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An era of kination occurs when the Universe’s energy density is dominated by a fast-rolling scalar field.
Dark matter that is thermally produced during an era of kination requires larger-than-canonical annihilation
cross sections to generate the observed dark matter relic abundance. Furthermore, dark matter density
perturbations that enter the horizon during an era of kination grow linearly with the scale factor prior to
radiation domination. We show how the resulting enhancement to the small-scale matter power spectrum
increases the microhalo abundance and boosts the dark matter annihilation rate. We then use gamma-ray
observations to constrain thermal dark matter production during kination. The annihilation boost factor
depends on the minimum halo mass, which is determined by the small-scale cutoff in the matter power
spectrum. Therefore, observational limits on the dark matter annihilation rate imply a minimum cutoff scale
for a given dark matter particle mass and kination scenario. For dark matter that was once in thermal
equilibrium with the Standard Model, this constraint establishes a maximum allowed kinetic decoupling
temperature for the dark matter. This bound on the decoupling temperature implies that the growth of
perturbations during kination cannot appreciably boost the dark matter annihilation rate if dark matter was
once in thermal equilibrium with the Standard Model.
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I. INTRODUCTION

The thermal history between the end of inflation and the
beginning of big bang nucleosynthesis (BBN) remains
uncertain [1]. The energy scale of inflation is generally
assumed to be greater than 1010 GeV, but the abundances
of light elements predicted by BBN and the effective
neutrino density implied by the anisotropies in the cosmic
microwave background only require that the Universe be
radiation dominated at temperatures less than 8 MeV [2–9].
Future detections of gravitational waves [10–15] or a
network of cosmic strings [16] may be used fill in this
gap in the cosmic record, but we currently have no direct
observational probes of this era.
Fortunately, the matter power spectrum provides an

indirect way to probe of the evolution of the Universe
prior to BBN. For example, it has been shown that an early
matter-dominated era (EMDE) enhances the small-scale

matter power spectrum and leads to an abundance of early-
forming, highly dense dark matter microhalos [17–20].
These microhalos increase the dark matter annihilation
rate to the point of bringing some EMDE scenarios into
tension with Fermi-LAT observations of dwarf spheroidal
galaxies [20,21] and the isotropic gamma-ray background
[22,23]. An early era of cannibal domination, during which
the Universe is dominated by massive particles that are self-
heated by number-changing interactions, generates a sim-
ilar enhancement to the small-scale matter power spec-
trum [24,25].
Another possibility is that between the end of inflation

and the beginning of BBN there was a period of kination,
during which the Universe was dominated by a fast-rolling
scalar field (a kinaton) [26–28]. Kination was initially
proposed as a postinflationary scenario that allows the
Universe to transition to radiation domination even if the
inflaton does not decay into relativistic particles [26].
Postinflationary kination phases naturally arise in string
theory (e.g. [29,30]). While BBN bounds on gravitational
waves generally rule out scenarios that include no cou-
plings between the inflaton and the Standard Model [31], a
period of kination can still serve to dilute the inflaton
energy density after inflation. Kination also facilitates
baryogenesis [27], and the kinaton can transition into dark
energy [28,32–35] or dark matter [36–38].
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An early period of kination alters the evolution of dark
matter density perturbations [39]. When a perturbation
mode enters the horizon during an era of kination, the
gravitational potential drops sharply and then oscillates
with a decaying amplitude while the dark matter density
perturbations grow linearly with the scale factor. This linear
growth leaves an imprint on the matter power spectrum.
Specifically, for modes that enter the horizon during
kination, the matter power spectrum PδðkÞ is proportional
to kns−3, where k is the wave number of the perturbation
mode and ns is the scalar spectral index. In comparison,
Pδ ∝ kns−4 ln2½k=ð8keqÞ� for modes that enter the horizon
during radiation domination, where keq is the wave number
of the perturbation mode that enters the horizon at matter-
radiation equality. Therefore, a period of kination generates
a small-scale enhancement to the matter power spectrum. In
this work, we explore how this enhancement affects the
abundance of dark matter microhalos and the extent to
which it strengthens observational constraints on dark
matter production during kination.
The expansion rate during kination is higher than the

expansion rate in a radiation-dominated universe at the
same temperature. Consequently, a larger dark matter
annihilation cross section is required to generate the
observed dark matter abundance if dark matter is thermally
produced during kination [40–48], even if the dark matter
abundance is diluted by kinaton decays [49]. Therefore, an
era of kination widens the field of dark matter candidates to
include particles that have velocity-averaged annihilation
cross sections that are larger than 3 × 10−26 cm3 s−1, such
as dominantly wino or Higgsino neutralinos [40]. These
large annihilation cross sections also imply that such
scenarios are already tightly constrained by observational
limits on dark matter annihilation within dwarf spheroidal
galaxies [50] and the Galactic Center [51]. If the dark
matter freezes out from thermal equilibrium during an era
of kination, these limits strongly restrict the dark matter
mass and the temperature at which kinaton-radiation equal-
ity occurs [47].
Given these constraints on dark matter freeze-out during

kination, any boost to the dark matter annihilation rate from
enhanced dark matter structure could easily rule out these
scenarios. This boost, quantified by ρ2χ=ρ̄2χ where ρχ is the
dark matter density, depends not only on the kination
scenario but also on dark matter properties. If the dark
matter was once in kinetic equilibrium with Standard
Model particles, then its thermal streaming motion sup-
presses the amplitudes of density variations below a cutoff
scale determined by the temperature at which dark matter
kinetically decoupled. For each of the allowed kination
parameter sets, we calculate the cutoff scale and hence the
kinetic decoupling temperature Tkd required to rule out
each scenario based on observations of the isotropic
gamma-ray background, which provide the strongest
bounds on the dark matter annihilation cross section in

scenarios with enhanced small-scale structure [23]. In
particular, we frame our results in terms of the temperature
TkdS at which the dark matter would decouple within a
standard (radiation-dominated) expansion history, since
this parameter is a property of the dark matter particle
alone, has been calculated for many dark matter models,
and can be constrained by laboratory experiments [52,53].
We begin by determining the dark matter power spec-

trum in kination cosmologies in Sec. II A. In Sec. II B, we
calculate the small-scale cutoff to the matter power spec-
trum if dark matter kinetically decouples during a period of
kination. In Sec. III, we analyze the growth of structure
following a period of kination and find that a period of
kination triggers an earlier start to halo formation and
enhances the abundance of sub-Earth-mass microhalos. In
Sec. IV, we calculate the annihilation boost from these
early-forming microhalos following the procedure estab-
lished in Ref. [23], and we use the isotropic gamma-ray
background to constrain scenarios where dark matter
freezes out during kination. In Sec. V, we summarize
our results and discuss their implications. Natural units
ðℏ ¼ c ¼ kB ¼ 1Þ are used throughout this work.

II. THE MATTER POWER SPECTRUM
AFTER KINATION

A period of kination occurs when the pressure P of the
dominant component of the Universe equals its energy
density ρ. One way to realize this equation of state is with a
scalar field ϕ whose kinetic energy greatly exceeds its
potential energy: ðdϕ=dtÞ2=2 ≫ VðϕÞ. The scalar field’s
equation of state is then

w≡ Pϕ

ρϕ
¼ ðdϕ=dtÞ2=2 − VðϕÞ

ðdϕ=dtÞ2=2þ VðϕÞ ≃ 1: ð1Þ

This equation of state implies that the energy density of the
kinaton field drops as ρϕ ∝ a−6, where a is the scale factor
describing the expansion of the Universe.
In addition to the kinaton, we assume that the postinfla-

tionary Universe contains relativistic Standard Model (SM)
particles. Since the kinaton’s energy density decreases
faster than the density of relativistic particles (ρr ∝ a−4),
a period of kination will give way to a period of radiation
domination even if the kinaton does not decay. We
characterize this transition by the radiation temperature
TKR at kinaton-radiation equality. We also assume that dark
matter is a thermal relic that freezes out from the SM
radiation bath and that the radiation’s entropy is conserved
between dark matter freeze-out and today. This assumption
allows us to use the methods of Ref. [47] to determine the
dark matter annihilation cross section that yields the
observed dark matter abundance as a function of TKR
and the dark matter mass mχ .
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A. The dark matter transfer function

We first calculate the power spectrum of linear dark
matter density perturbations during the matter epoch. The
transfer function Tðk; aÞ parametrizes how dark matter
density perturbations δχ ≡ ðρχ − ρ̄χÞ=ρ̄χ vary with wave
number k during matter domination:

δχðk; a ≫ aeqÞ ¼
3

5

k2

ΩMH2
0

ΦpðkÞTðk; aÞ; ð2Þ

where aeq is the scale factor at matter-radiation equality,
ΩM is the current matter density divided by the current
critical density,H0 is the present-day Hubble rate, andΦp is
the gravitational potential at superhorizon scales during
radiation domination. To obtain Tðk; aÞ, we use the
evolution of δχ during kination and the subsequent
radiation-dominated era presented in Ref. [39] to determine
δχðk; aÞ during the matter-dominated era.
During kination, subhorizon dark matter density pertur-

bations grow as δχ ∝ a, even though the gravitational
potential quickly decays upon horizon entry. This growth
rate arises because dark matter particles converge on
regions that are initially overdense, and the comoving
distance traversed by particles in the absence of peculiar
gravitational forces is proportional to a during kination
[39]. It follows that δχðaKRÞ ∝ aKR=ahor, where aKR is the
scale factor at kinaton-radiation equality and ahor is
the scale factor when the mode k enters the horizon,
i.e., k ¼ ahorHðahorÞ. Since H ∝ a−3 during kination,
ahor ∝ k−1=2, which implies that δχ ∝ k1=2 for modes that
enter the horizon during kination.
During the radiation-dominated era that follows a period

of kination, δχ grows logarithmically with the scale factor
while k > aH. For modes that enter the horizon well before
kinaton-radiation equality, Ref. [39] found that

δχðaÞ ¼ 2.7Φ0

�
k

ffiffiffi
2

p

kKR

�1=2

ln

�
e

�
kKR
k

ffiffiffi
2

p
�

1=2 a
ahor

�
ð3Þ

during radiation domination. In this expression, kKR is the
wave number of the mode that enters the horizon at
kinaton-radiation equality, and Φ0 ¼ ð9=8ÞΦp is the gravi-
tational potential on superhorizon scales during kination.
Equation (3) matches the numeric solution for the evolution
of δχ very well for modes with k=kKR ≳ 100. As expected,
δχ ∝ k1=2 for these modes. Reference [39] also provides a
fitting function that describes the evolution of δχ for modes
that enter the horizon during the transition between kination
and radiation domination. For modes with 0.5≲ k=kKR,

δχðk; aÞ ¼
8

9
Φ0AðkÞ ln

�
BðkÞa
ahor

�

AðkÞ ¼ 2.29

�
0.11 × 9.112.64 þ 2.9

�
k

kKR

�
1.32

�
0.38

BðkÞ ¼
�
0.594−6.59 þ e−6.59

�
k

kKR

�
3.29

�
−0.15

ð4Þ

during radiation domination.1 Modes with k=kKR ≲ 0.5
follow the standard evolution of modes that enter the
horizon during radiation domination, with A ¼ 9.11 and
B ¼ 0.594 [54].
Given the fitting functions AðkÞ and BðkÞ in Eq. (4), we

solve for the evolution of δχðaÞ during matter domination
for modes that enter the horizon during either an era of
kination or radiation domination. To do so, we use Eq. (4)
as an initial condition for the Meszaros equation, which is
valid when ρχδχ ≫ ρrδr [55]. Prior to baryon decoupling
and well after matter-radiation equality, the resulting
solution to the Meszaros equation is given by [54]

δχðaÞ ¼
3A
2
f1

�
8

9
Φ0

�
ln

��
4

e3

�
f2=f1 Baeq

ahor

�
DðaÞ; ð5Þ

where f1 and f2 are determined by the baryon fraction
fb ≡ ρb=ðρb þ ρχÞ,

f1 ¼ 1 − 0.568fb þ 0.094f2b

f2 ¼ 1 − 1.156fb þ 0.149f2b − 0.074f3b;

andDðaÞ is the growing solution to the Meszaros equation.
Prior to baryon decoupling, the baryons do not fall into the
potential wells created by the dark matter density pertur-
bations. Accounting for the fact that the baryons do not
participate in gravitational collapse [54],

DðaÞ¼
�
1þ a

aeq

�
−α

2F1

�
α;αþ1

2
;2αþ1

2
;

aeq
aþaeq

�
; ð6Þ

where 2F1½a; b; c; x� is Gauss’s hypergeometric function,
and

α ¼ 1

4
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24ð1 − fbÞ

p
�: ð7Þ

To evaluate Eq. (5), we first evaluate aeq=ahor for modes
that enter the horizon during an era of kination:

aeq
ahor

¼ 21=4
�

k
kKR

�
1=2 kKR

keq

�
g�eq
g�KR

�
1=2

�
g�sKR
g�seq

�
2=3

; ð8Þ

1This evolution of δχðk; aÞ assumes that dark matter freezes in,
but it is still accurate to within ∼10% for modes that enter the
horizon after dark matter freezes out [39].
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where keq is the wave number of the mode that enters the
horizon at matter-radiation equality, g�ðTÞ is the effective
number of relativistic degrees of freedom at temperature T,
and g�sðTÞ is the effective number of degrees of freedom
that contribute to the entropy density at temperature T. We
define g�KR ¼ g�ðTKRÞ, g�eq ¼ g�ðTeqÞ, g�sKR ¼ g�sðTKRÞ,
and g�seq ¼ g�sðTeqÞ. In comparison, if modes enter the
horizon during radiation domination, then aeq=ahor ¼ffiffiffi
2

p
k=keq. The fitting function

aeq
ahor

¼ 1.98
k
keq

�
1þ 1.4

�
kKR
k

�
−0.99

�
−0.515

ð9Þ

is valid both for modes that enter the horizon during an era
of kination and for those that enter the horizon during
radiation domination. Utilizing Eq. (9) and the fitting
functions given in Eq. (4), we can evaluate Eq. (5) for
the evolution of δχ during matter domination for modes
that enter the horizon during either an era of kination or
radiation domination.
When we analyze structure formation in Sec. III, we

require a transfer function that is valid at all scales. To
construct this transfer function, we use the matter transfer
functions computed by CAMB Sources [56] and Eisenstein
and Hu (1998) [57], which do not take include deviations
from radiation domination prior tomatter-radiation equality.
For modes with k=keq ≤ 107, we use CAMBSources [56] to
evaluate the matter transfer function TCAMBðkÞ at redshift
z ¼ 50. For modes with k=keq > 107, we use the transfer
function ðTEHÞ computed by Eisenstein and Hu (1998) [57]
since it provides the same scale dependence as that com-
puted by CAMB. Matching these two transfer functions at
k=keq ¼ 107 allows us to extend the matter transfer function
at z ¼ 50 to large k values by taking

T50ðk=keq ≥ 107Þ ¼ TEHðkÞ
TCAMBðk=keq ¼ 107Þ
TEHðk=keq ¼ 107Þ : ð10Þ

When evaluating the transfer function we use the Planck
2018 parameters [58].
Even after they decouple from the photons, the baryons

have nonzero pressure and do not participate in gravitational
collapse on scales smaller than the baryon Jeans length [59].
To account for this suppression, we define a scale-dependent
growth function Dðk; zÞ such that Tðk; zÞ ¼ T50ðkÞDðk; zÞ
and Dðk; z ¼ 50Þ mimics the scale dependence of
TCAMB=TEH. We choose to pin our transfer function at
z ¼ 50 because the first microhalos generally form around
this redshift, as will be shown in Sec. III. For k=keq ≲ 104,
TCAMB=TEH ≃ 1. For k=keq ≳ 105, TCAMB=TEH ≃ 0.789 at
z ¼ 50 and continues to decrease at later redshifts. The
suppression of TCAMB=TEH results from small-scale pertur-
bations experiencing slower growth after recombination,

which TEH does not take into account. To match this
transition at z ¼ 50, we follow Ref. [17] and take

TCAMB

TEH
≃DsðkÞ≡

� ðDA −DBÞ
ð1þ ðk=keq

48500
Þ2.1Þ

�
þDB; ð11Þ

where DA ¼ 1 and DB ¼ 0.789.
For 3≲ z≲ 500, modes with TCAMB=TEH ≃ 1 have

δχðaÞ ∝ 2=3þ a=aeq. This growth of δχ comes from the
growing mode of the Meszaros equation. For modes with
TCAMB=TEH ≃ 0.789, baryons are still pressure supported
and δχðaÞ ∝ DðaÞ, where DðaÞ is defined in Eq. (6).
Utilizing these two relations, the scale-dependent growth
function Dðk; zÞ is obtained by reevaluating Eq. (11) with
DA and DB now taken to be functions of redshift [17]:

DAðzÞ ¼
2
3
þ 1þzeq

1þz

2
3
þ 1þzeq

51

; ð12aÞ

DBðzÞ ¼
DðzÞ

Dðz ¼ 50Þ : ð12bÞ

Finally, we account for an era of kination by multiply-
ing the transfer function by the ratio RðkÞ ¼ δχðTKRÞ=
δχðTKR ¼ ∞Þ, where δχ is evaluated after the era of
kination and TKR is the temperature at kinaton-radiation
equality. This ratio is evaluated by rescaling the solution to
the Meszaros equation given by Eq. (5) to account for an
era of kination. The result is

RðkÞ ¼
AðkÞ ln ½ð 4e3Þf2=f1

BðkÞaeq
ahor

�
9.11 ln ½ð 4e3Þf2=f10.594

ffiffi
2

p
k

keq
�
; ð13Þ

where AðkÞ and BðkÞ are given by the fitting functions in
Eq. (4) for k≳ 0.5kKR. For modes with k≲ 0.5kKR, δχ is not
affected by the period of kination and Rðk≲ 0.5kKRÞ ¼ 1.
Figure 1 shows matter transfer functions evaluated at

z ¼ 50 that include an era of kination with various values of
TKR as well as the standard matter transfer function without
an era of kination. The arrows represent the values of
kKR=keq for the two kination cases, and they thus represent
where the transfer function begins to deviate from the
standard case. Perturbation modes with k=keq < 1 enter the
horizon during matter domination, and TðkÞ is scale
invariant there. Perturbation modes with keq < k < kKR
enter the horizon during radiation domination, and TðkÞ ∝
ln½k=ð8keqÞ�=k2 in this regime. Finally, modes with k > kKR
enter the horizon during an era of kination, and TðkÞ ∝
k−3=2 here. It follows that the power spectrum of density
perturbations (Pδ ∝ knsT2) is proportional to kns−3 for
modes with k > kKR.
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The transfer function described above is not applicable to
arbitrarily high wave numbers; there is a cutoff imposed
that suppresses power for modes with k > kcut. To do this,
we introduce a Gaussian exponential cutoff to the transfer
function:

TðkÞ ¼ exp

�
−

k2

2k2cut

�
T0ðkÞ; ð14Þ

where T0ðkÞ is the transfer function not taking into account
a cutoff. The cutoff accounts for the effects of interactions
between dark matter particles and the SM particles and the
free streaming of dark matter particles following their
kinetic decoupling from the SM particles [59–61]. We
discuss these effects next.

B. Kinetic decoupling and free streaming

The kinetic decoupling of dark matter occurs when the
dark matter ceases to efficiently exchange momentum with
relativistic particles. The momentum exchange rate for
nonrelativistic dark matter with mass mχ scattering off of
relativistic particles with temperature T and number density
nrel is

Γmt ≃ σelnrel
T
mχ

; ð15Þ

where σel is the dark matter scattering cross section and the
factor of T=mχ accounts for the fact that it takes mχ=T
collisions to significantly change the dark matter particle’s
momentum [62]. The dark matter remains in kinetic equi-
librium while Γmt > H, where H is the Hubble rate. Once
Γmt ¼ H, the dark matter kinetically decouples from the

relativistic particles as the average time needed to change the
dark matter particles’momenta becomes longer than the age
of the Universe. The kinetic decoupling temperature Tkd is
defined from the relation ΓmtðTkdÞ ¼ HðTkdÞ.
The time of kinetic decoupling directly influences the

growth of dark matter perturbations. After a mode enters
the horizon during radiation or kinaton domination, density
perturbations in these species oscillate due to their pressure,
but the gravitational potential that they source decays
rapidly due to cosmic expansion. Dark matter particles
are kicked by this transient gravitational potential, and in
the absence of collisions, their resulting motion yields
the k ≫ keq portion of the transfer function discussed in
Sec. II A. However, if the dark matter is still collisionally
coupled to the radiation after horizon entry, it instead
inherits the radiation’s oscillations, with further damping
induced if the coupling is imperfect. Consequently, dark
matter perturbations that enter the horizon prior to
kinetic decoupling are modified and suppressed [59–61].
Additionally, the dark matter temperature is maintained
at the temperature of the radiation up until kinetic decou-
pling, and the associated random motion of dark matter
particles further suppresses perturbations, potentially even
at scales that enter the horizon significantly after kinetic
decoupling.
To calculate Tkd, we first evaluate the Hubble rate during

an era of kination under the assumption that the kinaton is
not decaying. At kinaton-radiation equality, HðTKRÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4π3=45m2

plÞg�KRT4
KR

q
. While the kinaton dominates

the energy density of the Universe,

HðTÞ ¼
�
4π3

45

�
1=2

�
T3

TKRmpl

��
g�sðTÞ
g�sKR

�
g1=2�KR: ð16Þ

For many dark matter candidates, σel ∝ ðT=mχÞ2, and
therefore Γmt ∝ T6 [63]. Using this relation for ΓmtðTÞ
and Eq. (16), it follows that the kinetic decoupling temper-
ature during an period of kination is given by

Tkd ¼
�
T4
kdS

TKR

�
1=3

�
g�sðTkdÞ
g�sKR

�
1=3

�
g�KR

g�ðTkdSÞ
�

1=6
; ð17Þ

where TkdS is the temperature at which the dark matter
would kinetically decouple during radiation domination:

ΓmtðTkdSÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3m2
pl

π2

30
g�ðTkdSÞT4

kdS

s
: ð18Þ

The value of TkdS has been calculated for many dark matter
models and only depends on the dark matter microphysics
that determines the elastic scattering rate [52]. The wave

FIG. 1. The matter transfer function evaluated at z ¼ 50
including an era of kination with two different values of
TKR∶ 0.01 GeV and 100 GeV. The black line represents the
standard matter transfer function without a period of kination.
The arrows represent the values of kKR=keq for the two kination
cases, and thus represent where the transfer function begins to
deviate from the standard case.
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number of the mode that enters the horizon when T ¼ Tkd
is kkd:

kkd
kKR

≡ akdHðTkdÞ
aKRHðTKRÞ

¼ 1ffiffiffi
2

p
�
Tkd

TKR

�
2
�
g�skd
g�sKR

�
2=3

; ð19Þ

where akd is the scale factor value at kinetic decoupling,
aKR is the scale factor value at kinaton-radiation equality,
and g�skd ¼ g�sðTkdÞ.
After kinetic decoupling, the dark matter velocity

decreases as 1=a. The dark matter free-streaming length,
λfs, is the comoving distance covered by the dark matter
from the time of kinetic decoupling to the present:

λfs ¼
Z

t0

tkd

v
a
dt ≃

ffiffiffiffiffiffiffi
Tkd

mχ

s
akd

Z
1

akd

da
a3HðaÞ : ð20Þ

Since entropy is conserved both during and after kination,
T ∝ g�sðTÞ−1=3a−1, and

λfs ¼
ffiffiffiffiffiffiffiffiffiffi
2Tkd

mχ

s
akd

HðTKRÞ

×
Z

1

akd

da
a3

��
aKR
a

�
−6

þ g�ðaÞg1=3�KR
g4=3�S ðaÞ

�
aKR
a

�
4

þ g�ðaeqÞg1=3�KR
g4=3�S ðaeqÞ

�
a4KR
a3aeq

��−1=2
: ð21Þ

Perturbations with k≳ λ−1fs are suppressed by the free
streaming of dark matter particles out of overdense regions
and into underdense regions.
Figure 2 shows the kinetic decoupling and free streaming

scales (kfs ≡
ffiffiffi
2

p
=λfs) as a function of TkdS=TKR for

multiple values of TKR. The solid lines represent
kkd=kKR and the dashed lines represent kfs=kKR for two
different values of mχ=TKR. Figure 2 shows there is little
variation in kfs=kKR and kkd=kKR for different values of
TKR. Figure 2 also shows that kkd is generally larger than
kfs; the same efficient free streaming that is responsible for
the rapid growth of dark matter perturbations during
kination [39] enhances the dark matter free-streaming
length relative to the horizon size at kinetic decoupling.
Consequently, we expect free streaming to provide the
dominant cutoff to the matter power spectrum when dark
matter decouples during kination.
Reference [60] found that free streaming suppresses δχ

by a factor of

TfsðkÞ ¼
�
1 −

2

3

�
k
kfs

�
2
�
exp

�
−
�
k
kfs

�
2
�
: ð22Þ

It is customary, however, to apply a Gaussian cutoff
in the matter power spectrum, PðkÞ ∝ expð−k2=k2cutÞ

(e.g. [59,61]), and we wish to maintain that convention.
For T2

fsðkÞ > 0.2, exp½−ð10=3Þk2=k2fs� matches T2
fsðkÞ to

within 10%. We therefore set kcut ¼
ffiffiffiffiffiffiffiffi
3=5

p
λ−1fs when

applying a PðkÞ ∝ exp½−k2=k2cut� cutoff to the matter power
spectrum.
The cutoff in the matter power spectrum sets the

minimum size of dark matter halos: Mcut ¼ 4πρm;0k−3cut,
where ρm;0 is the present-day matter density. Figure 3

FIG. 2. The kinetic decoupling and free-streaming scales as a
function of TkdS=TKR for multiple values of TKR. The solid lines
represent kkd=kKR and the dashed lines represent kfs=kKR. The
values of kfs=kKR were calculated taking mχ ¼ 100TKR and
mχ ¼ 1000TKR. Since our calculation of the free-streaming scale
is only valid when Tkd ≲mχ , the kfs=kKR curves for mχ ¼
100TKR are restricted to TkdS ≲ 25TKR.

FIG. 3. The minimum halo mass as a function of TkdS—the
temperature at which the dark matter would decouple in a
radiation-dominated universe—for different cosmological histor-
ies. The solid curve shows the minimum halo mass if dark matter
decouples while the universe is radiation dominated, while the
dashed lines correspond to kination scenarios with different
values of TKR. Dark matter particles decouple earlier during a
period of kination, leading to a reduction in the minimum halo
mass for TkdS < TKR.
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shows that a period of kination reduces Mcut for a given
value of TkdS in spite of the fact that free-streaming dark
matter particles traverse more comoving distance during
kination. The reduction in Mcut arises because a period of
kination effectively cools the dark matter by forcing it to
decouple earlier: Eq. (17) implies that kination increases
Tkd by roughly a factor of ðTkdS=TKRÞ1=3. Since the
temperature of the dark matter particles falls as 1=a2 after
decoupling, dark matter particles that decouple earlier are
colder than particles that remain in kinetic equilibrium with
relativistic particles longer. As seen in Fig. 3, the cooling
effect of the earlier decoupling more than compensates for
the larger distance that dark matter particles can travel
during kination, leading to a net reduction in Mcut. The
existence of smaller dark matter halos implies that a period
of kination will enhance the dark matter annihilation rate
even if most of the perturbation modes that experience
linear growth during kination are erased by free streaming,
as Fig. 2 shows is the case if mχ < 1000TKR.
It is also possible that dark matter particles do not

interact with SM particles and instead exist as part of a
hidden sector that is thermally decoupled from the visible
sector [64–69]. Since the temperature of particles in the
hidden sector can differ from the SM temperature [70], the
dark matter temperature when it decouples from the other
hidden particles may not equal the SM temperature at that
time. If the particles in the hidden sector have a temperature
THS ¼ ϵT and the dark matter begins to free stream when
the SM temperature is Tkd, the free-streaming horizon is

ffiffiffi
ϵ

p
times the expression given by Eq. (21). Therefore, kcut=kKR
can be much larger than the values shown in Fig. 2 if the
hidden sector is colder than the visible sector.

III. KINATION’S IMPACT ON STRUCTURE

We use Press-Schechter halo mass functions [71] to
determine how the enhancement to δχ during kination
affects dark matter halo formation. We first calculate the
rms density perturbation in a sphere containing mass M on
average:

σ2ðM; zÞ ¼
Z

d3k
ð2πÞ3 ½Dðk; zÞT50ðkÞ�2PPðkÞF2ðkRÞ; ð23Þ

where Dðk; zÞ is the scale-dependent growth function
defined in Sec. II A; T50ðkÞ is the transfer function defined
inEq. (2) evaluated at z ¼ 50;PPðkÞ is the present-daypower
spectrum of large-scale (k ≪ keq) matter density perturba-
tions; and FðkRÞ is a filter function that suppresses con-
tributions from modes with k−1 ≪ R ¼ ½3M=ð4πρm;0Þ�1=3.
If the matter power spectrum has a small-scale cutoff, using
a sharp-k filter to calculate σðMÞ generates more accurate
Press-Schechter mass functions than a top hat filter [72].
We use

FðkRÞ ¼
�
1 kR ≤ 1.85;

0 kR > 1.85;
ð24Þ

the transition at kR ¼ 1.85 is chosen such that this sharp-k
filter gives the same value for σðMÞ as a top hat filter in the
absence of a small-scale cutoff in the power spectrum.
Figure 4 shows σðMÞ evaluated at z ¼ 50 without a period
of kination and for kination scenarios with different values of
TKR. It is evident that the growth of subhorizon density
perturbations during kination enhances σðMÞ for small
masses. In addition, as TKR decreases, σðMÞ deviates at
larger values of M from that predicted assuming radiation
domination.
There is a characteristic mass scale MKR defined by the

mass enclosed in RðMKRÞ≡ k−1KR:

MKR ¼ 21.4M⊕

�
g�sKR
3.91

��
3.36
g�KR

�
3=2

�
0.01 GeV

TKR

�
3

; ð25Þ

where M⊕ is the Earth mass. In obtaining Eq. (25), we set
ρm;0 equal to the density of dark matter alone (with Ωχh2 ¼
0.12 [58]) because only dark matter is expected to accrete
onto such small halos [59]. The mass scale MKR is the
largest mass for which a period of kination enhances σðMÞ.
In Fig. 4, the arrows indicate the values of MKR for each
value of TKR. For M > MKR, σðMÞ is insensitive to TKR
because it only depends on modes with k < kKR. For
M ≪ MKR, σðMÞ is most sensitive to modes with k ≫ kKR,
which enter the horizon during an era of kination. Since
PδðkÞ ∝ kns−3 for these modes, σðM ≲MKRÞ ∝ M−ns=6.
To take into account the effects of free streaming,

we impose a cutoff to the matter power spectrum that
suppresses power for modes with k > kcut. Figure 5
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FIG. 4. The rms density perturbation σ in a sphere of average
massM evaluated at z ¼ 50 for scenarios with TKR ¼ 0.01 GeV,
1 GeV, 10 GeV, and 240 GeV. Also included is the σðMÞ value
calculated assuming uninterrupted radiation domination. The
arrows correspond to the values of MKR=M⊕ for each value of
TKR. ForM < MKR, σðMÞ is larger than it would be if there were
no period of kination.
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demonstrates the implications of imposing a cutoff on
σðMÞ; imposing a cutoff suppresses σðMÞ for small values
of M. As kcut=kKR decreases, σðMÞ becomes more sup-
pressed at smaller mass scales.

The Press-Schechter formalism predicts that microhalos
are common once σðMÞ exceeds the critical linear density
contrast δc ¼ 1.686. With no cutoff, σðMÞ increases with-
out limit asM decreases, and microhalos form at arbitrarily
high redshifts. Imposing a cutoff limits the amplitude of
σðMÞ, and its maximum value is highly sensitive to
kcut=kKR. Therefore, the ratio kcut=kKR largely determines
when the first microhalos form. The mass of these micro-
halos is determined by kcut.
After calculating σðMÞ, we use the Press-Schechter

formalism to calculate the differential comoving number
density

dn
dlnM

¼
ffiffiffi
2

π

r
ρm;0

M

���� dlnσdlnM

���� δc
σðM;zÞexp

�
−

δ2c
2σ2ðM;zÞ

�
; ð26Þ

of halos with mass M at redshift z. It follows that the
differential fraction of mass contained in halos is

df
d lnM

¼ M
ρm;0

dn
d lnM

: ð27Þ

Figure 6 shows df=d lnM as a function of M for various
cutoffs to the matter power spectrum with TKR ¼ 1 GeV;
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FIG. 5. The rms density perturbation σðMÞ in a sphere of
average mass M evaluated at z ¼ 50 for scenarios with TKR ¼
0.01 GeV and cutoffs to the matter power spectrum of
kcut=kKR ¼ 100; 40; 20. The red line corresponds to σðMÞ with
no cutoff to the matter power spectrum.
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FIG. 6. The evolution of df=d lnM with TKR ¼ 1 GeV. The different lines represent df=d lnM without a cutoff in the matter power
spectrum and with cutoff values of kcut=kKR ¼ 400, 200, 50, and 20 respectively. The solid vertical line marks M ¼ MKR.
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the solid vertical line marks M ¼ MKR. Figure 6 illustrates
how a cutoff to the matter power spectrum influences the
minimum halo mass. For example, at a redshift of 60 with
no cutoff to the matter power spectrum, halos with
10−17MKR ≲M ≲ 10−2MKR are prevalent, whereas setting
kcut=kKR ¼ 400 eliminates halos with M ≲ 10−8MKR. As
kcut=kKR decreases, the minimum halo mass increases and
microhalo formation is postponed to later times.
Figure 7 shows, as a function of redshift z, the fraction

f<MKR
ðzÞ≡

Z
MKR

0

dM
M

df
d lnM

����
z
; ð28Þ

of dark matter bound into halos with masses less thanMKR
for scenarios with and without cutoffs to the matter power
spectrum.We fix TKR ¼ 0.01 GeV here, but the total bound
fraction is only weakly sensitive to TKR because σðMÞ is
nearly flat forM > MKR. Figure 7 confirms that as kcut=kKR
decreases, the formation of halos is delayed and the fraction
of darkmatter within the halos is decreased. For example, by
a redshift of 30, at least a third of the dark matter is bound
into haloswithmasses smaller thanMKR forkcut=kKR ≳ 200,
yet at the same redshift only 10% of the darkmatter is bound
into halos with M < MKR for kcut=kKR ¼ 50.
The M < MKR bound fraction in Fig. 7 decreases at late

times due to mergers, which produce more halos with larger
masses and decrease the abundance of smaller-mass field
halos. However, many of the smaller-mass halos are likely
to survive as subhalos inside larger hosts; Press-Schechter
calculations do not account for subhalos. Since subhalos
are an important contributor to the dark matter annihilation
rate, this consideration (among others) motivates the use of
a different approach to evaluate the dark matter annihilation
rate in kination scenarios, as we discuss next.

IV. LIMITS ON DARK MATTER ANNIHILATION
IN KINATION SCENARIOS

If dark matter is a thermal relic, the abundance of dark
matter microstructure induced by kination scenarios could
substantially boost the dark matter annihilation rate today.
In this section, we explore this boost and the extent to
which it improves upon the constraints on kination scenar-
ios derived in Ref. [47].
An annihilation signal originating from unresolved

microhalos traces those halos’ spatial distribution,
which follows the (smoothed) dark matter distribution.
Consequently, the signal from this annihilation scenario
closely resembles that of dark matter decay, and we follow
the procedure in Refs. [22,23] to convert published bounds
on the dark matter lifetime into constraints on annihilation
within unresolved microhalos. In particular, we employ the
limits on the dark matter lifetime derived in Ref. [73].
These constraints use the Fermi Collaboration’s measure-
ment of the isotropic gamma-ray background (IGRB) [74].
Reference [23] found that for microhalo-dominated anni-
hilation scenarios, the IGRB yields constraints that are
substantially stronger than those that employ gamma rays
from dwarf spheroidal galaxies.
To convert the dark matter lifetime constraints in

Ref. [73] into limits on the annihilation cross section,
we equate the annihilation rate per mass, Γ=M, of particles
with mass mχ and cross section hσvi, to the decay rate per
mass of particles with mass 2mχ and effective lifetime τeff .
That is,

Γ
Mχ

¼ hσvi
2m2

χ

ρ2χ
ρ̄χ

¼ 1

2mχτeff
; ð29Þ

where ρ̄χ and ρ2χ are the mean and mean squared dark matter
density, respectively. This equation converts a lower bound
on τeff for particles with masses equal to 2mχ into an upper
bound on hσvi for particles with masses equal to mχ . It
connects to the dark matter halo population through the

overall annihilation boost factor ρ2χ=ρ̄χ2.

A. Predicting the annihilation boost

To predict the annihilation boost factor ρ2χ=ρ̄χ2, we must
know not only the population of dark matter halos but also
their internal mass distributions, characterized by each
halo’s radial density profile ρðrÞ. Moreover, we seek not
only the population of field halos, discussed in Sec. III, but
also that of subhalos that reside inside larger halos. While
Figs. 6 and 7 show that the mass in field halos smaller than
MKR decreases dramatically by the present day, we expect
many of these microhalos to persist as subhalos.
The common approach to the problem of predicting

ρ2χ=ρ̄χ2, exemplified in Ref. [75], is as follows.
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FIG. 7. The total bound fraction for M < MKR, evaluated with
and without cutoffs to the matter power spectrum. The total
bound fraction was evaluated with TKR ¼ 0.01 GeV.
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(1) Use a Press-Schechter-like mass function dn=d lnM
to characterize the field halo population.

(2) Describe the subhalo population using a subhalo
mass function, which is typically modeled as a
power law dN=dM ∝ M−α with α ∼ 2; N and M
here are the subhalo count and mass, respectively.

(3) Use a concentration-mass relation to map each
halo’s mass to the typical density profile of halos
of that mass.

However, the subhalo mass functions and concentration-
mass relations are tuned to the results of cosmological
simulations carried out using a conventional cold dark
matter power spectrum. We cannot expect them to remain
accurate in a kination scenario.
Instead, we utilize the connection developed in

Refs. [76,77] between the properties of local maxima in
the linear density field and the density profiles of the halos
that form when they collapse. This peak-to-halo (P2H)
method associates each peak in the primordial (linear)
density field to a collapsed halo and predicts the halo’s
density profile from the properties of the peak. Importantly,
this mapping was shown to remain accurate for vastly
different power spectra, making it suitable for the study of
kination and other nonstandard cosmologies (e.g.
Refs. [23,78]). Using the prescription in Ref. [76], we
exploit the Gaussian statistics of the linear density field to
sample 106 peaks for each kination power spectrum. We
assume that each peak collapses to form a prompt ρ ¼
Ar−3=2 cusp [79,80], and we use the P2H model to predict
the cusp’s coefficient A. Since baryonic matter does not
cluster at mass scales below about 105M⊙ [59], the growth
rate of dark matter density perturbations below this scale is
suppressed, an effect not accounted for in Ref. [76]. Thus,
we use the modification presented in Ref. [23] that accounts
for this slower growth when computing A.2

The P2H method yields the initial population of micro-
halos, which is altered by subsequent hierarchical cluster-
ing processes. We consider two estimates of the impact of
microhalo mergers.
(1) For a conservative estimate, we assume that inter-

actions between microhalos soften the initial ρ ∝
r−3=2 cusps, transforming them to the ρ ∝ r−1 cusps
associated with Navarro-Frenk-White (NFW) pro-
files [81,82]. This outcome has been suggested by
Refs. [76,83–87].

(2) For an optimistic estimate, we follow Ref. [80] and
assume, based on the most recent simulation re-
sults [77], that all halos retain their initial ρ ∝ r−3=2

density cusps in their central regions. Since this
prompt cusp dominates the annihilation signal, we
neglect annihilation beyond its extent.

As we will see in Sec. IV B, the optimistic assumption so
severely limits possible dark matter parameters that scenar-
ios in which kination affects halo structure are ruled out.
Consequently, for that case, we may use results from
Ref. [80], which found that the annihilation boost obtained
from the P2H method assuming prompt-cusp survival is fit
well by the expression

ρ2χ
ρ̄2χ

¼ 0.08

�
log

�
mχ

GeV
Tkd

GeV

�
þ 36

�
5

ð30Þ

for standard thermal histories (without kination).
Appendix B shows that this annihilation boost factor is
about an order of magnitude larger than the results of
standard halo-based computations (e.g. [88]).
For the conservative case, we use the same procedure as

Ref. [23]. We assume that mergers relax the microhalos’
density profiles to the NFW form, [81,82]

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð31Þ

and that the scale radius rs and density ρs of this profile are
set by ρ2sr3s ¼ ωA2, where ω is an undetermined propor-
tionality constant. The J-factor for each halo, J ≡ R

ρ2dV,
is then

J ¼ ð4π=3ÞωA2: ð32Þ

Based on the arguments in Ref. [23], we conservatively
set ω ¼ ð4=3Þ2.
The other main impact of mergers is to reduce the

number of halos while increasing the surviving halos’ sizes.
Reference [76] found that the sum

P
A2 over all halos

remains close to its value for the initial peak population
even after mergers have taken place. As Ref. [23] discusses,
the notion that

P
A2 is approximately conserved during

mergers is also consistent with the idealized merger studies
of Ref. [89]. Mergers between identical halos in those
studies generated a halo with nearly the same characteristic
density ρs as the progenitor halos. Since

P
M is approx-

imately conserved during the merger, the sum over A2 ∝
ρsM must also be preserved.
Assuming that

P
A2 remains constant as the halo

population evolves, the cosmologically averaged squared
dark matter density predicted by the P2H model is

ρ2χ ¼
n̄
N

XN
i¼1

Ji; ð33Þ

where n̄ is the number density of peaks [90], and we sum
over the N ¼ 106 sampled peaks, computing Ji for each

peak using Eq. (32). The boost factor ρ2χ=ρ̄χ2 computed
using this procedure is depicted as the thin solid lines in

2
PYTHON code that implements these calculations is publicly

available at https://github.com/delos/microhalo-models.
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Fig. 8 for a range of kination scenarios. This figure shows
how kination’s boost to the small-scale power spectrum
results in a boost to the dark matter annihilation rate as long
as kcut ≳ 10kKR.
Beyond mergers between microhalos, the microhalo

population is also influenced by accretion onto larger,
later-forming dark matter structures such as galactic halos.
The tidal influence of these larger halos gradually disperses
and strips material from their subhalos. We use the tidal
evolution model developed in Ref. [91] to estimate how this
effect suppresses the annihilation rate within subhalos. In
Appendix A, we detail this calculation and show that tidal
effects suppress the annihilation rate by a factor of about 3
for scenarios without significant kination-boosted structure.
The suppression is weaker when kination’s boost to
structure is significant. Figure 8 shows the tidally sup-
pressed annihilation boost.
The mapping in Eq. (29) from decay to annihilation

bounds requires that the annihilation rate per dark matter
mass, proportional to ρ2χ=ρ̄χ , be time-independent over the
range of redshifts relevant to the IGRB. In Fig. 9, we plot

the time evolution of ρ2χ=ρ̄χ2 for one particular kcut and no
kination boost. For simplicity, we neglect tidal suppression

here. Evidently, ρ2χ=ρ̄χ has negligible time dependence for
the redshifts z < 20 relevant to the IGRB.
While conventional halo model methods cannot account

for kination-induced changes to the power spectrum, they
have been applied to scenarios without these effects. It is
reasonable to wonder how the predictions of our P2H

model compare to halo-model predictions in these scenar-
ios. We show in Appendix B that under the conservative
assumption that prompt cusps do not survive, the P2H
calculation of the annihilation boost matches the predic-
tions of a halo-model calculation to within a factor of
about 2. Moreover, for most parameters, the P2H results are
bracketed by the halo-model predictions obtained under
two common assumptions about the subhalo mass function.
Note that in this comparison, the peak-based calculation is
altered to neglect the fact that baryons do not cluster at
small scales, since that matches the assumption made for
the relevant halo models.

B. Observational limits

We are now prepared to develop constraints on kination
scenarios. For each dark matter mass mχ and temperature
TKR of kinaton-radiation equality, we use the following
procedure:
(1) We numerically integrate the background equations

in Ref. [47] to determine the velocity-averaged
dark matter annihilation cross section hσvi that
generates the observed dark matter abundance (ρ̄χ¼
33M⊙ kpc−3, corresponding to Ωχh2 ¼ 0.12 [58])
through thermal freeze out.

(2) We use Eq. (29), with the given mχ and established
hσvi, to convert the dark matter lifetime limits in

Ref. [73] into a maximal allowed value of ρ2χ=ρ̄χ2.
(3) We use the P2H model, for the given TKR, to

determine the cutoff scale kcut that corresponds to

this value of ρ2χ=ρ̄χ2.
(4) For dark matter that was once in kinetic equilibrium

with the SM, we connect kcut to Tkd by evaluating
the free-streaming scale, λfs ¼

ffiffiffiffiffiffiffiffi
3=5

p
k−1cut, as de-

scribed in Sec. II B.

FIG. 8. The annihilation boost under the conservative
assumption that prompt cusps do not survive. We plot the overall
boost factor (relative to a homogeneous universe) for several
kination scenarios (colors) as a function of the cutoff scale kcut.
In each case, kKR, the wave number entering the horizon at
kinaton-radiation equality, is shown with a dotted line. When
kcut ≳ 10kKR, kination’s impact on small-scale power can boost
the dark matter annihilation rate considerably compared to a
scenario without a kination boost (black). We plot the boost both
without tidal suppression of microhalos (thin curve) and with
such tidal suppression (thick curve). As discussed in Appendix A,
we conservatively scale the boost by the smaller of the factors
corresponding to tidal evolution of extragalactic and Galactic
microhalos.

FIG. 9. Evolution of ρ2χ=ρ̄χ , which is proportional to the
annihilation rate per dark matter mass. We consider a standard
thermal history (no kination), and tidal suppression is neglected.

ρ2χ=ρ̄χ is essentially time independent for z < 20. We assume here
that prompt cusps do not survive, but Ref. [80] presents a similar
conclusion under the assumption that they do persist.
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(5) We evaluate the corresponding value of TkdS, the
kinetic decoupling temperature for the same dark
matter model in a standard thermal history (no
kination). This quantity is useful because it is a
property of the dark matter particle alone, and viable
values for TkdS have been explored (e.g. Ref. [53]).

Figure 10 shows how the value of hσvi that generates the
observed dark matter density depends on mχ and TKR. As
discussed in Ref. [47], the required hσvi values exceed
2 × 10−26 cm3 s−1 because the Hubble rate at a given
temperature is higher during kination than it is during
radiation domination, which causes dark matter to freeze
out at a higher density. Since H ∼ T3=ðTKRmplÞ during
kination, the relic number density of dark matter particles
that freeze out during kination would be independent of
the freeze-out temperature TF if annihilation ceased when
H ¼ nχhσvi and T ∝ a−1 thereafter. However, annihilation
continues to deplete the dark matter abundance through-
out kination, which reduces the relic abundance by a
factor of logðTF=TKRÞ [46,47]. Consequently, ρ̄χ ∝
mχ=½hσviTKR logðTF=TKRÞ� when dark matter freezes out
during kination.
The freeze-out temperature is defined by the relation

HðTFÞ ¼ hσvinχ;eqðTFÞ, where nχ;eqðTÞ is the number
density of dark matter particles in thermal equilibrium.
Figure 11 shows how TF depends on mχ and TKR when
hσvi is chosen to give the correct freeze-out abundance.
Due to the exponential sensitivity of nχ;eq to mχ=TF,
mχ=TF ≃ 25 for a wide range of mχ values. Figure 11 also
demonstrates that mχ=TF depends weakly on mχ=TKR.

If the number of dark matter particles and the entropy of the
radiation bath is conserved after freeze-out, then

nχ;eqðTFÞ ¼
ρ̄χ
mχ

�
g�SðTFÞT3

F

g�SðT0ÞT3
0

�
; ð34Þ

where T0 is the present-day temperature and we continue to
use ρ̄χ to denote the present-day dark matter density. In this
case, it follows that mχ=TF is independent of expansion
history if hσvi is chosen to match the relic density to the
observed density. The persistent depletion of the dark
matter during kination modifies Eq. (34): larger mχ=TKR

values require smaller mχ=TF values because a higher
density at freeze-out is required to compensate for the loss
of dark matter particles between freeze-out and the end of
kination.
For the example case of dark matter annihilating into bb̄,

Fig. 12 shows the results of steps (3)–(5): the observational
upper limits on ρ2χ=ρ̄χ2, kcut, and Tkd. These are evaluated
under the conservative assumption that the prompt
cusps become NFW cusps. We mark several noteworthy
regimes here.
(1) Below the gray diagonal line, the dark matter freezes

out after kination ends (TF < TKR), so the existence
of a kination epoch does not affect this regime.

(2) Above the gray diagonal line, the dark matter freezes
out during kination. The upper limits on ρ2χ=ρ̄χ2 and
kcut in this regime depend only weakly on mχ

because the annihilation cross section required to
achieve the observed dark matter abundance is
proportional to ðmχ=TKRÞ= logðTF=TKRÞ [47]. It
follows from Eq. (29) that the effective dark matter
lifetime is only logarithmically dependent on
TF ≃mχ=25. Formχ ≲ 104 GeV, the slight variation

of the upper bounds on ρ2χ=ρ̄χ2 and kcut for different
mχ results from the mχ-dependence of the observa-
tional limits on the dark matter lifetime. The impact

FIG. 10. The annihilation cross section hσvi for dark matter that
freezes out with the observed abundance as a function of dark
matter mass mχ and temperature TKR of kinaton-radiation equal-
ity. The contours match the lines on the color bar and indicate
successive powers of 10, starting at 10−25 cm3 s−1. Below the
gray diagonal, the dark matter freezes out after the kination epoch
ends, so hσvi ≃ 2 × 10−26 cm3 s−1 independently of TKR. The
upper gray line marks the unitarity limit [92], which moves to
smaller massesmχ for dark matter that freezes out during kination
because hσvi is higher.

FIG. 11. Ratio mχ=TF between the dark matter mass and the
freeze-out temperature for dark matter that has the observed
density after freezing out from the SM radiation bath.
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of the logarithmic mχ-dependence of the effective
dark matter lifetime can be seen for larger masses.

(3) In the shaded region, the dark matter annihilation
coupling strength exceeds the unitarity limit,

hσvi ¼ 4π=m2
χ : ð35Þ

(4) Below the dotted curve in the middle panel, the
cutoff wave number kcut is observationally con-
strained to be smaller than the wave number kKR
that enters the horizon at kinaton-radiation equality.
This implies that kination’s boost to the small-scale
power spectrum must be fully erased by free
streaming.

(5) Below the dashed curve in the lower panel, the
kinetic decoupling temperature Tkd is constrained to
be smaller than the temperature TKR of kination-
radiation equality. Since the dark matter then de-
couples after kination ends, kination has no impact
on structure (whether through its boost to the power
spectrum or through its reduction of the minimum
halo mass).

(6) Finally, above the thick solid green curve in the
lower panel, the observational upper limit on Tkd is
higher than the freeze-out temperature TF. We do not
expect dark matter to kinetically decouple while it is
still in thermal equilibrium, and current observatio-
nal limits on dark matter annihilation do not further
restrict Tkd in this regime.

We now explore the parameter ranges allowed for
thermally produced dark matter in kination scenarios.
Figures 13 and 14 plot again the dark matter mass mχ

against the temperature TKR of kinaton-radiation equality.
Different panels represent different annihilation channels.
We mark regions ruled out by several different consider-
ations: the unitarity bound (gray), the Fermi Collaboration’s
search for dark matter annihilation in dwarf spheroidal
galaxies [50] (cyan), and the H.E.S.S. Collaboration’s
search for dark matter annihilation in the Galactic
Center [93] (yellow). The Fermi and H.E.S.S. upper limits
on hσvi do not assume any boost to the annihilation rate due
to subhalos. Nevertheless, they still severely restrict dark
matter production during kination, owing to the large
annihilation cross section hσvi required by such scenarios
(see Fig. 10). Below the gray diagonal lines in Figs. 13 and
14, dark matter freezes out after kinaton-radiation equality.
These considerations typically leave a fairly narrow viable
region for dark matter that freezes out during a kination
epoch, as was shown in Ref. [47].
Within the allowed region, Fig. 13 shows the upper limit

on the power spectrum cutoff scale kcut that results from
enforcing the IGRB bound on the dark matter effective
decay rate [73], as described in this section. We adopt the
conservative assumption that the prompt cusps are softened

FIG. 12. Upper limits on the annihilation boost factor ρ2χ=ρ̄χ2

(upper panel), cutoff wave number kcut (middle panel), and
kinetic decoupling temperature Tkd (lower panel) for dark
matter that thermally decouples from the SM and annihilates
into bb̄, as a function of the dark matter massmχ and the kinaton-
radiation equality temperature TKR. These limits are derived from
Ref. [73]’s limits on the dark matter lifetime, which employ the
Fermi Collaboration’s measurement of the IGRB [74]. Contours
mark successive powers of

ffiffiffiffiffi
10

p
(upper panel) or 10 (lower

panels). The shaded region exceeds the unitarity limit [92], while
the gray diagonal marks where TF ¼ TKR; to its right, dark matter
freezes out after kinaton-radiation equality, so limits on dark
matter annihilation are no longer sensitive to TKR. In the middle
panel, we indicate where the upper limit on kcut is equal to kKR,
the wave number entering the horizon at kinaton-radiation
equality. Below this dotted curve, kination’s boost to the
small-scale power spectrum cannot affect dark matter annihila-
tion because it is erased by free streaming (see Fig. 8). In the
lower panel, we mark where the upper limit on Tkd is equal to
TKR; below this dashed curve, kination has no impact on the
minimum halo mass (see Fig. 3) because the dark matter
decouples after the kination epoch. Finally, the upper limit on
Tkd exceeds TF within the region to the upper right of the thick
solid green curve, so all dark matter particles that kinetically
decouple from the SM after they freeze out are allowed.
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by halo mergers or other interactions. The region above the
red dotted curve is where the upper limit on kcut is high
enough that kcut > kKR is possible, i.e., kination could
boost the matter power spectrum and lead to early micro-
halo formation. Below this curve, the annihilation boost

from standard substructure rules out the possibility of early
microhalo formation due to a period of kination.
Figure 14 shows the upper limit on the dark matter

kinetic coupling parameter TkdS, as defined by Eq. (18),
that results from these limits on kcut if the dark matter

FIG. 13. Allowed power spectrum cutoff wave number kcut for thermally produced dark matter in kination scenarios. We plot the dark
matter mass mχ against the kinaton-radiation equality temperature TKR for a variety of annihilation channels (different panels). Shaded
regions indicate where the unitarity bound is violated and where the Fermi and H.E.S.S. Collaborations’ limits on dark matter
annihilation in dwarf spheroidal galaxies and in the Galactic Center, respectively, are violated. In the space that remains, we plot in color
the new upper limit on kcut based on the Fermi Collaboration’s measurement of the IGRB, which we evaluate under the conservative
assumption that microhalos develop NFW density profiles. The contours mark successive powers of 10 in kcut, with the thick contour
marking kcut ¼ 1010 Mpc−1. The area above the red dotted curve is where kcut is allowed to exceed kKR, i.e. kination could boost the
power spectrum of density variations at small scales.
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FIG. 14. Allowed dark matter coupling parameter TkdS for thermal relic dark matter in kination scenarios. As in Fig. 13, we
shade regions ruled out by unitarity and by the Fermi and H.E.S.S. Collaborations’ limits on dark matter annihilation that do not
consider substructure. In the remaining space, we plot in color the upper limit on TkdS due to the Fermi Collaboration’s
IGRB measurement, again assuming conservatively that microhalos develop NFW density profiles. Since dark matter models are
typically expected to have TkdS higher than around 1 MeV (thick contour) to 100 MeV [53], this new limit slightly improves upon the
other limits. In the green-bounded white area, the upper limit on TkdS is high enough that kinetic decoupling would occur before
freeze-out, which does not make physical sense, so this regime is observationally unconstrained. The area below the gray diagonal
line is where TF < TKR, i.e., we are effectively no longer studying a kination scenario. The small strip to the right of the red dashed
curve is where TkdS is allowed to exceed TKR, i.e. kination could possibly have an impact on dark matter structure. The even smaller
strip to the right of the red dotted curve is where kcut is allowed to exceed kKR, as in Fig. 13. Evidently, the enhanced microhalo
population that could result from a period of kination rarely affects limits on dark matter annihilation if dark matter decouples from
the SM.
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kinetically decoupled from the SM. The absence of dark
matter detections in terrestrial experiments typically
requires TkdS to be larger than around 1 MeV (thick
contour in Fig. 14) to 100 MeV [53], although some dark
matter models can evade these limits. If we demand that
TkdS > 1 MeV, our new limits significantly reduce the
viable parameter space for χχ → eþe− and χχ → uū.
For all annihilation channels, the upper right corner of

the parameter space in Fig. 14 (white with green border;
high mχ and high TKR) remains unconstrained because the
limit that we derive on the kinetic decoupling temperature
Tkd is higher than the freeze-out temperature. Meanwhile,
the region to the right of the red dashed curve is where the
upper limit on TkdS is high enough that kinetic decoupling
could occur during the kination epoch. Everywhere else,
kinetic decoupling during the kination epoch is forbidden.
Evidently, there is only a very narrow strip of the parameter
space in which kination’s effect on dark matter substructure
affects our limits on dark matter annihilation. The region to
the right of the red dotted curve is where the upper limit on
kcut is high enough that kcut > kKR is possible, i.e., kination
could boost the matter power spectrum and lead to early
microhalo formation. The regime where this outcome could
affect our limits is even narrower. These considerations
imply that our new limits on thermal relic dark matter in
kination scenarios improve on previous limits almost
entirely due to the same boost to dark matter annihilation
as is present in standard (kination-free) thermal histories
(e.g. that considered in Ref. [75]).
Furthermore, Fig. 8 shows that kcut > 10kKR is needed

for kination’s boost to small-scale density variations to
significantly increase the annihilation rate. If we set Tkd ¼
TF so that the dark matter decouples as early as possible,
the resulting maximum cutoff wave number kcutðmaxÞ only
exceeds 10kKR when TKR ≲ 20 GeV, as seen in Fig. 15.
Figure 14 shows that gamma-ray observations demand that
Tkd < TF when TKR ≲ 20, and in all such scenarios, kcut is
restricted to values less than 10kKR. Therefore, all scenarios
in which a period of kination boosts the amplitudes of
small-scale density variations are ruled out if dark matter is
a thermal relic that respects the unitarity bound and
kinetically decouples from the SM after it freezes out.
If darkmatter is part of a colder hidden sector, then it is still

possible for kination to enhance the microhalo population
even if the particles that dark matter annihilates into
promptly decay into SM particles. If the hidden-sector
temperature is less than the SM temperature when dark
matter freezes out from the hidden radiation bath, the SM
temperature at freeze-out can exceed mχ . Furthermore, the
lower temperature of the dark matter particles increases kcut
for a given value of the SM temperature when DM begins to
free stream, as discussed in Sec. II B.Consequently, kcut=kKR
for dark matter in a hidden sector can greatly exceed the
values shown in Fig. 15 while still requiring that dark matter
kinetically decouples after it thermally decouples.

The constraints on kcut shown in Fig. 13 cannot be
precisely applied to hidden-sector dark matter because the
underlying calculation of hσvi assumes that dark matter
decouples from the SM. If dark matter decouples within a
colder hidden sector, a smaller value of hσvi is required to
compensate for the fact that more annihilation occurs after
freeze-out if freeze-out occurs at a higher value of T=TKR.
Moreover, the dark matter abundance will be diluted when
the particles within the hidden sector decay into SM
particles. However, ρ̄χ is only logarithmically dependent
on TF=TKR, and subdominant hidden sector particles do not
significantly increase the entropy of the visible sector when
they decay. Therefore, Fig. 13 provides an accurate
estimate of the maximum allowed value of kcut if dark
matter freezes out within a forever-subdominant hidden
sector whose lightest particles promptly decay into the
relevant SM particles.
The results so far have been derived under the

assumption that prompt ρ ∝ r−3=2 cusps are softened during
halo evolution. Constraints on dark matter freeze-out
during kination are stronger if we assume that the prompt
cusps persist, as suggested by recent simulations [77]. The
resulting limits on TkdS are shown in Fig. 16. For dark
matter models with TkdS larger than around 1 MeV (thick
contour), most of the parameter space for dark matter
freeze-out during kination is ruled out. Also, the position of
the dashed Tkd ¼ TKR curve here implies that there are
essentially no allowed scenarios where kination’s effect on
small-scale structure would impact our limits, which
justifies our use of Eq. (30) to evaluate the annihilation
rate in prompt cusps.
Finally, we remark on the importance of the foreground

models of Ref. [73] to our conclusions. As we noted above,

FIG. 15. Maximum free-streaming wave number kcut, obtained
by assuming freeze-out and kinetic decoupling occur simulta-
neously, i.e. TF ¼ Tkd. We express kcut in units of the wave
number kKR at kinaton-radiation equality. As Fig. 8 shows,
kcut=kKR > 10 is needed for kination’s boost to the amplitudes
of small-scale density variations to result in a non-negligible
increase in the annihilation rate. We mark kcut=kKR ¼ 10 here
with a thick contour.
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we derive limits on dark matter annihilation from
Ref. [73]’s limits on dark matter decay via Eq. (29).
These decay limits were obtained from the Fermi
Collaboration’s measurement of the IGRB [74] after sub-
traction of a model for unresolved astrophysical fore-
grounds, such as gamma rays from star-forming galaxies
and active galactic nuclei. The model already accounts for
most of the gamma-ray signal, leaving little room for a dark

matter contribution. More conservative modeling choices
can change our results significantly. For example, in
Ref. [75], the Fermi Collaboration published limits on
dark matter annihilation based on their IGRB measurement
but adopted much simpler and more conservative modeling
assumptions. By scaling Ref. [75]’s limit on hσvi by the
ratio between the annihilation boost factors ρ2χ=ρ̄χ2

employed by Ref. [75] and those that we derived above,3

FIG. 16. Same as Fig. 14 but assuming that prompt cusps survive. If TkdS lies again around 1 MeV (thick contour) or higher (see
Ref. [53]), most of the parameter space for dark matter that freezes out during a kination epoch is ruled out. The region between the red
dashed and green curves again marks where kination’s effect on small-scale structure is relevant. Its negligible size here justifies our use
of Eq. (30) to evaluate the annihilation rate in prompt cusps, as this fitting form was derived for a standard thermal history.
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we computed alternative limits on TkdS as in Figs. 14 and
16 (but only for the bb̄, τþτ−, μþμ−, and WþW− channels
considered by Ref. [75]). Under the conservative
assumption that prompt cusps are softened, all scenarios
with Tkd < TF that are not ruled out by Fermi observations
of dwarf spheroidals and H.E.S.S. observations of the
Galactic Center remain viable. Even if all prompt cusps
are assumed to survive, only a marginal improvement is
achieved over the H.E.S.S. and Fermi limits that do not
consider halo substructure.

V. CONCLUSION

It is possible that the Universe went through a period of
kination after inflation, during which a fast-rolling scalar
field with ρ ∝ a−6 (the kinaton) dominated the energy
density [26–28]. If dark matter reaches thermal equilibrium
and then freezes out during kination, its relic abundance is
larger than it would be if freeze-out occurred during
radiation domination. Consequently, the dark matter par-
ticle’s velocity-averaged annihilation cross section must
exceed 2 × 10−26 cm3 s−1 to avoid generating too much
dark matter. Such scenarios are tightly constrained by
gamma-ray observations of dwarf spheroidal galaxies
and the Galactic Center [47]. Kination also leaves an
imprint on the small-scale matter power spectrum because
subhorizon dark matter density perturbations grow linearly
with the scale factor during kination [39]. We have
determined how enhanced perturbation growth during
kination affects the microhalo population and the dark
matter annihilation rate.
Although dark matter perturbations grow linearly with

the scale factor during both kination and matter domina-
tion, the resulting rise of the dimensionless matter power
spectrum PðkÞ due to kination is much shallower: PðkÞ ∝
kns for modes that enter the horizon during kination as
opposed to PðkÞ ∝ knsþ3 for modes that enter the horizon
during matter domination. This slower increase in PðkÞ
implies that kination only significantly increases density
fluctuations on scales that enter the horizon well before the
end of kination: ifMKR is the mass within the horizon at the
time of kinaton-radiation equality, kination only increases
the rms density contrast σðMÞ by more than 20% on mass
scales M ≲ 10−4MKR.
If PðkÞ ∝ exp½−k2=k2cut� due to dark matter free stream-

ing, kination’s imprint on the matter power spectrum is
completely erased if kcut ≲ 10kKR, where kKR is the horizon
wave number aH evaluated at kinaton-radiation equality. If

dark matter is initially in equilibrium with the SM,
obtaining kcut ≳ 10kKR is difficult because the same
increase in comoving drift velocity that is responsible
for the rapid growth of dark matter perturbations during
kination also increases the comoving dark matter free-
streaming horizon for a given temperature at decoupling.
As a result, kcut ≳ 10kKR is only possible for dark matter
particles with mχ=TKR > 100. Nevertheless, decoupling
during kination decreases kcut for a given dark matter
particle because dark matter kinetically decouples earlier
during kination than it does during radiation domination. It
follows that kination’s impact on the microhalo population
is two-fold. First, if dark matter kinetically decouples from
the SM during kination, the minimum halo mass is reduced.
Second, the boost to small-scale power causes halos with
M ≲ 10−4MKR to form earlier and hence be more internally
dense, if the dark matter is cold enough to preserve such
structures. Both effects boost the dark matter annihilation
rate, strengthening the power of gamma-ray observations to
constrain dark matter freeze-out during kination.
If dark matter annihilation within unresolved microhalos

dominates the total annihilation rate, the impact on the
IGRBmimics the signal from decaying dark matter because
the emission in both cases tracks the dark matter density
(averaged over scales larger than the microhalos).
Therefore, microhalo-dominated annihilation can be char-
acterized by an effective dark matter lifetime that is
inversely proportional to the ρ2χ=ρ̄2χ annihilation boost
factor. We use lower limits on the dark matter lifetime [73]
derived from Fermi-LAT observations of the isotropic
gamma-ray background (IGRB) [74] to constrain dark
matter freeze-out during kination. To compute the dark
matter annihilation rate after a period of kination, we use
the P2H method [76,77] to characterize the microhalo
population that is generated from a given matter power
spectrum. If the microhalos’ initial ρ ∝ r−3=2 density cusps
are subsequently softened to NFW profiles, the P2H
method predicts a boost factor between 105 and 106 for
a standard matter power spectrum with a wide range of kcut
values, which is in agreement with simulation-calibrated
halo-based computations. If kcut=kKR ≳ 10, the growth of
density fluctuations during kination enhances the boost
factor, with ρχ

2=ρ̄2χ ≳ 107 for kcut=kKR ≳ 500.
Since the annihilation boost factor increases as kcut

increases, we use IGRB observations to establish an upper
bound on kcut for a given dark matter particle mass (mχ) and
temperature at kinaton-radiation equality (TKR). For
TKR ≲ 10 GeV, the maximum allowed value of kcut is less
than kKR, implying that all perturbation modes that enter
the horizon during kination must be erased by dark matter
free-streaming to avoid exceeding the allowed dark matter
contribution to the IGRB. If dark matter kinetically
decouples from Standard Model particles, then the upper
bound on kcut can be translated to an upper bound on the
temperature when dark matter decoupled and began to free

3For the boost factor in Ref. [75], ρ2χ=ρ̄χ has a modest
dependence on redshift, unlike our result in Fig. 9. For simplicity,
we use its value at z ¼ 0. Also, the Galactic contributions in our
calculations and those of Ref. [75] differ by a factor slightly
different from the ratio of the ρ2χ=ρ̄χ2, due to different models of
the Milky Way halo and different treatments of subhalos. We
neglect this discrepancy in our estimate.
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stream. The temperature at dark matter freeze-out estab-
lishes an additional upper bound on kcut because dark
matter does not decouple while it is still in thermal
equilibrium. We find that these two constraints imply that
kination cannot enhance small-scale perturbations if dark
matter is a thermal relic. All scenarios in which dark matter
freezes out early enough to allow kcut=kKR ≳ 10 require
TKR ≲ 20 GeV, in which case hσvi is large enough that the
IGRB rules out any enhancement to the small-scale power
spectrum. The constraints are even stronger if the initial
ρ ∝ r−3=2 persists, as is indicated by recent high-resolution
simulations [77]. In that case, nearly all scenarios in which
dark matter kinetically decouples during kination are ruled
out, and the kinetic decoupling temperature must be less
than 1 MeV if TKR ≲ 40 GeV.
The growth of perturbations during kination can signifi-

cantly enhance the dark matter annihilation rate if dark
matter is part of a subdominant hidden sector that is colder
than the Standard Model. In this case, dark matter freezes
out at a higher SM temperature and has a smaller free-
streaming horizon for a given SM temperature at decou-
pling. Both of these effects increase the maximum possible
value of kcut=kKR that is consistent with dark matter freeze-
out preceding dark matter kinetic decoupling. Meanwhile,
the annihilation cross section required to generate the
observed dark matter abundance is nearly the same because
the relic density is only logarithmically dependent on the
SM temperature at freeze-out when dark matter freezes out
during kination. If the dark matter annihilates to hidden-
sector particles that promptly decay to Standard Model
particles, then our upper bounds on kcut can be used to
constrain hidden-sector dark matter that freezes out during
kination.
Finally, we note that the constraints presented here only

apply to dark matter that freezes out from thermal equilib-
rium. If darkmatter never reaches thermal equilibrium (i.e. it
freezes in [47,94]), or if it is produced gravitationally [95],
then its annihilation cross section can be much smaller
than the values assumed in our analysis, and it can be cold
enough for kcut=kKR to significantly exceed 20. In that case,
the growth of dark matter perturbations during kination
enhances the microhalo abundance for M ≲ 10−4MKR,
which corresponds to M ≲ 10−3M⊕ for TKR ≃ 10 MeV.
Microhalos this small are difficult to detect gravitationally,
but the microhalos generated from enhanced small-scale
fluctuations form earlier and are therefore denser than
standard microhalos. As a result, there are a few promising
detection prospects. Dense sub-Earth-mass microhalos
leave a potentially detectable imprint on the light curves
of high-redshift stars that are microlensed by intervening
stars while near a galaxy cluster lens caustic [96,97]. Pulsar
timing observations can detect the motion of pulsars due to
passing sub-Earth-mass halos [98–100]: a pulsar timing
array array consisting of 100 pulsars with 10-ns residuals are
capable of detecting dense microhalos with masses as small

as 10−6M⊙ after 40 years of observations [78]. If fluctua-
tions are enhanced to a sufficient degree to form microhalos
before thematter epoch (e.g. [22,101–103]), they could even
be compact enough to microlens stars of our local group at
detectable levels [104]. These probes are capable of
detecting the microhalos that form after an early matter-
dominated era [78,97,100], but it remains to be seen if the
shallower rise of PðkÞ generated by kination can generate
halos that are large and dense enough to be detected
gravitationally.
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APPENDIX A: TIDAL SUPPRESSION
OF THE ANNIHILATION RATE

In this appendix, we estimate how the tidal influence of
larger structures suppresses the annihilation rate within
their subhalos. We employ the fitting function presented by
Ref. [23], which is based on the simulation-tuned tidal
evolution model developed in Ref. [91] and describes the
orbit-averaged scaling factor Sðρs=Ps; t

ffiffiffiffiffiffiffiffiffi
GPs

p
; cÞ for all

subhalos of scale density ρs orbiting a host with scale
density Ps and concentration c ¼ Rs=Rvir for the duration t.
Our strategy will be to use a conventional halo model

(applicable to a scenario without kination) to quantify the
population of potential host halos for our kination-boosted
microhalos. Denoting by S̄ðρs; tÞ the global factor by which
the annihilation rate within microhalos of scale density ρs is
scaled due to tidal evolution for the duration t, we may
write

S̄ðρs;tÞ¼1−
1

ρ̄χ

Z
∞

Mmin

dM

�
1−S

�
ρs
Ps

;t
ffiffiffiffiffiffiffiffiffi
GPs

p
;c

��
Mfs

dn
dM

;

ðA1Þ

where Ps and c are assumed to be functions ofM. Note that
dn=dM here includes subhalos as well as host halos, and we
include the factor fs to denote the fraction of material
within a halo of mass M that is not in subhalos. There are
now three components to completing this calculation—the
microhalo scale density ρs, the halo mass function dn=dM
(including subhalos), and the concentration-mass relation
cðMÞ (which also sets Ps)—and we describe how we
handle each in turn.
To estimate the scale density ρs of microhalos, we use

Ref. [76]’s prescription for quantifying the broader halo
that forms around a density peak. Specifically, we predict
the radius rmax of maximum circular velocity and its
associated enclosed mass Mmax using the “s ¼ 0 adiabatic
contraction” model in Ref. [76], and we assume an NFW
density profile to then obtain ρs. Reference [76] found that
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the accuracy of these predictions is only mildly sensitive to
frequency of halo mergers. We pick the redshift z ¼ 20 at
which to compute ρs, guessing at a typical redshift at which
a microhalo might be expected to accrete onto a larger halo,
but we also show the impact on S̄ if we instead pick z ¼ 10
or z ¼ 40. The J-weighted average ρs for these three
redshift choices is shown in Fig. 17 for an example kination
scenario.
We use the spherical-overdensity mass function of

Ref. [105] to describe the mass function of field (not
sub-) halos, using the matter power spectrum (with no
kination and no cutoff) of Ref. [57]. We normalize this
power spectrum so that the rms fractional variance in the
linear density field, smoothed on the scale 8h−1 Mpc
(where h is the Hubble parameter), is σ8 ¼ 0.81 [58].
For the subhalo mass function, we assume dN=d lnM ¼
AðM=MhostÞ1−α with A ¼ 0.012 and α ¼ 2 as in Ref. [88].
α is typically measured to lie between 1.9 and 2 in
simulations (e.g., Refs. [106,107]); α ¼ 2 produces more
subhalos, so it is the conservative choice in that it yields
more tidal suppression of the smallest halos. The mass
function including both field halos and subhalos is then

�
dn

d lnM

�
tot

¼
X∞
i¼0

�
dn

d lnM

�
i
; ðA2Þ

where ðdn=d lnMÞ0 is the field halo mass function and�
dn

dlnM

�
i
¼
Z

∞

M
dlnM0

�
dn

dlnM0

�
i−1

dN
dlnM

����
Mhost¼M0

ðA3Þ

for i > 0. We evaluate Eq. (A2) up to i ¼ 8, although
convergence at the 1% level is achieved at i ¼ 5. The
fraction fs of halo mass not in subhalos is

fsðMÞ ¼ 1 −
1

M

Z
M

Mmin

d lnM0 dN
d lnM0

����
Mhost¼M

M0 ðA4Þ

for a halo of mass M.
Finally, we use the concentration-mass relation presented

in Ref. [108] to evaluate the concentration c and scale
density Ps for each halo mass M, again using the matter
power spectrum of Ref. [57]. With all of these ingredients,
we are prepared to evaluate S̄ðρs; tÞ. We conservatively set
t ¼ tage, the age of the Universe, and we evaluate S̄ using
Eq. (A1) for the scale density ρs of each sampled micro-
halo. We set Mmin ¼ ð4=3Þπρ̄mk−3cut. The overall tidal
scaling factor for a given kination scenario is then the
J-weighted average of the S̄ for each halo, or

Stot ¼
�XN
i¼1

JiS̄ðρs;i; tageÞ
�	�XN

i¼1

Ji

�
: ðA5Þ

We plot Stot for an example kination scenario in the lower
panel of Fig. 17 (magenta curves). The general behavior is
that increasing kcut raises the scale density of the micro-
halos, making them less susceptible to tidal suppression,
but also boosts the amount of host structure causing this
suppression. If kcut ≲ 102kKR, the latter effect dominates
and increasing kcut causes more suppression of the anni-
hilation rate (Stot decreases). If kcut ≳ 102kKR, the ρs are
sufficiently sensitive to kcut that increasing kcut reduces the
level of tidal suppression.
The above procedure accounts for the tidal suppression

of the extragalactic annihilation signal. However, the
majority of dark matter’s contribution to the IGRB comes
from the Galactic halo [73]. To estimate the tidal suppres-
sion factor for this contribution, we apply the tidal
evolution model of Ref. [91] using the Galactic halo as
the host. We assume the Galactic halo has an NFW density
profile with scale radius 20 kpc and scale density set so that
the local dark matter density at radius 8.25 kpc is
0.4 GeV=cm3. At each radius R, we average the model
prediction J=Jinit over subhalo orbits, assuming the iso-
tropic distribution function of Ref. [109] (see Ref. [23] for
detail). We thereby obtain the tidal scaling factor sðR; ρs; tÞ
as a function of Galactocentric radius R, which we in turn
average over the Galactic halo’s density profile along the
line of sight perpendicular to the Galactic plane. By
averaging this factor over the microhalo population as

FIG. 17. Top: the J-weighted average of microhalos’ scale
density ρs, as a function of the cutoff scale kcut, for a kination
scenario with TKR ¼ 1 GeV. We evaluate ρ̄s at three different
redshifts. Kination’s boost to the small-scale power spectrum
significantly raises ρ̄s as long as kcut ≳ 102kKR; kKR is marked by
the vertical line. Bottom: the tidal suppression factor Stot
computed for both Galactic and extragalactic microhalos in the
same scenarios, assuming that their initial density profiles for
tidal evolution are fixed at redshift z.
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before and setting t ¼ tage, we obtain the Galactic tidal
scaling factor, an example of which is shown in the lower
panel of Fig. 17 (cyan curves). In this calculation, kcut’s
only relevant influence is on the scale density ρs of the
microhalos, so increasing kcut reduces the amount of tidal
suppression.
Galactic and extragalactic dark matter contribute differ-

ent gamma-ray spectra to the IGRB (see Ref. [73]).
Consequently, if we change their relative contributions
by applying different tidal scaling factors, then direct
conversion from decay to annihilation bounds [Eq. (29)]
is no longer possible. To maintain this conversion, we
instead make the conservative choice to apply a universal
tidal scaling factor equal to the smaller of the Galactic and
extragalactic factors. This choice is also motivated by the
likelihood that an unknown fraction of Galactic microhalos
should experience suppression closer to the extragalactic
factor due to the presence of larger Galactic substructure. In
Fig. 8, we plot the global boost factor ρ2χ=ρ̄χ2 tidally
suppressed in this way. For scenarios without a significant
kination boost (black curves), tidal effects suppress the
annihilation rate by a factor of about 3.

APPENDIX B: COMPARING PEAK AND HALO
MODEL PREDICTIONS FOR THE

ANNIHILATION BOOST

In this appendix, we compare the results of our peak-based
calculation of the dark matter annihilation boost to that of
halo models. To make this comparison, we again use the
spherical overdensity mass function (at z ¼ 0) of Ref. [105]
and the concentration-mass relation of Ref. [108], both
evaluated using the power spectrum of Ref. [57] normalized
to σ8 ¼ 0.8102. For the subhalo population, we assume
dN=d lnM ¼ AðM=MhostÞ1−α as before but consider
both ðA; αÞ ¼ ð0.012; 2Þ and ðA; αÞ ¼ ð0.030; 1.9Þ [88].
For a given concentration c and mass M, a halo’s volume-
integrated squared density J ¼ R

ρ2dV, which is propor-
tional to the annihilation rate, is

J ¼ Δ
9

c3

½gðcÞ�2 ½1 − ð1þ cÞ3�Mρcrit; ðB1Þ

where gðcÞ ¼ lnð1þ cÞ − c=ð1þ cÞ, ρcrit is the critical
density, and we take Δ ¼ 200 as the virial overdensity.
Each field halo’s annihilation rate is scaled by the factor
1þ B due to the presence of substructure, where

BðMÞ ¼ 1

JðMÞ
Z

M

Mmin

d lnm
dN

d lnm

����
Mhost¼M

½1þ BðmÞ�JðmÞ;

ðB2Þ

an equation that we evaluate iteratively (beginning with
B ¼ 0) up to eight iterations. The mean squared density

(from which ρ2χ=ρ̄χ2 follows) is then

ρ2χ ¼
Z

∞

Mmin

d lnM
dn

d lnM
½1þ BðMÞ�JðMÞ; ðB3Þ

where dn=d lnM is the mass function of field halos.

Figure 18 shows how ρ2χ=ρ̄χ2 depends on Mmin for both
the α ¼ 2 and α ¼ 1.9 subhalo mass functions.
We first seek to compare the halo model prediction in

Fig. 18 with our conservative peak model predictions as in
Fig. 8. The latter are plotted in Fig. 18 as the faint gray solid
and dotted lines (with and without extragalactic tidal
suppression, respectively). However, there is one further
consideration. As we noted in Sec. IVA, baryonic matter
does not cluster at mass scales below about 105M⊙ [59], so
the growth rate of dark matter structures below this scale is
suppressed. Our peak model accounts for this effect, but the
field halo mass function, subhalo mass functions, and
concentration-mass relation that the halo model prediction
employed do not. Consequently, to make a fair comparison,
we repeat our boost computation using the peak model,
but we leave out the baryonic correction and employ the
same power spectrum that we used for the halo model
computations, which also does not account for baryons’
nonclustering at small scales. We scale this power spec-
trum by the exponential cutoff exp½−ðk=kcutÞ2Þ� with

FIG. 18. The global boost factor ρ2χ=ρ̄χ2 for a conventional
(kination-free) cosmological scenario, as a function of cutoff
scale kcut (or equivalently minimum halo massMmin). Halo model
predictions with the α ¼ 2 and α ¼ 1.9 subhalo mass functions
(dashed curves) neatly bracket the prediction of our peak model
in the same scenario (solid black curve) for relevant values of kcut.
The peak model prediction includes the extragalactic tidal scaling
factor; we also show as the black dotted curve the peak model
prediction without this scaling. Peak and halo model predictions
here both neglect small-scale baryonic suppression (see the text).
The faint gray curves show the respective peak model predictions
when baryonic suppression is instead taken into account. Finally,
we also show the boost factor if prompt cusps are assumed to
survive [80] (thick red curve), also with baryonic suppression
accounted for.
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Mmin ¼ ð4=3Þπρmk−3cut, where ρm is the mean matter density.
The boost predicted by the peak model with small-scale
baryonic suppression neglected are shown in Fig. 18 as
black curves. With extragalactic tidal suppression (black
solid curve), the peak model predictions are bracketed by
the halo model predictions with α ¼ 2 and α ¼ 1.9 for most
relevant values of kcut (or Mmin). That is, the peak model
yields predictions comparable to those of the established

halo model. Note that since the halo model predictions
represent the extragalactic case, comparison to the peak
model with extragalactic suppression only is appropriate.
We also show in Fig. 18 the boost factor if prompt

ρ ∝ r−3=2 cusps are assumed to survive [80] (thick red
curve). Nonclustering of the baryons is accounted for in this
case. This assumption raises the annihilation rate by a
factor of about 10.
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