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We investigate the scalar mode quadrupole radiation of gravitational waves in FðRÞ modified gravity. In
FðRÞ gravity a massive scalar mode appears in the gravitational waves. We find explicit expressions for the
quadrupole radiation and the energy current of the scalar mode in general FðRÞ gravity models. We
consider a binary star and a bouncing star as astronomical sources of the gravitational waves and calculate
the quadrupole radiation of the scalar and tensor modes. The scalar mode radiates under spherically
symmetric conditions, but the tensor modes do not. The scalar mode mass is estimated for some typical
energy scales. We show a possibility to detect the scalar mode in the future gravitational waves observation.
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I. INTRODUCTION

FðRÞ gravity is a modified gravity theory in which the
Einstein-Hilbert action, R, is replaced by a general function
of R. It has been introduced as non-linear generalization of
Einstein’s theory [1]. One of the major applications of this
idea has been made on the construction of cosmological
models with an accelerating expansion [2]. Numerous
models have been proposed to explain the early and late-
time accelerating expansion of the universe, as a review,
see, for example, [3–5].
There is potential to test the models of FðRÞ gravity by

looking at current observations attributed to the expansion
of the universe, for example, type Ia supernovae [6,7],
CMB fluctuations [8,9] and BAO [10,11]. Evidence of
accelerating expansion alone is not sufficient, and other
procedures to test the model of F(R) gravity are being
explored. In fact, several studies have been done on the
verification of F(R) gravity through the equation of state
inside neutron stars [12,13] and its contribution to the solar
system [14]. In this paper, we focus on the possibility of
testing the models of FðRÞ gravity in gravitational waves.
The first direct detection of gravitational waves (GWs)

from a binary black hole was succeeded in 2015 by
LIGO [15]. This is a new clue in examining the theory
of gravity. In consequence, the observed gravitational
waves were consistent with the predictions of general

relativity (GR). It shows that GR can be adapted to strong
gravity. However, GWs may directly reveal the existence
of phenomena beyond GR. Exploring extra modes of GWs
has already been done [16]. Expectations are growing for the
development of future GWs detectors such as KAGRA [17],
LIGO-India [18], LISA [19] and DECIGO [20].
One of the characteristics of F(R) gravity is that an extra

degree of freedom appears in GWs [21–26]. The extra
degree of freedom propagates as a scalar mode of GWs.
The scalar mode of FðRÞ gravity has a nonvanishing
mass depending on FðRÞ modification [27–33]. Thus,
FðRÞ gravity can be constrained through the scalar mode
mass [34–39].
Here, we investigate the scalar mode propagation in

FðRÞ gravity in more detail. First of all, we try to solve the
wave equation with a source. Applying the procedure in
Ref. [40] to a general FðRÞ gravity, the wave equation can
be divided into tensor and scalar modes. Then we study
the gravitational waves propagation from gravitational
sources. We solve the wave equation for the scalar mode
and evaluate the quadrupole radiation. The scalar mode
radiation is considered from two typical sources, a binary
star and a bouncing star that shrinks in size and bounces
back. The amplitude of the scalar mode is suppressed by
the mass correction. We calculate the suppression com-
pared with the tensor modes. Then we estimate the
possibility to detect the scalar mode in future gravitational
wave observations. We also evaluate the delay of the
massive scalar mode from the first signal according to the
propagation speed.
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This paper is organized as follows. Section II describes
the basic formulation for the tensor and scalar modes of the
gravitational wave. We give expressions for the quadrupole
radiation and energy current. In Sec. III we evaluate the
scalar mode radiation from a binary star and a bouncing star
and discuss the possibility to detect the scalar mode.
Finally, we give some concluding remarks.

II. BASIC FORMULATION

A. Wave equation

FðRÞ gravity is motivated by an exploration of cosmic
accelerating expansion such as the inflation and dark
energy by extension of the Ricci scalar, R to a general
form, FðRÞ in the action. It is expected that FðRÞ gravity
induces phenomena beyond GR. We focus on the possibil-
ity to test the model of FðRÞ gravity through gravitational
wave propagation.
We start from the FðRÞ gravity action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

16πG
FðRÞ þ Smatter: ð1Þ

whereG denotes the gravitational constant. The equation of
motion is driven by varying the action (1) with respect to
the metric tensor,

Gμν ¼ 8πGTμν; ð2Þ

where we introduce the modified Einstein tensor, Gμν,
defined by

Gμν ≡ F0ðRÞRμν −
1

2
gμνFðRÞ

þ ðgμν□ −∇μ∇νÞF0; ð3Þ

and Tμν is the energy-momentum tensor derived from the
matter action, Smatter. To find the gravitational wave
equation, the metric perturbation is employed in Eq. (3).
We consider the perturbation of the metric tensor around a
flat Minkowski background, ημν,

gμν ¼ ημν þ hμν: ð4Þ

The perturbation of FðRÞ and F0ðRÞ around the background
curvature R̃ is given by

FðRÞ ¼ FðR̃Þ þ F0ðR̃ÞδR; ð5Þ

F0ðRÞ ¼ F0ðR̃Þ þ F00ðR̃ÞδR: ð6Þ

The scalar mode of GWs is identified with

F00ðR̃Þ
F0ðRÞ δR ¼ Φ: ð7Þ

It should be noted that the curvature, R̃, vanishes in the flat
Minkowski background.
The gravitational wave equation (2) contains a mixture

of tensor and scalar modes. We extend the prescription
separating these two modes in Ref. [40] to a general FðRÞ
gravity. To find a wave equation for the physical degrees of
freedom we introduce, h̄μν,

h̄μν ¼ hμν þ
�
bΦ −

1

2
h

�
ημν; ð8Þ

and impose the following gauge conditions,

∇νh̄μν ¼ 0: ð9Þ

In these conditions the lowest order of Ricci tensor and
scalar are expressed as

Rð1Þ
μν ¼−

1

2

�
□

�
h̄μν−

h̄
2
ημν

�
þbðημν□Φþ2∂μ∂νΦÞ

�
; ð10Þ

Rð1Þ ¼ 1

2
□h̄ − 3b□Φ: ð11Þ

We set Tμν ¼ 0 and derive the perturbed equation of motion
from Eq. (2),

Rð1Þ
μν −

1

2
ημνRð1Þ þ ½ημν□ − ∂μ∂ν�Φ ¼ 0: ð12Þ

The perturbed equation is divided into the tensor and scalar
parts,

−
1

2
□h̄μν þ ðbþ 1Þ½ημν□ − ∂μ∂ν�Φ ¼ 0: ð13Þ

To eliminate the scalar part from Eq. (13), we set
b ¼ −1. Then Eq. (13) reduces to

□h̄μν ¼ 0: ð14Þ

The wave equation of the tensor mode is now successfully
extracted and equivalent to the one in GR. On the other
hand, the scalar mode equation can be obtained by tracing
Eq. (12).

½□ −m2�Φ ¼ 0; ð15Þ

where the mass squared in Eq. (15) is expressed as,

m2 ¼ 1

3

F0ð0Þ
F00ð0Þ : ð16Þ

The existence of scalar mode is attributed to the FðRÞ
modification. In other words, physics beyond GR emerges.
This is because the FðRÞ modified gravity has an extra
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degree of freedom [22–24]. A gauge choice such that h
vanishes is not possible due to the non-zero mass existence
in Eq. (15). The degree of freedom of hμν is now reduced to
six by the gauge condition in Eq. (9). There is still room for
gauge choice in the tensor mode wave equation in Eq. (14).
h̄μν is further fixed by the gauge transformation generated
by ξμ satisfying □ξμ ¼ 0. By imposing the transverse-
traceless gauge conditions on h̄μν as in GR,

ημνh̄μν ¼ 0; h̄0i ¼ 0; ð17Þ

the remaining four gauge degrees of freedom of ξμ are
fixed. The physical degree of freedom of the tensor modes,
h̄μν is two. Thus the GWs propagation of tensor mode in
FðRÞ gravity is nothing changes from GR. The two degrees
of freedom corresponding to GR are the tensor modes, h̄μν
and the other is the scalar mode, Φ. The mass in Eq. (16)
depends on the function FðRÞ [27–29,31–33]. The scalar
mode shows the verifiability of modified gravity theory
through the GWs detections [36,37].

B. Tensor modes

To consider the phenomena of GWs, the energy-
momentum tensor is induced in the wave equation for
tensor mode (14) as a source of GWs,

□h̄μν ¼ 8πG̃Tμν: ð18Þ

where we redefine the gravitational constant as G̃ ¼ G=F0.
We find the radiation of gravitational waves from the
solution of this equation.
It is more convenient to employ the Fourier representa-

tion of h̄,

h̄μνðx; tÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

dk0h̄μνðx; k0Þe−ik0t: ð19Þ

Green’s function is defined by the solution of
□GðxÞ ¼ δðxÞ. By using the Fourier representation of
Green’s function, the tensor mode solution of Eq. (18) is
found to be

h̄μνðx;k0Þ¼−16πG̃
Z

d3xGðx−x0;k0ÞTμνðx0;k0Þ: ð20Þ

As is well-known, the Fourier representation of Green’s
function is given by

Gðx; k0Þ ¼
1ffiffiffiffiffiffi
2π

p
3

Z
1ffiffiffiffiffiffi
2π

p
3

1

−k2 þ k20
eik·xd3k

¼ −
1

4πjxj e
ik0jxj: ð21Þ

Substituting Eq. (21) into Eqs. (20) and (19), we obtain the
retarded solution of the tensor mode,

h̄μνðx; tÞ ¼ 4G̃
Z

d3x0 Tμνðx0; t − jx − x0jÞ
jx − x0j : ð22Þ

This solution shows that GWs emitted from the source
travel at the speed of light. The only difference in tensor
mode between GR and F(R) gravity is the gravitational
constant. If G̃ is regarded as the observed constant, no
difference appears.

C. Scalar mode

For the scalar mode propagation from gravitational
sources, the trace of the energy-momentum tensor is
introduced in the wave equation (15),

½□ −m2�Φ ¼ 8πG̃T: ð23Þ

Green’s function for scalar mode is defined as the solution
of ½□ −m2�GðxÞ ¼ δðxÞ. The difference from Green’s
function in the tensor mode is the nonvanishing mass.
After the integral with respect to the wave vector, we obtain
the Fourier representation of the Green’s function,

Gðx; k0Þ ¼
1ffiffiffiffiffiffi
2π

p
3

Z
1ffiffiffiffiffiffi
2π

p
3

1

−k2 −m2 þ k20
eik·xd3k

¼ −
1

4πjxj e
i

ffiffiffiffiffiffiffiffiffiffi
k2
0
−m2

p
jxj:

The Fourier representation of the scalar mode is given by

Φðx; k0Þ ¼ −16πG̃
Z

d3xGðx − x0; k0ÞTðx0; k0Þ: ð24Þ

By the inverse Fourier transformation, the scalar mode is
represented as

Φðx; tÞ ¼−16πG̃
Z

dk0
Z

d3x0Gðx−x0; k0ÞTðx0; k0Þe−ik0t

¼ 4G̃
Z

d4x0Tðx0; t0ÞGðjx−x0j; t− t0Þ: ð25Þ

To simplify the expression we set t − t0 ¼ Δt. Then,
Green’s function, Gðjx − x0j;ΔtÞ, is rewritten as

Gðjx − x0j;ΔtÞ ¼ 1

2πjx − x0j
Z

∞

−∞
eið

ffiffiffiffiffiffiffiffiffiffiffi
k02−m2

p
jx−x0j−k0ΔtÞdk0:

ð26Þ

The Green’s function is represented by the Bessel function
according to Refs. [41,42],
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Gðjx− x0j;ΔtÞ ¼ δðΔt− jx− x0jÞ
jx− x0j −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jx− x0j2

p
× J1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jx− x0j2

q
ÞθðΔt− jx− x0jÞ:

ð27Þ

Substituting Eq. (27) to Eq. (25), the retarded solution of
the scalar mode is found to be

Φðx; tÞ ¼ 4G̃
Z

d3x0
�
Tðx0; t − jx − x0jÞ

jx − x0j
−
Z

t−jx−x0j

−∞
dt0

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jx − x0j2

p
× J1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jx − x0j2

q
ÞTðx0; t0Þ

�
: ð28Þ

We introduce the time-dependent parameters, tp¼ t−
jx−x0j, tf ¼ tþjx−x0j and write τ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt0− tpÞðt0− tfÞ

p
.

Then the second term on the right-hand side in Eq. (28) is
rewritten as

Z
V
d3x0

Z
∞

0

mdτ
J1ðmτÞ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ jx − x0j2

p
× T

�
x0; t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ jx − x0j2

q �
: ð29Þ

We transform the integral variable τ to ζ with
mτ ¼ mjx − x0j sinh ζ. Equation (29) is simplified toZ

V
d3x0

Z
∞

0

dζJ1ðmjx − x0j sinh ζÞ

× Tðx0; t − cosh ζjx − x0jÞ: ð30Þ

Therefore, the scalar mode is found to be

Φðx; tÞ ¼ 4G̃
Z

d3x0
Z

∞

0

dζ

�
δðζÞ

jx − x0j

−mJ1ðmjx − x0j sinh ζÞ
�

× Tðx0; t − cosh ζjx − x0jÞ: ð31Þ

It should be noted that cosh ζ takes the value from 1 to ∞
for the interval of the integration, ζ∶0 → ∞. We regard
cs ≡ 1= cosh ζ as the velocity of scalar mode propagation.
For ζ ¼ 0 the velocity is equal to the speed of light.
At the limit ζ → ∞ the scalar mode does not propagate,
i.e. cs ¼ 0.

D. Quadrupole radiation

Here we focus on GW radiation whose source is
sufficiently far away from the observer and the gravitational

source is non-relativistic. In this case, the GW radiation is
generated by the quadrupole and higher moments of the
energy and momentum distributions.
First, we consider the tensor mode solution. For the

observer, jx − x0j ∼ jxj≡ r, Eq. (22) is written as

h̄ijðx; tÞ ∼ 4G̃
r

Z
Tijðx0; t − rÞd3x0; ð32Þ

at the leading order. From the conservation law, ∂μTμν ¼ 0,
we obtain

∂μ∂νxixjTμνðxÞ ¼ 2TijðxÞ:

The three-dimensional spatial integration of this equation
givesZ

2TijðxÞd3x ¼
Z

d3x½∂m∂lxixjTml þ ∂0∂0xixjT00ðxÞ

þ 2∂k∂0xixjðTk0ðxÞ þ T0kðxÞÞ�

¼ ∂0∂0

Z
d3xxixjT00ðxÞ: ð33Þ

From the first line to the second line in this equation, we
drop the surface terms. Substituting Eq. (33) into Eq. (32),
the tensor mode solution is represented as the 2nd deriva-
tive of the quadrupole moment, Iij,

h̄ijðx; tÞ ∼ 2G̃
r

∂0∂0

Z
T00ðx0; t − rÞxi0xj0d3x0

¼ 2G̃
r

d2Iij

d2t
: ð34Þ

It should be noted that the projection operators are
necessary to describe the polarization of the tensor modes.
Next, we move to the scalar mode solution (31). The

change of variable, w ¼ mr sinh ζ, makes the integral of
the Bessel function easier to compute [43],

Z
∞

0

dζmJ1ðmr sinh ζÞ ¼
Z

∞

0

dw
mJ1ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðmrÞ2

p
¼ mI1

2

�
mr
2

�
K1

2

�
mr
2

�
; ð35Þ

where I1
2
and K1

2
denote the modified Bessel functions and

satisfy,

I1
2
ðzÞ ¼

ffiffiffiffiffi
2

πz

r
sinh z; K1

2
ðzÞ ¼

ffiffiffiffiffi
π

2z

r
e−z: ð36Þ

For the distant observer, it is assumed that the velocity of
scalar mode propagation is almost constant and the energy-
momentum tensor is independent of the value of cosh ζ.
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In other words, assuming that the energy-momentum tensor
does not depend on the velocity or the velocity changes a
little. Then Eq. (31) becomes

Φ ¼ 4G̃
Z

d3x0
Z

∞

0

dζ

�
δðζÞ
r

−mJ1ðmr sinh ζÞ
�

× T

�
x0; t −

r
cs

�

∼ 4G̃
Z

d3x0
�
1

r
−
1 − e−mr

r

�
T

�
x0; t −

r
cs

�

¼ 4G̃e−mr

r

Z
d3x0T

�
x0; t −

r
cs

�
: ð37Þ

The tracing of the energy-momentum tensor can be divided
into 00 and spatial parts. T00 gives the mass density and Tij

is related to the 2nd derivative of the quadrupole moment as
can be seen from the tensor mode analogy,

Φ ¼ 4G̃e−mr

r

Z
Td3x0

¼ 4G̃e−mr

r

Z
ðT0

0 þ Ti
iÞd3x0 ð38Þ

¼ 4G̃e−mr

r
M þ 2G̃e−mr

r
d2I
d2t

: ð39Þ

The scalar mode has a Yukawa-like potential depending on
the total mass and the trace of the quadrupole moment, I.
This property is due to the fact that the scalar mode is
massive, which has been obtained in other studies [31,33].
The additional quadrupole radiation part enables us to
understand dynamical phenomena.

E. Energy current

Following the procedure developed in [40], we calculate
the effective energy-momentum tensor for a general form of
Φ. The gravitational radiations carry energy and then act as
a source of gravitational fields. In order to introduce the
background metric arising from gravitational waves them-
selves we have to consider the perturbation around a curved
background metric, γμν.

gμν ¼ γμν þ hμν: ð40Þ

The perturbation of the modified Einstein tensor can be
described as,

Gμν ¼ GB
μν þ Gð1Þ

μν þ Gð2Þ
μν ;

where the number in the upper indices denotes the order of
the expansion and GB

μν is the modified Einstein tensor for
the background. For the GWs the 1st order term vanishes,

Gð1Þ
μν ¼ 0, from the wave equation. Then the background

satisfies

GB
μν ¼ −Gð2Þ

μν : ð41Þ

Later, we will average over several wavelengths, hGð2Þ
μν i,

assuming that the background is on a large scale compared
with the wavelengths of GWs. Equation (41) means that the
background metric γμν is Oðh2Þ. So the background is
decomposed

γμν ¼ ημν þ jμν; ð42Þ

where jμν is the order Oðh2Þ. The curvature tensor of the
background is also Oðh2Þ. Then the 2nd-order perturbation
of the Ricci tensor is given by

Rð2Þ
μν ¼ 1

4
∇μhαβ∇νhαβ þ

1

2
hαβð∇μ∇νhαβ þ∇α∇βhμν −∇α∇νhμβ −∇α∇μhβνÞ

−
1

2

�
∇βhαβ −

1

2
∇αh

�
ð∇νhμα þ∇μhαν −∇αhμνÞ þ

1

2
∇βhανð∇βhμα −∇αhμβÞ: ð43Þ

From Eq. (8) with b ¼ −1 it is expressed by h̄ and Φ as,

Rð2Þ
μν ¼ 1

4
∇μh̄αβ∇νh̄αβ þ

1

2
h̄αβ∇μ∇νh̄αβ þ

3

2
∇μΦ∇νΦþΦ∇μ∇νΦþ 1

2
γμνΦ□Φ: ð44Þ

Thus the 2nd-order modified Einstein tensor (3) is found to be

Gð2Þ
μν ¼ F0

�
Rð2Þ
μν −

1

2
γμνRð2Þ −

1

2
hμνRð1Þ

�
þ F00

�
Rð1ÞRð1Þ

μν −
1

4
γμνRð1Þ2

�
þ γμν□ðF00Rð2ÞÞ − γμνhαβF0

∂α∂βΦ

þ hμν□ðF00Rð1ÞÞ − γμνγ
αβΓρð1Þ

αβ F
0
∂ρΦ − ∂μ∂νðF00Rð2ÞÞ þ Γρð1Þ

μν F0
∂ρΦ; ð45Þ
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where the perturbation of the connection is

Γρð1Þ
μν ¼ 1

2
γρλð∂μhλν þ ∂νhμλ − ∂λhμνÞ

¼ 1

2
γρλð∂μh̄λν þ ∂νh̄μλ − ∂λh̄μνÞ

−
1

2
γρλðγλν∂μΦþ γμλ∂νΦ − γμν∂λΦÞ:

On a large-scale background curvature, the terms that
remain after averaging over several wavelengths are

hRð2Þ
μν i¼

	
−
1

4
∂μh̄αβ∂νh̄αβþ

1

2
∂μΦ∂νΦþ1

2
γμνΦ□Φ



; ð46Þ

and

hRð2Þi ¼ hγμνRð2Þ
μν − hμνRð1Þ

μν i ¼
	
9

2
Φ□Φ



: ð47Þ

The averages over several wavelengths for Eqs. (10)
and (11) are

hRð1Þ
μν i ¼ 1

2
hγμν□Φþ 2∂μ∂νΦi;

hRð1Þi ¼ h3□Φi;

where we use the wave equation Eq. (14) so we take
□h̄μν ¼ 0. Then we get

hRð1ÞRð1Þ
μν i ¼

	
3□Φ∂μ∂νΦþ 3

2
γμνð□ΦÞ2



:

Thus, we obtain the average of the 2nd order perturbation
of modified Einstein tensor (45),

hGð2Þ
μν i ¼ F0

	
−
1

4
∂μh̄αβ∂νh̄αβ −

3

2
∂μΦ∂νΦ



: ð48Þ

The effective energy-momentum tensor is defined by

F0TG
μν ≡ −

1

8πG̃
hGð2Þ

μν i: ð49Þ

Substituting Eq. (48) into Eq. (49), we successfully derived
the effective energy-momentum tensor including the scalar
mode in the general case, Φ.

TG
μν ¼

1

8πG̃

	
1

4
∂μh̄αβ∂νh̄αβ þ

3

2
∂μΦ∂νΦ



: ð50Þ

By the replacement of t and r, the energy current is
given by

dEGW

dt
¼ −

Z
hTG

0rðt − rÞir2dΩ

¼
Z

hTG
00ðt − rÞir2dΩ; ð51Þ

where we take the propagation speed of the scalar mode to
almost light speed, cs ∼ 1. We will see the validity of this
assumption in the later section. The tensor and scalar
modes, h̄ and Φ, are described by the 2nd derivative of the
quadrupole moment. For a distant observer the total mass,
M, is conserved, and the time derivative of the first term in
Eq. (39) drops. Then the energy current is written in the
quadrupole representation,

dEGW

dt
¼

	
G̃
5
⃛I ij

⃛I ij þ 12G̃e−2mr
⃛I 2



; ð52Þ

Eq. (52) shows that the scalar mode emerges in gravita-
tional radiation in addition to the tensor modes.
Below the gravitational constant G̃ is written as G.

III. SCALAR MODE QUADRUPOLE RADIATION

A. Binary star

At present, GWs from compact binary stars are the
most promising source for observations. We focus on the
scalar mode GWs from binary stars. It is assumed that
the binary star rotates on the xy plane and these masses
have m1, m2 and the stellar distance is L. The distances
from the center of gravity to each star are given by
ðr1; r2Þ ¼ ðm2L=M;m1L=MÞ.
The quadrupole moment is defined by

Iij ¼
Z

d3x0ρðx0Þx0ix0j: ð53Þ

Thedensity and position of the binary star are represented as,

ρðxÞ ¼ m1δðx − x1Þ þm2δðx − x2Þ;
x1 ¼ ðr1 cosωt; r1 sinωt; 0Þ;

x2 ¼ ð−r2 cosωt;−r2 sinωt; 0Þ;
�
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=L3

q �
:

After the spatial integration, the quadrupole moment of the
binary star is derived

Iij ¼

0
B@

L2μ cos2 ωt L2μ cosωt sinωt 0

L2μ cosωt sinωt L2μ sin2 ωt 0

0 0 0

1
CA; ð54Þ

where μ denotes the reduced mass, μ≡m1m2=ðm1 þm2Þ.
When we take the typical velocity of the stars v and the
distance between Earth and the binary star r, the amplitude
of tensor mode from a binary star is evaluated by Eq. (34),
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jhijj ¼
4G
rc4

μL2ð2πfÞ2
r

∼
4G
rc4

μv2

r

∼ 5 × 10−23
�
100 Mpc

r

��
μ

10M⊙

��
v

0.1c

�
2

: ð55Þ

On the other hand, the trace of the quadrupole
moment (54) becomes I ¼ L2μ. If the trace of the quadru-
pole moment does not have time dependence, the scalar
mode does not radiate from a binary star. However, we have
not taken into account the energy carried out by GWs. For
consistency with current GW observations, we assume
tensor mode GW radiation to be dominant. Since the
tensor modes GW carries away the energy of a binary
star, the interstellar distance L decreases monotonically
with time as L ¼ L0ð1 − t=tcoalÞ1=4 where tcoal is the time of
coalescence [44,45],

tcoal ¼
5

256

c5

G3

L0
4

μM2
:

The scalar mode may have a chirp signal that does not
oscillate from Eq. (39). Thus the amplitude is calculated
to be

Φ ∼
4GμL0

2

c4t2coalr
∼
218

52
Gμ3

c2Mr

�
v
c

�

∼ 5 × 10−31
�
100 Mpc

r

��
10M⊙

M

�
2

×

�
μ

10M⊙

�
2
�

v
0.1c

�
14

: ð56Þ

The strain of the amplitude is extremely small and it is
consistent with the assumption. It increases over time but is
not quite sufficient for observation. There is little hope to
observe the scalar mode GWs from a binary star. However,
we considered only the inspiral phase. The compact binary
coalescence has the phases such as merger and ringdown
phases [46]. It is an interesting topic, although it requires
more precise analysis [47,48].

B. Bouncing star

Let us now study a toy model that we call a bouncing
star. It is far from a real phenomenon such as a supernova
explosion. However, it does provide some clues about the
scalar mode propagation in spherically symmetric gravi-
tational sources.
We consider a star with the radius RðtÞ and the density

ρ ¼ M=ð4π
3
RðtÞ3Þ, whereM is the total mass of the star and

does not depend on time. The trace of the quadrupole
moment becomes

I ¼
Z

d3x0ρðx0Þx0ix0i ¼ 4π

Z
RðtÞ

0

dr0ρr04

¼ 3

5
MRðtÞ2: ð57Þ

We assume that the star shrinks and bounces once and write
the time evolution of radius as,

RðtÞ ¼ R0

�
1 − be

−ðt−t0Þ2
τ2

�
:

The star shrinks to R0ð1 − bÞ and bounces at t ¼ t0. The
bouncing time interval is characterized by τ. In this
situation, the scalar mode from Eq. (39) is given by

Φ ¼ 48G̃MR0
2b

5τ2
e−mr

r

��
1 −

2ðt − t0Þ2
τ2

�

−b
�
1 −

4ðt − t0Þ2
τ2

�
e
−ðt−t0Þ2

τ

�
e
−ðt−t0Þ2

τ2 ; ð58Þ

where the static potential is neglected. The scalar mode is
emitted from the star with spherical symmetry. This result is
interesting because the tensor modes do not radiate from
spherically symmetric objects.
We estimate the amplitude of the bouncing star.

Applying the bouncing of the core in a supernova explo-
sion, we find

jΦjtypical¼
48G̃MR0

2b
5τ2

e−mr

r

¼7.93×10−44
MR0

2b
τ2

e−mr

r

¼2×10−20
�
10 kpc

r

��
M
M⊙

��
R0

6000 km

�
2
�
1 s
τ

�
2

;

where the exponential term is dropped by assuming that the
mass is sufficiently small and b approximated to 1. It shows
that a core collapse of a supernova explosion in our galaxy
may emit the detectable scalar mode GWs. Also, the energy
current in this event is estimated from Eq. (52),

dEGW

dt
∼
12G
c5

M2R0
4b

τ8

∼2×1043
�

M
M⊙

�
2
�

R0

6000 km

�
4
�
1 s
τ

�
8

erg=s: ð59Þ

The gravitational potential energy released in the supernova
collapse is estimated in the order of 1053 erg [49–51]. The
scalar mode GWs cost only 10−8% of total energy
emission. The existence of a scalar mode does not have
a significant contribution to supernova explosions and
subsequent growth.
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Figure 1 shows the time dependence of the radius of the
bouncing star, amplitude, and energy current of the scalar
mode GWs for b ¼ 1. We also show the figure in the case
of b ¼ 0.5 in Fig. 2 for comparison. The parameter b
produces a large difference in energy release. Therefore, a
dramatic event, such as the collapse of a star, is necessary to
generate detectable scalar mode GWs.

C. Scalar-tensor ratio

We compare the amplitudes for the tensor and scalar
modes. The scalar-tensor ratio of GWs is defined by

R ¼ jΦj
jhijj

: ð60Þ

We assume that the quadrupole radiation intensities of both
modes are equivalent, ̈I ¼ ̈Iij. The scalar-tensor ratio only
depends on the exponential term in Eq. (39),

R ¼ e−mr: ð61Þ

Below we estimate the ratio in some mass scale of modified
gravity. The scale of mass depends on the modification
scale of gravity theory. For instance, the R2 model [2],
FðRÞ ¼ Rþ R2=M2 has the scalar mode mass, m¼M=

ffiffiffi
6

p
from Eq. (16).
For the dark energy scale, m¼10−33 eV∼ð4200MpcÞ−1

we obtain

R ∼ ð0.999998Þ r
10 kpc;

ð0.976Þ r
100 Mpc;

ð0.368Þ r
4200 Mpc;

where the distances are assumed as 10 kpc for the scale of
the Galaxy, 100 Mpc for the scale of galaxy clusters, and
4200 Mpc for the scale of primordial gravitational waves.
Since the attenuation is a few to 60 percent, they are not a
major obstacle to observation. On the other hand, we obtain

R ∼ ð10−7×1050Þ r
10 kpc; ð62Þ

for the inflation scale, m ¼ 1015 GeV ∼ ð2 × 10−31 mÞ−1.
In this case, the scalar mode rapidly suppresses. It seems
very difficult to observe the scalar mode with the inflation
scale. Therefore, the scalar mode GWs are interesting
observable physical quantities when the typical scale of
the modified gravity is at the dark energy scale.

D. Constraints from propagation speed

We obtain the speed of the scalar mode propagation in
Eq. (31). Constraints from the propagation speed also help
in the verification of the scalar mode GWs as well as the
scalar-tensor ratio. The mass constraints are found from
the propagation speed in some observation periods. The
propagation speed for a wave packet is derived as the group
velocity,

cs ¼
∂ω

∂k
: ð63Þ

FIG. 2. Time dependence of radius(left), amplitude(middle), energy current(right) at b ¼ 0.5.

FIG. 1. Time dependence of radius(left), amplitude(middle), energy current(right) at b ¼ 1.
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The dispersion of the scalar mode is ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

The propagation speed of the scalar mode becomes

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

k2 þm2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

ω2

s
: ð64Þ

The tensor modes propagate at light speed and the scalar
mode does at cs. From Eq. (64) the scalar mode mass is
estimated as

m ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
cs
c

�
2
�s

¼ 4.14 × 10−15
�

f
1 Hz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
cs
c

�
2

s
½eV=c2�; ð65Þ

where we denote ω ¼ 2πf and the light speed c is not
omitted.
We write Δt as the difference between the arrival time

of the tensor and scalar modes at a distance r. It is
described as,

Δt ¼ r
cs

−
r
c
; ð66Þ

Then the ratio of the propagation speeds is estimated as,

cs
c
¼ 1

1þ cΔt
r

: ð67Þ

If we detected GWs from inside the Galaxy, r ∼ 10 kpc,
and the maximum delay is a century, the lower bound of
cs=c is determined from Eq. (67),

cs
c
≥ 0.99695: ð68Þ

In a century-long observation, the upper bound of the scalar
mass is 3.2 × 10−16 eV=c2 ≥ m from Eq. (65).
In Table. I, the mass constraints are summarized for

several cases of distance and observation period. In
especially, the scalar mode GW has Δt ∼ 3 × 10−26 s delay
from the tensor modes when the mass is 10−33 eV=c2. The
scalar mode mass in the dark energy scale is difficult to
observe because of the tiny delay from the tensor modes.

IV. CONCLUSION

We have investigated the quadrupole radiation of GWs in
FðRÞ gravity. FðRÞ gravity has an extra degree of freedom
in the wave equations beyond GR. Thus the scalar mode
also radiates in addition to the tensor modes. The scalar
mode has a mass that depends on the FðRÞ modification.
We have derived the retarded solution in Eq. (31). The
quadrupole radiation in the scalar mode is represented as a
function of the trace of the quadrupole momentum. It has
been shown that the amplitude of the scalar mode is
suppressed exponentially. Also, we have derived the GW
energy current including the scalar mode for a general FðRÞ
form in Eq. (52).
We have considered the scalar mode radiation from

several astronomical sources. The radiation from binary
stars is currently the most successful gravity source for
tensor modes but the amplitude is too weak to detect the
scalar mode GWs. However, there is not enough research
on the moment of star coalescence and there is room for the
observation of the scalar mode radiation.
We have evaluated a simple model of the bouncing star.

The model is not appropriate to adapt to real stars, but it
provides some clues to understand the scalar mode radi-
ation. Spherically symmetric sources emit the scalar mode
GWs, not the tensor modes. Applying the supernova
explosions to the bouncing star, we show that the scalar
mode radiation from the events inside the Galaxy is
possible to detect in future GWs observations. This
phenomenon is expected to be a promising candidate for
the detection of scalar mode GWs. We have calculated the
ratio of the amplitude for the scalar and tensor modes and
found it proportional to e−mr. If the scalar mode mass is at
the dark energy scale, it does not suppress even for a
cosmological distance. On the other hand, it is promptly
suppressed at the inflation scale.
It is known as the chameleon mechanism that matter-

energy density increases the mass of a scalar mode, making
themunobservable. Themechanism is applied to themodified
gravity. It has been shown that the signal is screened in
ground-based detectors such as LIGO, while space-based
ones such asLISAhave a chance toobserve [31]. In thiswork,
we have focused on the GWs radiation from gravitational
sources with a small matter energy density. The contribution
from thebackgroundmatter field is not taken into account.We
are interested in evaluating the screening mechanism for the
scalar mode in the solar system and on Earth.
The upper bounds on the scalar modes mass have been

estimated from the propagation speed constraints in the
observation period. It is much smaller than the inflation
scale and larger than the dark energy scale. In addition to
that, in phenomena where tensor modes are hardly radiated,
we are able to obtain similar constraints from the photon
instead of the massless tensor modes.
We conclude that the verification of FðRÞ modified

gravity using GWs is hopeful for the mode of the current

TABLE I. The upper bound of scalar mode mass m½eV=c2� at
1 Hz.

Period 10 kpc 100 Mpc 4200 Mpc

A second 5.8 × 10−21 6 × 10−23 9 × 10−24

A day 1.7 × 10−18 1.7 × 10−20 2.6 × 10−21

A year 3.2 × 10−17 3.2 × 10−19 5.0 × 10−20

A century 3.2 × 10−16 3.2 × 10−18 5.0 × 10−19
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accelerating expansion. It is difficult to obtain evidence of
modification on a high-energy scale such as inflation in the
current GW detectors. The scalar mode can be radiated
from a spherically symmetric gravitational source, which is
not predicted by GR. The observation of the scalar mode
directly proves the necessity of an extension of GR.
There are other sources of GWs.We are interested in GWs

from the early universe such as bubble collisions [52–55].
GWs from high-energy events in the early universe may
directly or indirectly influence observations of cosmological
phenomena [56]. These phenomena will become important
with the next generation of GW observations [57–64].

We will continue the work and compare the results in
FðRÞ gravity with other modified gravity theories such
as FðTÞ [65,66], FðGÞ [67–69], other formalisms, Palatini
FðRÞ [70] and Cartan FðRÞ [71]. By examining these
in detail, we hope to find the potential of the modified
gravity.
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