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We investigate the Schwarzschild-(anti) de Sitter spacetime with the anisotropic metric ansatz.
The Wheeler-DeWitt equation for such a metric is solved numerically. In the presence of the cosmological
constant Λ, we show that two classical wave packets can be annihilated inside the black hole horizon, i.e.,
the annihilation-to-nothing scenario. It is interesting that the Wheeler-DeWitt equation can be extended to
the asymptotic de Sitter spacetime outside the cosmological horizon. Surprisingly, the only bounded
nontrivial wave function beyond the cosmological horizon satisfies the DeWitt boundary condition, i.e., the
wave function must vanish at a certain finite radius. This might be an alternative explanation to
the classicalization of quantum fluctuations in the de Sitter space, where this topic is also related to
decoherence.
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I. INTRODUCTION

Black hole physics has been an active topic in modern
theoretical physics for the past few decades. However, it
suffers from the spacetime defect, the singularity at its
core [1], and the information loss paradox because of the
lack of fundamental quantum gravity theory [2]. One of the
most conservative approaches is to solve the quantum
Hamiltonian constraint equation, the Wheeler-DeWitt
equation, with a specific metric ansatz [3]. The wave
function solution could be essential for understanding
quantum gravity and potentially address these problems.
In previous works, the Wheeler-DeWitt equation for the

interior Schwarzschild black hole can be simplified by the
anisotropic model (the Kantowski-Sachs metric) [4]. The
partial differential equation with two canonical variables
can be solved by separating variables. The bounded wave
function with suitable assumptions presents a new inter-
pretation, annihilation-to-nothing [5]. The wave function
shows a quantum bounce at half the black hole size. The
DeWitt boundary condition, vanishing wave function,
within annihilation-to-nothing has been discussed in
Ref. [6]. By introducing the spinorial Wheeler-DeWitt

equation for the interior of a higher-dimensional planar
topological black hole metric, the alternative interpretation
could be “no annihilation” or “annihilation-to-something”
[7]. Therefore, the quantum behavior around half of the
black hole size is worth additional attention due to these
wave function solutions.
From the observational point of view, the standard

ΛCDM model of cosmology implies that our universe
has a nonzero positive cosmological constant Λ [8]. On the
theoretical physics side, anti-de Sitter spacetime and
conformal field theory (AdS=CFT) are crucial for quantum
gravity theory [9]. For more generic cases, we consider the
Schwarzschild-(anti) de Sitter metric, the static black hole
solutions in the (anti) de Sitter spacetime, throughout
this work. The mass and entropy for the Schwarzschild-
(anti) de Sitter spacetime in the Wheeler-DeWitt equation
has been discussed in Ref. [10]. The Wheeler-DeWitt
equation for the Schwarzschild-(anti) de Sitter metric is
sophisticated; therefore, we solve it numerically. For
sufficiently small Λ, i.e., Λ ∼�Oð10−9Þ, we show that
annihilation-to-nothing is a generic feature. Moreover, in
de Sitter spacetime, the wave function outside the cosmo-
logical horizon also vanishes at the effective potential
boundary where the geometry should be classical.
This paper is organized as follows. In Sec. II, we derive

the Wheeler-DeWitt equation for the Schwarzschild-(anti)
de Sitter metric. In Sec. III, we numerically solve the
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equation with Gaussian wave packets and discuss the valid
regions separately. Finally, in Sec. IV, we summarize and
point out possible future applications of the framework.

II. THE WHEELER-DEWITT EQUATION OF
SCHWARZSCHILD-(ANTI) de SITTER METRIC

The interior Schwarzschild-(anti) de Sitter metric takes
the form of

ds2 ¼ −
�
Λ
3
t2 þ rs

t
− 1

�
−1
dt2 þ

�
Λ
3
t2 þ rs

t
− 1

�
dR2

þ t2dΩ2; ð1Þ

where rs ¼ 2M is the Schwarzschild radius and Λ is the
cosmological constant. When Λ < 0, the Schwarzschild-
anti-de Sitter metric has a black hole horizon in which
Eq. (1) is valid inside this horizon. When Λ > 0, the
Schwarzschild-de Sitter metric has two horizons in which it
is valid both inside the black hole horizon and outside the
cosmological horizon [11].1

Under particular diffeomorphism, this metric can trans-
form into the anisotropic model [4]

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdR2 þ r2s
b2ðtÞ
a2ðtÞ dΩ

2
2; ð2Þ

where NðtÞ is the lapse function, aðtÞ and bðtÞ denote two
canonical dimensionless variables. For simplicity, we
define X ≡ ln a and Y ≡ ln b. The classical on-shell tra-
jectory in the ðX; YÞ space is

eX þ e−X ¼ e−Y þ Λ
3
r2se2Y−3X: ð3Þ

The Wheeler-DeWitt equation for Schwarzschild-(anti)
de Sitter black hole can be further derived following
Ref. [5] as

�
∂
2

∂X2
−

∂
2

∂Y2
− VðX; YÞ

�
ΨðX; YÞ ¼ 0; ð4Þ

where the potential is

VðX; YÞ ¼ −4r2se2Y þ 4r4sΛe4Y−2X: ð5Þ

In the limit, Λ → 0, the Wheeler-DeWitt equation in
Ref. [5] is recovered. The sign in front of the potential
is defined in Appendix A.
The potential is highly correlated with the sign of Λ; see

Fig. 1. In Λ ¼ 0 spacetime, the potential decrease expo-
nentially in þY direction and behaves like a potential
hollow V → −∞ beyond the effective potential boundary
Y ¼ constant. In anti–de Sitter spacetime Λ < 0, since the
identical sign within the potential, the potential hollow has
enlarged proportionally to 2Y − X ¼ constant. In de Sitter
spacetime Λ > 0, because of the different signs, the
potential hollow has dwindled, and a potential barrier
V → ∞ appears proportionally to 2Y − X ¼ constant.
The potential hollow and potential barrier are shown as
(A) and (B) in Fig. 1 and its corresponding effective
potential boundaries are shown on the left of Fig. 3.2
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FIG. 1. The anti–de Sitter spacetime with Λ ¼ −10−9 and the de Sitter spacetime with Λ ¼ 10−9, left and right, respectively. The
region (A) is the potential hollow and (B) is the potential barrier, and the curve (C) is the classical on-shell trajectory Eq. (3) inside the
black hole horizon and (D) is the classical on-shell trajectory outside the cosmological horizon. The warm (cold) color region denotes the
positive (negative) potential region. The potential value jVj increases from lighter to darker.

1In de Sitter spacetime, the Λ has an upper bound, the Nariai
limit Λ ≤ 4=9 for rs ¼ 1, to preserve the horizons [12].

2The boundary value is chosen artificially where the wave
function starts to behave differently. The effective potential
boundary shifts corresponding to different values of σ.
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The Penrose diagram of the Schwarzchild-de Sitter black
hole is shown in Fig. 2. Inside the black hole horizon for
Λ < 0 and Λ ¼ 0, it is also similar to the purple triangle3

and that for Λ > 0 outside the cosmological horizon is the
pink triangle in Fig. 2. The Penrose diagram of
Schwarzchild (anti)-de Sitter black hole is fully analyzed
in Ref. [13].

III. NUMERICAL ANALYSIS

Since the potential depends on both X and Y, the
Wheeler-DeWitt equation Eq. (4) cannot be solved simply
by separating variables; therefore, we use the numerical
approach. In the following subsections, we investigate the
wave function inside the black hole horizon (the purple
triangle) for Λ < 0, Λ ¼ 0, and Λ > 0, and outside the
cosmological horizon (the pink triangle) for Λ > 0, the
special case, separately.

A. Inside the black hole horizon

To solve the Wheeler-DeWitt equation, one must impose
boundary conditions. As suggested in Ref. [5], we first
impose two wave pulses at the horizon and the singularity.
The boundary condition of the integration domain

ðXL; XRÞ × ð−Ym; YMÞ is given as follows:
(i) For ΨðX;−YmÞ, a localized (e.g., Gaussian) wave

packet must be located at the on-shell, i.e.,
ðXL;−YmÞ and ðXR;−YmÞ are points on Eq. (3).
The wave packet at Y ¼ −Ym can be chosen to be

ΨðX;−YmÞ¼
A

ð2πσ2Þ1=4
�
e−

ðX−XLÞ2
4σ2 −e−

ðX−XRÞ2
4σ2

�
; ð6Þ

where A and σ are constants. Here, to annihilate
each other, two Gaussian pulses have opposite
amplitudes.

(ii) For ∂YΨðX;−YmÞ, we consider that the left pulse at
ðXL;−YmÞ goes X-increasing direction, while the
right pulse ðXR;−YmÞ goes X-decreasing direction.
The corresponding condition is

∂YΨðX;−YmÞ ¼
A

2σ2ð2πσ2Þ1=4
�
ðX − XLÞe−

ðX−XLÞ2
4σ2

− ðXR − XÞe−
ðX−XRÞ2

4σ2

�
: ð7Þ

(iii) For ΨðXR=XL; YÞ and ∂XΨðXR=XL; YÞ, as long as
the standard deviation of each Gaussian wave packet
is sufficiently small, one can choose small value
close to 0.

In Fig. 3, the steepest-descent4 located on the classical
on-shell trajectory Eq. (3). For sufficiently small Λ, since
the classical on-shell trajectory does not cross the effective
potential boundaries, two classical wave packets can be
annihilated, i.e., the annihilation-to-nothing scenario; also,
the DeWitt boundary condition is satisfied at X ∼ 0 [5,6].5

The wave function apparently blows up for YM > 0, but
this is due to numerical errors. One can control the
divergent behavior by carefully tuning the boundary con-
dition, as seen in Appendix A. Thus, we believe that a
bounded wave function is allowed.
To summarize, the wave packets are completely annihi-

lated at X ∼ 0 (r ∼M), and the annihilation-to-nothing
scenario can be reproduced. This is not surprising because
the analytic solution exists for Λ ¼ 0 [5] and, as long as jΛj
is sufficiently small, there must exist a corresponding
bounded solution. The contribution of Λ is that the
trajectory is shifted in Eq. (3).

B. Outside the cosmological horizon

The Schwarzschild-de Sitter black hole has two horizons,
the black hole horizon rh and the cosmological horizon rc.
The classical on-shell trajectory Eq. (3) outside the cosmo-
logical horizon, (D) in Fig. 1, can be analyzed similarly.
The boundary conditions differ from those in Sec. III A;

therefore, we use a tilde to distinguish them. The boundary
condition of the integration domain ðX̃L; X̃RÞ × ð−Ỹm; ỸMÞ
is given as follows:

(i) For ΨðX;−ỸmÞ, a localized (e.g., Gaussian) wave
packet must be located at the on-shell, i.e.,

FIG. 2. The Penrose diagram of the Schwarzchild-de Sitter
black hole. The rh denotes the black hole horizon, while the rc is
the cosmological horizon. The singularity is at r ¼ 0 whereas
r → ∞ is the asymptotic infinity. The shaded triangles are the
regions simulated by the anisotropic model in Eq. (2), where the
purple triangle represents the region inside rh and the pink one
denotes the region outside rc.

3The Penrose diagram inside the black hole horizon is also
similar to Fig. 1 and 2 in Ref [5]. The Penrose diagram of the
Schwarzchild-de Sitter black hole at the Nariai limit is not
considered here. Such diagrams can be found in Ref. [13].

4The concept of the steepest-descent is explained in Sec. III in
Ref. [5].

5Although the classical on-shell trajectory still does not cross
the effective potential boundary for Λ ∼�Oð10−6Þ, the numeri-
cal error in the modulus squared of the wave function would
not be neglected. To avoid the numerical error, we consider
Λ ∼�Oð10−9Þ in this work.
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ðX̃L;−ỸmÞ is a point on Eq. (3). The wave packet at
this boundary can be chosen to be

ΨðX;−ỸmÞ ¼
A

ð2πσ2Þ1=4 e
−ðX−X̃LÞ2

4σ2 ð8Þ

where A and σ are constants.
(ii) For ∂YΨðX;−ỸmÞ, we consider the pulse going

X-increasing direction,

∂YΨðX;−ỸmÞ¼
A

2σ2ð2πσ2Þ1=4 ðX− X̃LÞe−
ðX−X̃LÞ2

4σ2 ð9Þ

(iii) One may find an endpoint on Eq. (3), say ðX̃R; ỸmÞ.
With the foresight that it should vanish at the effective
potential barrier boundary,ΨðX̃R; YÞ and ∂XΨðX̃R; YÞ
are chosen to be zero there. For ΨðX̃L; YÞ and
∂XΨðX̃L; YÞ, as long as the standard deviation of

each Gaussian wave packet is sufficiently small, one
can choose zero.

Before analyzing the interpretation of the wave function,
we must comment on the boundary conditions. The choice
of the boundary condition ΨðX̃R; YÞ ¼ 0 is sensitive to the
σ. Since the classical trajectory (D) crosses the potential
barrier and is near the potential hollow, the broad Gaussian
wave packet, a large value of the σ, may cross the potential
hollow and become unbounded. In Fig. 4, the wave
function would be unbounded once we set the boundary
at X̃R ¼ −9. However, it is just an ill-defined σ. If we
consider a Gaussian wave with σ ¼ 0.1, the wave function
is no longer unbounded even if we choose a larger
boundary of X̃R.
In Fig. 4, the steepest-descent still locates on the classical

on-shell trajectory Eq. (3) and the trajectory crosses the
effective potential barrier boundary. In other words, if an
incoming pulse is sent at the cosmological horizon rc, it
vanishes as soon as it crosses the effective potential barrier

FIG. 3. Left: The black line is the classical on-shell trajectory Eq. (3) and curve (C) in Fig. 1. The blue and red regions are the effective
potential hollow and the effective potential barrier with their boundary values V ≤ −5 and V ≥ 5. The effective potential boundary value
jVj ¼ 5 is chosen artificially where the wave function starts evolving. Right: The modulus squared of the wave function with certain
values of the cosmological constant are shown numerically with rs ¼ A ¼ 1 and σ ¼ 0.75. Here, the domain is set
ðXL; XRÞ × ð−Ym; YMÞ ¼ ð−10; 10Þ × ð−10; 0Þ. The incoming pulses from X, Y → −∞ (the black hole horizon rh) and from
X → ∞, Y → −∞ (the singularity) can be annihilated around X ∼ 0 (r ∼M).
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boundary. Since the cosmological constant has the Nariai
limit Λ ≤ 4=9 (to preserve horizons), the nonvanishing
wave packet is in the interval,

rcð¼ 0Þ ≤ a2ðtÞ ≤ e2Xb ≲ rc þMð¼ 1ÞjΛ¼4=9; ð10Þ

where Xb is the coordinate that the wave crosses the
effective potential barrier boundary. The boundaries of
the nonvanishing wave packet in the Penrose diagram are
shown in Fig. 2. For Λ ¼ 10−9, Xb ∼ −11 as shown in the
left Fig. 4.
Since the spacetime outside the cosmological horizon is

purely classical, the steepest descent, surprisingly, is not
clear beyond the potential barrier boundary. This may
imply that the Schwarzschild-de Sitter spacetime loses the
classical meaning beyond the r ∼ rc þM hypersurface.
Besides, this also implies a compelling interpretation that
the DeWitt boundary condition avoids infinity in the r → ∞
limit in metric Eq. (1). Interestingly, the X ∼ 0 hyper-
surfaces, r ∼M and r ∼ rc þM, not only share the same
metric form in Eq. (1) but also satisfy the DeWitt boundary
condition.

IV. CONCLUSION

In this work, we solve the Wheeler-DeWitt equation for
the Schwarzschild-(anti) de Sitter metric. Since the equa-
tion is impossible to solve simply by separating variables,
we use a numerical approach. We analyze the wave
function inside the black hole horizon (for Λ < 0,
Λ ¼ 0, Λ > 0) and outside the cosmological horizon
(for Λ > 0).
The wave function solution of the Wheeler-DeWitt

equation depends on the potential with an additional Λ
term. The sign of Λ determines the potential behavior.

When Λ ≤ 0, the potential behaves like a potential hollow.
When Λ > 0, the potential hollow dwindles and a potential
barrier appears. In Fig. 3, we show that the annihilation-to-
nothing is a generic scenario even with the existence of Λ,
and the DeWitt boundary condition, vanishing boundary
condition, yields at X ∼ 0 (r ∼M) [5,6]. The steepest
descent locates on the classical on-shell trajectory well
as expected.
In de Sitter spacetime, the Schwarzchild-de Sitter metric

is valid both inside the black hole horizon and outside the
cosmological horizon. Therefore, the Wheeler-DeWitt
equation for this metric can be extended to the region
outside the cosmological horizon. The wave function on the
classical on-shell trajectory vanishes at the effective poten-
tial barrier boundary. It means that there is no clear classical
interpretation beyond this boundary. The Schwarzchild-
de Sitter metric may not be able to describe regions far
away from the cosmological horizon. The conservative
interpretation is that the DeWitt boundary condition avoids
infinity in the r → ∞ limit in metric Eq. (1). The radical
interpretation is that the r ∼ rc þM hypersurface is the
furthest spacetime that the Schwarzchild-de Sitter metric
can reach.
It is interesting to mention that we can provide the

vanishing boundary condition beyond the cosmological
horizon. If this is the case, the natural consequence is that
we will lose the quantum coherence as the spacelike
hypersurface curves beyond the cosmological horizon.
What does this mean? This goes beyond the scope of this
paper. However, one natural consequence is this: it is not
surprising to see the decoherence of quantummodes that go
beyond the cosmological horizon. This is deeply related to
the origin of structures of our universe in the inflationary
universe. Our approach might be an alternative explanation
to the question of why quantum fluctuations are frozen to

FIG. 4. Left: the black line is the on-shell trajectory Eq. (3) and curve (D) in Fig. 1. Right: the modulus squared of the wave function
correspondingly is shown numerically with rs ¼ A ¼ 1 and σ ¼ 0.75. Here, the domain is set ðX̃L; X̃RÞ × ð−Ỹm; ỸMÞ ¼
ð−16;−10Þ × ð−5; 0.5Þ. The incoming pulse from X, Y → −∞ (corresponding to the cosmological rc) decays at the potential barrier
boundary. In Appendix B, we show that the wave is indeed bounded due to the potential barrier.
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classical perturbations, while this issue is deeply related to
the decoherence [14]. We leave this interesting research
topic for future investigations.
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APPENDIX A: THE BOUNDEDNESS OF THE
WAVE FUNCTION INSIDE THE

BLACK HOLE HORIZON

To understand the origin of the unboundedness, we first
turn off the potential in Eq. (5) by setting rs ¼ 0 as shown
in Fig. 5. With the boundary condition set in Sec. III A and
the domain ðXL;XRÞ× ð−Ym;YMÞ¼ ð−10;10Þ× ð−10;10Þ,
we find two extra pulses in þY region.
When we turn on the potential, with rs ¼ 1 and Λ ¼ 0,

the amplitude of these extra pulses grows exponentially in
the þY region, and it becomes unbounded because the
potential behaves like a potential hollow as explained at the
end of Sec. II.
We have shown that two wave packets in the −Y region

are annihilated; the unbounded behavior occurs because
the pulses reach the region where the potential is signifi-
cant. As we can see in Fig. 6, as the pulses are localized
(equivalently, as σ decreases), the unbounded part disap-
pears more and more. In the extreme limit, it will be
consistent with the analytic solutions, where the wave
function is bounded, as shown in Fig. 3 in Ref. [5].
Therefore, we can conclude that our results are suffi-
ciently bounded as we carefully choose the boundary
conditions.

APPENDIX B: THE BOUNDEDNESS OF THE
WAVE FUNCTION OUTSIDE THE

COSMOLOGICAL HORIZON

We first compare results with/without the potential
Eq. (5) by setting rs ¼ 0=rs ¼ 1. With the boundary
condition set in Sec. III B and the domain ðX̃L; X̃RÞ×
ð−Ỹm; ỸMÞ ¼ ð−16;−10Þ × ð−5; 2Þ, we find a pulse inþY
region. Such the pulse is eliminated by the potential barrier,
however, there remain some fluctuations that can be
interpreted as numerical errors, see Fig. 7.

FIG. 6. The modulus squared of the wave function is shown numerically for σ ¼ 0.9, σ ¼ 0.75, and σ ¼ 0.6, from left to right,
respectively, with rs ¼ A ¼ 1 and Λ ¼ 0.

FIG. 5. The modulus squared of the wave function is shown
numerically with rs ¼ 0, Λ ¼ A ¼ 1, and σ ¼ 0.75.
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