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It is remarkably difficult to reconcile unitarity and Vilenkin’s wave function. For example, the natural
conserved inner product found in quantum unimodular gravity applies to the Hartle-Hawking wave
function, but fails for its Vilenkin counterpart. We diagnose this failure from different angles (Laplace
transform instead of Fourier transform, non-Hermiticity of the Hamiltonian, etc.) to conclude that
ultimately it stems from allowing the connection to become imaginary in a section of its contour. In turn this
is the unavoidable consequence of representing the Euclidean theory as an imaginary image within a
fundamentally Lorentzian theory. It is nonetheless possible to change the underlying theory and replace the
connection’s foray into the imaginary axis by an actual signature change (with the connection, action and
Hamiltonian remaining real). The structural obstacles to unitarity are then removed, but special care must
still be taken, because the Euclidean theory a priori has boundaries, so that appropriate boundary
conditions are required for unitarity. Reflecting boundary conditions would reinstate a Hartle-Hawking-like
solution in the Lorentzian regime. To exclude an incoming wave in the Lorentzian domain one must allow a
semi-infinite tower of spheres in the Euclidean region, wave packets traveling through successive spheres
for half an eternity in unimodular time. Such a “Sisyphus” boundary condition no longer even vaguely
resembles Vilenkin’s original proposal.
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I. INTRODUCTION

The fate of unitarity in the deep quantum gravity/
cosmology regime is a matter of debate. Preserving
unitarity may be seen as a challenge to be faced by any
successful quantum gravity theory [1]; it may also be a
mirage: an approximate concept valid only in the semi-
classical limit, to be abandoned as soon as we plunge into
the Planck epoch [2]. Without wanting to take sides on this
dispute, in this paper we investigate the practicalities of
implementing unitarity in the context of Vilenkin’s pro-
posal for the wave function of the Universe [3,4].
We base our efforts on recent work [5] showing how

unimodular gravity [6–12] may be used to improve
the physical interpretation of the Hartle-Hawking proposal
[13] and its compliance with unitarity. In the formulation
of [7], the unimodular gravity extension demotes the
cosmological constant Λ from a pregiven parameter to a
classical constant of motion, with a conjugate momentum
providing a physical measure of time: unimodular

time [7,14,15]. Quantum mechanically, this permits super-
positions of Hartle-Hawking wave functions with different
Λ to form wave packets [13,15]. This suggests an inner
product, with respect to which these packets and other
physical states are normalizable. More importantly, the
evolution in unimodular time is unitary with respect to this
inner product. In view of this conservation, it is possible to
set up a probability interpretation valid beyond the semi-
classical limit.
None of this applies to Vilenkin’s “tunneling” wave

function [3,4], which seems at odds with any implementa-
tion of unitarity and probability, a feature which appears to
be intentional [2]. In this paper we re-examine the tunneling
wave function, first from the point of view of the con-
nection, rather than the metric representation (Sec. II), and
then from the additional perspective of the unimodular
extension (Secs. III and IV). A number of promising first
results are found in Sec. II by translating the monochro-
matic (fixed Λ) solutions from metric to connection
representation. However, any attempts to lift the procedure
in [5] (reviewed in Sec. III) to the Vilenkin setup fail. We
are thus unable to provide an equivalent definition of
probability. We diagnose this failure from different angles.
In Sec. IV we note that Vilenkin’s proposal requires
the connection to stray off the real line [16], leading to
the unavoidable use of the Laplace transform instead of the
Fourier transform (FT). The inverse Laplace transform then
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places the probability on the Hartle-Hawking contour only.
In Sec. V we blame something more fundamental: the non-
Hermiticity of the Hamiltonian.
This failure is physically intuitive. The Hartle-Hawking

and Vilenkin proposals loosely correspond to the two
situations depicted in Fig. 1. In metric space the Hartle-
Hawking wave function (left) can be seen as the reflection
of an incident wave off a wall, resulting in a reflected
wave and an evanescent wave penetrating the classically
forbidden region. The Vilenkin wave function (right)
amounts to an evanescent wave spitting out an outgoing
wave, with the conspicuous absence of an incident wave.
This is hardly an acceptable physical situation under our
standard intuition on conservation of probability. But
quantum gravity is not standard, and two new ingredients
arise from the use of the connection representation instead
of the metric representation, and the use of unimodular
time to resolve a problem (the problem of time) not
usually found in standard quantum mechanics. In Secs. IV
and V, however, we show that these additions do not
qualitatively change anything.
Mathematically, however, there is hope. Both our

diagnoses stem from allowing the connection to become
imaginary in part of its domain [16]. This is the unavoid-
able consequence of representing the Euclidean theory as
an imaginary image within a fundamentally Lorentzian
theory (Sec. VI). But what if the Universe undergoes a
signature change as part of the action, so that the classical
trajectories themselves follow a path from the Euclidean
sphere to the Lorentzian de Sitter space time (Sec. VII)?
This is totally different from the instanton obtained by
allowing the connection to go over the imaginary domain.
With this assumption, the connection, action and
Hamiltonian remain real, so that the structural obstacles
to unitarity are removed.
However, as described in Sec. VIII, we still have work to

do because the theory has boundaries (a four-sphere is
finite). In order to obtain an outgoing without incoming
wave we must discount a reflection at the South pole and
indeed continue the Euclidean half sphere with an infinite
tower of spheres, playing the role of the proverbial turtles in

ancient cosmologies (Secs. IX and X). This continuation
does not rely on a theory of gravity allowing degenerate
metrics, and so a classical gluing of the North pole of one
sphere with the South pole of the one above. The wave
function never peaks at the gluing point (as our central
Fig. 6 illustrates). As unimodular time progresses a super-
position of peaks at nonsingular points in adjoining spheres
is found, with a gradual handover between the two.
This phenomenon is reminiscent of the singularity

resolution described in [17], and it may help stave off
runaway perturbation instabilities at North/South joining
points, as described in Refs. [18–22], specifically [22] (but
see also [23,24]). Indeed this possibility can be seen as a
major motivation for our work. If the fixed-Λ monochro-
matic background is deemed unphysical from the unim-
odular perspective, one might not be too surprised that the
fluctuations around it are unbounded. The construction of
physical packets could open up the doors to a solution to
these instabilities from the unimodular perspective. The
fact that we have to modify the original Vilenkin proposal
so much before this can be implemented shows how
problematic the proposal is. It remains to be seen whether
the fact that the Universe is never semiclassical at the
problematic points is sufficient to resolve the problem.

II. FIRST HOPES

The first ingredient in this paper is the use of the
connection representation, rather than the more frequently
used metric representation. Except for very standard sit-
uations, the choice of representation in the quantum theory
is not innocuous. It can lead to inequivalent theories, for
example with different natural inner products and proba-
bility interpretations. It may also shed new light on
boundary conditions. The reason why the position repre-
sentation is usually favored in standard quantum mechanics
is that it is physically clearer for defining boundary
conditions. In quantum gravity it is far from obvious which
representation should receive primacy in this respect. The
first hope in this paper is to reassess the chasm between the
Hartle-Hawking and Vilenkin’s choices from the point of
view of the connection representation.
At first sight, the dictionary between metric and con-

nection representations is straightforward [16]. Recall that
the action can be written as

S0 ¼
3Vc

8πG

Z
dt

�
a2 _bþ Na

�
b2 þ k −

Λ
3
a2
��

; ð1Þ

where a is the expansion factor, b is the only minisuper-
space connection variable (an off shell version of the
Hubble parameter, since b ¼ _a on shell, if there is no
torsion), k is the spatial curvature, N is the lapse function
and Vc ¼

R
d3x is the comoving volume of the region

under study, assumed finite throughout this paper (in the
quantum cosmology classical literature one usually chooses

FIG. 1. In metric space, the Hartle-Hawking wave function
(left) can be seen as the reflection of an incident wave off a wall,
resulting in a reflected wave and an evanescent wave penetrating
the wall. The Vilenkin wave function (right) amounts to an
evanescent wave in the classically forbidden region spitting out
an outgoing wave.
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k ¼ 1 and Vc ¼ 2π2; see [25] for a discussion of the criteria
for the choice of Vc). Throughout this paper we will assume
k > 0 and Λ > 0 (we do not set k ¼ 1 since the comoving
volume Vc is left as an open scale).
Upon quantization this action implies the complemen-

tarity relation

½b̂; ba2� ¼ il2P
3Vc

¼ ih ð2Þ

so that the wave functions in the two representations are
just Fourier duals:

ψa2ða2Þ ¼
Z

dbffiffiffiffiffiffiffiffi
2πh

p e−
i
ha

2bψbðbÞ: ð3Þ

This is vindicated by the concrete solutions. The connec-
tion space solution is the Chern-Simons-Kodama state:

ψ sðb;ΛÞ ¼ ψCS ¼ N exp

�
i
9Vc

Λl2P

�
b3

3
þ bk

��
: ð4Þ

Inserting (4) in (3) we find the integral representation of the
Airy functions making up the Hartle-Hawking and Vilenkin
wave functions, with the proviso that the choice of contour
in b space determines whether Hartle-Hawking (real line)
or V (positive real line and negative imaginary line) is
obtained (see [16] for details).
But is there more to it? What if we reassessed the issue of

boundary conditions and probability interpretation starting
from the connection representation? In the metric repre-
sentation there is a physical picture of the Universe
tunneling “out of nothing.” In this language the “nothing”
is the point a ¼ 0, so what is its counterpart in the
connection representation? The Hamiltonian constraint

H ¼ −ðb2 þ kÞ þ Λ
3
a2 ¼ 0 ð5Þ

implies that classically a ¼ 0 is equivalent to b ¼ �i
ffiffiffi
k

p
(with k > 0, as will be assumed throughout this paper).
These points are absent from the contour leading to the
Hartle-Hawking wave function (the real line), but one of
them,

b ¼ b0 ¼ −i
ffiffiffi
k

p
; ð6Þ

lies on the contour leading to the V wave function
(specifically the negative imaginary axis). What is so
special about this point for the Chern-Simons wave
function?
At this point it is easy to be beguiled by an interesting

coincidence. In the metric representation, the probability of
tunneling out of a ¼ 0 is obtained via a Klein-Gordon
current interpretation of probability [3,4], and when applied
to the V wave function gives

ja ≈ exp

�
−
12Vck

3
2

l2PΛ

�
ð7Þ

(we have adapted the standard result to our conventions, as
in [26]). But we could also take the Chern-Simons-Kodama
state, plot jψ j2 along the contour leading to the V wave
function to find that this is flat along the positive real b,
but not in the imaginary section of the contour. Indeed jψ j2
has a maximum at b ¼ b0, tailing off along the negative
imaginary axis toward −∞ on one side, and connecting
with the plateau along the positive real line (the classical
region) on the other side (see Fig. 2). Computing the ratio
between the classical plateau and this maximum we get

jψ j2class
jψ j2

0

≈ exp

�
−
12Vck

3
2

l2PΛ

�
; ð8Þ

i.e., precisely (7) (numerical factor of 12 included). This is
a remarkable coincidence, strongly pointing to a reinter-
pretation of the standard metric/KG current result from the
alternative connection point of view.
Unfortunately, none of this is left standing upon closer

mathematical scrutiny. First of all, what right do we have
to compute probabilities with Born’s jψ j2 prescription?
How does this tally with unitarity?1

FIG. 2. Typical shape of jψsj2 in connection space along the V
contour. Whereas the positive axis corresponds to the positive real
line, the negative axis is on the negative imaginary line, as per the
prescription detailed in [16]. There is a maximum at b0 ¼ −i

ffiffiffi
k

p
.

The ratio between the height of the (real b) plateau and this
maximum coincides with the probability of nucleation as evalu-
ated in [3,4].

1The “coincidence” highlighted in this section is related to the
fact that even in the metric representation the Klein-Gordon result
can also be obtained by a basic ratio of Born factors: see
Eq. (3.17) in [4].
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III. UNITARITY AND THE UNIMODULAR
EXTENSION

At this point it is useful to review recent progress on the
issue of time, normalizability and unitarity in the context
of the Hartle-Hawking wave function. As shown in [5], by
extending the theory to unimodular gravity, we can obtain
both a physical time variable and a natural inner product, to
enforce unitarity.

A. The unimodular extension

We use the Henneaux and Teitelboim formulation of
“unimodular” gravity [7], where one adds to a “base action”
S0 (e.g., standard general relativity) a new term:

S0 → S ¼ S0 −
3

8πG

Z
d4xϕ∂μTμ; ð9Þ

where for later convenience we have used

ϕ ¼ 3

Λ
ð10Þ

(the “frequency” appearing in the Chern-Simons-Kodama
state). Here Tμ is a density, so that the new term is
diffeomorphism invariant without the need of a

ffiffiffiffiffiffi−gp
factor

in the volume element or of the connection in the covariant
derivative. Since the metric and connection do not appear in
the new term, the Einstein equations and other standard
field equations are left unchanged. The only new equations
of motion are

δS
δTμ ¼ 0 ⇒ ∂μϕ ¼ ∂μΛ ¼ 0 ð11Þ

δS
δϕ

¼ 0 ⇒ ∂μTμ ∝
ffiffiffiffiffiffi
−g

p ð12Þ

i.e., on-shell-only constancy for Λ (the defining character-
istic of unimodular theories [6,7,9–12]) and the fact that T0

is proportional to a prime candidate for relational time:
four-volume time [6–8,14,15]. Reduction to minisuper-
space leads therefore to

S0 → S ¼ S0 þ
3Vc

8πG

Z
dtx _ϕT ð13Þ

where S0 is given by (1) (and we identify T ≡ T0).
Classically nothing changes except that Λ’s constancy
appears as an equation of motion, and the conjugate of
Λ satisfies

_T ¼ N
a3

ϕ2
¼ N

Λ2

9
a3: ð14Þ

B. Quantum unimodular theory

However, the quantum mechanics is very different, since

½ϕ; T� ¼ ih: ð15Þ

Hence, we can choose either the ϕ (i.e., Λ) representation,
leading to the standard Wheeler-DeWitt equation with
solution (4), or the dual time representation, leading to
(see [27–29])�

−ih
1

b2 þ k
∂

∂b
− ih

∂

∂T

�
ψðb; TÞ ¼ 0; ð16Þ

that is, the Schrodinger equation

ih
∂ψ

∂T
¼ H0ψ ð17Þ

with

H0 ¼
1

b2 þ k
a2 ¼ −

ih
b2 þ k

∂

∂b
: ð18Þ

From the unimodular point of view, the Chern-Simons-
Kodama state (4) is just the spatial (in the sense of nontime)
factor, ψ s, of a monochromatic wave, with the general
solution being the superposition

ψðb; TÞ ¼
Z

∞

−∞

dϕffiffiffiffiffiffiffiffi
2πh

p AðϕÞ exp
�
−
i
h
ϕT

�
ψ sðb;ϕÞ;

¼
Z

∞

−∞

dϕffiffiffiffiffiffiffiffi
2πh

p AðϕÞ exp
�
i
h
ϕðXðbÞ − TÞ

�
; ð19Þ

where the linearizing variable for the waves [29],

X ¼ XCS ≡ b3

3
þ kb; ð20Þ

is the Chern-Simons functional. Such wave packets can
then be translated into the metric representation [5] via (3).
For Hartle-Hawking packets (real b) we can also find the
general solution by writing (17) as�

∂

∂T
þ ∂

∂X

�
ψ ¼ 0 ð21Þ

with solutions

ψðb; TÞ ¼ FðT − XÞ; ð22Þ

explaining why X is called the linearizing variable (it
removes the dispersive nature of the medium).
What follows applies strictly to the Hartle-Hawking

wave function [27,29]. Then, b (and so X) are real and
cover the whole real line. This suggests the natural inner
product involving the amplitudes
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hψ1jψ2i ¼
Z

∞

−∞
dϕA⋆

1 ðϕÞA2ðϕÞ: ð23Þ

Given the Fourier form in the variable X of the super-
positions (19), we can use the inverse Fourier transform
to find

AðϕÞe− i
hϕT ¼

Z
∞

−∞

dXffiffiffiffiffiffiffiffi
2πh

p ψðbðXÞ; TÞe− i
hϕX ð24Þ

assuming that X and ϕ vary without any constraints on the
real line (this is to be seen as the boundary condition, or
lack thereof, for the imposition of unitarity). This FT is not
to be confused with (3) relating metric and connection
representations. This is the advantage of using the con-
nection representation: instead of Airy functions, the ψ s are
plane waves in the Chern-Simons functional.
We can therefore identify an inner product equivalent to

(23) in the connection representation. Either by using (24)
or by invoking Parseval’s theorem, Eq. (23) is equivalent to

hψ1jψ2i ¼
Z

∞

−∞
dXψ⋆

1 ðb; TÞψ2ðb; TÞ ð25Þ

which is time independent [since it is equal to (23) where T
does not feature], so that unitarity has been enforced. Hence
the probability in terms of b is

PðbÞ ¼ jψðb; TÞj2
���� dXdb

����; ð26Þ

where we stress a measure factor multiplying the Born jψ j2:
the derivative of the Chern-Simons functional (and so the
corresponding terms in the Hamiltonian constraint).
With these definitions we have unitary evolution. We

also recover the classical limit (given by _X ¼ _T) from the
peak of the probability for Gaussian states (see [5,29] for
details).

IV. FAILURE OF THE UNIMODULAR
APPROACH IN VILENKIN’S CASE

Regrettably, this approach—applicable to the Hartle-
Hawking wave function—is lost in translation into the V
wave function. This happens because b has an imaginary
section [16] in order to reproduce the V wave function, and
therefore so does the Chern-Simons functional X. Thus, the
assumptions for using the FT break down.
We could take the view that Hartle-Hawking and

Vilenkin are analytical continuations of each other (some-
thing pointed out at least as far back as in [3]), so that we
should replace the FT transform with the complex Laplace
transform to accommodate the V wave function. The
unimodular extension then still leads to the superpositions
(19) seen as the Laplace transform:

FðsÞ ¼
Z

fðtÞe−stdt; ð27Þ

with real t and complex s, after identifications

t ¼ ϕ

f ¼ AðϕÞe− i
hϕT

s ¼ −
i
h
X ð28Þ

(up to conventional factors of 2π). What follows applies
both for t ∈ ð−∞;∞Þ leading to the bilateral Laplace
transform, or for t ∈ ð0;∞Þ, leading to the standard
Laplace transform.2

The problem appears in the inversion formula (24) and
consequent use of Parseval’s theorem (both of which have
versions for either the standard or the bilateral Laplace
transform). The inversion formula is

fðtÞ ¼ 1

2πi

Z
γþi∞

γ−i∞
estFðsÞds ð29Þ

where γ is a real number so that the contour is in the
region of convergence of FðsÞ. We can always choose
γ ¼ 0 so that the contour is the Hartle-Hawking contour.
Consequently Parseval’s theorem, leading to the probability
interpretation, reads as

hψ1jψ2i¼
Z

dϕA⋆
1 ðϕÞA2ðϕÞ¼

Z
∞

−∞
dXψ⋆

1 ðb;TÞψ2ðb;TÞ:

The relevant integrations leading to the amplitudes and the
probability density only care about the wave function along
the Hartle-Hawking contour.
This is a damning conclusion. If we see Hartle-Hawking

and Vilenkin as analytically related, and apply the unim-
odular prescription to define a conserved inner product,
we find that the inner product expressed in terms of the
connection ignores the analytical extension leading to V,
and refers us back to the Hartle-Hawking theory as if no
analytical extension had been made.

V. THE NAIL IN THE COFFIN

This is unsurprising. In Sec. III we derived unitarity
directly from the fact that the inner product is defined via
Eq. (23) in terms of T-independent amplitudes. We then
derived the equivalent expression (25), in terms of the time-
dependent wave functions, which must therefore also be T

2It may seem that this makes a difference for convergence.
Usually A is a Gaussian centered on a positive ϕ0: this has a
tiny support in ϕ < 0. However, for the V contour it would make
the wave packets divergent as b → −i∞. As, it happens, the
problems are more serious, and restricting ϕ > 0 makes no
difference.
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independent. The usual way to prove unitarity, via the
Hermiticity of the Hamiltonian, can therefore be bypassed,
but nonetheless it sheds light on why the argument in
Sec. III fails for the Vilenkin contour.
Indeed we could have integrated (17) via the evolution

operator (with respect to T):

U ¼ exp

�
−
i
h

Z
dTH0

�
: ð30Þ

The conservation of hψ1jψ2i is enforced by U† ¼ U−1,
i.e., the unitarity of U (and hence the terminology). This is
guaranteed by the Hermiticity of H0 (H†

0 ¼ H0) which is
straightforward to prove under inner product (25), assum-
ing X is unbounded and real.
For the Hartle-Hawking wave function this is a very

roundabout way to prove the time independence of an inner
product which is true by construction; but it shows why the
equivalent construction for the Vilenkin wave function
(allowing for an imaginary b and X) cannot work. The
problem is fundamentally that H0 is anti-Hermitian if b is
imaginary.
Another way to see how this comes about concerns the

last identity in (18), arising from

½b; a2� ¼ ih ⇒ a2 ¼ −ih
∂

∂b
; ð31Þ

implying that the Hamiltonian with inner product (25) is
anti-Hermitian whenever b is imaginary. This should not
be confused with the fact that a2 is not Hermitian even for
the Hartle-Hawking contour, where b is real. Note that
½b; a2� ¼ ih implies

½b†; ða2Þ†� ¼ ih ð32Þ

but for real (Hermitian) b the fact that a2 is non-Hermitian
does not conflict with this because

ða2Þ† ¼ a2 þ 2ihb
b2 þ k

: ð33Þ

However, if b has nonreal eigenvalues then it also cannot be
Hermitian. Where b is imaginary, the first term in ða2Þ† is
−a2, instead of a2, creating the real problem.
Finally, we note that there are other trivial constructions

for Hartle-Hawking that do not carry over to the Vilenkin
setting. For example, for real T and X we can write the
solutions to (21) as ψðb; TÞ ¼ FðT − XÞ. This lies behind
the conservation of probability with measure dX (the wave
functions are nondispersive in X). If X is not real this
argument collapses.

VI. EUCLIDEAN IMAGE IN LORENTZIAN
THEORY

Had we started from a Euclidean signature (with all
quantities taking real values), only the sign of the kinetic
term, b2, in action (1) would be modified:

SE ¼ 3Vc

8πG

Z
dt

�
_ba2 − Na

�
b2 − kþ a2

ϕ

��
: ð34Þ

This can be worked out from first principles, but is often
inferred from an analytical extension of the Lorentzian
theory. Writing

t ¼ �iτ ð35Þ

with fixed lapse function N (or equivalently N ¼ �iÑ with
coordinate t fixed)3 we find that the Lorentzian action (1)
becomes

SL ¼ �i
3Vc

8πG

Z
dτ

�
b0a2 − Na

�
b̄2 − kþ a2

ϕ

��
; ð36Þ

with 0 ¼ d=dτ and

b ¼ �ib̄: ð37Þ

Comparing with (34) we see that the imaginary Lorentzian
action is related to the Euclidean counterpart by

SL½b; a2; t� ¼ �iSE½b̄; a2; τ�: ð38Þ
We can also consider a Euclidean version of the unimodular
extension mimicking

SE → SE þ 3Vc

8πG

Z
dτϕ0T̄ ð39Þ

T ¼ iT̄; ð40Þ

so Euclidean unimodular time can be seen as imaginary
Lorentzian time and vice versa. Finally, we can define a
Euclidean version of the Chern-Simons functional

XðbÞ ¼ iX̄ðb̄Þ ð41Þ

X̄ ¼ −
b̄3

3
þ kb̄: ð42Þ

Within a Lorentzian theory allowing the connection b to
become imaginary is equivalent to a Euclidean theory with
a real connection b; however the Lorentzian action is now
imaginary. Therefore, the Vilenkin contour b ¼ bΘðbÞ þ
ib̄Θð−b̄Þ implies that the action is of the form

3The sign ambiguity is a source of great controversy, but it will
play no role in what follows.
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S½b� ¼ ΘðbÞSL � iΘð−b̄ÞSE½b̄�: ð43Þ

The excursion of b into the imaginary domain can be seen
as a Euclidean image within the Lorentzian theory, that is,
keeping the fundamental action as SL, so that the action is
imaginary in the relevant domain. This is the origin of all
the problems with unitarity.
Wherever the action is imaginary, the Hamiltonian is

imaginary. The Poisson brackets are also imaginary, so that

½b̄; a2� ¼ h ð44Þ

½ϕ; T̄� ¼ h ð45Þ

for the Hermitian b̄ and T̄. Upon quantization with these
rules the Hamiltonian therefore is anti-Hermitian, just as we
found in Sec. V. The wave functions in connection space,
along the imaginary section of the connection, are real and
evanescent. Unitarity is lost.
The conflict between unitarity and the Vilenkin proposal

is therefore deeply ingrained in the structure of the theory,
and it is hard to see how it can be bypassed.

VII. EUCLIDEAN ACTION AND
SIGNATURE CHANGE

In the above it is easy to forget that the Euclidean theory
exists in its own right, with a real action and connection,
without reference to the Lorentzian theory. We could have
associated the Vilenkin contour with a different theory, in
which there is an actual signature change at b ¼ 0, from
Lorentzian to Euclidean, the connection remaining real.
Instead of (43) the action then is

S0½b� ¼ ΘðbÞSL þ Θð−bÞSE½b�; ð46Þ

that is, the perennially real action

S0 ¼
3Vc

8πG

Z
dt

�
_ba2 − Na

�
sðbÞb2 − kþ a2

ϕ

��
; ð47Þ

where

sðbÞ ¼ −ΘðbÞ þ Θð−bÞ: ð48Þ

The commutators are now imaginary, and the Hamiltonian
is Hermitian, as they should be. Since the action is always
real, there is no need to complexify the time variable in the
unimodular extension in the Euclidean section

S → Sþ 3Vc

8πG

Z
dt _ϕT: ð49Þ

Unimodular time remains real throughout.
The Hamiltonian constraint and equations of motion

(EOM) for this theory are

0 ¼ sb2 − kþ a2

ϕ
ð50Þ

_a ¼ −sNb − Nb2δðbÞ ¼ −sNb ð51Þ

_b ¼ N
a
ϕ

ð52Þ

_T ¼ N
a3

ϕ2
: ð53Þ

Since the change in s happens at b ¼ 0 no new term
appears in (51). The usual consistency relations obtained
from dotting the Hamitonian constraint and comparing with
the EOM are satisfied, i.e., there is no conflict with the
Bianchi identities.
The classical solutions are a conflation of the Lorentzian

and Euclidean solutions. For t > 0 we have

aðtÞ ¼
ffiffiffiffiffiffi
kϕ

p
coshðt=

ffiffiffiffi
ϕ

p
Þ ð54Þ

bðtÞ ¼
ffiffiffi
k

p
sinhðt=

ffiffiffiffi
ϕ

p
Þ ð55Þ

and for −π
ffiffiffiffi
ϕ

p
=2 < t < 0

aðtÞ ¼
ffiffiffiffiffiffi
kϕ

p
cosðt=

ffiffiffiffi
ϕ

p
Þ ð56Þ

bðtÞ ¼
ffiffiffi
k

p
sinðt=

ffiffiffiffi
ϕ

p
Þ; ð57Þ

corresponding to the iconic half de Sitter glued to half a
four-sphere, except that this now is a classical solution. The
Chern-Simons functional of this theory is always imaginary
(so the wave functions are never evanescent; they propagate
even in the Euclidean phase, as we shall see), that is X is
always real with

X ¼
Z

dbð−sb2 þ 1Þ ¼ −s
b3

3
þ kb ð58Þ

matching (42) for b < 0. The unimodular time T is also real
and given by

T ¼
Z

dtN
a3

ϕ2
: ð59Þ

It is easy to find its on shell expressions. For example for
t < 0 we have
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T ¼
Z

dt
a3

ϕ2

¼ k3=2
�
−
3

4
cos

�
tffiffiffiffi
ϕ

p
�
þ 1

12
cos

�
3tffiffiffiffi
ϕ

p
��

¼ k3=2
�
−
1

3
sin3

�
tffiffiffiffi
ϕ

p
�
þ sin

�
tffiffiffiffi
ϕ

p
��

; ð60Þ

where we have adjusted the integration constant in T so that
T ¼ 0 marks the transition from Euclidean to Lorentzian
signature. The solutions satisfy

X ¼ T ð61Þ

throughout. No issues should therefore arise with unitarity
on the grounds highlighted in the previous section.
Conserved (nondispersive in X) traveling waves can be
expected in the quantum theory.
However we note a novelty. The point b0 ¼ −

ffiffiffi
k

p
is now

the endpoint of the manifold, or the no-boundary South
Pole. Hence the Chern-Simons functional X and unim-
odular time T are limited from below by

T0 ¼ −
2

3
k3=2 ð62Þ

marking the beginning of the Universe. Far from being a
no-boundary, unimodular time has a boundary. Therefore,
we are still not off the hook regarding unitarity, since we
have a theory with a boundary. We now proceed to make
this problem explicit and solve it.

VIII. THE EUCLIDEAN QUANTUM THEORY

Let us first study unitarity in a Euclidean theory with real
action (rather than its imaginary image as seen from the
Lorentzian theory). Since the theory’s variables and
Hamiltonian are real, a priori there should be no problems
quantizing it to obtain a unitary theory. Equation (46) with
s ¼ 1 implies

fb; a2g ¼ 3Vc

8πG
ð63Þ

H0 ¼
1

−b2 þ k
a2 ð64Þ

(where b; a2 ∈ R), and quantization proceeds as

½b; a2� ¼ ih ⇒ a2 ¼ −ih
∂

∂b

H0 ¼ −
ih

−b2 þ k
∂

∂b
¼ −ih

∂

∂X
; ð65Þ

where

X ¼ −
b3

3
þ kb ð66Þ

is the (real) Chern-Simons functional adapted to Euclidean
signature. We therefore recover the Schrödinger equa-
tion (17) with a H0 which is Hermitian with inner product
(25) if b and X are allowed unrestricted variation. There are
no obstructions to rewriting this as (21) with this X, with
solutions ψðb; TÞ ¼ FðT − XÞ. It is straightforward to see
that if X and T are unrestricted, the methods in [5] for
enforcing unitarity follow through.
However, unrestricted variation in b and X in this context

is problematic. The catch is in that the Euclidean Chern-
Simons function (66) upon which wave functions depend
(and providing the inner product measure) is nonmono-
tonic, so that the inverse bðXÞ is multivalued if we do not
restrict to b ∈ ð− ffiffiffi

k
p

;
ffiffiffi
k

p Þ (see Fig. 3). The projection of
the norm (25) onto b is ill defined if no restrictions are
applied. We should therefore restrict the b domain as

b ∈ ðb−; bþÞ; b� ¼ �
ffiffiffi
k

p
ð67Þ

and so

X ∈ ðX−; XþÞ; X� ¼ Xðb�Þ ¼ � 2

3
k3=2: ð68Þ

This makes sense from the point of view of the classical
theory, since the classical solution is a four-sphere,
which can be parametrized by (56) and (57), implying
b ∈ ð− ffiffiffi

k
p

;
ffiffiffi
k

p Þ. However, the quantum theory does not
a priori need to mimic the classical solution: the wave
function could be an evanescent wave outside b ∈ ð− ffiffiffi

k
p

;ffiffiffi
k

p Þ. But as we have seen, the reason for excluding this is

FIG. 3. Chern-Simons function for the Lorentzian (L)
and Euclidean cases in terms of b with k ¼ 1. The latter is
nonmonotonic if we do not restrict b ∈ ðb−; bþÞ, that is, to
the classically allowed region (from North to South pole of the
classical four-sphere). This restriction is indicated by the
dashed lines.
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that bðXÞ would then be multivalued, rendering ψðbÞ
undefined.
Imposing this restriction leaves us in territory familiar to

the literature using the metric formalism [30] if variables
are restricted. Then the Hamiltonian is Hermitian only if
suitable boundary conditions are imposed. The standard
argument applied to our setup reads as

hψ1jHjψ2i ¼
Z

Xþ

X−

dXψ⋆
1 ð−ihÞ

∂

∂X
ψ2

¼ hψ2jHjψ1i⋆ − ih½ψ⋆
1 ψ2�Xþ

X−
ð69Þ

i.e., the integration by parts generates two boundary terms
which require more onerous boundary conditions than
the simple fall-off conditions for when the limits lie at
infinity.
Discounting nonlocal boundary conditions [e.g.,

ψðb−; TÞ ¼ ψðbþ; TÞ, transferring the wave function non-
locally from the North to South pole of the same sphere],
the obvious solution is reflecting boundary conditions

ψðb�; TÞ ¼ 0 ð70Þ

(where T is real and unrestricted). However this creates a
number of technical problems (as we explain briefly in
Sec. X). Also, it has the implication of reflecting the
wave back into the Lorentzian domain. We then find a
contracting and an expanding Universe in the Lorentzian
region, in contradiction with Vilenkin’s proposal, where
only an expanding traveling wave should be present.

IX. SISYPHUS BOUNDARY CONDITIONS

One alternative, leading to an outgoing but no incoming
wave in the Lorentzian region, is a semi-infinite tower of
Euclidean spheres (see Fig. 7). To Hawking’s rhetorical
question “What is south of the South pole?” one can retort
(as did [31,32]) “another North pole.” This “south of
nowhere” process can be continued ad (semi) aeternum,
from South of the n sphere to North of the n − 1 sphere;
indeed this is required should we insist on unitarity together
with an outgoing without incoming wave in the Lorentzian
region. A reflection at any South pole down the tower of
spheres would only increase the interval in unimodular time
between the incoming and outgoing waves in the Lorentzian
region.4

An infinite tower of spheres is already in use as a
mathematical device for implementing reflecting boundary
conditions for a single sphere via an “images” method (as
we will review in Sec. X). In that context only the n ¼ 0

sphere exists, but one avails oneself of infinite copies with
identifications:

N0 ≡ S2nþ1 ≡ N2n

S0 ≡ N2nþ1 ≡ S2n

to obtain the wave function satisfying the boundary
conditions, as it bounces back and forth between North
and South poles. In contrast, we posit that the spheres are
distinct, with each South pole glued to the North pole
below:

Nn ≡ Snþ1:

Such solutions exist classically within the Einstein-Cartan
formalism or any formalism allowing for degenerate
metrics [31,33], but as we will comment later, our con-
struction is more general.
In such a setting, in the Euclidean region the wave

function satisfies Schrödinger’s equation (17), that is, (21)
with

Xðb; nÞ ¼ nΔþ Xðb; 0Þ ¼ nΔ −
b3

3
þ kb ð71Þ

where Δ ¼ 4
3
k3=2, b ∈ ðb−; bþÞ and −∞ < n ≤ 0 indexes

the various spheres. This X then connects with the
Lorentzian X ¼ b3=3þ kb (valid for b > 0) at b ¼ 0
and n ¼ 0 (see Fig. 5). Crucially

Xðb−; nÞ ¼ Xðbþ; n − 1Þ ð72Þ

since the South pole of the n sphere and North pole of the
n − 1 sphere have the same X.
The range of X is now the whole real line, and with

suitable fall-off conditions at infinity we have unitarity
with inner product (25) just as for the Hartle-Hawking
wave function (see Sec. III). The wave functions are
generic functions of the form ψðb; n; TÞ ¼ FðX − TÞ, such
that Z

∞

−∞
dXjψ j2 ¼

Z
∞

−∞
jψ j2

���� dXdb
����db ¼ 1; ð73Þ

but in the Euclidean region the wave functions have support
only in b ∈ ðb−; bþÞ. By construction the normalization is
time independent. We can still ask what happens in the
argument leading to the “boundary” terms in (69) as we
jump from the North to the South of the next sphere, but
this amounts to reading off from (72) that

ψðb�; n; TÞ ¼ ψðb∓; n − 1; TÞ; ð74Þ

so the boundary terms from contiguous spheres cancel
out. Note that because of the determinant measure the

4Also, to be pedantic, going backwards in unimodular time,
any reflection on a North pole after a reflection off a South pole
would only send the wave down the tower, ultimately visiting the
semi-infinite tower of spheres.
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probability density at any N or S is zero:

Pðb�; n; TÞ ¼ jψ j2
���� dXdb

���� ¼ 0: ð75Þ

This is very interesting, as it points to an unconventional
transition between spheres as we now show.
Let us consider semiclassical states by choosing a

Gaussian A centered on ϕ0 and with a spread σ. This
leads to wave packets [13,29]

ψðb; n; TÞ ¼ 1

ð2πσ2TÞ1=4
exp

�
i
h
ϕ0ðXðb; nÞ − TÞ

�

× exp

�
−
ðXðb; nÞ − TÞ2

4σ2T

�
ð76Þ

with σT ¼ h=ð2σÞ. The classical solution is depicted in
Fig. 4 and combines (54) and (55) in the Lorentzian
region with a repetition of (56) and (57) (restricted so that

a > 0 is enforced5) in the Euclidean region. For as long as
the wave packets remain sharply (and single) peaked, they
follow _X ¼ _T, and, as we have seen, this is equivalent to the
classical trajectory.
The semiclassical approximation, however, badly breaks

down near the transitions from one sphere to the next. This
is illustrated in Fig. 6. What happens there is reminiscent of
the singularity resolution in a radiation dominated Universe
proposed in [17]. Here (as in [17]) the probability is always
zero at the degenerate gluing point between spheres (at the
classical singularity, in [17]). As the classical trajectory
approaches a North pole, we must therefore deviate from
the semiclassical limit, since the peak of the probability
cannot go there. What happens is that the probability peak
stops its motion at a fixed distance to the North pole,
dependent on σT . As Fig. 6 shows, a symmetric peak then
appears, equally distant from the South pole of the next
sphere up the tower. As unimodular time progresses,
the second peak grows at the expense of the first one.
At the time when the classical trajectory would have
reached the degenerate point, the wave function is actually
a perfectly balanced superposition between these two peaks
at nondegenerate points (middle panels of Fig. 6). As time
progresses the new peak comes to dominate, and the old
one is suppressed. As T evolves by more than σT , the peak
starts to move along the new sphere, from the South to
North pole, following the classical trajectory, until a new
transition starts.
The fact that the N=S degenerate point is never reached

seems to imply that this construction is more general than

FIG. 5. The linearizing variable X solving the Schrodinger
equation, connecting the Lorentzian outgoing X (top right) with
the Euclidean Xðb; 0Þ at b ¼ 0, followed by a semi-infinite
Euclidean tower, represented by Xðb; nÞ with −1 ≤ n < ∞.
Notice how the South pole of the n sphere and North pole of
the n − 1 sphere have the same X.

FIG. 4. Top panel: scale factor a for the Euclidean (subscript
(E) and Lorentzian (L) cases as a function of coordinate time t,
allowing for a −∞ < n ≤ 0 tower of spheres. Bottom panel:
connection variable b for the Euclidean (E) and Lorentzian (L)
cases as a function of coordinate time t in the same setup. In both
cases we have considered k ¼ 1 ¼ ϕ.

5See the discussion in the next section for what happens if we
allow a < 0.
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classical theories allowing for degenerate metrics. The
transition between spheres may be seen as a truly quantum
phenomenon.
Note that strictly speaking the action in this setting

should be

S0½b� ¼ ΘðbÞSL þ Θð−b; n ¼ 0ÞSE½b�; ð77Þ

instead of (46), since the counter n appears in phase space.
Another alternative is to use

FIG. 6. Probability density as a function of b as T increases from just below to just above T0, and the peak of the wave
function progresses from just below the North pole of the n ¼ −1 sphere to the South pole of the n ¼ 0 sphere. As we see, the wave
function departs from the classical trajectory, as this approaches the singular point where North and South meet. Instead two peaks
establish themselves at the two spheres at an equidistant latitude determined by σT. As time progresses the peak at n ¼ 0 rises at the
expense of the one at n ¼ −1. At T ¼ T0 (or at any other time where the classical trajectory would be singular) we have a perfectly
balanced superposition.
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S0½b� ¼ ΘðTÞSL þ Θð−TÞSE½b�; ð78Þ

but this falls within the remit of another set of theories
currently being investigated.

X. ARE THERE OTHER OPTIONS?

Within unimodular theory that does not seem to be the
case. The obvious alternative, reflecting boundary condi-
tions within a single sphere, presents a number of problems.
One could use an “images method” for reflections off
infinitely tall potential walls for implementing the boun-
dary conditions in that case [34]. Recall that for a single
infinite wall (crossing out X < 0, say) one would take a
normalized solution of the free unrestricted Schrodinger
equation ψUðX; TÞ and construct ψðX; TÞ ¼ ψUðX; TÞ −
ψUð−X; TÞ for X > 0. This enforces the reflecting boun-
dary condition, and ψ is normalized inX > 0, in spite of the
interference terms. Adapting this to two infinite walls we
could get solutions for the single Euclidean sphere (or half a
sphere glued to a Lorentzian manifold).
However, this would require accepting a theory with

classical solutions _T ¼ � _X, that is with waves traveling
in both directions, in contradiction with the first order
equation (21). This is possible, but it would require
extending the theory to accept a < 0. The solutions (56)
and (57) can then be extended to accept a � expansion
factor (in analogy with the cosmological representation of
a patch of AdS), and waves in X and T moving in two
directions. A series of images can thus be built, describing

the wave function being reflected back and forth between
the North and South pole (or just once off the South pole, if
required).
Two major flaws can be found. First, as already stated,

the wave function would be reflected back to the Lorentzian
domain, generating Hartle-Hawking packets, i.e., requiring
both an expanding and a contracting Universe. One could
consider several reflections, with the Lorentzian branches
both in the a > 0 of the theory, or with one in the a < 0, but
certainly we would not recover the Vilenkin asymptotic
requirement. Second it is not clear that such a theory would
be unitary. The inner product would have to be modified
to accommodate solutions traveling in both directions.
Perhaps with an entirely different construction this would
be possible, namely a theory with a first order current.
Given that wewould gain nothing from this complication

(i.e., we would be back to Hartle-Hawking Lorentzian
conditions), we will not explore this possibility further in
this paper. But note that the fact that we have a reflection
within the same sphere is physically different from having
multiple distinct spheres. The former leads to interference
between reflected and incident waves (revealing the inter-
nal beats of packets in the probability) near the reflecting
pole and a Hartle-Hawking packet in the Lorentzian region;
the latter has no interference, and we can indeed have only
outgoing packets.

XI. CONCLUSIONS

In this paper we have tried and failed to implement
unitarity for the Vilenkin wave function in the unimodular
extension of gravity. The failure resides squarely in the
connection’s detour into the imaginary domain, associated
with the Vilenkin boundary condition. This is true for the
monochromatic partial waves (with fixed Λ) and contam-
inates the construction of wave packets in unimodular
theory. The usual setup for a conserved inner product (so
successful for packets of Hartle-Hawking wave functions)
then fails. Attempts to use the Laplace transform in lieu of
the Fourier integral only force the probability to live on the
Hartle-Hawking connection contour. More structurally,
the problem is that imaginary connections lead to anti-
Hermitian Hamiltonians and so antiunitarity. This is the
unavoidable consequence of seeing the Euclidean theory
(wherein the “nothing” lies) as a complex image within a
Lorentzian theory. Time, connection and Chern-Simons
functional then necessarily become imaginary, and unitarity
is lost.
Without prejudice to the work of [5] (where none of

these complications are found for the Hartle-Hawking
state) or the stated intentions of [2] (to regard unitarity
as a mere approximation subject to breaking down), in this
paper we put forward an alternative. The connection detour
into the imaginary domain, usually seen as a Euclidean
image within a Lorentzian theory, could also be interpreted
as an actual transition from Euclidean to Lorentzian

FIG. 7. The infinite tower of real Euclidean spheres supporting
the Lorentzian Universe, required to maintain unitarity and
present a single (outgoing) wave in the Lorentzian region. In
this picture the arrows show motion as T goes backward. On the
right we illustrate the effects of a reflection: it would only recreate
the Hartle-Hawking aysmptotics (an incoming and an outgoing
wave, at different unimodular times). On the left we illustrate the
infinite Sisyphus sequence of cycles, required for Vilenkin
asymptotics.

ALEXANDRE, ISICHEI, and MAGUEIJO PHYS. REV. D 108, 023526 (2023)

023526-12



signature within a fundamentally real theory. If that is the
case, all variables, action and Hamiltonian remain real, so
that no structural obstacles to unitarity are found.
Nonetheless, the question still arises as to what happens

at the boundary (the South pole) of the (now real) half-
sphere. We proposed that a way to enforce unitarity whilst
keeping a single (outgoing) wave in the Lorentzian domain
is to allow the wave function to travel through a tower of
spheres for an eternity in unimodular time. Such solutions
do exist in gravity formulations allowing for degenerate
metrics, but we stress that we could envisage our proposal
as a purely quantum construction, required by unitarity and
Vilenkin asymptotics. We found that semiclassical solu-
tions with a peak following the classical equations become
essentially quantum at the degenerate gluing points. Hence
our proposal could even apply to standard general relativity,
but only quantum mechanically.
Wemaycall this proposal “Sisyphusboundaryconditions,”

since it is a time-reversal of Sisyphus’s ordeal. Sysiphus was
condemned to roll a ball uphill only for it roll down restarting
the cycle for the whole of a future eternity. In our proposal
the wave function climbs up and down an infinite tower of
distinct spheres for a past eternity. In the same way that
Sisyphus’s punishment avoids death, ours avoids birth, i.e., a
moment of cosmic creation. Ultimately this is the reason why
unitarity is kept, whilst complying with Vilenkin’s boundary
conditions in the Lorentzian region.
We close with a few comments on the relation between

our proposal and work found in the literature. One
objection to a tower of spheres is that should one try to
put a general quantum field theory on this background, then
the action cannot be made to converge, due to the gluing
points [21,22] (more generally one has to face the insta-
bilities unveiled in [18–20]). But as we saw, the degenerate
points are never reached by the peak of the wave function,
with the evolution at transition unimodular times being
intrinsically quantum. So the concept of quantum fields on

top of a classical background breaks down at these points.
In addition the evaluation of the path integral for the
background assumes that the metric (and presumably the
connection) is complexified to bypass such points, some-
thing that does not happen here. Another objection targets
the whole concept of semiclassical time in the first place, as
suggested in [35]. Are these two facts sufficient to allay the
concerns of [18–22]? A translation between the canonical
and the path integral approach is nontrivial, and what is
meant by “contour,” “measure,” “convergence,” etc. is
strictly speaking not the same. For this reason it is hard
to see what the implications are, for example, for the
concept of “fuzzy instantons” (e.g., [36]). A full evaluation
of this issue from the path integral point of view is left to
future work.
We finally stress that our proposal is fundamentally

different from postulating a cyclic Chern-Simons func-
tional, X, and so a cyclic unimodular time, T. We could
consider a cyclic unimodular time, Tc, related to our T by

T ¼ nΔþ ð−1ÞnTc ð79Þ

with Δ ¼ 4
3
k3=2 and −Δ=2 < Tc < Δ=2. The fact that our

T is built from a cyclic process plus an integer counter, n,
should not be seen as an anomaly. Every practical clock is
the result of a periodic process (the oscillation of a
pendulum, the vibration of a crystal, etc.) plus a counter.
Our timing system (in years, weeks, etc.) also “wraps”
around, triggering a counter. Since our time is not imagi-
nary, there is no good reason to make it cyclic.
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