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We study the effect of an ultralight primordial black hole (PBH) dominated phase on the gravitational
wave (GW) spectrum generated by a cosmic string (CS) network formed as a result of a high-scale Uð1Þ
symmetry breaking. A PBH-dominated phase leads to tilts in the spectrum via entropy dilution and
generates a new GW spectrum from PBH density fluctuations, detectable at ongoing and planned near-
future GW detectors. The combined spectrum has a unique shape with a plateau, a sharp tilted peak over the
plateau, and a characteristic falloff, which can be distinguished from the one generated in the combination
of CS and any other matter domination or new exotic physics. We discuss how ongoing and planned future
experiments can probe such a unique spectrum for different values of Uð1Þ breaking scale and PBH
parameters such as initial mass and energy fraction.
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I. INTRODUCTION

While the standard model (SM) of particle physics has
been the most successful phenomenological model explain-
ing the elementary particles and their interactions except
gravity, it cannot explain several observed phenomena like
neutrino mass, dark matter (DM), and baryon asymmetry.
This has motivated the pursuit of exploring beyond
standard model (BSM) scenarios for several decades.
However, none of the particle physics-based experiments,
including the ongoing Large Hadron Collider (LHC), have
seen any signatures of BSM physics to date. This has
garnered significant late interest in exploring alternative
BSM-search strategies. Interestingly, the onset of the
direct discovery of gravitational waves (GW) by the
LIGO-VIRGO collaboration [1] has opened up an entirely
new frontier to search for BSM physics with primordial
gravitational waves. For example, BSM physics related to

inflation, first-order phase transition, topological defects,
and primordial black holes (PBHs) may produce stochas-
tic GW background within experimental sensitivity of
ongoing and future planned experiments. This offers a
synergic probe of BSM physics and could be the only
realistic probe in some scenarios that are out of reach
of particle physics experiments in the foreseeable future.
See a recent review [2] discussing GW signatures of
BSM physics.
Many well-motivated BSM scenarios lead to the forma-

tion of topological defects like cosmic strings and domain
walls [3]. In particular, Abelian gauge extensions of the SM,
with several particle physics motivations [4], lead to the
formation of cosmic strings (CSs) after spontaneous sym-
metry breaking [5,6]. These CSs can generate stochastic GW
background with a characteristic spectrum which can be
observed at near future GW detectors if the symmetry
breaking scale is sufficiently high [7,8], far outside the
reach of the direct probe at experiments like the LHC. After
the recent findings by the NANOGrav collaboration sug-
gesting a stochastic common spectrum process across many
pulsars [9], CSs as a source of primordial GWs gained a
great deal of attention [10–14]. While a scale-invariant GW
spectrum at higher frequencies is a typical signature of CSs,
any deviation from this spectrum can signify additional
new physics or nonstandard cosmological epochs in the
early universe. For example, early matter domination (EMD)
can lead to spectral breaks in the CS-generated GW
spectrum [15–17]. Such an EMD phase can arise due to
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long-lived particle [18,19], PBH, or a combination of
both [20,21]. Similarly, new physics, which might incorpo-
rate an additional source of GWs, can also lead to distortions
in the CS-generated GW spectrum. For instance, a first-order
phase transition (FOPT) induced GW together with the CS
generated GW spectrum [22,23] can have distinct features
which can be detectable at near future experiments if the
FOPT is a supercooled one [23]. While the effect of EMD
due to PBHs on CS-generated GW spectrum has been
studied in several works [21,24–27], not much attention
has been paid to the additional effect caused by GWs
originating from PBHs themselves except for [26], where
the individual GW contributions from CSs and PBHs were
studied in the context of superheavy dark matter and high
scale leptogenesis.
Motivated by these, we perform a general study on the

effect of an ultralight PBH-dominated epoch on the CS-
generated GWs and present the result for the combined
spectrum that also includes, unlike any other EMDs, features
of GWs caused by PBHs themselves. Among the various
ways PBHs associate with GWs, we consider the one
induced due to PBH density fluctuations [28–33]. For
ultralight PBH domination, this GW contribution remains
detectable in ongoing and near-future experiments. We show
that the combined spectrum exhibits a plateau, a red tilt
followed or preceded by a sharp blue tilt. Besides being
distinct from any other spectrum, e.g., a CS-generated
GW spectrum with an EMD caused by a fermion/scalar
field [19,34,35], the overall spectrum offers characteristic
features that can be detected either with a single detector or
with multiple detectors in a complementary way.
This paper is organized as follows. In Secs. II and III, we

briefly summarize the GW production from cosmic strings
and PBH density fluctuations, respectively. In Sec. IV, we
discuss the combined GW spectrum and finally conclude
in Sec. V.

II. GRAVITATIONAL WAVES
FROM COSMIC STRINGS

If the vacuum manifold of a symmetry group after
spontaneous symmetry breaking is not simply connected,
one-dimensional topological defects namely, cosmic
strings are formed [5,6]. Such a possibility naturally arises
in popular Uð1Þ extensions of the SM. If this Uð1Þ
symmetry is a gauged one, then the cosmic string loops
lose their energy dominantly in the form of GW radiation,
as suggested by numerical simulations based on Nambu-
Goto action [36,37]. For a sufficiently high Uð1Þ symmetry
breaking scale (ΛCS ≳ 109 GeV), the resulting GW back-
ground is detectable at ongoing and near future GW
experiments. This makes CS generated GW an outstanding
probe of superhigh scale BSM physics [19,38–51] which
cannot be probed directly at terrestrial experiments.
The key parameter related to CS is their normalized
tension Gμ ∼GΛ2

CS with G being Newton’s constant.

In the absence of thermal friction leading to dampening
of the motion of a long-string network [52], shortly
after formation, the network oscillates (at tosc) and enters
the scaling regime [37,53,54] which is an attractor
solution of two competing dynamics namely, the stretch-
ing of the long-string correlation length due to cosmic
expansion and the fragmentation of the long strings into
loops which oscillate to produce particle radiation or
GWs [7,8,55].
A set of normal-mode oscillations with frequencies

fk ¼ 2k=l constitute the total energy loss from a cosmic
string loop, where the mode numbers are denoted by
k ¼ 1; 2; 3;…;∞. The GW energy density parameter
can, therefore, be defined as ΩGWðt0; fÞ ¼P

k Ω
ðkÞ
GWðt0; fÞ, with t0 being the present time and

f ≡ fðt0Þ ¼ fkaðt0Þ=aðtÞ. The corresponding GW energy
density at the present epoch for the mode k can be
computed with the integral [56]

ΩðkÞ
GWðt0; fÞ ¼

2kGμ2Γk

fρc

Z
t0

tosc

dt

�
aðtÞ
aðt0Þ

�
5

nðt; lkÞ; ð1Þ

where nðt; lkÞ is a scaling loop number density which can
be computed analytically using the velocity-dependent-
one-scale (VOS) [57–60] model, ρc is the critical energy
density of the universe and Γk ¼ Γk−δ

ζðδÞ depends on the small-

scale structures in the cosmic string loops such as cusps
(δ ¼ 4=3) and kinks (δ ¼ 5=3). Here, we consider only
cusps to compute the GW spectrum; a similar analysis can
also be done considering kinks. While it is clear that for
higher modes, contributions to the GWs from cusps are
dominant, the number of cusps and kinks per loop
oscillation cannot be straightforwardly determined with
numerical simulations, which do not include gravitational
wave backreaction in general. A preference for cusps over
kinks comes from the so-called smoothing mechanism,
where the kinky loops are expected to be smoothed out
due to the gravitational wave backreaction [61]. This
mechanism, however, has been challenged in [62,63].
Therefore, we would like to place the consideration of
cusps over kinks in this article as a choice rather than a
preference. The integration in Eq. (1) may be subjected to
another constraint: the critical size of the loops below
which particle production is dominant. This constraint
corresponds to a lower bound on the time GW radiation
becomes effective [64,65]. We carefully consider this
constraint in the numerical analysis.
A characteristic feature of the GW spectrum generated

by CS is the flat plateau due to loop formation and decay
during the radiation dominated phase of the universe, with
an amplitude given by

Ωðk¼1Þ;plateau
GW ðfÞ ¼ 128πGμ

9ζðδÞ
Ar

ϵr
Ωr½ð1þ ϵrÞ3=2 − 1�; ð2Þ
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where ϵr ¼ α=ΓGμ with α the initial (at t ¼ ti) loop size
parameter, Ωr ≃ 9 × 10−5 and Ar ¼ 5.4 [60]. In our work,
we have considered α ≃ 0.1 [56,66] (as indicated by
numerical simulations), Γ ≃ 50 [55,56,66], and cosmic
microwave background (CMB) constraint Gμ≲10−7 [67]
which lead to α ≫ ΓGμ. In this limit, Eq. (2) implies

Ωðk¼1Þ
GW ðfÞ ∼ ΛCS, a property that makes models with larger

symmetry breaking scales more testable with GWs from
CSs. While this proportionality is robust for large loops

(α ≃ 0.1), the overall magnitude of Ωðk¼1Þ
GW ðfÞ in Eq. (2)

obtained from the VOS model differs from that of the
numerical simulations by order of magnitude. This is
related to the fact that the VOS model considers all the
loops contributing to the GWs to be created with the same
initial size. On the other hand, numerical simulations find
only 10% of energy from the long strings going to the large
loops (α ≃ 0.1), which contribute to the GWs; the rest is
transferred to the smaller loops in the form of kinetic
energy which redshifts away and does not contribute to the
GWs [56]. Therefore, a factor F α ≃ 0.1 is introduced in
Eq. (2) (which is equivalent to normalizing loop number
density in the VOS model, where the normalization factor
is F α, see, e.g., Sec. V of [45] for a comprehensive
description of normalization) such that the string network
evolution and its properties can be described consistently
with the VOS model, and at the same time, with the
numerical simulations.
We shall see later in this article that in the presence of a

matter-dominated epoch before the most recent radiation
domination, the plateau breaks at a frequency fΔ and the
spectrum falls as ΩGWðf > fΔÞ ∼ f−1 for the fundamental
mode of loop oscillations. The frequency fΔ carries the
information regarding the end of the matter domination
and, potentially, other properties of the object/field asso-
ciated with the matter domination.

III. GRAVITATIONAL WAVES FROM
PRIMORDIAL BLACK HOLES

Primordial black holes (a recent review can be found
in [28]), originally proposed by Hawking [68,69], can have
many interesting cosmological consequences [70,71]
including detection prospects via GWs. While PBHs
can have a wide range of masses, we are interested in
the ultralight regime in which they evaporate by emitting
Hawking radiation [68,69] before the Big Bang
Nucleosynthesis (BBN) epoch and hence are less con-
strained from cosmological and astrophysical observations.
In the early universe, PBHs can be formed in a variety of
ways such as from inflationary perturbations [72–76], first-
order phase transition [77–85], the collapse of topological
defects [86,87], etc. Here we remain agnostic about such a
production mechanism and assume an initial abundance of
PBHs (of Schwarzschild type) with a monochromatic mass
function. The PBH is assumed to be formed in the era of

radiation domination after inflation, and its abundance is
characterized by a dimensionless parameter β defined as

β ¼ ρBHðT inÞ
ρRðT inÞ

; ð3Þ

where ρBHðT inÞ and ρRðT inÞ represent the initial PBH
energy density and radiation energy density, respectively,
while T in denotes the temperature at the time of PBH
formation. Such a PBH can lead to an early matter
domination phase if its initial energy fraction β exceeds
a critical value defined by [88]

β < βc ≡ γ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gg⋆;HðTBHÞ
10640π

r
Mpl

min
; ð4Þ

where

g⋆;HðTBHÞ≡
X
i

ωigi;He
−MBH

βiMi ;

gi;H ¼

8>>><
>>>:

1.82 for s ¼ 0;

1.0 for s ¼ 1=2;

0.41 for s ¼ 1;

0.05 for s ¼ 2;

ð5Þ

with ωi ¼ 2si þ 1 for massive particles of spin si, ωi ¼ 2
for massless species with si > 0 and ωi ¼ 1 for si ¼ 0.
βs ¼ 2.66, 4.53, 6.04, 9.56 for si ¼ 0; 1=2; 1; 2, respec-
tively, whereas Mi ¼ 1

8πGmi
, where mi is the mass of the

ith species [88]. γ ≃ 0.2 denotes a numerical factor related
to the uncertainty of the PBH formation, G ∼ 4 is the gray-
body factor with min and TBH denoting the mass of PBH at
the time of formation and instantaneous Hawking temper-
ature of PBH, respectively.
As per GW signatures of PBHs are concerned, there are a

variety of ways this can happen. The evaporation of the PBH
itself can produce gravitons which might constitute an ultra-
high frequency GW spectrum [89]. The PBH can also form
mergers, leading to GWemission [90]. In addition, the scalar
perturbations leading to the formation of the PBH can induce
GWs at second order [91], which can be further enhanced
during the PBH evaporation [92]. Finally, the inhomogeneity
in the distribution of the PBHmay also induceGWs at second
order, as recently studied in Refs. [30–32]. We concentrate
on this last possibility particularly because it can be tackled
while being agnostic about PBH formation history, and the
resulting GW spectrum can be probed at ongoing as well as
planned near-future GW detectors.
The distribution of PBHs after they are formed is random

and follows Poissonian statistics [30]. When PBHs domi-
nate the universe’s energy density, these inhomogeneities
induce GWs at the second order, which are enhanced
further during PBH evaporation [32]. The dominant
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contribution to the GW amplitude observed today can be
written as [26,32,93]

Ωgwðt0; fÞ ≃Ωpeak
gw

�
f

fpeak

�
11=3

Θðfpeak − fÞ; ð6Þ

where

Ωpeak
gw ≃ 2 × 10−6

�
β

10−8

�
16=3

�
min

107 g

�
34=9

: ð7Þ

The GW spectrum has an ultraviolet cutoff at frequencies
corresponding to comoving scales representing the mean
separation between PBHs [30,32], which is given by

fpeak ≃ 1.7 × 103 Hz

�
min

104 g

�
−5=6

: ð8Þ

Although we shall use Eqs. (6)–(8) for numerical compu-
tation, we note that the amplitude of the induced GWs is
sensitive to the width of the PBH mass function [92,94,95].
In addition, density perturbations can become nonlinear
during the PBH-dominated era, leading to a suppression of
the spectrum [95].

IV. THE COMBINED GW SPECTRUM,
DETECTION PROSPECTS, AND REALISTIC

BSM PHYSICS SCENARIOS

A. The combined spectrum

As mentioned earlier, ultralight PBHs with β > βc can
affect the CS-generated GW spectrum in two ways:
introducing spectral break due to PBH domination plus
evaporation and introducing a new GW source from density
fluctuations. Because of the PBH-induced early matter
domination before BBN, the plateau region of the CS-
generated GW spectrum gets broken [15–17] at a turning
point frequency fΔ which can be determined by the time
say tΔ (or equivalently the PBH evaporation temperature
TΔ) at which the early matter domination ends and the
standard radiation era begins. The frequency fΔ (present
day) is equivalent to twice the inverse length l−1M of a loop
(with initial size αtΔ) corresponding to the maximal
emission of GWs at tM > tΔ. A higher value of fΔ would
imply the loop was produced earlier—radiation domination
began earlier. A loop created at a time tΔ contributes
maximally to Eq. (1) when it reaches its half-life, i.e.,
lMðtMÞ ¼ αtΔ

2
[16]. Therefore, the frequency observed today

for GWs emitted at tM is given by

fΔ ¼ 4

αtΔ

aM
a0

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8

αΓGμ

s
t−1=2Δ t1=6eq t−2=30

≃

ffiffiffiffiffiffiffiffiffiffiffiffi
8zeq
αΓGμ

s �
teq
tΔ

�
1=2

t−10 ; ð9Þ

where aM is the scale factor at the time tM ¼ αtΔ
2ΓGμ, tðzÞeq is

the time (redshift ∼3400) corresponding to the standard
matter-radiation equality, and t0 is the present time.
Equation (9) can be conveniently recast in terms of PBH
evaporation and present-day temperatures as

fΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

zeqαΓGμ

s �
g�ðTΔÞ
g�ðT0Þ

�
1=4 TΔ

T0

t−10

≃ 0.656

�
α

0.1

�
−1=2

�
Γ
50

�
−1=2

�
Gμ
10−13

�
−1=2

×

�
g�ðTΔÞ
g�ðT0Þ

�
1=4

�
TΔ

GeV

�
Hz; ð10Þ

which implies, e.g., if the PBHs evaporate at TΔ ¼ 1 TeV
and 1 MeV, the plateau of the GW spectrum gets broken
at fΔ ≃ 1558 Hz and 0.9 mHz, respectively, for typical
values of Gμ, Γ, α in Eq. (10). Beyond fΔ, the spectrum
goes as ΩGW ∼ f−1 for k ¼ 1 mode (when infinite modes
are summed, ΩGW ∼ f−1=3 [17,24,96,97]). This fall persists
in general because, for considerably long PBH domination,
contributions from the loops produced in the PBH-
dominated era and before, are negligible or show up at
higher frequencies with subdominant amplitude which we
do not discuss in detail in this paper. Thus, the primary first
effect or outcome due to the PBH domination is a flat GW
spectrum turning red beyond fΔ.
When the second effect, i.e., the contribution of the GWs

from PBH density fluctuation, is considered, the combined
spectrum shows a blue tilted peak with a sharp cutoff at
fpeak, in addition to the plateau and the red tilt feature
discussed above. Depending on the value of fpeak and fΔ,
we consider three distinct cases to discuss our results:
(i) fpeak > fΔ, (ii) fpeak < fΔ, and (iii) fpeak ∼ fΔ.
In Fig. 1, we show the combined spectrum correspond-

ing to subcases (i) and (ii) for a fixed value of Gμ ¼ 10−13.
The PBH parameters, β; min, are chosen in such a way that
the left panel plot corresponds to (i) fpeak > fΔ whereas the
right panel shows the spectrum for (ii) fpeak < fΔ. Each
plot uses two different PBH benchmarks to show the peak
position and amplitude shift. To show the variation due to
the CS parameter Gμ, we plot the combined spectrum for
different values of Gμ in Fig. 2. The PBH parameters are
kept fixed in both left and right panel plots of Fig. 2,
whereas Gμ values are chosen in such a way that left and
right panels correspond to subcases (i) and (ii), respectively.
Finally, in Fig. 3, we show the subcase (iii) fpeak ∼ fΔ for
different combinations of CS and PBH parameters.1 In all
of these plots, the experimental sensitivities of SKA [98],
GAIA [99], EPTA [100], THEIA [99], μARES [101],

1Note that another interesting frequency feva corresponding to
the wave number that crosses the horizon at TΔ is, in general,
different from fΔ because fpeak ≫ feva [32].
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LISA [102], DECIGO [103], BBO [104], ET [105], CE
[106], and aLIGO [107] are shown as shaded regions of
different colors. Clearly, depending upon the combination
of ðGμ; β; minÞ different parts of the spectrum—the plateau,
peak, and the turning point frequency fΔ—remain within
reach of different near future GW experiments. For con-
venience, we present a summary table including five
benchmark points (those can also be found in the figures)
and list the detectors with the potential to detect such
unique GW signatures. Finally, in Fig. 4 (left panel), we
show the variation of fΔ with min for three different values
of Gμ. In this plot, the yellow-shaded triangular region in
the upper right corner corresponds to the region where
particle production from the CS is more efficient than GW
radiation [65]. As mentioned earlier, this constraint comes
from the critical size of the loops below which particle
radiation becomes dominant. It translates further to a lower
bound on the initial time considered to compute the GW
spectrum and introduces a break (f�) in the spectrum
similar to the early matter domination. Requiring that

FIG. 1. Combined GW spectra from cosmic strings and PBH density fluctuations, for a fixed value of Gμ and for different values of
initial PBH mass min. In the left panel, we have fpeak > fΔ, whereas in the right panel, fpeak < fΔ.

FIG. 2. Combined GW spectra from cosmic strings and PBH density fluctuations, for a fixed value of initial PBH mass min, and for
different values of Gμ. In the left panel, we have fpeak > fΔ, whereas in the right panel, fpeak < fΔ.

FIG. 3. Combined GW spectra from cosmic strings and PBH
density fluctuations, choosing benchmark values for which
fpeak ∼ fΔ.
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f� > fΔ, for the loops containing cusps-like structures, the
constraint on the parameter space can be derived as [19]

Gμ > 2.4 × 10−16
�

TΔ

GeV

�
4=5

: ð11Þ

We translate this constraint to the fΔ −min plane using
Eq. (10) and the evaporation temperature of PBHs in the
case where they dominate [24]. In the right panel of Fig. 4,
we show the variation of fpeak with min, which is inde-
pendent of Gμ. In both of these plots, we indicate the
sensitivities of different GW detectors and show three of the
five benchmark points listed in Table I. As expected, in
these plots, for BP1 (Gμ ¼ 10−13) both fΔ and fpeak fall
within CE sensitivity whereas fpeak lies within ET sensi-
tivity as well. On the other hand, BP2 (Gμ ¼ 10−9) and
BP3 (Gμ ¼ 10−18) correspond to the scenarios where
fpeak > fΔ and fpeak < fΔ, respectively. The analytical
estimate of the turning point frequencies matches with our
numerical analysis performed in generating Figs. 1–3, up to
a difference of less than Oð1Þ.

B. A brief summary of the detection prospect

Consider that, at low frequencies, we measure the
stochastic GW background from cosmic strings (e.g., the

recent finding of a stochastic common spectrum process by
NANOGrav can be well explained by GWs from cosmic
string for the parameter range Gμ ∈ 10−11–10−9 [10–13]).
Then in Eq. (10), we have only one free parameter TΔ. In
the case of PBH domination, this parameter is basicallymin
since it appears as the only free parameter in TΔ. Therefore,
if we observe a spectral break frequency fΔ at any high-
frequency detector, e.g., ET and CE, we expect another
sharp peak at a “predicted frequency (fpeak)” according to
Eq. (8), or vice versa. Such a complementary detection
prospect distinguishes the PBH-dominated epoch from any
other EMDs. In this context, let us highlight the conse-
quence of summing over all the modes while computing
the GW spectrum from cosmic strings, especially for
fpeak > fΔ. Because summing over large k modes changes
the slope of the spectrum from f−1 to f−1=3 (loops
containing cusps), such a fΔ − fpeak complementary detec-
tion prospect requires a longer period of PBH domination
[large β, cf. Eq. (7)] compared to the simplest k ¼ 1 case,
so that Ωpeak

gw ðfpeak > fΔÞ ≫ ΩCS
gwðfpeak > fΔÞ.

C. Connection to realistic BSM scenarios

Given the general discussion above, let us point out
how such a spectrum could be a probe of particle physics
models. First, although the PBHs eventually evaporate,

FIG. 4. Left panel: variation of fΔ withmin. In the yellow-shaded region, particle production from CS is dominant over GW radiation.
Right panel: variation of fpeak with min. In both of the plots, BP1, BP2, and BP3 (cf. Table I) are also shown with diamond, star, and
circle, respectively. The sensitivities of different GW detectors are indicated too.

TABLE I. Benchmark points (BP) along with the GW detectors which can detect the peak frequency fpeak and the
turning point frequency fΔ of the combined GW spectrum.

BP minðgÞ Gμ β fpeak fΔ

BP1 6 × 105 g 10−13 2 × 10−8 ET, CE CE
BP2 3 × 106 g 10−9 5 × 10−9 ET, CE BBO, DECIGO
BP3 3 × 106 g 10−18 5 × 10−9 ET, CE None
BP4 4 × 105 g 10−13 5 × 10−8 LIGO, CE, ET CE
BP5 108 g 10−13 5 × 10−10 BBO, DECIGO LISA, BBO, DECIGO

BORAH, DAS, ROSHAN, and SAMANTA PHYS. REV. D 108, 023531 (2023)

023531-6



they might produce stable or unstable relics. A stable
relic could be dark matter, whereas an unstable particle
(such as right-handed neutrinos in seesaw mechanism)
produced from PBHs may seed baryogenesis (see, e.g.,
Refs. [108–111]). In addition, depending on the mass and
relative energy fraction, a PBH-dominated universe can
alter the standard parameter space of many high-energy
models, e.g., dark matter models [112], and the models of
light QCD axions [113]. Thus PBHs (the mass and the
energy fraction) act as a portal between gravitational
waves and the parameters of high-energy particle physics
models, motivating a synergic search of those models with
GWs plus the conventional particle physics experiments.
Such models featuring a high-scale gauged Uð1Þ-
symmetry breaking would exhibit the combined spectrum
discussed in this article. See, e.g., recent work on the
seesaw mechanism with a gauged Uð1Þ symmetry [26],
where the motivation and consequences of PBH domina-
tion have been studied. Studying this framework in the
context of global strings, which generically appear in
QCD-axion (including axionlike particles) models, might
be interesting to explore in future works.
Before concluding, let us stress that the motivation of

this paper is to point out that the consequences of an EMD
due to the standard long-lived fields or some additional new
physics and PBHs could be vastly different. In particular,
distorting GWs spectrum from cosmic strings with EMD,
results in a scale-invariant spectrum followed by a red tilt in
both cases, while for the latter one, depending on the initial
energy fraction of PBHs, a sharp blue tilt might follow
or precede. This makes the PBH scenarios unique. More
interestingly, depending on the model parameters, the new
features (fΔ and fpeak) in the scale-invariant spectrum
might appear in a single detector (cf. Fig. 3). Additionally,
because the effects of ultralight PBHs are of great interest
to study, e.g., in the context of dark matter production,
baryogenesis, and axions, such spectral features in the GWs
could be a unique probe of these models, irrespective of the
particle physics coupling strength. Let us also mention
another interesting aspect of the PBH-string scenario. We
focus on the frequency range where dominant GWs come
from the post-PBH evaporation era, i.e., from the beginning
of the most recent radiation domination. Although we do
not discuss the detailed spectral shapes of the high-
frequency GWs that might arise from the loops produced
during PBH domination and before, an additional effect
might be at play, distorting the high-frequency part of the
spectrum. This effect is black hole–string interaction which
has been studied analytically in the context of long-lived
black holes, contributing to the dark matter density [114].
The average separation of PBHs after formation is
d ≃ λ−1=3tf, where λ ≪ 1 is the fraction of horizon that
turns into PBHs. In this case, long strings of average length
l ≃ tf=λ and interaction probability λ [114] connecting two

BHs can randomly chop off loops less than the size of the
horizon (α ≃ 0.1) t ∼ tf. Therefore, the string dynamics are
largely unaffected by the PBH during the initial stages of
evolution after PBH formation, and the usual computation
of GWs from cosmic string loops holds. Nonetheless, the
efficiency of chopping off loops of horizon size or less
reduces as time evolves when the PBH separation con-
necting long strings become comparable to the horizon, and
two PBHs tend to straighten long strings. The exact
quantification of such a phenomenon requires appropriate
numerical simulation.

V. CONCLUSION

We have proposed a unique gravitational wave-based
probe of superhigh scale Uð1Þ symmetry breaking with a
PBH-dominated epoch before the BBN era. While cosmic
strings resulting from Uð1Þ breaking lead to a typical scale-
invariant GW spectrum, ultralight PBH domination leads
to an additional observable GW spectrum from density
fluctuations. When combined, the GW spectrum has a
unique shape with a plateau, a sharp tilted peak, and a
characteristic falloff behavior. Depending on the cosmic
string and the PBH parameters, different parts of the
spectrum fall within reach of ongoing and planned future
experiments. While early matter domination, e.g., by a
scalar field or supercooled first-order phase transition along
super-high scale Uð1Þ symmetry breaking can lead to a flat
plateau followed by a falloff, peak over a flat plateau or
combination of both, it remains distinguishable from the
spectrum we obtain in the presence of PBHs. This is due to
the lower and upper bounds on peak frequency in our work
due to the allowed ultralight PBH mass window, which
does not exist in other scenarios, plus the distinct power-
law behavior of the GWs from PBH density fluctuations.
In addition to such marked features verifiable in GW
detectors, the setup discussed in our work can also have
very rich phenomenological implications connected to the
production of dark matter from PBH evaporation, high-
scale leptogenesis, and seesaw for neutrino mass related to
Uð1Þ symmetry breaking [20,21,24–26].
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