¼ 1, α ¼ K1 ¼ 0 ¼ hb, and
DG ¼ DS ¼ DL. The above waveforms are reduced to
those in GR.
Given the functional expression of ωðϕÞ, the background

evolution equations can be solved to obtain the distance-
redshift relations DGðzÞ and DSðzÞ. When ωðϕÞ is a
constant, these equations have been solved in [9]. When
the cosmological redshift of the GW source is negligible,
DG ¼ DS ¼ r and the above waveforms are reduced to
those in the local wave zone in Sec. II.

V. BIAS DUE TO THE INCONSISTENT
WAVEFORMS

In recent years, there has been an increasing amount of
literature on standard sirens in modified gravity theories
[38–49]. However, the waveforms used in all the previous
studies, such as Eq. (14) in [38] and Eq. (12) in [48],
consider the modification of the cosmological distance but

8In addition, there is a typo in Eq. (103) in [40], which should

be corrected as DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðφ̄o;X̄oÞ
Nðφ̄s;X̄sÞ

q
DL ≠ DG.
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do not take into account the corrections in the amplitude
and the phase and the extra polarization(s). That is, they
have ignored the modifications due to wave generation and
only consider the modification in wave propagation. In the
following, we will analyze the bias due to the inconsistent

waveforms. In GW data analysis, it is a common practice to
use the frequency domain GW waveforms. The Fourier
transforms for the waveforms of the three polarizations
can be computed via the stationary phase approxima-
tion [16,69].

h̃þðfÞ ¼ −
�
1þ α



1

3
ð1 − 2s1Þð1 − 2s2Þ −

1

12
Γ2 −

5

48
S2η

2
5ðπfGMzÞ−2

3

��

×

�
5π

24

�1
2 ðGMzÞ2

DG

1þ cos2ι
2

ðπfGMzÞ−7
6eiψþ ; ð79Þ

h̃×ðfÞ ¼ −
�
1þ α



1

3
ð1 − 2s1Þð1 − 2s2Þ −

1

12
Γ2 −

5

48
S2η

2
5ðπfGMzÞ−2

3

��

×

�
5π

24

�1
2 ðGMzÞ2

DG
cos ιðπfGMzÞ−7

6eiψ× ; ð80Þ

and

h̃bðfÞ ¼ h̃b1ðfÞ þ h̃b2ðfÞ; ð81Þ

h̃b1ðfÞ ¼
�
1 − α

�
1

12
Γ2 þ 5

48
S2η

2
5ð2πfGMzÞ−2

3

��
α

�
5π

12

�1
2 ðGMzÞ2

DS
Sη

1
5 sin ιð2πfGMzÞ−3

2eiψb1 ; ð82Þ

h̃b2ðfÞ ¼ −
�
1þ α



1

3
ð1 − 2s1Þð1 − 2s2Þ −

1

12
Γ2 −

5

48
S2η

2
5ðπfGMzÞ−2

3

��

× α

�
5π

96

�1
2 ðGMzÞ2

DS
Γsin2ιðπfGMzÞ−7

6eiψb2 ð83Þ

with phases

ψþðfÞ ¼ 2πftz − ψc −
π

4
þ 3

128
ðπfGMzÞ−5

3

�
1 − α

�
2

3
ð1 − 2s1Þð1 − 2s2Þ þ

1

6
Γ2

��

−
5

1792
αS2η

2
5ðπfGMzÞ−7

3; ð84Þ

ψ×ðfÞ ¼ ψþ þ π

2
; ð85Þ

ψb1ðfÞ ¼ 2πftz −
ψc

2
−
π

4
þ 3

256
ð2πfGMzÞ−5

3

�
1 − α

�
2

3
ð1 − 2s1Þð1 − 2s2Þ þ

1

6
Γ2

��

−
5

3584
αS2η

2
5ð2πfGMzÞ−7

3; ð86Þ

ψb2ðfÞ ¼ ψþðfÞ: ð87Þ

When the redshift is negligible, the above tensor-polariza-
tion waveforms are consistent with Eqs. (91)–(93) in [16]
and the orderOð1ω̄Þ terms of scalar waveforms are consistent
with Eqs. (52), (53), and (55) in [70].

In the Brans-Dicke theory, the signal received by a GW
detector is given by the following response function [19]

hBDðtÞ ¼ Fþhþ þ F×h× þ Fbhb; ð88Þ

where the detector antenna pattern functions FAðA ¼
þ;×; bÞ depend on the geometry of the detector and the
sky location of the GW source. For the explicit expressions

TAN LIU, YAN WANG, and WEN ZHAO PHYS. REV. D 108, 024006 (2023)

024006-10



of the antenna pattern functions of the Einstein Telescope,
see Appendix C in [70].
The GW waveforms used in the previous studies on

standard sirens in modified gravity theories are inconsistent
in the sense that these works have ignored modifications
from wave generation [38–49], which is equivalent to using
the following frequency domain response function

h̃InðfÞ ¼ Fþh̃InþðfÞ þ F×h̃
In
× ðfÞ; ð89Þ

where

h̃InþðfÞ¼−
�
5π

24

�1
2 ðGMzÞ2

DG

1þcos2ι
2

ðπfGMzÞ−7
6eiψ

GR
þ ; ð90Þ

h̃In× ðfÞ ¼ −
�
5π

24

�1
2 ðGMzÞ2

DG
cos ιðπfGMzÞ−7

6eiψ
GR
× ; ð91Þ

with phases

ψGRþ ðfÞ ¼ 2πftz − ψc −
π

4
þ 3

128
ðπfGMzÞ−5

3; ð92Þ

ψGR
× ðfÞ ¼ ψGRþ ðfÞ þ π

2
: ð93Þ

It is convenient to rewrite the response function in the
following form:

h̃InðfÞ ¼ QM
5
6
zf−

7
6eiψ

GR
þ ð94Þ

with9

Q ¼ −
1

π2=3DG

�
5

96

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þð1þ cos2ιÞ2 þ 4ðF× cos ιÞ2

q
:

ð95Þ

It is obvious that the inconsistent response function
h̃InðfÞ only modifies the response function in GR by
replacing DL with DG. Note that the response function
h̃InðfÞ can also be obtained by setting the sensitivities of
the compact objects as the ones for black holes in
Eqs. (79)–(87) to s1 ¼ s2 ¼ 1

2
. This is because binary

black hole systems emit no scalar waves in the Brans-
Dicke theory. For the binary neutron star systems, the
components have similar sensitivities and the scalar dipole
radiation will be suppressed. Therefore, we will focus on
the GWs emitted by asymmetric black hole-neutron star
(BH-NS) binaries. Since the Einstein Telescope is more
sensitive to the difference between the inconsistent wave-
forms and the consistent waveforms, we now consider the

GW observations by the Einstein Telescope and estimate
the typical magnitude of the bias due to the inconsistent
GW waveforms, using the method proposed by Cutler and
Vallisneri [71]. The waveforms in the previous section
apply to a general coupling function ωðϕÞ, while we now
set ωðϕÞ to a constant ωðϕÞ ¼ ωBD for ease of numerical
calculations in this section. In this case, DS ¼ DG

and α ¼ 1
2ωBDþ3

.

A. Method

Consider the measured detector data

sðtÞ ¼ hBDðt;ptrÞ þ nðtÞ; ð96Þ

where nðtÞ is the detector noise and ptr denotes the true GW
source parameters collectively. If we use the inconsistent
response function hInðtÞ to estimate the parameters, we
determine the best-fit value pbf by minimizing the noise-
weighted inner product [71]

ðs − hInjs − hInÞ: ð97Þ

For any two given signals h1ðtÞ and h2ðtÞ, the inner product
is given by

ðh1jh2Þ ¼ 4ℜ
Z

∞

0

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð98Þ

where h̃1ðfÞ and h̃2ðfÞ are the Fourier transforms of h1ðtÞ
and h2ðtÞ; SnðfÞ is the one-side noise power spectral
density (PSD). The noise PSD of the Einstein Telescope
is assumed to be the ET-D model [72]. Then, the best-fit
parameters pbf satisfy [71]

ð∂jhInðpbfÞjs − hInðpbfÞÞ ¼ 0; ð99Þ

where ∂jhIn ¼ ∂hIn=∂pj and pj denotes the GW source
parameters. It can be seen from Eq. (94) that the response
function hIn depends on four parameters pj ¼ ðlnQ; lnMz;
f0tz;ψcÞ. From the above equation, to the first order in
the error

Δpi ≡ pi
bf − pi

tr; ð100Þ

we have [71]

Δpi ¼ Δnpi þ Δthpi; ð101Þ

where

Δnpi ¼ ðΛ−1Þijð∂jhInðpbfÞjnÞ; ð102Þ

Δthpi ¼ðΛ−1Þijð∂jhInðpbfÞjhBDðptrÞ − hInðptrÞÞ; ð103Þ
9Actually, Q has a phase factor which has been absorbed

by ψc.
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with ðΛ−1Þij the inverse of the Fisher matrix

ΛijðpbfÞ≡ ð∂ihInðpbfÞj∂jhInðpbfÞÞ: ð104Þ

It can be seen that Δnpi is the statistical error due to the
noise and Δthpi is the theoretical bias due to the waveform
inconsistency. The standard deviation of the statistical
errors is given by [73,74]

δnpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔnpiΔnpii

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ−1Þii

q
: ð105Þ

Here “hi” represents ensemble average and no summation
is implied by the repeated index. We will now compare the
standard deviation δnpi and the theoretical bias Δthpi in
GW observations using the PSD of the instrumental noise
of the Einstein Telescope.
Substituting the response function (94) into Eq. (104)

and using Eq. (105), we obtain the standard deviations of
the amplitude parameter and the redshifted chirp mass for
GW observations by the Einstein Telescope

δn lnQ ¼ 1

ρ
; ð106Þ

δn lnMz ¼ 1.3 × 10−5
�
Mz

M⊙

�5
3 1

ρ
; ð107Þ

where ρ is the signal-to-noise ratio (SNR) given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhInjhInÞ

p
: ð108Þ

To obtain the theoretical bias, we need the difference
between the two response functions

h̃BDðfÞ − h̃InðfÞ ¼ ðΔAþ iΔψÞh̃InðfÞ þ Fbh̃b2; ð109Þ

where the amplitude correction to the tensor polarization is

ΔA ¼ α
�
A1 þ A2

�
πfGMz

	
−2
3

	
ð110Þ

with

A1¼
1

3
ð1−2s1Þð1−2s2Þ−

1

12
Γ2; A2¼−

5

48
S2η

2
5 ð111Þ

and the phase correction to the tensor polarizations is

Δψ ¼ αðψ1ðπfGMzÞ−5
3 þ ψ2

�
πfGMzÞ−7

3

	
ð112Þ

with

ψ1 ¼ −
3

128

�
2

3
ð1 − 2s1Þð1 − 2s2Þ þ

1

6
Γ2

�
;

ψ2 ¼ −
5

1792
S2η

2
5: ð113Þ

Here Fbh̃b2 denotes the contribution from the breathing
polarization. Since h̃b1 will contribute an oscillatory term to
the integrand of the inner product in Eq. (103), its
contribution can be discarded. The breathing polarization
contribution can be rewritten as

Fbh̃b2 ¼ αB2Γh̃InðfÞ ð114Þ

with

B2 ¼
Fbsin2ι

Fþð1þ cos2ιÞ þ 2iF× cos ι
: ð115Þ

Note that we keep only terms to order OðαÞ in the
difference. Using Eq. (103) and the difference between
the response functions, we obtain the theoretical biases for
GW observations by Einstein Telescope

Δth lnQ ¼ α

�
A1 þ 247A2

�
Mz

M⊙

�
−2
3 þ 21.3ψ1

þ 1.26 × 104ψ2

�
Mz

M⊙

�
−2
3 þℜ½B2�Γ

�
; ð116Þ

Δth lnMz ¼ −α
�
25.6ψ1 þ 1.51× 104ψ2

�
Mz

M⊙

�
−2
3

�
: ð117Þ

From here we see that the theoretical biases are propor-
tional to α ¼ 1

2ωBDþ3
and independent of SNR. The ampli-

tude bias Δth lnQ has contributions from the extra
polarization as well as the amplitude and phase corrections
of the tensor polarizations. But the mass bias Δth lnMz has
only contributions from the phase correction of the tensor
polarizations.

B. Result

We now apply Eqs. (106), (107), (116), and (117) to the
BH-NS binaries which can be detected by Einstein
Telescope. We choose masses and redshifts of the GW

TABLE I. Selected source parameters of BH-NS candidates
detected by LIGO/Virgo. The columns show source component
masses mA, redshift z, and the network matched-filter SNR.
These data are taken from Table IV of [58].

m1=M⊙ m2=M⊙ z SNR

GW191219 31.1 1.17 0.11 9.1
GW200115 5.9 1.44 0.06 11.3
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sources to be that of the BH-NS binaries detected by LIGO/
Virgo. Up to now, among all the compact binaries detected
by LIGO/Virgo, there are several BH-NS candidates. Two
of the candidate BH-NS binaries (GW191219 and
GW200115) have a secondary with mass below 2M⊙,
which can be confidently interpreted as a NS [58]. Their
source parameters are listed in Table I. Because the Einstein
Telescope’s noise PSD will be lower and its sensitive
frequency band wider than that of the advanced LIGO, we
set the SNR in Eqs. (106) and (107) to be ten times of the
SNR detected by LIGO/Virgo.10 The sensitivity of NS is set
to 0.2 [62].
Note that for a GW binary source with cosmological

redshift z ¼ 0.06, the redshift is high enough that the local
wave-zone waveforms are not applicable, and it is neces-
sary to use waveforms (67)–(73) to study this GW source.
The formulas of the statistical errors and the theoretical
biases in the previous subsection are applicable to any
source with a SNR relatively higher (SNR > 20). The
assumption of the Fisher matrix analysis (Gaussian
approximation) will become invalid for low SNR events.
We leave a more comprehensive analysis based on the
population properties of the GW sources as a future
work [76].
The numerical results of the theoretical biases and the

statistical errors are shown in Table II. The amplitude bias
Δth lnQ depends on ℜ½B2� which is related to the viewing
angle ι and the antenna pattern functions. We generate 106

samples of ℜ½B2� by randomly choosing the sky location
and the orientation of the angular momentum of binary
system. The median of the absolute value of these samples
is 0.11. From Table II we see that, in general, the dominant
contribution to amplitude bias Δth lnQ is from ψ2 which
originates from the scalar dipole radiation, and the dom-
inant contribution to mass bias Δth lnMz is also from the
phase correction of scalar dipole radiation.
Then we compare the theoretical bias and the statistical

error. The ratio of the theoretical bias to the statistical error

is shown in Fig. 1. To obtain the result, ℜ½B2� is set to the
median 0.11. The ratio increases with the coupling constant
α. The positive coupling constant α has be constrained to be
less than 1.3 × 10−5 by the Cassini spacecraft [59]. In this
paper, we set the interesting range of α to 10−7–10−4

(cf. Fig. 1) to leave some margins and ensure that the linear
approximation of the difference of the waveforms,
Eq. (109), is applicable. It can be seen that, for these
two BH-NS binaries, when α approaches the upper bound

imposed by the Cassini spacecraft jΔth lnMzj
δn lnMz

> 1 and
jΔth lnQj
δn lnQ

< 0.01. Therefore, the waveform inconsistency
can affect the measurement accuracy of the redshifted
chirp mass significantly in this situation. From Eq. (95) we
see that lnQ ¼ − lnDG þ lnðanglesÞ. If we interpret the
response function (94) as averaging over the angels, then
Δ lnQ ¼ −Δ lnDG. Because of this, the waveform incon-
sistency has a negligible impact on the measurement
accuracy of the source distance DG. This is only a
preliminary study on the measurement accuracy of the
distance. A more detailed and comprehensive analysis of

TABLE II. Theoretical biases and statistical errors in GWobservation by the Einstein Telescope. HereQi represents the contribution of
the i-th term on the right-hand side of Eq. (116) and Mi represents the contribution of the ith term on the right-hand side of Eq. (117).

ðΔth lnQÞ=α Q1 Q2 Q3 Q4 Q5 ðΔth lnMzÞ=α M1 M2 δn lnQ δn lnMz

GW191219-like −0.56þ 0.58ℜ½B2� −0.028 −0.21 −0.028 −0.29 0.58ℜ½B2� 0.38 0.033 0.35 0.011 1.9 × 10−6

GW200115-like −1.4þ 0.48ℜ½B2� −0.019 −0.59 −0.019 −0.81 0.48ℜ½B2� 0.99 0.023 0.97 8.8 × 10−3 5.5 × 10−6

FIG. 1. The ratios of the theoretical bias to the statistical error
increases with the coupling constant α. Colors represent different
BH-NS binaries. The solid lines and the dashed lines represent
jΔth lnMzj
δn lnMz

and jΔth lnQj
δn lnQ

, respectively. The vertical line indicates the

upper bound on α imposed by the Cassini spacecraft.

10We have generated one hundred GW191219-like sources,
with the source masses and source distances set to be those of
GW191219, but the sky positions and orbital orientations
randomly set, and calculated the SNR detected by the Einstein
Telescope using the package GWBENCH [75]. For more than 30
GW191219-like sources, the SNR detected by the Einstein
Telescope is greater than ten times the SNR of GW191219
detected by LIGO/Virgo. We have tested the GW200115-like
sources in the same way and obtained the similar result.
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the measurement of the distance and the Hubble constant is
subject to our future work.

VI. CONCLUSIONS AND DISCUSSIONS

We have obtained the self-consistent gravitational wave-
forms in an expanding Universe in the Brans-Dicke theory.
There are three GW polarizations, i.e., the plus polarization
hþ, the cross polarization h×, and the breathing polarization
hb. The waveforms of these three polarizations can be
applied to high redshift GW sources. In the GR limit
(ω̄ → ∞) or when the redshift of GW source is negligible
(z ≪ 1), the waveforms converge to the previously known
results.
We have considered the modifications during wave

generation and propagation. Previous researches on stan-
dard sirens in modified gravity theories have adopted
inconsistent waveforms which has ignored the modifica-
tions from wave generation, but the waveforms that focus
on the wave-generation effects, such as the post-Newtonian
waveforms, apply only to the local wave zone and cannot
be used directly to study GW sources with non-negligible
redshifts. Compared with GR, in wave generation, there are
extra breathing polarization as well as phase and amplitude
corrections to the tensor polarizations; in wave propaga-
tion, the electromagnetic luminosity distance DL is
replaced by the gravitational distance DG and the scalar
distanceDS. The expression ofDG has been derived before,
e.g., [39], whileDS is a new result. Inconsistent waveforms
can bias the source parameters measured by the GW
detectors. The main contribution to parametric estimation
biases is from the phase correction of the frequency domain
waveforms originating from scalar dipole radiation. This
shows that the expanding of the Universe will not suppress
the modification of the waveforms due to the scalar dipole
radiation. We found that, when the coupling constant α
approached the Cassini upper bound, in the detection of
BH-NS binaries (GW191219 and GW200115) by the
Einstein Telescope, the inconsistent waveforms would bias
the measurement of redshifted chirp mass significantly but
had negligible impact on the measurement of the distance.

The solution to the geometric-optics equations, Eq. (58),
is a general result which can be applied to the GWs emitted
by any isolated sources, such as a binary with a precessing
orbital plane [77], an extreme mass ratio inspiral system
[31], a triple system [78], etc. The method using the local
wave zone to match wave generation and wave propagation
can also be used in other theories, such as massive Brans-
Dicke theory [16], reduced Horndeski theory [40], Chern-
Simons theory [79], etc. It is interesting to consider using
this match procedure to combine the parametrized post-
Einsteinian (ppE) framework [34] with the generalized GW
propagation (gGP) framework [35]. The ppE framework
mainly focuses on wave generation in modified gravity
theories while the gGP framework deals with the wave
propagation.
In addition to the modification of GW waveforms,

modified gravity can influence the cosmological back-
ground evolution [45,47]. It is necessary to include all these
effects to study standard sirens in the Brans-Dicke theory.
We leave this for future work.
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