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We discuss exact regular compact object solutions in higher-dimensional extensions of general relativity
sourced by a phantom scalar field in arbitrary D spacetime dimensions (D > 2), for which a central
singularity is absent. We follow a bottom-up approach, by means of which, by imposing the desired form of
the solution to the metric function, we derive the form of the self-interaction scalar potential, which in
general appears to depend on both the scalar-hair charge and the black-hole mass. We discuss in this context
the validity of the first law of thermodynamics in such systems. Consistency requires the independence of
the potential of the mass, imposing in this way the dependence of the mass on the scalar charge of a type
that varies with the value of D, and according to the no-hair theorem dressing the regular black-hole
solution with secondary hair. In D ¼ 3, 4 we demonstrate that the potential depends on the ratio of the
scalar charge over the mass, and thus considered as a parameter of the theory. This feature, however, does
not characterize higher-dimensional cases. Calculating the D-dimensional Kretschmann scalar we show
that it is finite at the center point r ¼ 0 for arbitrary D, rendering the solutions regular. The phantom matter
content of the theory is also regular at r ¼ 0; hence, the radial coordinate of our manifold is defined for
r ≥ 0. We explicitly discuss the cases of D ¼ 3, 4, 5, 6, 10, and demonstrate that we can have regular,
asymptotically flat, black holes with secondary scalar hair.
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I. INTRODUCTION

In string theory, and its brane extensions [1], it is well
known that we need more than four dimensions in order to
describe the general structure of the Universe, in the sense
of constructing a consistent and unified quantum theory of
the fundamental forces observed in nature, including
gravity. This idea was first put forward in the context of
the extradimensional Kaluza-Klein theory [2,3], which is
known to provide the starting point of string theory. The
existence of extra dimensions in space, compactified either
at every spatial point of the four-dimensional spacetime by
means of appropriate compact extradimensional spatial
manifolds, such as Calabi-Yau spaces, or via appropriate
boundary conditions on appropriate branes in the extra-
dimensional bulk space, opens up new possibilities for
interpreting the dark sector of the Universe, by means of
fields living in the extra dimensions.
The extra dimensions may exhibit a dynamical behavior,

by varying with the cosmic time. In the literature there are
many works studying the cosmological implications of the

extra dimensions, under the assumption that the observed
universe emerges from higher dimensions. For instance, to
describe the early inflationary era of the four-dimensional
observed universe, it is often assumed that compactification
of extra dimensions happened before the inflation phase
which indicates that the compactification condition is
considered during the birth of the Universe. In [4] a
cosmological model based on Kaluza-Klein theory was
studied. The Freedmann-Robertson-Walker equations of
standard four-dimensional cosmology were obtained pre-
cisely. The pressure in this universe was obtained as an
effective pressure expressed in terms of the components of
the higher-dimensional energy-momentum tensor, and a
cosmic scale factor was contracted from the extradimen-
sional contributions which must be positive providing a
compactification condition.
In standard cosmology after creation of matter at the end

of inflation, the Universe enters a deceleration regime and
then, at late epochs, returns to an accelerated phase (the
quintessence epoch) again. Therefore the formation of the
extra dimensions may give more information in under-
standing dark energy or the large-scale structure of the
Universe as a whole. In [5], in a higher-dimensional gravity
theory in the presence of a cosmological constant, after
performing a conformal transformation, an inflationary
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scalar potential was obtained by making use of the
compactification condition, leading to the Starobinsky
inflationary model [6]. In [7] in a fðRÞ gravity theory a
D-dimensional Kaluza-Klein type theory was studied. It
was shown that additional dimensions are compactified on
the standard four spacetime dimensions in the deceleration
phase speculating that the additional dimensions may be
responsible for the dynamics of the dark energy dominated
era indicating that dark energy may be the source of extra
dimensions.
The recent observational results on the other hand

indicate that in the early-time cosmological evolution the
matter structure formation was governed by a peculiar form
of a cosmic fluid, the dark energy of which is characterized
by negative values of the pressure to density ratio w with
w < −1 [8–13] and also negative energy density. This kind
of dark energy in order to give a negative value of w should
be parametrized by a phantom field having negative kinetic
energy [14–16]. However, in that case, a perfect-fluid
description of dark energy is plagued with instabilities at
small scales due to an imaginary velocity of sound that
characterizes the phantom matter case. To avoid this
instability, a phantom scalar field may be regarded as an
effective field description following from an underlying
theory with positive energies [17,18].
In a recent paper [19] it was claimed that regular black

holes (BHs) can be supported by astrophysical and cos-
mological observations as realistic astrophysical BH mod-
els which can become cosmological at a large distance from
the BH. In this way nonsingular cosmological BH models
can couple to the expansion of the universe, gaining mass
proportional to the scale factor. This claim was based on a
recent study of supermassive BHs within elliptical galaxies
where preferential BH growth was found relative to galaxy
stellar mass [20]. This leads to a realistic behavior at
infinity of BH models predicting that the gravitating mass
of a BH can increase with the expansion of the universe
independently of accretion or mergers, in a manner that
depends on the BH interior solution. Then in [19] it was
proposed that stellar remnant BHs are the astrophysical
origin of dark energy, explaining the onset of accelerating
expansion of the Universe.
Local solutions of a gravity theory with a scalar field

minimally coupled to gravity with arbitrary potentials and
negative kinetic energy were investigated in [21]. It was
found that regular configurations were formed by the
phantom scalar field in flat, de Sitter, and anti–de Sitter
(AdS) asymptotic spacetimes, avoiding the BH central
singularity. Their main motivation was to find regular
BH solutions with an expanding, asymptotically de
Sitter Kantowski-Sachs cosmology beyond the event hori-
zon. In the literature there are other solutions alternative to
known ones, with a regular center [22–24].
Motivated by the above discussion we will study in this

work a higher-dimensional gravity theory in the presence of
a self-interacting phantom scalar field minimally coupled to

the higher-dimensional gravity. Singularities are a common
feature of BH physics. In most case, the singularities are
located at the center of the coordinate system, where
curvature invariants possess a divergence and the spacetime
is geodesically incomplete. However, Penrose showed that
any singularity has to be covered by an event horizon
(cosmic censorship hypothesis) and, as a result, all path-
ologies occurring at the singular region do not affect
observers and physics outside of the horizon.
In this work, we shall look for regular black-hole

solutions in various dimensions, and we shall examine
their energy conditions. By regular, we mean that there are
no gravitational singularities in either the interior or the
exterior region of the compact object. Compactness implies
that the relevant celestial object possesses an event horizon
with a radius smaller than that of the corresponding one in
the Schwarzchild geometry. In particular, we consider a
phantom scalar field with a scalar charge A in a high-
dimensional gravity theory. If the scalar charge is zero, then
the gravitational singularity is covered by a horizon, and
then we have a normal BH with a constant scalar field.
However, if A is not zero, then the scalar charge of the
phantom scalar field deforms the geometry in such a way
that the gravitational singularity is absent and a compact
object, being a regular BH. We use a specific form of the
metric function to derive the form of the self-interaction
scalar potential by solving appropriately the system of the
Lagrange equations of motion of the gravitational field
theory.
We find that the charge of the scalar field is connected to

the mass of the BH dressing in this way the BH with
secondary hair.1 This results in the independence of the
resulting scalar potentials on the compact object’s mass,
which in turn imposes a restriction on the mass, and leads to
its dependence on the scalar charge, thus rendering the hair
secondary. However, this is possible only for the dimen-
sionalities D ¼ 3, 4, where the scalar potential depends
only on the ratio of the scalar charge over the mass. We also
discuss the first law of thermodynamics, which turns out to
be not well understood for regular black holes [26,27]. This
happens because in order to build a nonsingular black hole,
one has to handle the energy momentum tensor appropri-
ately, which in turn implies handling the matter Lagrangian
in a particular way and consequently, the Lagrangian
depends on the primary black-hole charges, such as the
mass of the black hole, rendering the identification of the
black-hole mass as the internal energy of the black hole ill-
defined. As a result, one cannot consider that the internal
energy of the black hole and the mass coincide. In the case
of D ¼ 3 we are able to perform simple calculations and
show that indeed this is the case, while when the secondary
hair A vanishes (in which case we obtain the Bañados,

1We refer the reader to [25] for some examples of black-hole
solutions with a primary scalar hair.
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Teitelboim and Zanelli (hereafter BTZ) black hole) the
internal energy coincides with the mass of the black hole.
The structure of the article is as follows: in Sec. II, we

construct a nonsingular black-hole-like compact object in a
theory with scalar phantom matter fields, and explain in
detail the specific violation of the no hair theorem that
allows such a hair. In Sec. III we discuss various examples,
in different spacetime dimensions,D ≥ 3: we start from the
D ¼ 3 case, then revise the D ¼ 4 case of [21], discussing
thermodynamics, which was not discussed in that work,
and then proceed to discuss cases with higher spacetime
dimensions. Finally in Sec. IV we conclude.

II. SETUP OF THE THEORY
AND D-DIMENSIONAL REGULAR

BLACK HOLES

We consider the action

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ

−
1

2
fðϕÞ∇μϕ∇μϕ − VðϕÞ

�
; ð1Þ

which consists of the Ricci scalar R2 and a self-interacting
scalar field, minimally coupled to gravity with κ ¼ 8πGD
where we will set GD ¼ 1 from now on. In the action, fðϕÞ
controls the nature of the scalar field, being either a

phantom [fðϕÞ < 0] or a regular one [fðϕÞ > 0]. The field
equations read

Gμν ¼ κTμν; ð2Þ

fðϕÞ□ϕþ f0ðϕÞ
2

∇μϕ∇μϕ ¼ dV
dϕ

; ð3Þ

Tμν ¼ fðϕÞ∇μϕ∇νϕ −
fðϕÞ
2

gμν∇αϕ∇αϕ − gμνVðϕÞ: ð4Þ

We shall consider the following metric ansatz:

ds2 ¼ −bðrÞdt2 þ 1

bðrÞ dr
2 þWðrÞ2dΩ2

D−2; ð5Þ

where

dΩ2
D−2 ¼ dθ21 þ

XD−2

i¼2

Yi−1
j¼1

sin2 θjdθ2i : ð6Þ

This ansatz allows us to obtain the Schwarzchild metric, as
a smooth limit when the phantom scalar field is absent. We
can calculate the components of the Einstein equation
which under this ansatz reduces to the following relations:

ðD − 2ÞW00ðrÞ þ 8πfðrÞWðrÞϕ0ðrÞ2 ¼ 0; ð7Þ

WðrÞð2bðrÞW00ðrÞ − ðD − 4Þb0ðrÞW0ðrÞÞ þWðrÞ2ð−b00ðrÞÞ þ 2ðD − 3ÞðbðrÞW0ðrÞ2 − 1Þ ¼ 0; ð8Þ

VðrÞ ¼ −
ðD − 2ÞWðrÞðb0ðrÞW0ðrÞ þ 2bðrÞW00ðrÞÞ þ ðD − 3ÞðD − 2ÞðbðrÞW0ðrÞ2 − 1Þ þ κbðrÞfðrÞWðrÞ2ϕ0ðrÞ2

16πWðrÞ2 ; ð9Þ

from which we can obtain directly the metric function bðrÞ,

bðrÞ ¼ c1WðrÞ2 − c2WðrÞ2
�Z

1

WðrÞD dr

�

− 2ðD − 3ÞWðrÞ2
��Z

WðrÞD−4dr

�Z
1

WðrÞD dr −
Z

WðrÞD−4
�Z

1

WðrÞD dr

�
dr

�
; ð10Þ

where c1 and c2 are constants of integration. Setting
WðrÞ ¼ r we obtain

ϕðrÞ ¼ const; ð11Þ

VðrÞ ¼ −
c1ðD − 2ÞðD − 1Þ

16π
; ð12Þ

bðrÞ ¼ 1þ c1r2 þ
c2r3−D

D − 1
; ð13Þ

which is just the family of (A)dS black-hole solutions for
arbitrary dimension D, c1 is related to the cosmological
constant and c2 to the mass of the black hole. The
Kretshmann scalar K ¼ RαβγδRαβγδ is singular at the origin
for D > 3 as expected and is given by

2Our conventions and definitions throughout this paper are
ð−;þ;þ;þÞ for the signature of the metric, the Riemann tensor is
defined as Rλ

μνσ ¼ ∂νΓλ
μσ þ Γρ

μσΓλ
ρν − ðν ↔ σÞ, and the Ricci

tensor and scalar are given by Rμν ¼ Rλ
μλν and R ¼ gμνRμν,

respectively.
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KðrÞ ¼ 2c21ðD − 1ÞDþ c22ðD − 3ÞðD − 2Þ2r2−2D
D − 1

: ð14Þ

It is therefore clear that a black hole with the simplest radial
functionWðrÞ ¼ r cannot support a scalar field and cannot
yield a regular black hole with a nontrivial scalar field.
One might also expect this behavior, since a simple self-
interacting scalar field theory does not satisfy −ρ ≠ pr
[28]. A single-degree-of-freedom metric will result in
Gt

t ¼ Gr
r, which will further impose that −ρ ¼ pr; how-

ever, this is not the case for a self-interacting scalar field
theory as we will discuss below. A more complicated radial
function will give rise to the scalar field and possibly a
regular black hole. Since we are interested in a regular
black hole and not a wormhole spacetime, we should
construct the geometry in a particular way in order to avoid
a possible wormhole throat. To check for wormhole throats,
we can compute the Kodama vector norm [29,30], which
for our spacetime metric reads

∂μgθθ∂μgθθ ¼ gμν∂μgθθ∂νgθθ ¼ bðrÞ
�
dWðrÞ2

dr

�
2

: ð15Þ

A real positive root in the norm of the Kodama vector
corresponds to a black-hole horizon, while a double root
corresponds to a wormhole throat. It is clear that the double
root can only be present in the ðdWðrÞ2=drÞ2 term. We are
free to adjust a function and solve for the others, so taking a
WðrÞ that is always positive and monotonic, any root of the
Kodama vector norm will always be sourced by bðrÞ ¼ 0,
i.e. a black-hole horizon. Under the light of the above
discussion, we introduce

WðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ A2

p
; ð16Þ

where A is a length scale, an ansatz which was at first
considered in [21]. By solving the remaining equations for
a phantom scalar field

fðϕÞ ¼ −1; ð17Þ

we can obtain all related functions as

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

κ

r
tan−1

�
r
A

�
; ð18Þ

bðrÞ ¼ c1ðA2 þ r2Þ − c2rðA2 þ r2Þ1−D
2

�
r2

A2
þ 1

�
D=2

2F1

�
1

2
;
D
2
;
3

2
;−

r2

A2

�
− 2ðD − 3ÞðA2 þ r2Þ

×

�
r22F1ð12 ; 2 − D

2
; 3
2
;− r2

A2Þ2F1ð12 ; D2 ; 32 ;− r2

A2Þ
A4

−
Z

rðA2 þ r2ÞD−4
2
−D

2

�
r2

A2
þ 1

�
D=2

2F1

�
1

2
;
D
2
;
3

2
;−

r2

A2

�
dr

�
; ð19Þ

VðrÞ ¼ ðD − 2ÞðA2 þ r2Þ−D
2
−1ðr2A2 þ 1Þ−D

2

16A4π

�
A4

�
r2

A2
þ 1

�
D=2

×

�
ðA2 þ r2ÞD=2ð−c1ðA2 þ ðD − 1Þr2Þ þD − 3Þ þ c2rðA2 þ r2ÞðA2 þ ðD − 1Þr2Þ2F1ð1; 3−D2 ; 3

2
;− r2

A2Þ
A2

þ c2rðA2 þ r2Þ
�
þ 2ðD − 3Þr2ðA2 þ r2ÞD2þ1ððA2 þ ðD − 1Þr2Þ2F1ð1; 3−D2 ; 3

2
;− r2

A2Þ þ A2Þ2F1ð12 ; 2 − D
2
; 3
2
;− r2

A2Þ
A2

− 2A4ðD − 3ÞðA2 þ r2ÞD=2ðA2 þ ðD − 1Þr2Þ
�
r2

A2
þ 1

�
D=2

�Z
2F1ð1; 3−D2 ; 3

2
;− r2

A2Þr
A2r2 þ A4

dr

��
; ð20Þ

where 2F1ða; b; c; zÞ denote appropriate hypergeometric
functions. The above configurations solve the Einstein field
equations along with the Klein-Gordon equation, which for
a phantom scalar field and our metric ansatz yields

b0ðrÞϕ0ðrÞ þ ðD − 2ÞbðrÞW0ðrÞϕ0ðrÞ
WðrÞ þ bðrÞϕ00ðrÞ þ V 0ðrÞ

ϕ0ðrÞ
¼ 0; ð21Þ
and can be obtained using Eqs. (7)–(9). The length scale A
has the role of a scalar charge since it controls the far-field
behavior of the scalar field

ϕðr → ∞Þ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

8π

r
π

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

8π

r
A
r
þO

��
1

r

�
3
�
: ð22Þ

We note that the presence of the scalar charge A as it
appears in relations (18) and (22) also appears in (16)
indicating that matter deforms the geometry of the resulting
black-hole solution from the field equations. The obtained
spacetime is regular at the origin of the coordinate system.
To see this, we expand asymptotically near the origin the
metric functions to find

Wðr → 0Þ ∼ Aþ r2

2A
þOðr4Þ; ð23Þ
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bðr → 0Þ ∼þA2c1 − c2rA2−D þ r2ðA2c1 −Dþ 3Þ
A2

þ 1

6
c2ðD − 6Þr3A−D þOðr4Þ: ð24Þ

Now using these expressions, the Kretschmann scalar is
calculated near the origin and is found to be finite; however,
its expression is too complicated to be given here. The
value for r ¼ 0 is simple though and is given by

Kðr ¼ 0Þ ¼ −
8c1ðD − 3Þ

A2
þ 2ðD − 3Þð3D − 8Þ

A4

þ 4c21ðD − 1Þ; ð25Þ

which is clearly finite. As a result one can conclude that the
spacetime is regular. We remind the reader that the
condition for regularity of the Kretschmann scalar is a
necessary and sufficient condition for spacetime regularity
[31]. Moreover, the matter content of the theory is also
finite at r ¼ 0. Using the asymptotic expressions calculated
before we find that the scalar field and potential yield

ϕðr → 0Þ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

8π

r
r
A
þOðr3Þ; ð26Þ

Vðr → 0Þ ∼ −
A2c1ðD − 2Þ − ðD − 3ÞðD − 2Þ

2ð8πA2Þ

þ c2ðD − 2ÞrA−D

8π
þOðr2Þ; ð27Þ

which are both finite at r ¼ 0. Hence, the origin r ¼ 0 is a
point that belongs to our manifold. Now, having argued that
the resulting spacetime is regular regardless of its dimen-
sionality, we will discuss the behavior and nature of the
matter threading the black hole, with the use of the energy-
momentum tensor. We can calculate the energy density, the
radial pressure, and the tangential pressure of the energy-
momentum tensor as follows:

ρ ¼ −Tt
t ¼

1

2
bðrÞfðϕÞϕ0ðrÞ2 þ VðϕÞ; ð28Þ

pr ¼ Tr
r ¼

1

2
bðrÞfðϕÞϕ0ðrÞ2 − VðϕÞ; ð29Þ

pθ ¼ Tθ
θ ¼ −

1

2
bðrÞfðϕÞϕ0ðrÞ2 − VðϕÞ ¼ −ρ: ð30Þ

Note here that ρ ≠ −pr. By combining these expressions
we can discuss the energy conditions, namely the weak
energy condition (WEC) which states that the energy
density seen by an observer with a timelike and future
oriented 4-velocity tangent vector tμ is non-negative which
implies that (28) should be non-negative, i.e. ρ ≥ 0; the null
energy condition (NEC) which states that ρþ pr ≥ 0 so

that the geometry will have a focusing effect on null
geodesics; and the strong energy condition (SEC) which
implies that the geometry has a focusing effect on timelike
geodesic congruences if ρþ pi ≥ 0 for any pi and that
ρþP

i pi ≥ 0. The nature of the scalar field theory
dressing the black hole can also be examined by calculating
the equation of state

w≡ pr=ρ: ð31Þ

The exact form of the solution of the field equations in
terms of elementary functions for arbitrary dimension D is
unknown; hence, we will discuss in detail the energy
conditions for the special cases for various dimensions
D that we will discuss below. Here, we will point out some
particular features that are present regardless of the di-
mensionality of spacetime. At the event horizon of the
black hole, we have for the NEC and for the equation of
state

ρþ pr ¼ −bðrhÞϕ0ðrhÞ2 ¼ 0; ð32Þ

w ¼ pr

ρ
¼ − 1

2
bðrhÞϕ0ðrhÞ2 − VðrhÞ

− 1
2
bðrhÞϕ0ðrhÞ2 þ VðrhÞ

¼ −
VðrhÞ
VðrhÞ

¼ −1:

ð33Þ

Both of these equations are of particular interest. At first,
the NEC holds at the event horizon of the black hole, and
after this it becomes negative driven by the phantom nature
of the scalar field, since bðrÞ > 0 for r > rh. The equation
of state at the event horizon of the black hole is exactly −1.
This behavior is present even for a regular minimally
coupled scalar field at the horizon. The consequence is that
any hairy black hole that results from minimally coupled
self-interacting scalar matter that has a finite scalar field at
the horizon behaves in the same manner as a bare positive
cosmological constant term at the event horizon of the
black hole, a condition that is in favor of cosmological
observations.
This is due to the nature of the kinetic term

− 1
2
bðrhÞϕ0ðrhÞ2 at the horizon since bðrhÞ ¼ 0 regardless

of the dimensionality of spacetime. Hence, at the event
horizon, a distant observer measuring the pressure to
energy ratio cannot distinguish it from that of a positive
cosmological constant. However, the radial pressure pr and
energy density ρ contain both the kinetic and the potential
energies of the scalar field which have no apparent reason
to be given in terms of a cosmological constant at the
horizon. The scalar field theory is finite and regular at the
horizon.

A. Violation of the no-hair theorem

A formal understanding of the existence of hair in our
solutions comes by reexamining the way the standard
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no-hair theorem [32] is violated in our case. To this, we
commence our discussion by considering the Klein-Gordon
equation, which reads

□ϕþ dV
dϕ

¼ 0: ð34Þ

Multiplying with ϕ and integrating over the exterior black-
hole region we have

Z
dDx

ffiffiffiffiffiffi
−g

p �
1ffiffiffiffiffiffi−gp ∂μðϕ

ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −∇μϕ∇μϕþ ϕ

dV
dϕ

�

¼ 0: ð35Þ

Now the first term of the above relation is usually
considered to vanish in various hairy black holes, by
assuming some falloff behavior for the scalar field at
infinity. Let us now discuss the behavior of this total
derivative term in our case, where we have a fixed scalar
field falloff for any dimension D. We can see that this term
evaluates as

ϕðrÞϕ0ðrÞbðrÞ ffiffiffiffiffiffi
−g

p 			∞
rh
: ð36Þ

At the horizon we have that bðrÞ ¼ 0. At infinity, the
metric can have an bðrÞ ∼ r2 asymptotic behavior, i.e. an
asymptotically (A)dS behavior, since any term stronger
than r2 will make the curvature invariants diverge at
infinity, rendering the solution ill-defined. Then it is easy
to schematically show that the asymptotic behavior of the
scalar field needed to cancel the contribution of the
boundary term at infinity will be

ϕðr → ∞Þ ∼O
�

1

rðDþn−1Þ=2

�
; ð37Þ

where n is a real positive number. For a flat spacetime the
condition will be

ϕðr → ∞Þ ∼O
�

1

rðDþn−3Þ=2

�
: ð38Þ

Under this asymptotic behavior one can see that the
contribution of (36) at infinity will also be null (when
n ¼ 0 an effective cosmological constant term will emerge,
which can be reabsorbed in the potential), and hence, one
can cancel the contributions from these total derivative
terms. Our general result reduces for D ¼ 5 to the result of
[33]. In our case, the scalar field has a fixed asymptotic
behavior regardless of the spacetime dimension, a situation
that was not fixed ad hoc. Instead we fixed the area func-
tion of the black hole. The scalar field has the desired
asymptotic behavior only for D ¼ 3, 4 according to the no-
hair theorem. Consequently, one cannot discard the total

derivative term in our case for D > 4. However, it is not
necessary to cancel the boundary term as long as the kinetic
and potential terms of the theory are finite at large
distances. By discarding the boundary term, one can make
some assumptions about the nature of the potential. It can
be shown that for an asymptotically flat spacetime and for a
regular scalar field, the potential has to be negative (at least
for some region of r), in order to support the hairy structure
[34]. By looking at (35) one can deduce that for a phantom
scalar field theory, a partly positive potential is needed in
order to support a hairy structure (of course canceling the
boundary term). In our solution for D > 4, one cannot
make any conclusions about the nature of the potential and
as a result we have a violation of the no-hair theorem
because of a relaxed asymptotic behavior in the scalar
sector of our theory and not only because of the nature of
the potential. This can also be true in a regular scalar field
theory. In conclusion, for D ≥ 5 the boundary term also
contributes to the integral (35), so the potential can be
positive (negative) for a regular (phantom) scalar field and
still violate the no-hair theorem.

III. REGULAR BLACK-HOLE SOLUTIONS
IN VARIOUS SPACETIME DIMENSIONS

In this section we will explicitly discuss the regular
black-hole solution with scalar hair in various dimensions.
We will begin with D ¼ 3.

A. The D= 3 case

Regular three-dimensional black-hole solutions were
discussed in [35]. For D ¼ 3, the solution of the field
equations becomes

bðrÞ ¼ c1ðA2 þ r2Þ − c2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p

A2
;

ϕðrÞ ¼ 1ffiffiffiffiffiffi
8π

p tan−1
�
r
A

�
;

VðrÞ ¼ −
2A2c1r2 þ A4c1 − 2c2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p

16πA4 þ 16πA2r2
;

fðϕÞ ¼ −1;

VðϕÞ ¼ c2 sinð
ffiffiffiffiffiffi
8π

p
ϕÞ

8πA2
þ c1 cosð2

ffiffiffiffiffiffi
8π

p
ϕÞ

32π
−
3c1
32π

: ð39Þ

The series expansion at infinity for the field ϕðrÞ, r → ∞,
reads

ϕðr → ∞Þ ¼
ffiffiffi
π

p

4
ffiffiffi
2

p jAj −
1ffiffiffiffiffiffi
8π

p A
r
þO

�
A3

r3

�
; ð40Þ

from which we conclude that A (or, to be precise, − Affiffiffiffi
8π

p )

plays the role of a conserved scalar charge which was
defined in (22) for general D dimensions.
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For the metric function bðr → ∞Þ, on the other hand,
we have

bðr → ∞Þ ∼ r2
�
c1 −

c2
A2

�
þ
�
A2c1 −

c2
2

�
þ A2c2

8r2

þO
��

1

r

�
3
�
; ð41Þ

which resembles the BTZ black hole [36] with corrections
in the structure of spacetime that depend on the scalar
charge A. The Oðr2Þ term is related to the cosmological
constant 1=l2. Hence, we can identify

c1 ¼
c2
A2

þ 1

l2
: ð42Þ

Now to compute the mass we perform a coordinate trans-
formation, and we write the spacetime element as

ds2 ¼ −BðRÞdt2 þ R2

ðR2 − A2ÞBðRÞ dR
2 þ R2dθ2;

BðRÞ ¼
�
c2
A2

þ 1

l2

�
R2 −

c2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − A2

p

A2
: ð43Þ

To compute the mass of the black hole we will use the
quasilocal method [37]. The quasilocal energy at finite R
reads

eðRÞ ¼ 2

�
1ffiffiffiffiffiffiffi
g0RR

p −
1ffiffiffiffiffiffiffi
gRR

p
�
; ð44Þ

where g0RR is a reference spacetime function which deter-
mines the zero of the energy. Now, the mass function at
finite radius R is given by

MðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
BðRÞ

p
eðRÞ; ð45Þ

and at infinity, a distant observer measures a mass of

m ¼ −2A2 − c2l2

16l2
: ð46Þ

The scalar length scale A enters the conserved mass, and
therefore it is a secondary hair of the black-hole spacetime.
Now, expanding the gtt; gRR functions asymptotically we
find that

gtt ∼
R2

l2
−
A2 þ 8l2m

l2
−
A2ðA2 þ 8l2mÞ

4l2R2
þO

��
1

R

�
3
�
;

g−1RR ∼
R2

l2
− 8mþ −40A2l2m − A4

4l2R2
þO

��
1

R

�
3
�
: ð47Þ

The explicit asymptotic expressions for large distances,
R → ∞, are given so one can see that the mass and the
charge appear in the solution.

The event horizon of the black hole is obtained by
solving bðrhÞ ¼ 0,

rh ¼
A2 þ 16l2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2 þ 32l2m

p ; ð48Þ

where we can see that rh > rBTZh ¼ 2
ffiffiffiffiffiffiffi
2m

p
l since for small

A we have

rhðA → 0Þ ∼ 2
ffiffiffiffiffiffiffi
2m

p
lþ A2

16
ffiffiffi
2

p
l

ffiffiffiffi
m

p þ 3A4

2048
ffiffiffi
2

p
l3m3=2

þOðA6Þ: ð49Þ

In Fig. 1 we plot the metric function bðrÞ, the scalar
potential VðrÞ, the square of the Riemann tensor
RαβγδRαβγδðrÞ, and the mass function while varying the
scalar charge A along with the BTZ black-hole case in order
to compare. The BTZ metric and the hairy metric functions
do not possess significant differences, which is expected.
Both functions are regular at the origin, the mass term is
given by the angle deficit, and it is not a real mass term that
will give rise to a nonzero Weyl tensor, a fact reflected also
in the plot of the Riemann invariant. The BTZ black hole is
regular because there exists no pure gravitational term in
the spacetime, since the graviton cannot propagate (not
enough degrees of freedom). Hence, the Riemann invariant
is also regular at the origin of the BTZ black hole. InD ¼ 3
dimensions the only contributions to the Riemann tensor
come from the Ricci tensor and the Ricci scalar which are
trivially related to the AdS scale l, and hence, in the BTZ
case the Riemann square is constant. However, in the hairy
cases, the Riemann tensor receives contributions from the
phantom scalar field theory and is therefore dynamical. The
origin r ¼ 0 is a regular point

RαβγδRαβγδðr ¼ 0Þ ¼ 8
ðA2 þ 16l2mÞ2

ðAlÞ4 : ð50Þ

It also possesses positive minima, which can be numeri-
cally evaluated, but nothing special happens at those
minima, as far as the scalar field theory or the black-hole
spacetime are concerned. The mass function always
increases with respect to the event horizon, while it does
not develop any extremum; hence, there will not be any first
order phase transition.
We will now briefly discuss the thermodynamical

properties of the solution. By performing a Wick rotation
t → iτ we can relate the periodicity of the Euclidean time β
with the inverse of the black-hole temperature. We will
provide a calculation for the temperature via the Wick
rotation. To do so, we will use the coordinate system (43).
We will at first ignore the angular part of the metric, and
performing the rotation t → iτ, we are left with
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ds2 ¼ BðRÞdτ2 þ 1

FðRÞ dR
2; ð51Þ

where for notational simplicity we have set 1=FðRÞ ¼
ðR2Þ=ððR2 − A2ÞBðRÞÞ. Now, we expand the metric func-
tions near the horizon

BðR → RhÞ ¼ BðRhÞ þ B0ðRhÞðR − RhÞ þ � � �
¼ B0ðRhÞðR − RhÞ; ð52Þ

FðR → RhÞ ¼ FðRhÞ þ F0ðRhÞðR − RhÞ þ � � �
¼ F0ðRhÞðR − RhÞ; ð53Þ

and the reduced spacetime element reads

ds2 ¼ B0ðRhÞðR − RhÞdτ2 þ
1

F0ðRhÞðR − RhÞ
dR2: ð54Þ

The above line element should cover the whole Euclidean
space, and this will be true only if we treat τ as a periodic
variable, elsewise, this metric will describe a cone. As a
result we have to impose periodicity of τ as τ ∼ τ þ 2π,
which comes from comparing our line element with the
line element of polar coordinates dS2 ¼ dR2 þR2dΘ2, by
identifying the following relations:

dR2 ¼ 1

F0ðRhÞðR − RhÞ
dR2 → R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − Rh

F0ðRhÞ

s
; ð55Þ

B0ðRhÞðR − RhÞdτ2 ¼ R2dΘ2 →
Θ
τ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðRhÞB0ðRhÞ

p
2

:

ð56Þ

Now, Θ is periodic with period 2π and by denoting the
period of τ with β we find

2π

β
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðRhÞB0ðRhÞ

p
2

→
1

β
≡ T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðRhÞB0ðRhÞ

p
4π

;

ð57Þ

from which we can obtain the temperature as a function of
the event horizon as

TðRhÞ ¼
A2

4πl2ðRh −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p
Þ ; ð58Þ

where we have substituted the mass parameter from the
relation of the horizon BðRhÞ ¼ 0 → m ¼ MðRhÞ. It is
clear that in the limit A → 0 one recovers the BTZ black-
hole temperature TBTZ ¼ Rh=2πl2 [36]. A root in the
derivative of the temperature will unveil the possibility

FIG. 1. The metric function bðrÞ, the potential VðrÞ, the square of the Riemann tensor, and the mass as a function of the event horizon
are plotted for l ¼ m ¼ 1 while varying the scalar length scale A, alongside the BTZ black hole.
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of a second order phase transition. To check this, we
calculate the derivative in terms of Rh which yields

dTðRhÞ
dRh

¼ A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p ð4πl2Rh − 4πl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p Þ ; ð59Þ

where no root is present for Rh > A. The mass function
reads

MðRhÞ ¼
Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p
− 2A2 þ R2

h

16l2
→

dMðRhÞ
dRh

¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p þ RhÞ2
16l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

p ; ð60Þ

which is clearly always positive.
The entropy may be obtained by using Wald’s formula

[38] which reads

S ¼ −2π
Z
Σ1

∂L
∂Rαβγδ

ε̂αβε̂γδ; ð61Þ

where L denotes the Lagrangian of our theory, ε̂αβ is the
binormal vector, and the integral is evaluated on the horizon
circumference. Performing the integration we find (restor-
ing the units of the gravitational constant G for complete-
ness and clarity)

S ¼ 4π2WðrhÞ
κ

¼ A
4G

; ð62Þ

where A ¼ 2πWðrhÞ ¼ 2πRh is the circumference of the
black hole. The heat capacity can now be evaluated as

CðRhÞ ¼ T
dS
dT

¼ 1

2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h − A2

q
; ð63Þ

where no divergent point is present so the hairy black holes
are thermally stable.
Now, regarding the phantom matter threading the black-

hole spacetime, we will discuss the energy conditions. The
explicit expressions for the energy density, radial pressure,
and their sum read, respectively,

ρðrÞ ¼ A2ð16l2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− 24l2rm − 2r3Þ þ 16l2r2mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− rÞ þ A4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− 3rÞ

8πA2l2ðA2 þ r2Þ3=2 ;

prðrÞ ¼
rðA2ð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ 8l2mþ 2r2Þ þ 16l2rmðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
Þ þ A4Þ

8πA2l2ðA2 þ r2Þ3=2 ;

ρðrÞ þ prðrÞ ¼
16l2mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− rÞ þ A2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− 2rÞ

8πl2ðA2 þ r2Þ3=2 : ð64Þ

We can also calculate the equation of state w ¼ pr=ρ obtaining

wðrÞ ¼ −
rðA2ð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ 8l2mþ 2r2Þ þ 16l2rmðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
Þ þ A4Þ

A2ð−16l2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ 24l2rmþ 2r3Þ þ 16l2r2mðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
Þ − A4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− 3rÞ ; ð65Þ

with the asymptotic expressions near the origin and at large distances yielding

wðr → 0Þ ∼ rðA2 þ 8l2mÞ
AðA2 þ 16l2mÞ þ

2r2ð8A2l2mþ A4 − 32l4m2Þ
ðA3 þ 16Al2mÞ2 þOðr3Þ;

wðr → ∞Þ ∼ −1þ A2

r2
þO

��
1

r

�
4
�
: ð66Þ

To understand better the nature of matter threading the
black hole we will depict the above quantities. From Fig. 2
we can see that ρðrÞ changes sign at a point inside the
black-hole event horizon, signalizing in this way a diver-
gent point in the energy density; however, nothing special
happens at this point, except from the fact that the matter
content of the theory becomes null there. It is also clear that
the WEC is violated at the black-hole horizon and in the
causal region of spacetime, due to the phantom nature of
the matter field. The radial pressure develops a global

maximum and a local minimum which can be obtained
numerically and the equation of state becomes divergent at
the point where the matter content of the theory becomes
null, while at large distances asymptotes to a pure de Sitter
case. The NEC is satisfied inside the black hole and at the
event horizon and violated for any r > rh due to the
phantom nature of the scalar field.
In conclusion, we have obtained an analog of the BTZ

black hole dressed with a secondary, phantom scalar
hair. The phantom scalar field theory has a well-defined
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behavior near the origin, by introducing a length scale
which removes the central singularity. However, when
the scalar field is regular, one can see that ill-defined
behaviors near the origin sourced by the scalar field
function or the scalar potential will result in a black hole
with a singularity [39].
As we already discussed the recent astrophysical obser-

vations indicate a possible connection of the singularity-
free BH with the cosmological evolution. The early
cosmological evolution is governed by dark energy which
is generated by a phantom scalar field which connects the
mass of the BH with dark energy, defining in this way the
black universe. In our study the presence of phantommatter
deforms the geometry, and as it is shown in relation (46) it
is connected with the mass of the black hole. Motivated by
this we will impose a relation between the black-hole mass
and the scalar charge of the form

m
A2

¼ jξjG; ð67Þ

where ξ ∈ R is an arbitrary real dimensionless constant
parameter and we reinstated the units of the gravitational
constant. In three dimensions the mass is a dimensionless
quantity, the fundamental constant of the BTZ solution [36]
is the AdS scale, and this gives rise to the event horizon
not the mass, so that m=A2 ∼ ½length�−2. This relation

guarantees that the potential is independent of the BH
mass and scalar charge. Using relations (42) and (46), we
may write VðϕÞ as

VðϕÞ ¼ m
A2

�
2

π
sinð

ffiffiffiffiffiffi
8π

p
ϕÞ þ 1

2π
cosð2

ffiffiffiffiffiffi
8π

p
ϕÞ − 3

2π

�

þ 1

4πl2
sinð

ffiffiffiffiffiffi
8π

p
ϕÞ þ 3

32πl2
cosð2

ffiffiffiffiffiffi
8π

p
ϕÞ − 9

32πl2
;

ð68Þ

¼ jξjG
�
2

π
sinð

ffiffiffiffiffiffi
8π

p
ϕÞ þ 1

2π
cosð2

ffiffiffiffiffiffi
8π

p
ϕÞ − 3

2π

�

þ 1

4πl2
sinð

ffiffiffiffiffiffi
8π

p
ϕÞ þ 3

32πl2
cosð2

ffiffiffiffiffiffi
8π

p
ϕÞ − 9

32πl2
:

ð69Þ

The condition (67) implies that the hair is secondary but, an
important question arises regarding the effect of this on the
thermodynamics of the respective compact object. To this
end, we remark that in three-dimensional general relativity,
the thermodynamics of the BTZ black hole is entirely
different from that of the (3þ 1)-dimensional case. First,
the temperature of the BTZ black hole is given by

TðmÞ ∼m1=2;

FIG. 2. The energy density ρðrÞ, the radial pressure prðrÞ, the equation of state wðrÞ, and the sum of the energy density and pressure
ρðrÞ þ prðrÞ for m ¼ l ¼ 1, while varying the scalar length scale A for the three-dimensional case.
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so the temperature decreases as the black hole evaporates.3

Moreover, Stefan’s law of radiation is schematically
expressed in this case by

dm
dt

∼ T4 ∼m2 → t ∼m−1;

hence, it seems that the BTZ black hole will take an infinite
amount of time to evaporate, if the black hole does indeed
evaporate [40]. Therefore, we can define the ratio (67) as a
new parameter of the theory giving a fixed mass to scalar
charge ratio, so that the scalar potential is independent of
the mass and charge of the compact object. So when m is
changing and the black hole radiates, the scalar charge also
changes in order to keep the ratio ξ constant. This is also
consistent with the black universe, in which a change in the
dark energy implies also a change in the mass of the BH.
Concluding the discussion on the D ¼ 3 case, we will

briefly discuss the first law of thermodynamics. As we have
already discussed in the Introduction, inconsistencies
appear when one identifies the black-hole mass as the
internal energy of the black hole. This behavior is rooted in
the fact that the matter Lagrangian is not entirely inde-
pendent of the black-hole mass. One can easily check that
the first law of thermodynamics expressed as dM ¼ TdS
does not hold in our solution. Since the entropy of the black
hole obtained from the Euclidean path integral and Wald’s
formula should coincide (in our case both these methods
give the Bekenstein-Hawking area law) and the temperature
is a kinematic effect, independent of the theory under
consideration, we came to the conclusion that one has to
consider that the internal energy of the black hole is not
given by the conserved black-hole mass; hence, m ≠ E.
The parameter of our theory is ξ. So we can replace m with
ξ through the relation (67), and now the horizon radius can
be obtained as

rh ¼
Að16l2ξþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32l2ξþ 3
p ; ð70Þ

where it is clear that in this expression the only parameter
that can vary is A. Therefore, we have

TðrhÞdSðrhÞ ¼ TðrhÞ
∂S
∂rh

drh ¼ TðrhÞ
∂S
∂rh

∂rh
∂A

dA

¼ TðrhÞ
∂S
∂A

dA ¼ Að16l2ξþ 1Þ
8l2

dA; ð71Þ

and now through the first law dE ¼ TdS we can obtain the
internal energy of the black hole at the horizon as

dE¼ Að16l2ξþ 1Þ
8l2

dA→ EðAÞ ¼ A2

16l2
þA2ξ¼mþ A2

16l2
;

ð72Þ

where we can see that E ≠ m while when A → 0 we have
that E ¼ m which is the case of the BTZ black hole.

B. The D= 4 case

In this subsection we carry out an analytical study of the
D ¼ 4 regular black-hole solution first discussed in [21],
calculating also the energy conditions. The stability of the
system against radial perturbations was also discussed [41],
where it was found that the solutions are stable for
particular values of the constants. Some properties of this
solution such as the gravitational lensing and the accretion
process can be found in [42,43]. The solution reads

bðrÞ ¼ c1ðA2 þ r2Þ− c2ððA2 þ r2Þ tan−1ðrAÞ þArÞ þ 2Ar2

2A3
;

ð73Þ

and

ϕðrÞ ¼ 1

2
ffiffiffi
π

p tan−1
�
r
A

�
;

VðrÞ ¼ c2ððA2 þ 3r2Þ tan−1ðrAÞ þ 3ArÞ − 2AðA2c1 − 1ÞðA2 þ 3r2Þ
16πA3ðA2 þ r2Þ ;

VðϕÞ ¼ 4AðA2c1 − 1Þðcos ð4 ffiffiffi
π

p
ϕÞ − 2Þ þ c2ð3 sin ð4

ffiffiffi
π

p
ϕÞ − 4

ffiffiffi
π

p
ϕðcos ð4 ffiffiffi

π
p

ϕÞ − 2ÞÞ
32πA3

: ð74Þ

The series expansion for the scalar field at infinity again leads to

ϕðr → ∞Þ ¼
ffiffiffi
π

p

4
ffiffiffi
2

p jAj −
1

2
ffiffiffi
π

p A
r
þO

�
A3

r3

�
; ð75Þ

3The reader should take notice of the fundamental difference from the four-dimensional case, where TðmÞ ∼m−1.
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from which we conclude that A (or, to be precise, − A
2
ffiffi
π

p )

plays the role of a conserved scalar charge.
The metric function bðrÞ at infinity reads

bðr → ∞Þ ∼ r2
�
c1 −

4Aþ πc2
4A3

�
þ
�
A2c1 −

πc2
4A

�

þ c2
3r

−
A2c2
15r3

þO
��

1

r

�
5
�
; ð76Þ

which resembles the (A)dS Schwarzschild black hole with
corrections in the structure of spacetime that depend on the
scalar charge A. By applying a transformation of the form
r2 ¼ RðrÞ2 − A2, where R will be the new coordinate we
find that

bðR → ∞Þ ∼ R2

�
−
πc2
4A3

−
1

A2
þ c1

�
þ 1þ c2

3R

þO
��

1

R

�
3
�
: ð77Þ

It is clear that there is no deficit angle at large distances and
the solution describes a pure singularity-free black hole and
not a gravitational monopole. To make the spacetime
asymptotically flat, we may set

A2c1 −
πc2
4A

¼ 1 → c1 ¼
4Aþ πc2

4A3
; ð78Þ

which fixes the value of c1. Now the asymptotic relation
yields

bðrÞ ∼ 1þ c2
3r

−
A2c2
15r3

þ A4c2
35r5

þO
��

1

r

�
7
�
: ð79Þ

The metric above is clearly asymptotically flat and resem-
bles the Schwarzschild black hole, while corrections in the
structure of spacetime appear as Oðr−nÞ terms (where
n ≥ 3) and are sourced by the (conserved) phantom scalar
charge A. The other conserved charge is the black-hole
mass, which can be calculated using the Komar integral. To
compute the mass term we rewrite the line element in the
form

ds2 ¼ −BðRÞdt2 þ BðRÞ−1
�

R2

R2 − A2

�
dR2 þ R2dΩ2;

BðRÞ ¼ 1 −
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − A2

p

3A2

þ c2R2

6A3

�
π − 2 cot−1

�
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − A2
p

��
: ð80Þ

The Komar mass m is given by

m ¼ −
1

8π
lim
R→∞

I
∂Σ
∇μζνdSμν ¼

1

4π
lim
R→∞

I
∂Σ
dAnμuν∇μζν;

ð81Þ

where ζμ is the Killing vector field associated with time
translation and energy conservation, since the space-
time element is independent of t, ζμ ¼ ð1; 0; 0; 0Þ, nμ ¼
ðBðRÞ−1=2; 0; 0; 0Þ is the future oriented timelike unit
vector, and uμ ¼ ð0; FðRÞ1=2; 0; 0Þ is the unit normal on
the boundary, which is taken to be a two sphere with an
infinite radius and 1=FðRÞ ¼ ðR2Þ=ððR2 − A2ÞBðRÞÞ. The
mass can then be computed as

m ¼ 1

4π
lim
R→∞

I
∂Σ
ðdAnμuνgμκΓν

κσζ
σÞdA

¼ lim
R→∞

1

2
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A2

R2

r
B0ðRÞ ¼ −

c2
6
; ð82Þ

and is clearly not affected by the scalar field. Then, if one
treats m as independent of the scalar charge, the obtained
spacetime describes a regular, asymptotically flat black
hole, with a primary phantom scalar hair. Compared with
the previously described D ¼ 3 example, Eq. (46), this
would imply that the nature of the scalar hair depends on
the dimensionality of spacetime, with the hair being
secondary for odd and primary for even D (indeed, this
can be confirmed by the explicit calculations for D ≥ 5
performed in the next section, if one treats mass and scalar
charge as independent.)
Now setting m ¼ −c2=6 the potential reads

VðϕÞ ¼ −
3mð8 ffiffiffi

π
p

ϕþ 3 sin ð4 ffiffiffi
π

p
ϕÞ þ ðπ − 4

ffiffiffi
π

p
ϕÞ cos ð4 ffiffiffi

π
p

ϕÞ − 2πÞ
16πA3

; ð83Þ

while its asymptotic behavior reads

Vðr → ∞Þ ∼ A2m
10πr5

−
13ðA4mÞ
70πr7

þ 9A6m
35πr9

þO
��

1

r

�
11
�
:

ð84Þ

Of course for negligible scalar charge, we obtain the
Schwarzschild black hole

bðr; A → 0Þ ∼
�
1 −

2m
r

�
þ 2A2m

5r3
þOðA4Þ; ð85Þ
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and for vanishing mass m, we obtain pure Minkowski
spacetime, i.e. bðrÞ ¼ 1; hence, m is a genuine and
independent scale of the solution, and hence, the theory
cannot be mapped conformally to a nonminimally coupled
theory in the Einstein frame. The horizon is obtained by
solving bðrÞ ¼ 0; however, we cannot solve analytically
this equation. Near the origin bðrÞ behaves as

bðr → 0Þ ∼ 4A − 6πm
4A

þ 6mr
A2

−
3ðπmÞr2
2A3

þOðr3Þ; ð86Þ

where the term that dominates is the constant term. In order
for bðrÞ to have a root in the region 0 ≤ r < ∞, we need to
make the constant term negative, since the OðrÞ term is

positive. Hence, the scalar charge A provides a bound for
the mass m of the black hole and the existence of a horizon

m >
2A
3π

: ð87Þ

In Fig. 3 we plot the metric function bðrÞ, the potential, the
Kretschmann scalar, and the mass of the black hole for
different values of the scalar charge A, the radius of the
event horizon as a function of the scalar charge for a fixed
value of mass that satisfies the mass bound (87) (note that
the scalar charge is equal to or larger than the black-hole
mass in these plots; however, the effect of the scalar hair on
the black-hole spacetime is negligible and small values of A

FIG. 3. Plots of the metric function bðrÞ, the potential VðrÞ, and the square of the Riemann tensor as functions of the radial distance r,
the mass as a function of the event horizon radius, the horizon radius as a function of the scalar charge A, and the temperature TðrhÞ of
the black hole as a function of the horizon radius.
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in comparison to the mass basically correspond to the
Schwarzchild black hole), and the temperature of the black
hole as a function of the horizon radius (we calculated the
temperature as in theD ¼ 3 case and then substituted Rh →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ A2

p
to plot as a function of rh), for several values of

the scalar charge A. We can see that, as the phantom matter
is getting stronger, the black hole shrinks in size, and hence,
the phantom black hole will not be thermodynamically

preferred, since it has a smaller horizon radius. For A → 0,
we obtain, as expected, the horizon radius of the Schwarzs-
child black hole. Regarding the thermal stability of the
black hole in the canonical ensemble we can see that the
temperature is getting smaller as the black hole is getting
larger; i.e. T 0ðrhÞ < 0 and the mass of the black hole always
increases, and hence,m0ðrhÞ > 0 so the heat capacity of the
black hole will be negative indicating the thermodynami-
cally locally unstable nature of the spacetime, which may
occur in asymptotically flat spacetimes due to T 0ðrhÞ < 0 as
rh grows. In Fig. 4 we depict this exact behavior alongside
the heat capacity of the Schwarzschild black hole which
also suffers from this instability [44]. The entropy of the
black hole may be computed using the Wald formula as in
the previous section only to yield the Bekenstein-Hawking
area law

SðrhÞ ¼
A
4G

; ð88Þ

where A ¼ 4πWðrhÞ2 is the area of the black hole.
Regarding the nature of the matter threading the black-
hole spacetime, we calculate the energy density, the radial
pressure, their sum, and the equation of state

ρðrÞ ¼ −9πA2r2 þ 18r2ðA2 þ r2Þ tan−1ðrAÞ þ 12A3r − 2A5 þ 18Ar3 − 9πr4

16πA3ðA2 þ r2Þ2 ;

prðrÞ ¼
−9πA2r2 þ 18r2ðA2 þ r2Þ tan−1ðrAÞ þ 12A3r − 2A5 þ 18Ar3 − 9πr4

16πA3ðA2 þ r2Þ2 ;

ρðrÞ þ prðrÞ ¼
−6ðA2 þ r2Þ tan−1ðrAÞ − 2A3 þ 3πA2 − 6Arþ 3πr2

8πAðA2 þ r2Þ2 ;

wðrÞ ¼ 9πA2r2 − 18r2ðA2 þ r2Þ tan−1ðrAÞ − 12A3rþ 2A5 − 18Ar3 þ 9πr4

−15πA2r2 þ 6ðA2 þ r2Þð2A2 þ 3r2Þ tan−1ðrAÞ þ 24A3rþ 2A5 − 6πA4 þ 18Ar3 − 9πr4
; ð89Þ

which are plotted in Fig. 5. As stated in Sec. II the NEC is
satisfied inside and at the event horizon of the black hole
and violated for any r > rh due to the phantom nature of
the scalar field. Also, wðrhÞ ¼ −1 as we already discussed.
As we can see from Fig. 5 the WEC is violated for a region
r > rh and holds for r ≤ rh. The equation of state differs
from the (2þ 1)-dimensional case, and we attribute this
behavior to the asymptotically flat nature of spacetime that
is encoded in ρ; pr through bðrÞ, VðrÞ.
As we discussed in the D ¼ 3 case, we impose the

relation

m
A3

¼ jχjG−2; ð90Þ

with χ ∈ R a real dimensionless parameter, between the
mass of the black hole and the scalar charge which makes

the potential (83) independent of these parameters, which
now will read

VðϕÞ ¼ −
3

16πG2
jχjð8 ffiffiffi

π
p

ϕþ 3 sin ð4 ffiffiffi
π

p
ϕÞ

þ ðπ − 4
ffiffiffi
π

p
ϕÞ cos ð4 ffiffiffi

π
p

ϕÞ − 2πÞ: ð91Þ

Let us now examine the conditions for thermal equilib-
rium in such a case. To this end, we assume the validity
of the standard first law of thermodynamics. In this case,
one would expect that the extremality condition (90)
would correspond to a zero temperature. However, let us
see how close to thermal equilibrium the D ¼ 4 compact
object is.
We first remark that the mass function at the horizon is

given by

FIG. 4. The heat capacity CðrhÞ ¼ TdS=dT
			
Rh→

ffiffiffiffiffiffiffiffiffiffi
r2hþA2

p as a
function of the horizon radius.
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MðrhÞ ¼
2A3

3ð−2ðA2 þ r2hÞ tan−1ðrhAÞ þ πA2 − 2Arh þ πr2hÞ
;

obtained from bðrhÞ ¼ 0 → M ¼ MðrhÞ. The temperature

TðrhÞ ¼
2rh tan−1ðrhAÞ þ 2A − πrh

2πð−2ðA2 þ r2hÞ tan−1ðrhAÞ þ πA2 − 2Arh þ πr2hÞ
;

while the entropy is

SðrhÞ ¼ πðA2 þ r2hÞ:

The first law of thermodynamics is expressed asdM¼TdS→
M0ðrhÞdrh¼TðrhÞS0ðrhÞdrh, provided the quantities that
enter this formula are nonzero. In our D ¼ 4 case, we have

dM ¼ M0ðrhÞdrh ¼
4A3ð2A − rhðπ − 2 tan−1ðrhAÞÞÞ

3ðA2ðπ − 2 tan−1ðrhAÞÞ − 2Arh þ r2hðπ − 2 tan−1ðrhAÞÞÞ2
drh ð92Þ

and

TðrhÞS0ðrhÞdrh ¼
rhð2rh tan−1ðrhAÞ þ 2A − πrhÞ

−2ðA2 þ r2hÞ tan−1ðrhAÞ þ πA2 − 2Arh þ πr2h
drh; ð93Þ

which shows that in general dM ≠ TdS unless dM¼T¼0.
The latter condition would be guaranteed in a self-consistent
way from (92) and (93), provided

2A − rh

�
π − 2 tan−1

�
rh
A

��

¼ 0 ⇒
A
rh

¼
�
π

2
− tan−1

�
rh
A

��
: ð94Þ

This is consistent with the discrete values the mass and
charges are allowed to take on in this case.
The relation (94) implies as a fixed relation of the ratio of

the horizon radius to the scalar charge

rh
A

¼ ζ0 → þ∞: ð95Þ

Ignoring for the moment the singular limit (95), we may
combine (95) with the definition of the horizon radius

FIG. 5. The energy density ρðrÞ, the radial pressure prðrÞ, the equation of state wðrÞ, and the sum of the energy density and pressure
ρðrÞ þ prðrÞ for m ¼ 1, while varying the scalar length scale A for the four-dimensional case.
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bðr ¼ rhÞ ¼ 0 [cf. (73)], and we obtain [using (90), (94),
and (82)]

jχjG−2 ¼ ζ0
3A2

¼ rh
3A3

: ð96Þ

From (90) this implies

Gm ¼ rh
3
¼ ζ0

3
A; ð97Þ

which is the condition for a self-consistent solution in
D ¼ 4 with secondary hair.
We note that Eq. (94), although formally valid in the

singular limit ζ0 → þ∞, nonetheless is valid to a good
approximation for rh=A≳Oð100Þ [for such values
Eq. (94) is valid to an accuracy 10−7 and the accuracy is
increasing rapidly for higher values, as we approach
rh=A → ∞]. Then we may interpret such results as imply-
ing that for relatively heavy compact objects, i.e. with very
large masses as compared to the magnitude of the scalar
charge S ¼ A, one may have approximately only thermal
equilibrium, which is heavily violated as the ratio m=A
decreases.
As we have already discussed in the D ¼ 3 case, in the

first law of thermodynamics one has to consider that
E ≠ m, due to the fact that the Lagrangian of the matter
fields is not entirely independent of the black-hole mass
[26]. The above-described analysis, leading to the singular
limit (97), (95), confirms that the situation characterizing

theD ¼ 3 case is also valid qualitatively in theD ¼ 4 case;
that is, here we also have E ≠ m unless the secondary-hair
charge A → 0. Nonetheless, the solution in the D ¼ 4 case
is complicated, which prevents us from performing simple
calculations in order to make it explicit that the internal
energy is not equal to the conserved black-hole mass due to
the presence of the secondary-hair charge A.

C. Higher dimensions

In what follows we shall describe regular black-hole
solutions inD > 4 spacetime dimensions. For concreteness
and brevity we shall only deal explicitly with three cases
D ¼ 5, 6, and 10. We recall that the gravitational-
Schwarzchild mass term will be given by the

Schwarzschild −mass ∝ Oðð1=rÞD−3Þ ∈ bðr → ∞Þ ð98Þ

term of the limiting expression for the metric function
bðrÞ at infinity, r → ∞. As we shall see below, the
spacetime for higher dimensions can be asymptotically
flat, but not asymptoticallyfree, since the scalar field has
a fixed falloff for any spacetime dimension. This is going to
affect the definition of mass and the corresponding scalar
potential.

1. The D= 5 case

For D ¼ 5, the asymptotically flat solution corre-
sponds to

bðrÞ ¼ 1

3A4
ðc2ðA2ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− 3rÞ þ 2r2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
− rÞÞ

þ 2A2ðA2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ ðA2 þ r2Þ3=2 ln ð4ðA2 þ r2ÞÞ − rð3A2 þ 2r2Þ ln ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ rÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
Þ; ð99Þ

where we have adjusted c1 in order to make the vacuum energy vanish. The asymptotic expressions of the metric function
read

bðr → 0Þ ∼ 2

3

�
c2
A2

þ 2 lnðAÞ þ 1þ lnð4Þ
�
−
rð2A2 lnðAÞ þ c2Þ

A3
þOðr2Þ; ð100Þ

bðr → ∞Þ ∼ 1þ 4A2 lnðrÞ þ A2 þ 4A2 lnð2Þ þ 2c2
8r2

þO
��

1

r

�
4
�
: ð101Þ

One can check that a computation of the Komar mass (81)
will yield a divergent conserved black-hole mass, if one
takes the hypersphere on which the integral is evaluated to
have an infinite radius. To bypass this problem we will
define a cutoff radius Rcutoff with Rcutoff ≫ A. Then, one
can read off the mass of the black hole as

m ¼ 1

16
ð−4A2 ln ð2RcutoffÞ þ A2 − 2c2Þ; ð102Þ

which it is clear that will reduce the Schwarzchild mass
when A → 0. This in turn implies that the theory holds up
to a critical energy scale Ecutoff . The scalar potential turns
out to contain the black-hole mass, as well as the cutoff
radius (due to its complexity we will not give the explicit
expression). As a result the produced compact object might
have a problematic thermodynamic prescription, since the
mass is not allowed to vary, but is instead fixed by the
theory.
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For completion we mention that, for small A=r, we
obtain the Tangherlini-Schwarzschild black hole at zeroth
order as expected [45]

bðr; A=r ≪ 1Þ ∼
�
1þ c2

4r2

�

þ A2ð3r2ð4 lnðrÞ þ 1þ lnð16ÞÞ − 4c2Þ
24r4

þOðA3Þ: ð103Þ

Since we have performed detailed analyses for the cases
D ¼ 3, 4, in what follows, in order to discuss the resulting
physics, we will not show any calculations (which are
similar to the previously studied lower-dimensional cases),
but only plot the relevant quantities. Specifically, in Fig. 6
we plot the horizon radius, the metric function bðrÞ, the
potential, and the temperature for TðrhÞ for the five-
dimensional black hole. For the computation of temper-
ature, we at first computed it as in the D ¼ 3 case and then
substituted Rh →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ A2

p
in the final result to express it

as a function of rh. We can see that the horizon radius is

getting smaller as the scalar charge is getting stronger
in agreement with the four-dimensional case. The poten-
tial and temperature also behave similar to the four-
dimensional case, being always positive. In Fig. 7 we plot
the quantities related to the matter threading the black hole.
The energy density is positive near the origin and changes
sign after the black-hole horizon, indicating in this way a
divergence in the equation of state and the violation of
WEC. The radial pressure develops one global maximum
and a local minimum, which can be numerically evaluated,
but nothing special happens at these points. The NEC holds
inside and at the horizon of the black hole while violated for
any r > rh and also wðrhÞ ¼ −1, which are general features
of the theory at hand as we have already discussed.
Comparing with the four-dimensional case, we can see
that besides the fact that the radial pressure might be
positive, the matter sector behaves in a similar manner
regarding the energy conditions and their violation.

2. The D= 6 case

For D ¼ 6 we find

bðrÞ ¼ 6πA2c2r2 − 6c2ðA2 þ r2Þ2 tan−1 ðr=AÞ − 10A3c2rþ 3πA4c2 þ 16A5r2 þ 32A7 − 6Ac2r3 þ 3πc2r4

16A5ðA2 þ r2Þ ; ð104Þ

FIG. 6. The horizon radius as a function of A, the metric function bðrÞ, the potential VðrÞ, and the temperature TðrhÞ for c2 ¼ −10
while changing A, for the five-dimensional black hole.
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bðr → 0Þ ∼ 32A3 þ 3πc2
16A3

−
c2r
A4

þ r2ð3πc2 − 16A3Þ
16A5

þOðr3Þ; ð105Þ

bðr → ∞Þ ∼ 1þ A2

r2
þ c2
5r3

−
A4

r4
þO

��
1

r

�
5
�
; ð106Þ

where, again, c2 will be related to the Schwarzchild mass of the black hole. Following the same procedure as in the D ¼ 5
case we can read of the mass of the black hole as

m ¼ −
A2Rcutoff

3
−
c2
10

: ð107Þ

Since the mass is given in terms of the scalar charge and the cutoff radius, the hair is secondary.
The scalar potential for D ¼ 6 yields

VðϕÞ ¼ 1

192πA5
ð6A3 cosð4

ffiffiffiffiffiffi
2π

p
ϕÞ − 140 sinð2

ffiffiffiffiffiffi
2π

p
ϕÞðA2Rcutoff þ 3mÞ þ 5 sinð4

ffiffiffiffiffiffi
2π

p
ϕÞðA2Rcutoff þ 3mÞ

þ 12 cosð2
ffiffiffiffiffiffi
2π

p
ϕÞð−5A2ðπ − 2

ffiffiffiffiffiffi
2π

p
ϕÞRcutoff þ 2A3 − 15mðπ − 2

ffiffiffiffiffiffi
2π

p
ϕÞÞ þ 18ððA3 þ 15mðπ − 2

ffiffiffiffiffiffi
2π

p
ϕÞ

þ 5A2ðπ − 2
ffiffiffiffiffiffi
2π

p
ϕÞRcutoffÞÞ: ð108Þ

It is clear that the potential contains the black-hole mass, the scalar charge, as well as the cutoff radius, and as a result these
compact objects do not have a well-behaved first law of thermodynamics due to the fact that the mass is fixed. The reader is
also invited to study the analysis of [46] for relevant discussions.

FIG. 7. The energy density, the radial pressure, their sum, and the equation of state are plotted while changing A for the
five-dimensional case.
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3. The D= 10 case

For D ¼ 10 we find

bðrÞ ¼ 1

3840A9ðA2 þ r2Þ3
�
4A6r2ð4544A7 þ 525πc2Þ − 5110A5c2r3 þ 18A4r4ð768A7 þ 175πc2Þ − 3850A3c2r5

þ 60A2r6ð64A7 þ 35πc2Þ − 1050c2ðA2 þ r2Þ4 tan−1
�
r
A

�
− 2790A7c2rþ A8ð11264A7 þ 525πc2Þ

− 1050Ac2r7 þ 525πc2r8
�
; ð109Þ

bðr → 0Þ ∼
�
35πc2
256A7

þ 44

15

�
−
c2r
A8

þ r2
�
35πc2
256A9

−
61

15A2

�
þ 2c2r3

3A10
þOðr4Þ; ð110Þ

bðr → ∞Þ ∼ 1þ 3A2

5r2
−

A4

15r4
þ A6

3r6
þ c2
9r7

−
7A8

5r8
þO

��
1

r

�
9
�
: ð111Þ

As we have already discussed in the previous case, we can define the conserved mass up to the cutoff radius, which in the
case of D ¼ 10 is found to be

m ¼ −3ð20A4R3
cutoff þ 72A2R5

cutoff þ 123A6RcutoffÞ − 140c2
2520

; ð112Þ

and the hair is secondary, since A enters the definition of mass. The scalar field theory ends up containing the conserved
black-hole parameter, as well as the cutoff radius and the scalar charge A:

VðϕÞ ¼ 1

860160πA9
ð56ðð16 cosð2 ffiffiffi

π
p

ϕÞð956A7 − 4725mðπ − 2
ffiffiffi
π

p
ϕÞÞ þ 16ðA7ðð280 cosð4 ffiffiffi

π
p

ϕÞ þ 20 cosð6 ffiffiffi
π

p
ϕÞ

þ cosð8 ffiffiffi
π

p
ϕÞÞ þ 20ð556A7 þ 4725mðπ − 2

ffiffiffi
π

p
ϕÞ þ 9mð−819 sinð2 ffiffiffi

π
p

ϕÞ þ 70 sinð4 ffiffiffi
π

p
ϕÞ þ 5 sinð6 ffiffiffi

π
p

ϕÞÞÞ
þ 45m sinð8 ffiffiffi

π
p

ϕÞÞ þ 3ðA2ðð−1680ðπ − 2
ffiffiffi
π

p
ϕÞ cosð2 ffiffiffi

π
p

ϕÞ − 3276 sinð2 ffiffiffi
π

p
ϕÞ þ 20ðð105ðπ − 2

ffiffiffi
π

p
ϕÞ

þ 14 sinð4 ffiffiffi
π

p
ϕÞ þ sinð6 ffiffiffi

π
p

ϕÞÞ þ sinð8 ffiffiffi
π

p
ϕÞÞRcutoffð20A2R2

cutoff þ 123A4 þ 72R4
cutoffÞÞ: ð113Þ

In Fig. 8 we plot the metric functions for the D ¼ 6, 10
cases, where it is clear that for reasonable values of c2, there
exists a single horizon. Concluding the discussion for the
higher-dimensional cases, we have seen that we can obtain

compact objects that resemble regular black-hole space-
times with a single horizon. Due to the fact that the
spacetime is not asymptotically free from the matter field,
we have to define a a cutoff energy scale, above which the

FIG. 8. The metric function bðrÞ for asymptotically flat black-hole spacetimes from D ¼ 6 and D ¼ 10 while varying the mass
parameter c2 and the scalar charge.
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theory cannot yield a finite conserved black-hole mass and
the solutions become void of meaning. Consequently, the
higher-dimensional black holes do not have a well-defined
thermodynamical prescription and are not allowed to emit
radiation, since their mass is fixed from the theory.
Regarding the energy conditions of the black hole, they
behave in a similar manner with the lower-dimensional
cases examined previously.
In the higher-dimensional cases, all constants of the

solution appear in the potential of the theory, and as a result
all constants are fixed; hence, none of them is allowed to vary
(in theD ¼ 3 casewehave clearly seen thatwe are allowed to
vary A). As a result the only reasonable thermodynamical
behavior would be that of an extremal black holewhich does
not radiate and has a zero temperature; however, we are not
going to dwell deeper on that matter.

IV. CONCLUSIONS

In this work we consideredD-dimensional GR coupled to
a phantom scalar field and derived exact regular black-hole
solutions regardless of the dimensionality of spacetime by
examining the behavior of the Kretschmann scalar near the
origin. The scalar field possesses a fixed falloff behavior
regardless of the dimension D, a feature that has some
interesting implications on how the no-hair theorem is
violated at higher dimensions. We discussed the cases
D ¼ 3, 4, 5, 6, 10 with a detailed study of the D ¼ 3, 4
cases.We investigated the thermodynamical properties of the
solutions and found that the D ¼ 3 regular black hole is
locally stable, a feature that may be present in AdS black
holes due to the growing nature of the temperature.Wemade
also a detailed study of theD ¼ 4 black hole which was also
studied in [21] analyzing its thermodynamic properties, and
we found that it is thermodynamically unstable, since the
heat capacity is always negative. We also discussed the
properties of the matter threading the black hole. We found
that regardless of the dimensionality, the equation of state
has a de Sitter nature at the event horizon of the black hole
and that the NEC is violated in the causal region of
spacetime r > rh.
Another issue we examined in this work was the

possibility of thermodynamic equilibrium of the compact
objects. We have seen that as a result of the generic
dependence of the scalar potential on the scalar charge
A and mass m of the black hole, it is not possible to have
thermodynamic equilibrium, and thus the validity of the
first law of thermodynamics. In D ¼ 3, 4 it is possible to
eliminate the dependence of the scalar potential from the
charge and mass of the object, given that these potentials

depend on the ratio m=AD−1, and thus by fixing it, we
obtain a secondary hair, and independence of the potential
from individual charge and mass. The simplicity of the
D ¼ 3 case allowed us to perform simple calculations in
order to show that the internal energy of the black hole and
the conserved mass do not coincide, and the matter fields
influence the internal energy at the event horizon. We
have seen that when the scalar hair vanishes the internal
energy coincides with the conserved black-hole mass.
Unfortunately, the D ¼ 4 case is much more complicated,
and hence, we are not able to show explicitly this behavior;
however, there are no signs that this result is dimensional
dependent, and hence, we expect a similar behavior.
We note here that regular black-hole solutions may suffer

from the “mass inflation” instability [47], which arises
because of the unstable nature of the inner horizon.
However, our solutions may not possess an inner horizon
(the horizons cannot be obtained analytically, but for
reasonable values of the integration constants we can avoid
the existence of an inner horizon, while for D ¼ 3 only a
single horizon is present). At least, the existence of an inner
horizon is not a necessity as it is for example in the Hayward
metric [48]. As a result our solutions can avoid the mass
inflation instability. However, the stability of the solution
against scalar, vector, and tensor perturbations is an open
problem, which we will leave for future endeavors.
Furthermore, in order to integrate the field equations we
followed a “bottom-up” approach, and as a result the scalar
potential is obtained from the field equations and not fixed
a priori. Hence, it is of interest to include a reasonable scalar
potential (as we already discussed, in the presence of a
phantom, a positive potential may violate the no-hair
theorem, so a combination of even powers in ϕ or even a
mass term potential may be fruitful to consider); however,
due to the difficulty of the field equations, numericalmethods
should be used.
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