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I give a simple proof of the physical process first law of black hole thermodynamics including charged
black holes, in which all perturbations are computed on the horizon.
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I. INTRODUCTION

One of the most mysterious and promising topics in
modern physics is the deep connection between the laws
of black hole mechanics and the fundamental principles of
thermodynamics. Originally stated in the seminal paper of
Bardeen, Carter and Hawking [1], the analogy between the
laws of black hole mechanics and thermodynamics has
been taken more seriously after the deep insights of
Bekenstein about black hole entropy [2], the introduction
of the generalized second law [3], and the discovery by
Hawking that black holes radiate [4,5]. The first law of
black hole thermodynamics is very general and robust. It
can be extended to the case of charged black holes using
the Hamiltonian formalism [6], to any covariant theory of
gravity using the Lagrangian formalism [7,8] including
cases where arbitrary fields with internal degrees of free-
dom are present [9]. In general, it relates the variations of
asymptotic charges, as the Arnowitt-Deser-Misner (ADM)
massM and angular momentum J and the electric chargeQ
to the variation of the black hole area A. This is a relation
between phase space variables, on the same footing as the
usual first law of black hole thermodynamics.
However, while usual thermodynamic relations deal with

ideal transitions between equilibrium states characterized
by perfectly stationary solutions, it is sometimes instructive
to consider realistic transitions bringing one stationary state
into another one. Indeed, it is a priori nontrivial that a new
equilibrium state is reached after introducing some pertur-
bations into the system. Equivalently, in black hole
mechanics, we are interested in the evolution of the black
hole if some piece of matter is thrown into it. If we assume
that the black hole settles down to a new stationary state
after some small energy, angular momentum and electric
charge fluxes have crossed the horizon, it would be
consistent to recover an identity similar to the equilibrium
state version of the first law. This version of the first law of
black hole thermodynamics is called the physical process
first law (PPFL) and its relation to the equilibrium state
version of the first law is subtle [10,11]. The problem of
energy and angular momentum perturbations to the Kerr

black hole has been studied first by Hawking and
Hartle [12]. The usual PPFL has been derived by Wald
in [13] for uncharged black holes and extended to the
charged case by Gao and Wald in [14].
However, while the mass and angular momentum var-

iations are calculated directly on the horizon for the
perturbed Kerr black hole [13], it is not the case for the
derivation in the charged case in [14]. Indeed, this deriva-
tion has the inconvenience of relying on the covariant phase
space techniques. In particular, the black hole mass and
angular momentum variations are computed at spatial
infinity, as the ADM mass and angular momentum. It
might be a bit unexpected for a physical process first law to
involve variations of asymptotic quantities rather than the
mass or angular momentum of the matter fields crossing the
black hole horizon. In fact, Gao and Wald wrote1 that
the ADM chargesM and J should hold as the definition for
the final mass and angular momentum of the black hole
even if not all the matter fell into it [14], but they did not
explicitly show that this is indeed the case. As they work
with the ADMmasses and angular momentum, they cannot
distinguish the mass and angular momentum of the black
hole from the one of the matter outside. In contrast, the
derivation presented below is similar to the original
derivation of the PPFL from Wald [13] for the uncharged
black hole, where the mass and angular momentum
variations are given locally and are not the perturbed
ADM Hamiltonians at infinity. We compute everything
on the horizon and do not need to introduce the covariant
phase space formalism.

II. DERIVATION OF THE PPFL

Let us consider a stationary black hole, with an event
horizon N parametrized by some null affine parameter v
vanishing on the black hole bifurcation surface v ¼ 0. This
eternal black hole has mass M, angular momentum J and
charge Q. The Killing vector ξ generating the null geo-
desics of the event horizon is defined as

1See footnote 5 of their paper.
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ξμ ¼
�
∂

∂t

�
μ

þ ΩH

�
∂

∂ϕ

�
μ

¼N κvnμ; ð2:1Þ

where ∂

∂t is a Killing vector which is timelike and normal-
ized to one at infinity, ∂

∂ϕ is an axisymmetric Killing field

generating closed orbits of length 2π, nμ ¼ ð ∂

∂vÞμ the null
normal with vanishing unaffinity, ΩH the horizon’s angular
velocity, and κ being the unaffinity of ξ on N , which turns
out to be the surface gravity of the stationary black hole.
For a charged black hole, there exists some electromagnetic
potential Aμ and metric gμν which are the Kerr-Newman
solutions of the Einstein-Maxwell equations. We use the
same gauge for the Kerr-Newman solution as in [15]. This
is the stationary gauge for which the electromagnetic
potential satisfies the stationarity requirement £ξAμ ¼ 0,
in addition to £ξgμν ¼ 0 for any Killing vector ξ.
Furthermore, in this gauge, Aμ vanishes at spatial infinity.
It is also the same gauge as the one used in [14,16].
Now, let us assume that the stationary black hole is

perturbed by some small amount of matter propagating on
spacetime and crossing the black hole horizon at some
point, such that at very late times (v going to infinity), the
black hole has settled down into a stationary state (see
Fig. 1). Hence, the event horizon N becomes a Killing
horizon a large amount of time after the incoming matter
crossedN , and during the whole process, the spacetime is a
slightly perturbed Kerr-Newman spacetime. If we consider
some (charged) perturbed matter field of order ϵ, its
corresponding stress energy tensor is of order ϵ2 and so
the perturbation to the stationary background metric is of
order ϵ2 at most. Furthermore, the charge current Jμ is also
of order ϵ2.2 Hence, we have

ϕ ¼ OðϵÞ
Tmatter
μν ¼ Oðϵ2Þ
Jμ ¼ Oðϵ2Þ ð2:2Þ

from which it implies by using the equations of motion

£ξgμν ¼ Oðϵ2Þ
£ξAμ ¼ Oðϵ2Þ ð2:3Þ

as ξ being of course the background Killing, and so that

ξμ¼N κvnμ is still null everywhere on the (dynamical) event
horizon. The Raychaudhuri equation on the perturbed event
horizon N for the affine normal vector n reads

dθn
dv

¼ −θ2n − σn;μνσ
μν
n − Tμνnμnν; ð2:4Þ

where θn is the expansion of nμ, σn;μν the shear of nμ, and
there is no twist ωμν because the null vector n is hyper-
surface orthogonal. The expansion and the shear are of
order ϵ2 from (2.3), so if we keep only the leading order
terms in (2.4) we get

dθn
dv

¼ −Tμνnμnν þOðϵ4Þ: ð2:5Þ

Now, we can multiply both sides of Eq. (2.4) by κv and
integrate by part the left-hand side. The boundary terms
vanish as we integrate between the bifurcation surface of
the background spacetime located at v ¼ 0 and infinity,
where vθn ⟶v→þ∞0. Hence we get from (2.5)

κ

8π
ΔA ¼

Z
N
Tμνξ

μnνϵN þOðϵ4Þ: ð2:6Þ

Terms on both sides of this equation are of order ϵ2. We can
notice that the null energy conditions are satisfied, the rhs is
positive, and so is the lhs, in agreement with Hawking’s
area theorem [17]. Furthermore, we would like to write the
rhs of (2.6) as a linear combination of the mass, angular
momentum and charge of the matter perturbation crossing
the null horizon. First, consider the case where the black
hole is not charged. Therefore, Tμν ¼ Tmatter

μν and if ξ is a
background Killing vector (2.1), we have from (2.2)
and (2.3)

∇μðTμ
νξνÞ ¼ Oðϵ4Þ ð2:7Þ

as Tμν is symmetric and divergence free if the equations of
motion are imposed. Furthermore, as ∂

∂t and
∂

∂ϕ are also
Killing vectors of the background metric, we also have
∇μðTμ

νð ∂∂tÞνÞ ¼ Oðϵ4Þ and ∇μðTμ
νð ∂

∂ϕÞνÞ ¼ Oðϵ4Þ. Hence,
the currents

jμt ¼ Tμ
ν

�
∂

∂t

�
ν

ð2:8Þ

and

jμϕ ¼ −Tμ
ν

�
∂

∂ϕ

�
ν

ð2:9Þ

are conserved up to ϵ4 terms, so they are conserved at first
order in perturbation of the metric and the stress energy
tensor, i.e at order ϵ2. The physical meaning of these
quantities is clear when we look at these currents at infinity,
and so we identify jt as the energy current and jϕ as the
angular momentum current. Hence, to make sense of (2.6),
we can apply Gauss’s theorem between Cauchy surfaces Σ1

2For instance, in Dirac field electrodynamics, a Dirac field
would be of order ϵ and the associated current will be
Jμ ¼ iψ̄γμψ ¼ Oðϵ2Þ; the same for scalar electrodynamics, if
the scalar field ϕ is of order ϵ, the current is given by
Jμ ¼ iðϕ̄∂μϕ − ∂

μϕ̄ϕÞ ¼ Oðϵ2Þ.
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and Σ2 intersecting the null event horizon in two cross
sections S1 and S2, respectively. In order to relate these
considerations to (2.6), we suppose that S1 is the bifurca-
tion surface located at v ¼ 0 and that S2 is in the very far
future (v → þ∞) such that the perturbations on the horizon
vanish well before S2. Hence, (2.6) becomes

κ

8π
ΔA ¼ ΔM − ΩHΔJ þOðϵ4Þ: ð2:10Þ

However, if the black hole is charged, the relation (2.7) is
not satisfied. Indeed, we have

Tμν ¼ TEM
μν þ Tmatter

μν ð2:11Þ

with [18]

TEM
μν ¼ 1

4

�
FμρF

ρ
ν −

1

4
gμνFρσFρσ

�
ð2:12Þ

which is of order 1. Hence,

∇μðTμ
νξνÞ ¼ TEM

μν ∇ðμξνÞ þOðϵ4Þ ¼ Oðϵ2Þ ð2:13Þ

is of order ϵ2 and not of order ϵ4 as in a noncharged case
(2.7). Therefore, we cannot apply the Gauss theorem,
because the current is not divergence free at order ϵ2.
Thus we have to proceed a bit differently. It can be proven
from (2.12) and using Bianchi identity that

∇μTEM
μν ¼ JμFμν ð2:14Þ

which is not conserved of course if the electromagnetic
field is coupled to matter. However, on shell, the full stress
energy tensor Tμν is still divergence free on shell and then
we get from (2.14)

−∇μTmatter
μν ¼ JμFμν: ð2:15Þ

Then we contract both sides of the equation by ξν, and using
Fμν ¼ ∇μAν −∇νAμ, the charge conservation ∇μJμ ¼ 0

and the identity £ξAμ ¼ ξν∇νAμ þ Aν∇μξ
n, we get

from (2.15)

∇μðTmatter
μν ξν þ JμAνξ

νÞ ¼ Tmatter
μν ∇μξν þ Jμ£ξAμ: ð2:16Þ

Furthermore, from (2.2) and (2.3), we can conclude that

∇μðTmatter
μν ξν þ JμAνξ

νÞ ¼ Oðϵ4Þ: ð2:17Þ

Hence, the current

jμ ¼ ðTmatterÞμνξν þ JμAνξ
ν ð2:18Þ

is conserved at order ϵ4, and so are the energy current

jμt ¼ ðTmatterÞμν
�
∂

∂t

�
ν

þ JμAν

�
∂

∂t

�
ν

ð2:19Þ

and angular momentum current3

jμϕ ¼ −
�
ðTmatterÞμν

�
∂

∂ϕ

�
ν

þ JμAν

�
∂

∂ϕ

�
ν
�
: ð2:20Þ

Again, the physical meaning of these currents is clear if we
look them on the asymptotically flat spacetime. Indeed, at
infinity, the background electromagnetic potential Aμ

vanishes in the stationary gauge we chose, and so at
infinity the energy and angular momentum are given only
by the stress energy tensor of the charged matter, as
expected in Minkowski spacetime. Therefore, we make
these conserved currents appear in (2.6), in order to apply
Gauss theorem between the Cauchy slices Σ1 and Σ2 the
piece of the event horizonN comprised between S1 and S2.
Hence, we write (2.6) as

κ

8π
ΔA ¼

Z
N
ðTmatter

μν ξμnν þ TEM
μν ξμnνÞϵN þOðϵ4Þ ð2:21Þ

¼
Z
N

�
ðTmatter

μν þ JνAμÞξμnν − JνAμξ
μnνÞϵN

þ
Z
N
TEM
μν ξμnνϵN

�
: ð2:22Þ

Let us start by looking at the first integral. The first term in
the integral is our conserved current. Furthermore, we can
see that JνnνϵN ¼ −dQ is the infinitesimal electric charge
crossing the horizon, and ΦH ¼ −ξμAμ is the electrostatic
potential of the horizon, constant on a nonexpanding
horizon. Indeed, we have

£ξA ¼ diξAþ iξF ð2:23Þ

as F ¼ dA. If we take the pullback of (2.23) on
the nonexpanding null horizon N , we get diξA

←
¼

diξA
←

¼0 as ξ is tangent to N . Hence, dΦH ¼
Oðϵ2Þ on the perturbed horizon, and from (2.17) the first
integral of (2.22) can be written as

Z
N
½ðTmatter

μν þ JνAμÞξμnν − JνAμξ
μnν�ϵN

¼ ΔM −ΩHΔJ −ΦHΔQþOðϵ4Þ: ð2:24Þ

3It can be seen that the current jt and jϕ correspond to the
energy and angular momentum currents respectively when
evaluated at infinity, because limr→∞Aμ ¼ 0 in the stationary
gauge.
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Now, we should look at the second integral of the rhs
in (2.22). On a nonexpanding horizon, we have
TEM
μν ξμnν ¼ 0 from the Raychaudhuri equation (2.4), i.e.

TEM
μν ξμnν ¼ κvFμνξ

νFρnρ ¼ 0. It means that the vector
Fμνnν is null. Furthermore, Fμνnμnν ¼ 0 by antisymmetry
of F, so the vector Fμνnν is tangent toN . As it is tangent to
N and null, it means that it is proportional to nμ, and we
can write Fμ

νnν ¼ αnμ. From this, we deduce that on the
dynamical event horizon we have

Fμνnν ¼ αnμ þ ϵ2γμ ð2:25Þ

as the first order of perturbation in F is ϵ2 (as we use the
electromagnetic equations of motion and we know that Jμ is
of order ϵ2) for some vector γμ. Then, by antisymmetry of F

0 ¼ Fμνnμnν ¼ ðαnμ þ ϵ2γμÞnμ ¼ ϵ2γμnμ ð2:26Þ

so γμnμ ¼ 0 and γμ is tangent to N . Therefore, on the
dynamical null horizon, we get

TEM
μν ξμnν ¼ κvðαnμ þ ϵ2γμÞðαnμ þ ϵ2γμÞ

¼ κvγμγμϵ4 ¼ Oðϵ4Þ: ð2:27Þ

Hence, from (2.6), (2.24) and (2.27), we deduce the PPFL for
charged black holes:

κ

8π
ΔA ¼ ΔM −ΩHΔJ −ΦHΔQþOðϵ4Þ; ð2:28Þ

where here ΔM, ΔJ and ΔQ correspond to the energy,
angularmomentumand charge of the piece ofmatter flowing
through the event horizon. We should notice that the term
Tμνξ

μnν, usually associated to an energy flow, ismore related
to the entropy variation than to the energy variation.
Furthermore, though we restricted ourselves to electromag-
netism, there should not be any difficulties to extend the
derivation above to arbitrary Yang-Mills fields and charged
matter.
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