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Some binary black hole systems potentially observable in LISA could be in orbit around a supermassive
black hole (SMBH). The imprint of relativistic three-body effects on the waveform of the binary can be
used to estimate all the parameters of the triple system, in particular the mass of the SMBH. We determine
the phase shift in the waveform due to the Doppler effect of the SMBH up to second order in velocity, which
breaks a well-known exact degeneracy of the lowest-order Doppler effect between the mass of the SMBH
and its inclination. We perform several parameter estimations for LISA signals including this additional
dephasing in the wave, showing that one can determine accurately all the parameters of the three-body
system. Our results indicate that one can measure the mass of a 108M⊙ SMBH with an accuracy better than
∼30% (resp. ∼15%) by monitoring the waveform of a binary system whose period around the SMBH is
less 100 yr (resp. 20 yr).
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I. INTRODUCTION

Detection of gravitational waves (GWs) from compact
binaries by the LIGO-Virgo-KAGRA collaboration has now
become a routine process, with as much as 35 signals in the
second part of the third observing run [1]. Scenarios for the
formation of these compact binary black holes (BBHs)
include evolution of isolated stellar binaries [2–4], dynamical
formation in dense stellar clusters [5–8] or in active galactic
nuclei (AGN) [9–12]. Some of these events could also be
observed in the future space-based interferometer LISA
years before they merge in the LIGO-Virgo band [13,14].
Observation of the signal during the entire six years of the
recommended LISA mission duration will allow for an
exquisite measurement of the parameters of the system [14].
In particular, any environmental effect could be detectable if
it induces a large enough phase shift [15–18].
A typical example of these environmental effects is the

presence of a distant third body, called perturber, in the
vicinity of the BBH (such systems are called “hierarchical,”
in the sense that the motion can be split between the inner
orbit of the BBH and the outer orbit of the perturber).
Indeed, three-body systems are quite common in the
Universe: for example, 90% of low mass binaries with

periods shorter than 3 days are expected to belong to some
hierarchical structure [19], and we have now observed a
pulsar in a triple system [20]. Measurement of the param-
eters of the perturber from the waveform could provide
relevant insights into the formation and evolution process
of these BBHs, for example by allowing to determine if the
BBH lies in a nuclear star cluster [21,22] or in the vicinity
of an AGN [10,23,24]. This last possibility is in fact
particularly relevant for LISA detections, as the presence
of “migrations traps” in accretion disks [9] around super-
massive black holes (SMBH) implies the existence
of a population of BBHs detectable by LISA [24], with
1 to 10 observable events during the mission duration.
Additionally, the work of [25] predicts that between 4% and
40% of LIGO-Virgo detections could originate from
binaries in AGN environments. In fact, it has been proposed
that the relatively massive BBH GW190521 observed by
LIGO-Virgo has formed in an accretion disk around an
AGN [26], consistent with the fact that the Zwicky
Transient Facility reported an electromagnetic counterpart
to this event [27,28]. If indeed LISA detects binaries in
accretion disks close to AGN, several environmental effects
could be measured in the waveform: disk-induced migra-
tion and mass accretion [15–17,29], relativistic three-body
resonances [30] or Doppler effect due to the motion of the
center-of-mass of the BBH around the SMBH [31,32].
Measurement of the parameters of the SMBH from the
waveform could be of valuable importance since other
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astrophysical probes suffer from several uncertainties and
are often limited to subpopulations of SMBH [33].
The Doppler effect is usually thought to be the

largest, and numerous works studied in detail how the
longitudinal Doppler shift induced in the GW phase of
the BBH can allow to estimate the parameters of the third
body [23,24,32,34–39]. Unfortunately, the longitudinal
Doppler effect suffers from an intrinsic degeneracy
between mass of the perturber and inclination (the same
degeneracy being present in exoplanet mass determination
by radial velocities [40]). This can be intuitively understood
from the fact that this effect involves the projection of the
velocity of the center-of-mass of the BBH along the line-of-
sight: a very massive third object viewed in a quasiper-
pendicular configuration gives the same contribution as a
less massive object parallel to the line-of-sight (see Fig. 1
for an illustration). In order to break this degeneracy, it was
proposed to include higher-order effects in the waveform
stemming from the relativistic influence of the SMBH: de
Sitter precession of the angular momentum of the BBH due
to spin-orbit coupling [41], Kozai-Lidov oscillations [42], or
Shapiro time delay during the propagation of the GW [24].
In this article, we will explore yet another way of

breaking the degeneracies of the longitudinal Doppler
shift: the transverse Doppler effect, which depends on
the absolute value of the center-of-mass velocity and not
only on its projection along the line-of-sight. Technically
speaking, this effect is higher-order than the longitudinal
Doppler shift (it is quadratic rather than linear in the center-
of-mass velocity), however it can be shown to be of greater
magnitude than both the spin-orbit precession or Shapiro
time delay effects discussed above (see Fig. 2). We also
take into account in our analysis the gravitational redshift
due to the potential well of the outer object (which we

loosely include in our definition of “transverse Doppler
effect”), which has the same order-of-magnitude in terms of
post-Newtonian power-counting. We will show that includ-
ing this transverse Doppler effect in the waveform breaks
degeneracies, allowing to measure all parameters of the
outer orbit of the perturber. In contrast, studies using only
the longitudinal Doppler shift were able to measure only a
subset of these parameters. We will carry out parameter
estimation for typical BBHs in the vicinity of AGN using a
Monte-Carlo Markov Chain (MCMC) algorithm [43,44],
which will allow us to precisely study uncertainties and
degeneracies among parameters. Moreover, we will show
that our method can allow to determine the mass of a
108M⊙ perturber with a precision better than 30% up to

FIG. 1. Geometry of both inner and outer orbits, where L and
L3 are the angular momentum vectors of the inner and outer
binaries respectively.

FIG. 2. Observability of longitudinal and transverse Doppler
effects in the ðm3; P3Þ plane. The Doppler phase in Eq. (16) is
greater than 1 radian in the colored area: in blue the longitudinal
Doppler phase Ψjj > 1 and in orange the transverse Doppler
phase Ψ⊥ > 1, where Ψjj and Ψ⊥ were introduced below
Eq. (16). In the upper plot, we take the parameters of the inner
binary to be Mc ¼ 30M⊙ and f ¼ 12 mHz, while for the outer
binary we fix e3 ¼ 0.5, ι3 ¼ ω3 ¼ φ3 ¼ π=4. The lower plot has
e3 ¼ 0.05 and same other parameters. Also shown is the inner-
most stable circular orbit (ISCO) of the outer orbit, so that no
triple system can live on the bottom right corner of the plot.
Furthermore, we also plot the lines where other effects (Shapiro
time delay, de Sitter precession, Kozai-Lidov oscillations) give a
measurable phase shift: below these lines, these effects are
observable in principle. Note that for high masses, the transverse
Doppler effect covers the largest portion of parameter space
among all degeneracy-breaking effects even when the eccentric-
ity e3 is small. Finally, we also show the period corresponding to
a semimajor axis a3 ¼ 0.1 Pc, below which it has been suggested
that the detection rate of binaries produced by the interaction
channel around SMBH could be as high as 10–100 events per
year in advanced LIGO [8,45–47].
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periods of 100 years, corresponding to a distance of the
BBH to the AGN of 0.05 parsecs. For smaller periods, we
can reach a determination of the mass up to 14% accuracy.
This paper is organized as follows: in Sec. II we will

introduce our parametrization of three-body systems and
derive the expression of longitudinal and transverse Doppler
shifts in the GW phase, both in the time-domain and in the
frequency-domain using a stationary phase approximation.
In Sec. III we will give a qualitative analysis of the formula
giving the transverse Doppler effect. In particular, we will
explore the remaining degeneracies in limiting cases, and
we will derive an observability criterion. In Sec. IV we
will explain our methodology for parameter estimation via
Monte-Carlo Markov Chains, and in particular we will study
the maximal distance of the BBH to the AGN up to which it
is possible to measure the AGN mass with a reasonable
accuracy. We will conclude with a discussion in Sec. V.
Throughout this article, we will work in units where c ¼ 1
and use the ð−þþþÞ sign convention for the metric, while
Newton’s constant is denoted by the symbol GN .

II. DOPPLER PHASE FACTOR
IN FREQUENCY-SPACE

A. Three-body systems and osculating elements

In this section we will set up our conventions for
describing three-body systems and briefly discuss which
parameters we can in principle extract from the waveform.
We consider a hierarchical system of three bodies con-
stituted by a tightly bound inner binary BH of masses m1,
m2 whose center-of-mass orbits a distant perturber of mass
m3, and we denote by m ¼ m1 þm2 the mass of the inner
binary and M ¼ m1 þm2 þm3 the total mass of the
system. For the sake of generality, we will not assume
that m3 ≫ m1; m2 when deriving the expression of the
transverse Doppler terms, so that our computations are
valid as well if the perturber is not a SMBH. In a frame
centered on the total center-of-mass of the three-body
system, the positions of the three BHs are denoted by
y1, y2, and y3, and we introduce the center-of-mass of the
inner binary as mYCM ¼ m1y1 þm2y2. For simplicity, we
assume all BHs to be nonspinning. We can decompose the
motion into two ellipses osculating the trajectories, called
inner (resp. outer) orbit, of period P (resp. P3). Each ellipse
is characterized by a set of orbital osculating elements: for
the inner orbit, these are the semimajor axis a, eccentricity
e, initial phase φ, argument of perihelion ω, inclination ι
and longitude of ascending node Ω (resp. a3; e3;φ3;
ω3; ι3;Ω3 for the outer orbit), see Fig. 1. Of course,
one has the equations P ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=ðGNmÞ

p
and

P3 ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a33=ðGNMÞ

q
relating periods to masses and semi-

major axes. The radius vectors of the two orbits are denoted
by r ¼ y1 − y2 and R ¼ YCM − y3 respectively, and are
given as a function of planetary elements as

r ¼ a
�
ðcos η − eÞαþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin η β

�
;

α ¼ RzðΩÞRxðιÞRzðωÞux; β ¼ RzðΩÞRxðιÞRzðωÞuy;

ð1Þ

where ui and Ri are a unit vector and a rotation matrix
along the i axis respectively, and η is the eccentric anomaly
defined by Kepler’s equation η−esinη¼ 2πðt− tcÞ=Pþφ.
Here we have chosen to use the time at coalescence tc as
reference time, so that the angle φ is the binary phase at
coalescence. Analogous formulas hold true for the outer
orbit vector R. Finally, the three position vectors of the BHs
y1, y2, and y3 can be expressed with r and R as

y1 ¼ X3Rþ X2r; y2 ¼ X3R − X1r; y3 ¼ −XCMR;

ð2Þ

where X1 ¼ m1=m, X2 ¼ m2=m, X3 ¼ m3=M and XCM ¼
m=M are the mass ratios of both orbits.
In the literature on three-body systems, it is customary to

assume that the z axis of the coordinate system is aligned
with the total angular momentum (the so-called “invariable
plane” [48–50]). However, here we find it more convenient
to orient the z axis along the direction of the observer. We
will assume that the inner orbit is circular and emits GWs in
the frequency band of LISA. Then, it turns out that the only
inner osculating parameters entering into the waveform of
the inner binary are a, φ and ι [51]. On the other hand, the
additional Doppler shift induced by the motion of the
center-of-mass of the inner binary a priori depends on all
the parameters of the outer orbit and of m3, which adds
seven additional parameters to the waveform. As we will
see in Sec. II B, both longitudinal and transverse Doppler
shifts do not depend on Ω3, which reduces the additional
parameters to six. So, in total, the waveform will be
described by 15 parameters: 9 to describe the intrinsic
waveform of the inner binary (m1, m2, φ, ι, its distance dL,
the time to coalescence tc, the angles β, λ to describe the
location of the system in the sky and the orientation of the
plane of polarization ψ), and 6 parameters in the Doppler
shift, which we take to be a3, P3, e3, ι3, ω3, and φ3.

1

We will study in Sec. III the degeneracies present in the
additional parameters describing the Doppler shift.
An important remark here is that we will assume that all

osculating parameters of both orbits are constant through-
out the observation time, apart the inner semimajor axis a
which decays due to radiation-reaction. Of course, in
generic three-body systems the osculating elements evolve
over time (the Kozai-Lidov oscillations are a well-known

1Instead of using P3 and a3 as free parameters, one can use P3

andm3 as well; the former are more convenient for discussing the
degeneracies among parameters, while the latter are more
interesting for astrophysics purposes. We will switch from one
set of parameters to the other depending on their convenience.
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example [52,53]). What we assume here is that this
evolution occurs on a timescale long enough so that its
contribution to the waveform is negligible. In some
situations, this assumption could be violated, see
e.g. [41,42] for interesting examples on how to include
osculating elements variations into the waveform. Note
however that these effects are higher-order with respect to
the transverse Doppler effect to which this article is
dedicated: in the Lagrangian formulation of [54], the
three-body terms inducing variation of osculating elements
(as e.g. precession of the inner binary angular momentum)
are suppressed by a factor of at least ða=a3Þ3=2 with respect
to the transverse Doppler terms (dubbed “monopole”
there). Thus, they should give a relevant contribution to
the waveform only in a smaller section of parameter space,
as we will illustrate in Fig. 2.

B. Doppler effect in time domain

In this section, we will derive the expression of the
supplementary GW phase induced by both transverse and
longitudinal Doppler effects. Our discussion will be some-
what similar to the one presented in [37]. We can picture the
inner binary system as emitting GW in a “near zone”
situated close to its center-of-mass. Then, the lowest-order
quadrupole formula gives the plus and cross polarizations
of the GW received at the detector as [51]

hþðtÞ ¼
4

d
ðGNMcÞ5=3ð2π _ΦðtretÞÞ2=3

�
1þ cos2ι

2

�
cosΦðtretÞ

h×ðtÞ ¼
4

d
ðGNMcÞ5=3ð2π _ΦðtretÞÞ2=3 cos ι sinΦðtretÞ; ð3Þ

where d is the distance to the source,Mc¼ðm1m2Þ3=5=m1=5

is the chirp mass of the inner binary, Φ is (twice) its total
phase, and tret the retarded time defined by

tret ¼ t − dO;CMðtretÞ; ð4Þ

where dO;CM ¼ jdO;CMj is the norm of the distance of the
observer to the center-of-mass of the inner binary.
Introducing now the distance from the observer to the
total center-of-mass of the triple system dO;CMT and the
line-of-sight vector n ¼ dO;CMT=dO;CMT, one can write
dO;CM ≃ dO;CMT þ n · YCM up to negligible corrections in
1=dO;CMT. To simplify the following discussion, we have
assumed here that the cosmological redshift and proper
motion of the entire system are small; however, using well-
known properties of waveforms, one can obtain the GW
amplitude and phase at a cosmological redshift z0 simply
by replacing the distance dwith the luminosity distance dL,
multiplying all times, masses and distances by ð1þ z0Þ
while frequencies get enhanced by 1=ð1þ z0Þ.
We will neglect all Doppler corrections to the amplitude

of the GW, focusing only on the phase which is the

observable measured with the greatest precision in inter-
ferometers (in [24] it was shown that Doppler amplitude
corrections induce a 2% uncertainty in the estimation of the
luminosity distance to the source, which is much smaller
than the measurement error for this parameter). To find the
phase Φ, one should integrate the GW frequency fO
received by the observer over time. However, due to the
motion of the center-of-mass of the inner binary, this
frequency differs from the one in the source frame fS
where we can apply standard tools to compute the time-
evolution of the frequency via an energy flux. More
precisely, in the source frame the differential equation
governing fS is [51]

dfS
dtS

¼ 96

5
π8=3ðGNMcÞ5=3f11=3S : ð5Þ

The redshift factor z relating observer and source frame can
be found by expanding the proper time of the source dtS:

1

1þ z
¼ dtS

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνV

μ
CMV

ν
CM

q
≃ 1 −

V2
CM

2
−
GNm3

R
; ð6Þ

where we have expanded the metric gμν for small gravi-
tational fields, and Vμ

CM ¼ ð1;VCMÞ is the velocity 4-vector
of the center-of-mass of the inner binary. Note that the latter
expression contains both a boost factor and the gravita-
tional redshift, the combination of which we loosely denote
as “transverse Doppler effect.” Once again, note that to
keep the discussion as simple as possible we did not display
the cosmological redshift factor z0 in Eq. (6), since it can be
taken into account by simply following the prescription
described below Eq. (4). Using the definition of osculating
elements given in Sec. II A, one finds that the redshift z is
given by

z ¼ GNm3

a3

�
1þ X3

1 − e3 cos η3
−
X3

2

�
; ð7Þ

where X3 ¼ m3=M is the mass ratio of the outer mass m3,
and we recall that η3 is the outer orbit eccentric anomaly
defined by η3 − e3 sin η3 ¼ 2πðt − tcÞ=P3 þ φ3 where tc is
the time at coalescence (so that η3 < 0). Integrating Eq. (5)
with respect to the time t, we find the time-evolution of the
source frequency fS:

fSðtÞ ¼
5

8π
ð5GNMcÞ−5=8

��
1 −

GNm3

a3

�
1þ X3

2

��
ðtc − tÞ

−
GNm3ð1þ X3Þe3

a3

P3

2π
ðsin ηc3 − sin η3Þ

�
−3=8

; ð8Þ

where ηc3 is the value of the outer eccentric anomaly at
coalescence, ηc3 − e3 sin ηc3 ¼ φ3. Note that in this simple
quadrupolar approximation the frequency diverges at coa-
lescence. Using that fO ¼ fS=ð1þ zÞ, we can now find the
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phase using Φ ¼ 2π
R
dtfO. Keeping terms only to first

order in GNm3=a3 (i.e. to 1PN order for the outer orbit), we
find that the integral can be performed analytically and the
phase reads

Φ ¼ −2
�

tc − t
5GNMc

�
5=8

�
1 −

5

16

GNm3

a3
ð2þ X3Þ

�

þ 5

8π
P3ð5GNMcÞ−5=8

GNm3

a3
ð1þ X3Þe3

×
sin ηc3 − sin η3
ðtc − tÞ3=8 ; ð9Þ

where we have chosen to normalize all phase factors to zero
at coalescence. This formula give the transverse Doppler
shift due to the motion of the center-of-mass of the inner
binary (the longitudinal Doppler effect coming only from
the retarded time used in Eq. (3), see next section or
Ref. [39]). Let us make a few comments about this
equation. The first term in the phase can be identified
with a modification of the leading-order PN coefficient
(which is proportional to ðtc − tÞ5=8). As such, it would be
impossible to determine the parameters of the three-body
system using this term only, as they would be completely
degenerate with the chirp mass Mc; this situation is
analogous to the effect of a constant cosmological redshift.
However, note that it is still important to include the
corrections proportional to GNm3=a3 when doing param-
eter estimation since it can lead to biases in the measured
value of Mc. On the other hand, the second term in the
phase Φ presents a more complicated time-dependence.
While we will analyze different limits of this transverse
Doppler shift in Sec. III, let us just state here that, contrary
to the longitudinal Doppler effect, it does not depend on the
product a3 sin ι3 and consequently can potentially allow to
break this degeneracy.

C. Stationary phase approximation

In order to use waveforms in data analysis, it is necessary
to compute their Fourier transform. In this section, we
will derive the expression of Doppler phase shifts in the
Fourier domain, using the stationary phase approximation
(SPA) to compute the integral. The Fourier transform of
the þ polarization reads (analogous formulas hold true
for the × polarization):

h̃þðfÞ ¼
Z

dtAðtretÞ cosΦðtretÞe2iπft;

AðtretÞ ¼
4

d
ðGNMcÞ5=3ð2π _ΦðtretÞÞ2=3

�
1þ cos2ι

2

�
: ð10Þ

We switch to the retarded time as an integration variable. As
stated previously, we will neglect all Doppler corrections to
the amplitude of the GW, keeping only the phase factors.

Thus, we can assume that the Jacobian of the change of
variable is dtret=dt ¼ 1 and we have

h̃þðfÞ ¼ e2iπfdO;CMT

Z
dtret AðtretÞ cosΦðtretÞe2iπfðtretþn·YCMÞ;

ð11Þ

where dO;CMT and n were introduced below Eq. (4).
Splitting cosΦ ¼ ðeiΦ þ e−iΦÞ=2, we see that there is a
stationary point at the time t�ðfÞ defined by

2πf ¼
_Φ

1þ n · VCM

				
t�ðfÞ

: ð12Þ

Evaluating the integral by expanding the integrand to
second order around the stationary point t�ðfÞ, and
neglecting once again all Doppler corrections to the
amplitude, we find that h̃þðfÞ ¼ AeiΨ with

A ¼ 1

π2=3

�
5

24

�
1=2 1

d
ðGNMcÞ5=6

1

f7=6

�
1þ cos2ι

2

�
;

Ψ ¼ 2πfðt� þ dO;CMT þ n · YCMðt�ÞÞ −Φðt�Þ − π

4
: ð13Þ

Remains to solve Eq. (12) defining t�ðfÞ and plug it back in
the phase. This can be done perturbatively since VCM ≪ 1.
Since _Φ ¼ fSð1 − zÞ where fS and z are given in Eqs. (7)
and (8), there are also corrections of order V2

CM in Eq. (12)
defining t�, coming from the transverse Doppler effect.
We thus split t� ¼ t�ð0Þ þ t�ð1Þ þ t�ð2Þ where t�ð1Þ is of order

VCM and t�ð2Þ of order V
2
CM, while t�ð0Þ is the usual time to

coalescence in the quadrupolar approximation:

tc − t�ð0ÞðfÞ ¼
5

256
ðGNMcÞ−5=3ðπfÞ−8=3 ð14Þ

this expression being found by equating f to the lowest-
order fS shown in Eq. (8). Then, by perturbatively solving
Eq. (12) one finds

t�ð1Þ ¼
5

96
n · VCMðGNMcÞ−5=3ðπfÞ−8=3; ð15Þ

while the explicit expression of t�ð2Þ will not be needed in

the following. We now expand the phase defined in Eq. (13)
up to second order in VCM (i.e., to the order at which the
transverse Doppler effect shows up). Using that at lowest
order _Φ ¼ 2πf we find that indeed the term containing t�ð2Þ
simplifies from the phase and using Eqs. (9) and (15) we are
left with
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Ψ ¼ Ψ0 þ 2πfn · YCM þ 1

32
ðπGNMcfÞ−5=3

×

�
5

3
ðn · VCMÞ2 −

5

8

GNm3

a3
ð2þ X3Þ

�

þ P3f
GNm3

a3
ð1þ X3Þe3 sin η3; ð16Þ

where Ψ0 ¼ 2πft0c − π
4
þ 3ðπGNMcfÞ−5=3=128 is the usual

phase of an isolated binary system in the quadrupole
approximation, and we have absorbed an unimportant
constant in the definition of the time at coalescence t0c.
Note that η3 implicitly depends on f through its definition
η3 − e3 sin η3 ¼ 2πðt�ð0ÞðfÞ − tcÞ=P3 þ φ3. In the above

formula (16), the first non-trivial term Ψjj ¼ 2πfn · YCM

is the lowest-order longitudinal Doppler shift which has
been discussed at length in the literature [23,24,32,34–39].
The other terms are suppressed by VCM with respect to this
lowest-order Doppler shift and contain both longitudinal
and transverse components. Note that, as discussed below
Eq. (9), the terms proportional to a constant multiplying
ðπGNMcfÞ−5=3 just renormalize the measured value of the
chirp mass, and as such do not permit a measurement of the
parameters of the three-body system. Thus, the only useful
transverse Doppler term for data analysis purposes is the
one on the second line that we denote by Ψ⊥. In terms of
the osculating elements introduced in Sec. II A, the scalar
products n · YCM and n · VCM read

n · YCM ¼ −X3a3 sin ι3
h
ðcos η3 − e3Þ sinω3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
sin η3 cosω3

i
; ð17Þ

n · VCM ¼ −X3

ffiffiffiffiffiffiffiffiffiffiffi
GNM
a3

s
sin ι3

1 − e3 cos η3

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e23

q
cos η3 cosω3 − sin η3 sinω3

i
: ð18Þ

Before moving on and analyzing some qualitative
properties of the Fourier space Doppler shift in (16), let
us make a comment about the validity of the perturbative
expansion that we used to evaluate t�. In our derivation,
there is an implicit assumption about the fact that the time-
to-frequency map implied by Eq. (12) is singled-valued.
However, if the outer perturber m3 is really close to the
inner binary, this assumption could be violated (see
e.g. [23,24] for an interesting discussion). This phenome-
non can happen when df=dt ≤ 0. This means that the
Doppler shift due to the acceleration of the outer binary,
2πfn · ACM, has to be greater than the usual chirping due
to radiation-reaction given in Eq. (5). Consequently, our
computations are valid only when P3 is larger than a
limiting value Plim

3 :

P3 ≥ Plim
3 ¼ 11 yrðsin ι3Þ3=4

�
f

0.01 Hz

�
−2
�

Mc

30M⊙

�
−5=4

×

�
m3

4 × 106M⊙

�
1=4

: ð19Þ

For such small outer periods, we would anyway expect that
the waveform is impacted by more relativistic effects than
the ones that we considered in this article, like e.g. the
Shapiro time delay discussed in [24]. Thus, we will only
consider outer periods greater than Plim

3 in all our analysis.
Finally, note that as underlined below Eq. (4), all

quantities appearing in the phase (16) should be understood
as detector frame quantities, related to source frame ones
by a cosmological redshift factor ð1þ z0Þ: P3 ¼ ð1þ z0ÞPs

3,
a3 ¼ ð1þ z0Þas3, m3 ¼ ð1þ z0Þms

3, Mc ¼ ð1þ z0ÞMs
c,

f ¼ fs=ð1þ z0Þ where the s superscript denotes a quantity
in source frame.

III. QUALITATIVE ANALYSIS: LIMITS
AND DEGENERACIES

In this section wewill analyze the preceding formula (16)
for the Doppler phase shift in different limits and discuss
the measurability of the parameters of the outer orbit as
well as their degeneracies. In the following, we assume that
we know the time at coalescence tc from an analysis of the
waveform of the inner binary; otherwise we can absorb the
outer phase φ3 in a shift of the initial time.

A. Generic case

In the generic case, the question of whether there exist
degeneracies among parameters of the three-body system is
essentially the same than asking what is the frequency-
dependence of each term in the phase (16). Indeed, if two
terms feature the same frequency-dependence, then their
amplitude cannot be determined separately and we are in
the presence of a degeneracy. In the phase (16), the only
transverse Doppler term useful for data analysis purposes
is Ψ⊥ in the second line, since the transverse Doppler
component of the first line is degenerate with the chirp mass
as discussed above. However, the frequency-dependence of
this term is completely degenerate with the lowest-order
longitudinal Doppler term, cf. Eq. (17). Letting aside the
second-order longitudinal Doppler shift ðn · VCMÞ2 for
the moment, we are thus led to ask how many parameters
of the outer orbit can be measured with the first-order
longitudinal Doppler term.
As already emphasized below Eq. (16), the eccentric

anomaly depends on frequency through η3 − e3 sin η3 ¼
2πðt�ð0ÞðfÞ − tcÞ=P3 þ φ3. Thus, the frequency-dependence

of the eccentric anomaly is strongly impacted by the
parameters e3, P3, and φ3, and we can hope for a good
determination of these three parameters. On the other hand,
the n · YCM term depends on the eccentric anomaly only
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through two terms cos η3 and sin η3, while there remains
three parameters which multiply the amplitude of these
terms, a3, ι3 and ω3. Thus, the lowest-order longitudinal
Doppler effect alone with the transverse Doppler shift
would not enable to measure all parameters of the three-
body system. Fortunately, the second-order longitudinal
Doppler term ðn · VCMÞ2 saves the day, since it features
additional dependence on η3 like e.g. cos 2η3. Thus, in the
generic case we can a priori hope to measure all
parameters of the three-body system without any remain-
ing degeneracy. We will now examine different limits of
the phase shift (16).

B. Small eccentricity

In the small-eccentricity limit e3 → 0, the transverse
Doppler term on the second line of Eq. (16) vanishes and
there remains only longitudinal Doppler terms. In this case,
one can show that there is an exact degeneracy a3 sin ι3
which we mentioned in the Introduction. This is evident
from the expression of n · YCM given in Eq. (17), while for
the n · VCM one has to use Kepler’s law to trade the massM
for the period P3 used in data analysis: ðGNM=a3Þ1=2 ¼
2πa3=P3. Furthermore, it turns out that only the combi-
nation φ3 þ ω3 enters the scalar products (17) and (18).
Thus, in this case one can measure only three parameters
of the outer orbit, P3, a3 sin ι3 and φ3 þ ω3, which are the
parameters discussed in previous studies using only the
longitudinal Doppler shift [34–36].

C. Face-on systems

When the system is observed face-on ι3 ¼ 0, the
longitudinal Doppler shift vanishes. Since the transverse
Doppler term does not depend on ω3, one can measure the
parameters P3, e3, and φ3 from the frequency-dependence
of this term, and finally the parameter a3 from the overall
amplitude. Thus, this completely determines the parameters
which are most relevant for astrophysics.

D. Large outer period

The qualitative frequency-dependence of the Doppler
phase shift (16) will mainly depend on the ratio between the
outer period P3 and the observation time Tobs (which we
consider to be of the order of the radiation-reaction time-
scale for BHs systems which have a non-negligible chirp-
ing in the LISA band). Indeed, if P3 < Tobs we will observe
more than one revolution of the outer orbit during the
observation time; consequently, we will be able to measure
the amplitude of terms oscillating with the outer period
like 2πfn · YCM. Since the frequency-dependence of all
Doppler terms is quite different, one can hope for a good
determination of the parameters of the outer orbit in this
case. On the other hand, if P3 ≫ Tobs we probe only a small
portion of the outer orbit. In this case, one can expand all
Doppler terms for ηc3 − η3 ≪ 1 and one generically finds

that the frequency-dependence of the phase is, up to an
irrelevant constant shift of the time at coalescence,

Ψ ≃ γ1ðπGNMcfÞ−5=3 þ γ2ðπGNMcfÞ−13=3
þ γ3ðπGNMcfÞ−7 þ… ð20Þ

where the γ’s are constants depending on the parameters
of the outer orbit, with the limit that γ1 ¼ 3=128, γ2 ¼
γ3 ¼ … ¼ 0 when a3 is sent to infinity (or equivalently
whenm3 ¼ 0). More precisely, dimensional analysis shows
that the scaling of γn for n ≥ 2 is

γn ∼
�
GNMc

P3

�
n−1

×

�
GNm3

a3

�
k
; ð21Þ

where k ¼ 1=2 for the lowest-order longitudinal Doppler
effect, and k ¼ 1 for transverse Doppler. Thus, the Doppler
shift is encapsulated in a series of post-Newtonian coef-
ficients, γ1 being a change in the leading-order quadrupole
phase, γ2 corresponding to a −4PN term, γ3 to −8PN, and
so on and so forth (this scaling can be seen from the fact
that ðGNMcfÞ2=3 is the traditional 1PN order frequency
parameter for the inner binary). Of course, even if they
appear at negative PN orders, these terms are more and
more suppressed by the ratio GNMc=P3 which is small for
large outer period, so that the amplitude of these terms is
smaller and smaller. Eventually, one will reach a point in
the expansion where the term parametrized by γn gives a
contribution to the phase smaller than the observability
criterion.
Thus, depending on the actual value of the ratio P3=Tobs

and the SNR, only a finite number of PN coefficients can be
measured and this can be insufficient to determine all the
parameters of the outer orbit. For example, if only γ1 and γ2
can be measured (as is discussed e.g. in [23]), then since γ1
is used to determine the chirp mass one is left with one
measured parameter containing all the 6 parameters char-
acterizing the outer orbit. In this case, it makes more sense
to measure only the amplitude of this −4PN coefficient
without trying to recover the parameters of the outer orbit,
as has been proposed in [23], where it is also shown that
this −4PN coefficient is degenerate with other environ-
mental effects.

E. Observability criterion in the ðm3;P3Þ plane
Finally, one can ask the question of what is the portion of

parameter space where the phase shift given in Eq. (16) is
observable. While we will answer more quantitatively to
this question in Sec. IV, here we will just give some useful
order-of-magnitudes estimates by requiring that the phase
shift induced by Doppler terms is greater than 1 radian.
When the outer period is large, this is equivalent to require
than γ2ðπGNMcfÞ−13=3 ≥ 1, where γ2 has been introduced
in the last Sec. III D (the term proportional to γ1 is
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completely degenerate with the chirp mass and cannot be
used to detect the Doppler effect). From the scaling of γ2
shown in Eq. (21), we easily see that it imposes a maximal
value of P3 above which Doppler terms are unobservable.
On the other hand, when the outer period P3 is of the

order or less than the observation time, the requirement of
observability translates in a minimal bound on P3 in order
for Doppler effects to be observable. This can be seen from
the fact that the amplitude of terms oscillating with η3 in
Eq. (16) is proportional to a3 ∼ ðGNMP2

3Þ1=3 (for the
n · YCM term) or P3GNm3=a3 ∼ ðG2

NM
2P3Þ1=3 (for the

transverse Doppler term on the second line). Thus, there
is actually a bounded zone in the ðm3; P3Þ plane where
longitudinal or transverse Doppler terms are observable.
This section of parameter space is shown in Fig. 2.
In the same Fig. 2, we have also shown for illustrative

purposes the sections of parameter space where other
effects already discussed in the existing literature give a
phase shift greater than 1, allowing to further break
the degeneracies among parameters. These effects are
the Shapiro time delay [24], the de Sitter precession of the
BBH angular momentum [41], and the Kozai-Lidov oscil-
lations [42]. To estimate the phase shift due to the Shapiro
time delay, we use the formula given in [24], separating
the two limiting cases of a period greater or smaller than the
observation time as before. However, concerning the
Kozai-Lidov and de Sitter precession effects, we simply
use the criterion presented in [41], stating that the period of
these effects should be less than ∼100 yr to allow for a
detection by a network of interferometers. Overall, we see
that the transverse Doppler effect covers the largest portion
of parameter space among all degeneracy-breaking effects,
particularly in the case where the outer perturber is a
SMBH which we will consider in the following.
Finally, we also illustrate in Fig. 2 how reducing the

outer eccentricity e3 affects the magnitude of the transverse
Doppler terms. Indeed, we have shown in Sec. III B that the
transverse Doppler effect vanishes if the outer eccentricity
is e3 ¼ 0. Furthermore, in the migration traps of AGNs
where there could be binaries with strong three-body
effects induced by the SMBH, we expect small outer
eccentricities as migrating bodies in AGN disks, similarly
to planets in protoplanetary disks, are expected to circular-
ize [24]. However, as one can see in the lower panel of
Fig. 2, even for an outer eccentricity as low as e3 ¼ 0.05
the transverse Doppler effect covers the largest region of
parameter space among all degeneracy-breaking effects
when the third mass is a supermassive black hole.

IV. PARAMETER ESTIMATION WITH MCMC

A. Analysis method

We want to infer the parameters of the triple system, the
set of which we denote by θ. The posterior distribution of θ
given the gravitational wave data is denoted as pðθjdÞ.

Then, Bayes’ theorem relates the likelihood pðdjθÞ to the
posterior as pðθjdÞ ¼ pðdjθÞpðθÞ=pðdÞ, where pðθÞ is
the prior on θ, and pðdÞ is a normalization constant
(that depends on the data), which is of no interest to us
in this particular case. We assume that the noise in the
interferometer is stationary and Gaussian. Thus, it can be
described by the (Fourier transformed) power spectral
density (PSD) SnðfÞ. Under this hypothesis, the likelihood
is given by [51]

pðdjθÞ ¼ exp

�
−
1

2
ðd − hðθÞjd − hðθÞÞ

�
; ð22Þ

where d is the data and hðθÞ is the gravitational wave
template. We have defined the scalar product (or overlap)
over frequency as

ðd1jd2Þ ¼ 4R
�Z

∞

0

d1ðfÞd2ðfÞ�
SnðfÞ

df

�
: ð23Þ

The real part is written as R and an asterisk indicates the
complex conjugate. In fact, for LISA data analysis the
overlap shown in Eq. (23) is a sum of three terms, one for
each LISA time-delay interferometry (TDI) observable as
described in [14]. In the following simulations of data, we
assume that the particular signal has no noise component,
that is d ¼ hðθ̂Þ, where the hatted quantities represent
the true parameters. Therefore, the resulting likelihood
distributions should peak around the injected values,
contrary to what one expects with a nonzero noise
contribution to the signal.
Although the use of a Fisher matrix approach to

evaluate the uncertainties in estimating the parameters of
a LISA source is quite common in the literature (see
e.g. [32,34–36,38]), we chose not to compute it and instead
evaluate uncertainties by running several MCMCs to
estimate the posterior distribution pðθjdÞ. The main reason
for this choice is that, on top of being inaccurate for sources
with low signal-to-noise ratio [55], the Fisher matrix Γ for
our three-body system parameter estimation turns out to
be very ill-conditioned so that computing its inverse Γ−1

(representing the uncertainties in parameters) is prone to
large numerical uncertainties. This can be understood as
follows: the condition number κ is approximately the ratio
of the largest to the lowest eigenvalue of Γ, which means
that any numerical uncertainty of the order of 1=κ in the
computation of Γ will translate in an order-one error in the
computation of the inverse Γ−1. Now, it turns out that there
is a large hierarchy in the eigenvalues of Γ, which is related
to the fact that the observable parameters in the Doppler
phase for P3 > Tobs are the constants γn defined in
Eq. (20): since for larger n, γn leads to a smaller phase
shift, its uncertainty will be larger. Typically, we find
that for a m3 ¼ 108M⊙ central BH and an outer
period P3 > 40 yr, the condition number will be κ > 108.
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Since the integral defining the gravitational-wave overlap
entering into the elements of Γ is computed with a 10−8

accuracy, this means that we cannot rely on a Fisher-based
approach for periods P3 > 40 yr, while we will explore
parameter estimation up to P3 ≲ 150 yr with our MCMC-
based approach. As we will see in Sec. IV C, the approxi-
mation of Gaussian errors on the triple parameters is often
insufficient to describe the full posterior in the case of
periods larger than 90 years.

B. Technical aspects of the MCMC analysis

We use LISABETA [56] to estimate the posterior density
distribution for the three-body signal. The IMRPhenomD

waveform approximant [36,57,58] is assumed to describe
the observed signal, considering only the dominant (2,2)
harmonic. We model the phase shift induced by the three-
body system by multiplying the waveform by phase factor
eiΨ in Fourier space, whereΨ is given in Eq. (16). Note that
in particular the dephasing is given in terms of simple
functions of the parameters of the three-body system, so
that it is very quick to compute numerically and can be
efficiently used in the MCMC analysis. This is to be
contrasted with the approach adopted in e.g. [34,36,38],
where the phase shift depends on an integral and so could
be more time-consuming to implement numerically. For the
LISA noise curve, we use the “SciRDv1” model [59].
We use 200 walkers and—depending on the of the period

of the inner binary—these undergo 80.000 to 160.000
convergence steps. At least 10.000 steps have to be
discarded to make sure the chains are “burned-in” (refer
to Appendix C for the computation of the Gelman-Rubin
criterion as a verification of the chains’ convergence). The
choice of a basis of parameters to sample the probability
distribution is of great importance, since a better para-
metrization can lead to a much faster convergence time of
the MCMC. This can be understood from the fact that, in
our system, some parameters are measured with a much
better precision than other ones. If we were to parametrize
the system without identifying the precisely measured
parameters, it would take a lot of steps to reveal in
parameter space the subtle degeneracies showing the tight
constraints on some combination of parameters. On the
other hand, using a basis taking into account these
degeneracies, the MCMC converges quickly on the param-
eters with a small variance and spends most of its time only
exploring the basis of parameters with a larger variance.
To make this abstract discussion more concrete, let us

specialize it to our particular case. We know that the
parameters of the three-body system which are measured
with the best precision are the ones probed by the
longitudinal Doppler shift, with is the largest phase shift
caused by the third body on the waveform. As emphasized
many times in this article, when using the longitudinal
Doppler shift only to estimate the parameters of the
three-body system one is faced with degeneracies among

them, in particular between the outer mass m3 and the
inclination ι3. Indeed, the amplitude of the longitudinal
Doppler shift shown in Eq. (16) is proportional to a3 sin ι3∼
ðGNm3P2

3Þ1=3 sin ι3, where we have used Kepler’s law to
obtain this scaling (and the fact that m3∼M¼m1þm2þm3

in the physical situations considered in this article).
Thus, the precisely measured parameter is m1=3

3 sin ι3.
On the other hand, the only way to measure m3 and ι3
independently is to use the transverse Doppler shift, which
is an effect of smaller magnitude so that these parameters
will be measured with less precision. We could use the
basis ðm3; ι3Þ in our MCMC analysis but because of the
aforementioned reason, the convergence would be slow.
Instead, we will use the basis ðm3 sin3 ι3; m3Þ since we
expect convergence to be very quick on the first parameter.
Actually, we will use for the parameters characterizing the
outer orbit the complete basis ðm3sin3ðι3Þsin3ðφ3 þ ω3Þ;
m3sin3ι3; m3; P3; e3;φ3 − ω3Þ since we observe even better
convergence results with these parameters. The reason
for using this basis is, when taking the small-eccentricity
e3 → 0 and large period P3 ≫ Tobs limits (which is an
approximate limit of the parameters we use), one can
observe that the lowest-order longitudinal Doppler effect is
proportional to m1=3

3 sin ι3 sinðφ3 þ ω3Þ. When displaying
the results of the analysis, we will finally convert the
probability distribution to the “physical space” of param-
eters ðm3; P3; e3; ι3;ω3;φ3Þ.
We will assume that the binary is observed as it inspirals

through the LISA sensitivity band in frequency, and then at
a later stage it is observed by a ground based detector. Thus,
for the present analysis, we assume that all inner binary
parameters such as chirp mass, mass ratio, inclination, sky
position, etc. are measured with such high precision that we
assume them to be known. (Appendix B quantifies the
impact from fixing the binary’s chirp mass on the uncer-
tainty on m3.) When the inner binary parameters are not
fixed, the parameters that describe the outer orbit are much
less constrained—see the discussion in Ref. [24]. This loss
of precision is due to the correlations among inner and
outer binary parameters. For example, in the case of large
outer periods discussed in Sec. III D, the time at coales-
cence and the chirp mass are degenerate with some
combination of the parameters of the three-body system.
For the priors on the triple system parameters applied,
please consider Appendix A. Note that in order to accel-
erate convergence, we use a narrow range of priors around
the true value of the system parameters. This is only used
for convenience, and by no means we pretend to provide
here a realistic data analysis of LISA. The full challenge of
parameter estimation of a three-body system given a strain
data with unknown signal is a very complicated task which
is way beyond the scope of this paper. Still, it would be an
important avenue for future work. It is also interesting to
note that some detections of triple systems could be missed
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in LISA if we were to use only vacuum two-body
templates, since the waveform would not be accurate
enough for a matched-filter analysis (see the more in-depth
discussion in [24]).

C. Results

In order to quantify the uncertainties with which we can
constrain the parameters of the third body, we simulate a
triple system, the parameters of which are summarized in
Table I. The particular values of the inner binary parameters
were chosen very similar to the ones of [60]. This
GW150914-like event would merge in 8 years observation
time. The SNR associated to the event is 13.75.
An example of an analysis of a triple system with an

outer period of 33 years can be found in Fig. 3. In
accordance with expectations, for such low period the
mass m3 is measured with high precision: here to ∼20%.
However, we also find that the probability distribution is
not centered around the true values of the triple system
parameters, even though we neglected the noise contribu-
tion to the signal. This is because we estimate the posterior
distribution which includes the prior on the triple param-
eters, and we have assumed a log uniform prior on m3 for a
quicker convergence of the chains. This, in turn, moves the
posterior away from the true mass m3 and shifts it toward
lower values. However, we checked that the given uncer-
tainties do not depend on the choice of the prior.2

Figure 3 underpins the need of a full parameter
estimation—a Fisher matrix approach cannot capture
the full posterior distribution. The shape of the posterior
of m3 and ι3 can be readily understood: the data constrains
the observable m3 sin3ðι3Þ. Inverting this gives ι3 ¼
arcsinðc=m1=3

3 Þ, where c ¼ m̂1=3
3 sinðι̂3Þ is a constant that

will depend on the values of m̂3 and ι̂3 that maximize the
likelihood distribution. Indeed, this approximation
describes well the posterior distribution between these
two variables: the posterior samples are distributed along
this thin line in parameter space. This explains the
long convergence time for the naive choice of sampling
parameters m3 and ι3—many proposed samples are
rejected, since they do not follow the precise trajectory
in parameter space.
Another interesting property visible from Fig. 3 is the

crucial role of the transverse Doppler term to estimate the
mass of the SMBH m3. Indeed, taking only into account
the longitudinal Doppler term in the phase shift (16) would
result in an exact degeneracy when measuring m3 and ι3,
in the form m3 sin3 ι3 ¼ Const. Thus, with longitudinal
Doppler one would only be able to estimate a minimal mass
for m3, as the previous equation allows for solutions with
arbitrarily large masses if ι3 is sufficiently close to zero.

Estimating the mass of the SMBH with the longitudinal
Doppler shift only would therefore result in a systematic
discrepancy between this minimal mass mmin

3 ¼ Const and
the true mass m3. We have also shown the value of mmin

3 in
Fig. 3 in order to illustrate the importance of this systematic
error on this particular example.
Note that for a period as short as P3 ¼ 33 yr, other three-

body effects such as the Shapiro time delay discussed
in [24] should a priori be taken into account when
modeling accurately the waveform of a three-body system.
We do not include them here because they will likely bring
very little improvement on the accuracy of parameter
estimation. Indeed, their magnitude is always smaller than
our degeneracy-breaking transverse Doppler term, as
can be seen from Fig. 2 and the discussion at the end of
Sec. II A. However, it would be very interesting to build a
complete waveform template taking into account all of
these effects in the future. As the period increases the
Doppler effect caused by the central BH diminishes and
we expect the uncertainty on the determination of the
parameters of the outer orbit to increase, as well as
correlations among different parameters as already dis-
cussed in Sec. III D. Eventually we reach a point where the
convergence of the MCMC is very slow and the uncertainty
on the SMBH mass m3 becomes as large as the mass itself.
To study to which precision the mass of the SMBH m3

can be measured we calculate the uncertainty of m3 as it
varies with the orbital period of the outer binary. Three
cases are considered: a varying SMBH mass with values
of 107M⊙, 108M⊙, and 109M⊙. We restrict the ranges of

TABLE I. Parameters of the hierarchical system considered.
The first set of parameters characterizes the inner binary, while
the second describes the outer orbit and are associated to the
Doppler shift. Both sets are defined in the main text below
Eq. (2). Note that the masses are given in the detector frame.

Parameter Value Dimension

M 70 M⊙
q 1.3 � � �
dL 250 Mpc
ι 0.5 � � �
β 1.0472 � � �
λ 1.9 � � �
χ1 0 � � �
χ2 0 � � �
ϕ 0.7 � � �
ψ 1.2 � � �
fstart 0.01272 Hz

m3 107=108=109 M⊙
ι3 0.8 � � �
ω3 0.35 � � �
P3 Varying yr
e3 0.1 � � �
ϕ3 0.7 � � �

2Unfortunately, for large periods the analysis did not converge
if a uniform prior on m3 was assumed which is the reason for
which we chose a uniform-in-logarithm prior.
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orbital periods to below 154 yr, since the analysis did not
converge for larger periods due to correlations among
parameters. In the following, we will denote the uncertainty
corresponding to one standard deviation of x as Δx. When
the relative error of a variable x is given, we calculate it
as Δx=medianðxÞ.
The uncertainty with which the SMBH mass can be

constrained is dependent on P3. For lower P3 the inner
binary is deeper in the potential well of the SMBH, and thus
the frequency modulation of Eq. (6) is stronger, resulting in
a more precise measurement. From the aforementioned
equation one can also see that the frequency shift is stronger

for higher mass. This trend is also clearly visible in Fig. 4.
The best (relative) constraint ofm3 is for the largestm3 and
the smallest outer period of 32 years considered here, with
Δm3=m3 ∼ 5%. For a lower mass of 108M⊙ (107M⊙), and
a period of P3 ¼ 20 yr, the relative uncertainty increases
to 14% (34%). It is interesting to note that no other
mechanism was proposed to accurately measure the mass
of the SMBH from the GW of the inner binary for such
high values of P3: the Shapiro time delay and de
Sitter precession effects already mentioned in the intro-
duction were restricted to smaller period values (typically
1–2 years). Other astrophysical methods used to determine

FIG. 3. The result of the MCMC analysis for a SOBH that is in orbit around a SMBH withm3 ¼ 108M⊙, and an eccentricity e3 ¼ 0.1.
The true parameters are indicated with a black line. We have converted the posterior samples from the unphysical parameters
m3 sin3ðι3Þ sin3ðφ3 þ ω3Þ, m3 sin3ðι3Þ, and φ3 − ω3 back to the variables of interest ι3, ω3 and φ3. However, in the figure it remains
clearly visible that a combination ofm3 and ι3 is much better measured than the parameters in themselves, as well as some combinations
of angles. One can measure the mass of the central BH with a precision of ∼20%. Note also that the initial phase φ is sampled over in the
interval ½0; π�, but not shown here. We have also added as a green line the minimum massmmin

3 corresponding to the parameter which we
would estimate using the longitudinal Doppler shift only (see discussion in the main text).
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SMBH masses with similar precision are restricted to a
sub-population of BH [33], while our analysis covers all
SMBH masses and could be used up to SMBH distances of
a few GPc.
For larger periods, we generically find that the mass

of the SMBH cannot be reliably estimated for a period
P3 ≳ 150 yrs. Note that the naive estimate in Fig. 2 predicts
a measurable transverse Doppler phase shift even for
periods up to P3 ∼ 1000 yr. This difference highlights
the important effect of correlations between parameters
for a reliable parameter estimation based on this additional
phase shift.

V. CONCLUSIONS

With the future space-based GW detector LISA, we will
detect stellar origin binaries many years before their
coalescence. Depending on their astrophysical abundance
we will observe 1 to 10 during the mission lifetime of
LISA [24]. Some of these binaries are expected to be in
orbit around a SMBH and the presence of this massive
object leaves an observable imprint: the shift due to
the motion of the inner binary in the direction of the line
of sight to the observer (here termed the longitudinal

effect). Besides this lowest-order (in post-Newtonian
power-counting) Doppler shift, several other relativistic
three-body effects can affect the waveform, for example the
Shapiro time delay due to the curved spacetime around the
SMBH through which the signal has to propagate. These
two effects allow one to measure the mass of the SMBH as
was demonstrated in [24].
However, there is another effect whose characteristics

have not yet been explored in the literature—the signal also
undergoes an additional frequency shift when it has a
nonzero eccentricity. We refer to this as the transverse
Doppler effect. In the work here-presented, we have
explored how the mass of the SMBH can be measured
when taking this latter effect into account. We found that
the inclusion of the transverse Doppler shift, in the best
case scenario considered here of a SMBH mass m3 ¼
109M⊙ and outer period P3 ¼ 32 yr, allows for a meas-
urement of the SMBH mass with a relative uncertainty of
5%. This uncertainty is dependent on the period of the inner
binary around the central object P3, as well as the mass of
the central BH m3. For a lower mass of 108M⊙ (107M⊙),
and a period of P3 ¼ 20 yr, the relative uncertainty of m3

increases to 14% (34%). For shorter periods, the uncer-
tainty would be even lower, but we did not explore
this range of parameter in our article since it would
require to include many more three-body relativistic
effects in order to obtain a proper modeling of the signal
(the most important being that the frequency evolution can
contain anti-chirping parts). One advantage of our approach
is that we can obtain a reasonable estimate of the SMBH
mass m3 even for outer periods much larger than the
observation time of LISA. For example, we find that
one can estimate m3 with 30% uncertainty for a period
P3 ¼ 100 yr and a mass m3 ¼ 108M⊙. To our knowledge,
no other effect has been proposed in the literature to
evaluate the SMBH mass from the GW signal for such
large outer periods.
Our results are promising but also leave several direc-

tions open for future developments. For example, we
chose here to focus on events which are observable by
ground-based detectors so that parameters of the inner
binary are independently measured, but it would be
interesting to know how much our measurement degrades
if we perform the analysis on an event not observed in
ground-based interferometers. Another limitation of our
study concerns the use of a restricted range of priors
around the signal value: a true GW signal would require
much more subtle data analysis techniques to be extracted
from the noise, particularly since we are adding several
parameters to be estimated on top of the usual two-
body template. In this respect, choosing an efficient basis
of non-degenerate parameters as we did in this article
could prove crucial in order to analyze data in a reason-
able time.

FIG. 4. The relative error on the mass of the third body m3 as a
function of the period of the outer binary P3. This is computed
for three different values of m3. In case of the central mass of
m3 ¼ 108M⊙ (m3 ¼ 107M⊙ and m3 ¼ 109M⊙) the results are
drawn in orange (blue and green). For a mass of m3 ¼ 109M⊙,
we omit the binary with a period of P3 ¼ 20 yr, since in this case
the approximation of a strictly increasing chirp signal in fre-
quency breaks down [cf. Eq. (19)] and our formula for the
Doppler shift becomes invalid.
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In the long-term, it would be desirable to obtain a
waveform template taking into account all relativistic
three-body effects necessary for modeling the signal of a
binary BH in an AGN with enough precision for LISA data
analysis. The identification of the relative importance of
each of these effects is possible in a single consistent
formalism with perturbative power-counting rules such as
the one described in [54,61]. Validating such a template
against accurate numerical integration of the equations of
motion would require a much more ambitious work than
the one which we initiated in this article. Still, the leading
order three-body effects in such a template would remain
the longitudinal and transverse Doppler shifts investigated
in this article.
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APPENDIX A: PRIORS

We summarize in Table II the choices of prior for the
events. For high periods of the outer period P3, the prior
range has to be carefully chosen: if the boundaries are too
far apart, the chains do not converge within a reasonable
computation time, if the prior domain is too small, the
posterior has support outside of it and the uncertainties
are underestimated. In order to assert that the choice of a
limited prior range does not affect our results, we addi-
tionally perform a parameter estimation with larger
prior range. We focus on a binary with an outer period
of P3 ¼ 20 yr around a SMBH with mass m3 ¼ 108M⊙.
Table III compare the prior boundaries for a wide and
narrow prior choice. Note that due to the increased
parameter space in the wide prior case the number of
MCMC steps was increased to 250.000. Figure 5 shows
the resulting posterior distribution. The two posteriors are
similar, and we conclude that the estimated uncertainties
remain unaffected by the prior choice (assuming it does not
cut off the support of the true posterior).

TABLE II. Priors for the source parameters, for varying SMBH mass m3 and period of the outer binary P3. For the true parameters of
the source see Table I. To avoid cluttering, we use the definition N ¼ m3 sin3ðι3Þ sin3ðφ3 þ ω3Þ.

Priors

Injected value m3 ¼ 107M⊙

P3 [yr] m3 [107M⊙] m3 sin3ðι3Þ [107M⊙] N [107M⊙] e3 P3 [yr] φ3 − ω3

20 [0.2, 2] [0.35, 0.39] [0.236, 0.247] [0.05, 0.15] [19.7, 20.3] [0.3, 0.4]
32 [0.001, 2] [0.35, 0.39] [0.21, 0.255] [0.08, 0.12] [31.5, 32.6] [0.24, 0.5]
54 [0.001, 3] [0.345, 0.39] [0.21, 0.27] [0.08, 0.125] [51, 57] [0.05, 0.7]
92 [0.0001, 5] [0.34, 0.4] [0.19, 0.275] [0.06, 0.14] [86, 98] [0.1, 0.65]
154 [0.0001, 6] [0.32, 0.41] [0.19, 0.29] [0.03, 0.16] [142, 165] [−0.2, 1]
Injected value m3 ¼ 108M⊙

P3 [yr] m3 [108M⊙] m3 sin3ðι3Þ [108M⊙] N [108M⊙] e3 P3 [yr] φ3 − ω3

20 [0.7, 1.4] [0.36, 0.38] [0.237, 0.247] [0.05, 0.15] [19.8, 20.3] [0.3, 0.4]
32 [0.1, 1.5] [0.355, 0.38] [0.21, 0.26] [0.09, 0.11] [31.5, 32.6] [0.25, 0.48]
54 [0.1, 1.6] [0.34, 0.39] [0.215, 0.26] [0.08, 0.12] [52, 57] [0.1, 0.6]
92 [0.01, 1.7] [0.34, 0.39] [0.21, 0.265] [0.07, 0.135] [87.5, 97] [0.16, 0.5]
154 [0.01, 3.6] [0.35, 0.395] [0.22, 0.26] [0.07, 0.14] [148, 160] [0.05, 0.75]

Injected value m3 ¼ 109M⊙

P3 [yr] m3 [109M⊙] m3 sin3ðι3Þ [109M⊙] N [109M⊙] e3 P3 [yr] φ3 − ω3

32 [0.7, 1.2] [0.36, 0.375] [0.228, 0.25] [0.095, 0.105] [31.75, 32.3] [0.25, 0.45]
54 [0.6, 1.2] [0.35, 0.38] [0.22, 0.255] [0.08, 0.12] [52.8, 56] [0.1, 0.5]
92 [0.2, 1.5] [0.335, 0.385] [0.215, 0.255] [0.087, 0.12] [89, 96] [0.1, 0.55]
154 [0.02, 1.5] [0.335, 0.385] [0.22, 0.26] [0.075, 0.125] [151, 159] [0.1, 0.5]

Prior type log uniform log uniform log uniform uniform uniform uniform
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APPENDIX B: IMPACT OF FIXING
THE CHIRP MASS

In the main body of this work, we have derived our
results under the assumption that a ground-based detector
network has inferred the parameters of the inner binary

system. Of course, we can also ask the question of whether
the estimated uncertainties change if we analyze data from
LISA alone, i.e. estimating both the parameters of the inner
and the outer orbits using LISA data. To gain insight into
this more challenging situation, we now estimate the chirp

TABLE III. Priors for the runs with wide and narrow priors to study the impact of a narrow prior choice. For conciseness, we use again
N ¼ m3 sin3ðι3Þ sin3ðφ3 þ ω3Þ.
Injected value m3 ¼ 108M⊙, P3 ¼ 20 yr

Variable m3 [108M⊙] m3 sin3ðι3Þ [108M⊙] N [108M⊙] e3 P3 [yr] φ3 − ω3

Prior choice (narrow) [0.7, 1.4] [0.36, 0.38] [0.237, 0.247] [0.05, 0.15] [19.8, 20.3] [0.3, 0.4]
Prior choice (wide) [0.5, 2] [0.32, 0.53] [0.2, 0.27] [0.03, 0.17] [18.5, 21.5] [0.25, 0.45]
Prior relative increase 2.1 10 7 1.4 6 2

Prior type log uniform log uniform log uniform uniform uniform uniform

FIG. 5. Result of the MCMC for a binary orbiting a m3 ¼ 108M⊙ black hole, with a period of P3 ¼ 20 years. The posterior under a
wide (narrow) prior choice is marked with blue (green). The exact prior choices are summarized in Table III. Although the posterior
under wide prior assumption is less well converged, we see that the two distributions are consistent.
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mass of the inner binary in addition to the parameters
of the outer orbit. We study a binary that orbits a SMBH
of m3 ¼ 108M⊙ with a period of 20 years. The other
parameters are set to the values of Table I. Figure 6
summarizes the parameter estimation result—although
the uncertainties of some of the parameters (most notably
ω3 and P3) increase, the error of m3 is unchanged. The
parameters with increased uncertainties also exhibit the
strongest correlations with the chirp mass.

APPENDIX C: CONVERGENCE
OF MCMC

To verify whether the chains of the MCMC analysis have
converged, we compute the Gelman-Rubin criterion [62],
denoted as R. If R < 1.1, the chains can be assumed to have
converged [62]. We use ArviZ [63] for the computation of R.
From the results in Table IV, we see that the Gelman-Rubin
criterion is satisfied for all parameters, indicating the
convergence of all chains.

FIG. 6. Result of the MCMC for a binary orbiting a m3 ¼ 108M⊙ black hole, with a period of P3 ¼ 20 years. The results when the
chirp mass is fixed (blue) are compared to the results when the chirp mass is jointly estimated (green). The additional estimation of
the chirp mass increases the uncertainties on the parameters P3 and ω3 but leaves the marginal posterior of m3 virtually unchanged.
Note that we plot the chirp mass M̂c ¼ Mc −Mc;true, with Mc;true the true chirp mass.
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