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Employing the spherical collapse formalism, we investigate the linear evolution of the matter
overdensity for energy-momentum-squared gravity (EMSG), which in practical phenomenological terms
one may imagine as an extension of the ΛCDM model of cosmology. The underlying model, while still
having a cosmological constant, is a nonlinear material extension of the general theory of relativity and
includes correction terms that are dominant in the high-energy regime, the early Universe. Considering the
Friedmann-Robertson-Walker background in the presence of a cosmological constant, we find the effects
of the modifications arising from EMSG on the growth of perturbations at the early stages of the Universe.
Considering both possible negative and positive values of the model parameter of EMSG, we discuss its
role in the evolution of the matter density contrast and growth function in the level of linear perturbations.
While EMSG leaves imprints distinguishable from ΛCDM, we find that the negative range of the EMSG
model parameter is not well behaved, indicating an anomaly in the parameter space of the model. In this
regard, for the evaluation of the galaxy cluster number count in the framework of EMSG, we equivalently
provide an analysis of the number count of the gravitationally collapsed objects (or the dark matter halos).
We show that the galaxy cluster number count decreases compared to the ΛCDMmodel. In agreement with
the hierarchical model of structure formation, in EMSG cosmology the more massive structures are less
abundant, meaning that they form at later times.
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I. INTRODUCTION

It is not an exaggeration to say that the discovery of the
current cosmic acceleration of the Universe is the most
exciting cosmological achievement in many decades.
Generally speaking, it implies that the Universe is domi-
nated by an enigmatic repulsive force, so-called dark
energy (DE) with unusual physical properties, or that the
general theory of relativity (GTR) as the basis of standard
cosmology (ΛCDM) fails on cosmological scales [1]. This
enigmatic force has inspired many researchers to reveal its
unknown properties. In this regard, serving alternative
theories of gravity that indeed are extensions of GTR
are regarded as the most optimistic proposals to disclose the
nature of the accelerating expansion of the Universe. In
addition to DE, there are other unresolved issues, such as
the explanation of the missing matter is known as dark
matter (DM) at the galactic and cosmological scales, and
the existence of singularities at high-energy regimes which
keep open the way to going beyond GTR (see Ref. [2] for
more knowing). In the review paper [3], one can find a

systematic discussion on some standard issues and the
latest developments of modified gravity in cosmology.
Usually, the theories beyond GTR build due by adding

scalar invariants (also their corresponding functions) in the
geometric section of the Einstein-Hilbert action. The most
simple modification of GTR is the so-called fðRÞ theory, in
which the Ricci scalar R takes different forms. The viable
aspects of these alternative theories have been comprehen-
sively discussed in the literature [4]. In the continuation of
this road, a generalization of fðRÞ theory of gravity has
been suggested in Ref. [5] known as fðR; TÞ gravity, where
T denotes the trace of the energy-momentum tensor (EMT).
The outstanding feature of fðR; TÞ theories, which are also
known as minimal curvature-matter coupling models,1 is
that they can provide worthy descriptions for the late-time
cosmic acceleration and the interconnection of DE, and
DM, as well (see e.g., [7–9]). Note that some of the classes
of fðR; TÞ gravity also suffer from inviability issues and
cannot provide a realistic cosmology [10]. Authors in [11],
for the first time, developed theories exploiting the trace of
EMT in the general form fðR;ðTμνTμνÞnÞ (0<n≤1), as the
models violating the local or covariant energy-momentum
conservation with the norm of EMT TμνTμν. Generally,
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1There is also the nonminimal version of the interaction between
geometry and matter which is labeled as fðR; T; RμνTμνÞ [6].
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these models are categorized under the name of energy-
momentum-powered gravity, so that Ref. [11] by focusing
only on two cases n ¼ 1=4 and 1=2 showed that the addition
of the norm of EMT to the action results in the Cardassian
expansion.2 Further studies explicitly revealed to us that case
n < 1=2 will affect the dynamic of the Universe in late
time [13] while n > 1=2 is efficient to high-energy
regimes [14,15]. Case n ¼ 1=2 is very interesting in the
sense that it affects the field equations independent of the
energy density scale (see the cosmological and gravitational
implications of this case in [16–18]).
With these prerequisites, since the topic under inves-

tigation in this paper, i.e., structure formation, is influenced
by the dynamic governing the early Universe, then we take
the case n ¼ 1, which the authors in Refs. [14,15] have
presented as a new covariant generalization of GTR
relevant to the high-energy phase of the Universe. The
label of this model is energy-momentum-squared gravity
(EMSG) so that inducing the quadratic contributions to
gravity from the matter side makes the appearance of new
forms of fluid stresses, such as the scalar field and so on,
unnecessary [19]. In general, fðR; ðTμνTμνÞnÞ gravities
enjoy this feature that their modifications do not come
from gravitational Lagrangian but from the matter
Lagrangian, unlike fðRÞ theories. In other words, the
self-coupling of the matter this time instead of geometry
is supposed to give us interesting cosmological outputs, in
particular, concerning the early Universe (case n ¼ 1).
Studies conducted in Refs. [14,20] (see also relevant
papers [21,22]), respectively, indicate that EMSG in the
context of bounce3 and emergent scenarios is an alternative
gravity without initial singularity. It may be justified by the
fact that EMSG, similar to most quantum gravity
approaches, predicts a minimum length and a finite
maximum energy density, leading to a circumvention of
the initial singularity problem in GTR. Due to some
modifications induced by EMSG for the physics of the
early Universe, one can consider it a phenomenological
effort to improve the usual paradigm in ΛCDM-based
cosmology. This idea, for several reasons, is justifiable.
First, ΛCDM, due to the theoretical inconsistencies
related to the cosmological constant, cannot provide us
with a self-consistent description of cosmic acceleration,
although it is successful in fitting a range of the observa-
tional data [25,26]. Second, some data analyses indicate
incompatibilities between the ΛCDM prediction and the
constraints obtained from some local observations; e.g., see

Refs. [27–29]. Third, the Hubble tension that has recently
been at the center of attention of the cosmology community
warns us of the possibility of the invalidity of the ΛCDM
picture of the early Universe [30–32]. It would be helpful to
note that, despite the possibility of solving the cosmologi-
cal constant issue at the late time via presenting quintes-
sence DE, some studies show that it may make Hubble
tension worse [33,34]. With this background, one may
potentially take the EMSG as phenomenological extensions
of theΛCDM for the description of the early Universe, such
that the additional free parameter appearing in Einstein’s
equations (arising from the nonlinear matter Lagrangian)
finally can be constrained via cosmological observations.
About the late-time behavior of EMSG cosmology, a recent
study [35], by taking into consideration the homogenous
and isotropic spacetime in the presence of the cosmological
constant for this theory, succeeded in deriving different
plausible scenarios of dark energy. Notably, one of these
scenarios via presenting quintessence DE was able to solve
the cosmological constant issue at the late time. In light of
some cosmological observation measurements [36,37] and
gravitational setups [19,38,39] derived different constraints
for the free parameter of EMSG. Apart from these cases, we
see EMSG in recent years subjected to evaluation in
different contexts; see Refs. [40–48].
The structure formation of the Universe is highly

sensitive to the accelerated expansion history of the
Universe since any change affects the rate of formation
and growth of collapsed structures [49]. This is important
because all galaxies, quasars, and supernovae, in essence,
come from collapsed structures, and their distribution in
size, space, and time is subsequently affected. Indeed,
large-scale structures in our current Universe are nothing
but growing small fluctuations in the early Universe. This
statement is valid for any source of changes in the
expansion history of the Universe. With this idea in mind,
we are going to study linear structure formation in
cosmologies beyond standard ΛCDM, in particular,
EMSG cosmology. The higher-order matter source terms
appearing in the EMSG dynamical equations are expected
to leave significant effects on the initial small fluctuations
as well as the evolution of the structure. An appropriate
approach to describe this evolution is known as top-hat
spherical collapse (SC) formalism which addresses the
growth of perturbations and subsequently structure for-
mation [50]. In this approach, one considers a homo-
geneous and spherical symmetric perturbation in an
expanding background and describes the growth of per-
turbations in a spherical region using the same Friedmann
equations for the underlying theory of gravity [51–56].
More precisely, the top hat describes a homogeneous
overdensity sphere that is, in principle, modeled by a
discrete Friedmann-Robertson-Walker (FRW) closed uni-
verse lying in an external FRW universe, with flat spatial
curvature [57]. The radius of this overdensity sphere

2It is a kind of expansion for the flat universe consisting of only
matter and radiation (without vacuum contribution) and still
consistent with observations [12].

3There is another analysis also that shows EMSG cannot
replace the standard initial singularity with a regular bounce,
meaning that it still suffers from geodesically incompleteness
issue [23]. However, this problem can be solved in case of the
existence of a vacuum energy density in EMSG [24].

FARSI, SHEYKHI, and KHODADI PHYS. REV. D 108, 023524 (2023)

023524-2



expands at a rate slower than the background, gradually
slowing down so that it finally reaches its possible
maximum size, and then reversely shrinks into itself to
collapse. Notably, our work here differs from [58], which
has utilized the Newtonian gauge, since we instead serve
SC formalism to survey the evolution of perturbations. It is
worth noting that recently in the framework of EMSG, by
investigating the dynamics of SC for a spherically sym-
metric configuration such as a star, the stability of self-
gravitating objects has been addressed [59].
The outline of this paper is as follows. In Sec. II, we

provide a review on EMSG and derive the corresponding
Friedmann equations. In Sec. III, using the spherically
collapse approach, we explore the growth of matter
perturbation in the background of flat EMSG-based cos-
mology. In Sec. IV, for the existing cosmology framework
we address the mass function and number count of the
collapsed objects. We also devote the conclusion and
discussion to the last Sec. V. In what follows we work
in the units ℏ ¼ c ¼ κ ¼ 1.

II. MODIFIED DYNAMIC
EQUATIONS OF EMSG

In Ref. [15], the modified action of the EMSG model in
the presence of the cosmological constant Λ is presented in
the following form:

SEMSG ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p fFðR; T2Þ − 2Λþ Lmgd4x; ð1Þ

with FðR; T2Þ ¼ Rþ ηT2, where κ ¼ 8πG=c4, and T2 ≡
TμνTμν is the scalar formed from the square of EMT. The
action of matter also labels with Lm. Here, η is the model
parameter denoting the coupling between matter and
geometry with SI unite s4kg−2. Without going into detail,
the Einstein’s equation reads as

GμνþΛgμν
¼ κððρþpÞuμuνþpgμνÞ

þη

�
1

2
ðρ2þ3p2ÞgμνþðρþpÞðρþ3pÞuμuν

�
: ð2Þ

The first term in the right-hand side of the equation above
shows the matter content described by a perfect fluid with
the standard EMT Tμν, containing the energy density ρ and
the pressure p which are connected via equation-of-state
parameter ω ¼ p=ρ. As is clear from the second term,
EMSG induces the quadratic contributions to gravity from
matter terms which causes the standard EMT to be no
longer conserved locally, i.e., ∇μTμν ≠ 0 (in [20] one can
find more discussion on handling this issue). Note that here
for perfect fluid we utilized the standard Lagrangian
density Lm ¼ p.

The modified Friedmann equations for the spatially
homogeneous and flat FRW metric

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ� ð3Þ

take the following forms [15]:

�
_a
a

�
2

¼ Λ
3
þ ρ

3
þ ηρ2

6
ð3ω2 þ 8ωþ 1Þ; ð4Þ

ä
a
¼ Λ

3
−
1þ 3ω

6
ρ −

ηρ2

3
ð3ω2 þ 2ωþ 1Þ: ð5Þ

An interesting point in the above modified Friedmann
equations is that in case of choosing η < 0 (η > 0), one can
recover the effective Friedmann equations released in loop
quantum cosmology [60] (braneworld cosmologies [61]).
In this regard, by differentiating the Friedmann equations,
the relevant continuity equation is acquired as

_ρ ¼ −3
_a
a
ρð1þ ωÞ 1þ ηρð1þ 3ωÞ

1þ ηρð3ω2 þ 8ωþ 1Þ ; ð6Þ

which ρ indeed is the energy density of both baryonic
and DM.
By taking the case of dust matter in the form of

p ¼ pm ¼ 0, ωm ¼ 0, and ρ ¼ ρm, Eqs. (4) and (5) can
be reexpressed as

3H2 ¼ Λþ ρm þ η

2
ρ2m; ð7Þ

2 _H þ 3H2 ¼ Λ −
η

2
ρ2m: ð8Þ

We note that in the GTR limit (i.e., η ¼ 0), the standard
Friedmann equations will be recovered from Eqs. (7) and
(8). The continuity equation (6) also for the underlying case
leads to the usual behavior for the matter density as

_ρm þ 3Hρm ¼ 0: ð9Þ

The energy density of the pressureless matter (pm ¼ 0) can
be obtained as ρm ¼ ρm;0a−3. The density parameters are
given by

ΩΛ ¼ Λ
3H2

; ð10Þ

Ωm ¼ ρm
3H2

; ð11Þ

Ωη ¼
ηρ2m
6H2

: ð12Þ
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By substituting Eqs. (10)–(12) in Eq. (7) we obtain the
following expression for the normalized Hubble parameter:

EðzÞ ¼ HðzÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ;0 þ Ωm;0ð1þ zÞ3 þΩη;0ð1þ zÞ6

q
: ð13Þ

By taking this fact into account that at the present-time
Universe Eðz ¼ 0Þ ¼ 1, from Eq. (13), one gets the
following relation between density parameters:

Ωm;0 þ ΩΛ;0 ¼ 1 − Ωη;0: ð14Þ

By relaxing η, the standard density equation is recovered,
as expected. In light of the strong evidence that the
Universe is Euclidean, and the total density parameter is
Ω≡Ωm þ ΩΛ ¼ 1, thereby, the value of the EMSG model
parameter η should be tiny.
In Fig. 1 is plottedEðzÞ − z for different values of η. Aswe

can see, in EMSG cosmology, the normalized Hubble
parameter decreases by moving from negative values of
the model parameter η to positive ones. Also, for η > 0
(η < 0), the normalized Hubble parameter has a lower
(steeper) slope, meaning that the rate of expansion of the
Universe becomes slower (faster) relative to the standard
ΛCDM model.
From Eqs. (7), (9), and (11), the evolution of the density

abundance Ωm can be written:

ΩmðzÞ≡ ρm
3H2

¼ ρm;0ð1þ zÞ3
ρm;0ð1þ zÞ3½1þ η

2
ρm;0ð1þ zÞ3�þΛ

¼ Ωm;0

Ωm;0þð1−Ωm;0−ΩΛ;0Þð1þ zÞ3þΩΛ;0ð1þ zÞ−3 :

ð15Þ

In a similar manner, from Eqs. (7), (9), and (10), the
evolution of the density abundance ΩΛ takes the following
form:

ΩΛðzÞ≡ Λ
3H2

¼ Λ
ρm;0ð1þ zÞ3½1þ η

2
ρm;0ð1þ zÞ3�þΛ

¼ ΩΛ;0ð1þ zÞ−3
Ωm;0þð1−Ωm;0−ΩΛ;0Þð1þ zÞ3þΩΛ;0ð1þ zÞ−3 :

ð16Þ

Also, using Eqs. (7), (9), and (12), for the evolution of the
density abundance Ωη we have

ΩηðzÞ≡ ηρ2m
6H2

¼ η

2

ρ2m;0ð1þ zÞ6
ρm;0ð1þ zÞ3½1þ η

2
ρm;0ð1þ zÞ3�þΛ

¼ Ωη;0ð1þ zÞ6
Ωm;0ð1þ zÞ3þΩη;0ð1þ zÞ6þΩΛ;0

¼ ð1−Ωm;0−ΩΛ;0Þð1þ zÞ3
Ωm;0þð1−Ωm;0−ΩΛ;0Þð1þ zÞ3þΩΛ;0ð1þ zÞ−3 :

ð17Þ

The deceleration parameter in terms of the redshift can
be written as

q¼ −1−
_H
H2

¼ −1þ ð1þ zÞ
HðzÞ

dHðzÞ
dz

¼ −2ΩΛ;0 þΩm;0ð1þ zÞ3 þ 4ð1−ΩΛ;0 −Ωm;0Þð1þ zÞ6
2ΩΛ;0 þ 2Ωm;0ð1þ zÞ3 þ 2ð1−ΩΛ;0 −Ωm;0Þð1þ zÞ6 :

ð18Þ

One can see immediately that if η ¼ 0;Λ ¼ 0, then Eq. (18)
reproduces exactly the GTR value, i.e., q ¼ 1=2. We depict
the behavior of the deceleration parameter q for different η
in Fig. 2. It reveals to us that the Universe experiences a
transition from decelerating phase (z > ztr) to the accel-
erating phase (z < ztr), where ztr is the redshift at which the
deceleration parameter vanishes. We see that with decreas-
ing η (from positive to negative values), the phase transition
between deceleration and acceleration takes place at lower
redshifts. To clearly illustrate the role of the EMSG model
parameter η, the values of ztr are larger (smaller) than the
ΛCDM model for η > 0ðη < 0Þ, meaning that for η < 0,
this transition occurs later. Overall, from the combination
of the results of Figs. 1 and 2, it can be said that

FIG. 1. The behavior of the normalized Hubble rate EðzÞ as a
function of redshift z for different values of EMSG model
parameter η: η ¼ 0 (ΛCDM, black solid line), η ¼ 10−5 (blue
dotted line), η ¼ 10−4 (green dashed line), and η ¼ −10−5 (red
dash-dotted line).
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η > 0 ðη < 0Þ causes the Universe to experience an accel-
erated phase sooner (later) but with the expansion rate
slower (faster) compared to the ΛCDM model.

III. SPHERICAL COLLAPSE IN EMSG-SETUP

By considering a dust fluid as the only constituent of the
Universe (i.e., p ¼ pm ¼ 0), Eq. (9) leads to

_ρm þ 3Hρm ¼ 0; ð19Þ

with a solution in the form ρm ¼ ρm;0a−3 in which ρm;0

denotes the energy density at the present time. To inves-
tigate the growth of perturbations, we take a spherically
symmetric perturbed cloud of radius ap, with a homo-
geneous energy density ρcm. The SCmodel due to describing
a spherical region with a top-hat profile and uniform density
lets us write ρcmðtÞ ¼ ρmðtÞ þ δρm, at any time t [53]. Here
we are faced with two cases δρm > 0 and δρm < 0. While
for the former, this spherical region will eventually collapse
under its gravitational force, for the latter, it will expand
faster than the average Hubble expansion rate, subsequently
generating a void. In other words, these two cases happen in
overdense and underdense regions, respectively. Namely, in
the matter-dominated Universe, denser regions expand
slower than the rest of the Universe, which means if their
density is large enough, they finally collapse and make
clusters and other gravitational-bound systems [62]. Like
Eq. (19), the continuity equation for the spherical region
also takes the following form:

_ρcm þ 3hρcm ¼ 0; h ¼ _ap=ap; ð20Þ

where h refers to the local expansion rate of the spherical
region with perturbed radius ap. In line with our goal, let us
start with the definition of density contrast as [62]

δm ¼ ρcm
ρm

− 1 ¼ δρm
ρm

; ð21Þ

where ρcm and ρm are the energy density of spherical
perturbed cloud and the background density, respectively.
Note that the advantage of the above definition is that it
allows us to work with dimensionless quantities. It, in
essence, measures the deviation of the local fluid density
from the background density. Now, by taking the first and
second time derivatives of Eq. (21), we respectively have

_δm ¼ 3ð1þ δmÞðH − hÞ; ð22Þ

δ̈m ¼ 3ð _H − _hÞð1þ δmÞ þ
_δ2m

1þ δm
; ð23Þ

where the dot denotes the derivative with respect to time.
To estimate the second term of the above equation, ( _H − _h),
we use Eqs. (7) and (8) for the background and local
regions, i.e.,

ä
a
¼ Λ

3
−
ρm
6

−
η

3
ρ2m: ð24Þ

äp
ap

¼ Λ
3
−
ρcm
6

−
η

3
ðρcmÞ2: ð25Þ

Despite that one may expect η to differ inside and outside of
the spherical region, for simplicity here we suppose that
ηc ¼ η. From Eqs. (21), (24), and (25), one comes to

_H − _h ¼ 1

6
ρmδm þ 2

3
ηρ2mδm −H2 þ h2: ð26Þ

Now, by combining Eqs. (26) in (23), and using (22), one
gets the following differential equation for the density
contrast modified by EMSG model parameter η:

δ̈m þ 2H _δm −
1

2
ρmδm − 2ηρ2mδm ¼ 0: ð27Þ

The differential equation above is written in terms of a time
derivative, and as usual, we should rewrite it in the form of
the derivative in terms of the scale factor a. To do so, we
introduce the following equations in which the prime
represents the derivative in terms of the scale factor a:

_δm ¼ δ0maH; δ̈m ¼ δ00ma2H2 þ aH2δ0m þ a _Hδ0m: ð28Þ

Using Eqs. (7) and (24),

FIG. 2. The behavior of the deceleration parameter qðzÞ as a
function of redshift z for different values of the EMSG model
parameter η: η ¼ 0 (ΛCDM, black solid line), η ¼ 10−5 (blue
dotted line), η ¼ 10−4 (green dashed line), and η ¼ −10−5 (red
dash-dotted line).
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_H ¼ −
1

2
ρm −

1

2
ηρ2m; ð29Þ

and substituting it in Eq. (28), we arrive at

δ̈m ¼ δ00ma2H2 þ aH2δ0m −
a
2
ρmð1þ ηρmÞδ0m: ð30Þ

Now by combining Eq. (27) with Eqs. (28) and (30), after
ignoring the terms containing Oðδ2mÞ, and Oðδ02mÞ, we have

δ00m þ 3

a
δ0m −

1

2aH2
ρmð1þ ηρmÞδ0m

−
1

2a2H2
ρmð1þ 4ηρmÞδm ¼ 0: ð31Þ

Finally by puttingH2 from Eq. (7) in Eq. (31), we deal with
the following differential equation:

δ00m þ 3

a
δ0m −

3

2a
×

ρm þ ηρ2m
Λþ ρm þ η

2
ρ2m

δ0m

−
3

2a2
×

ρm þ 4ηρ2m
Λþ ρm þ η

2
ρ2m

δm ¼ 0: ð32Þ

One openly can see that in the absence of the EMSG model
parameter (η ¼ 0) and cosmological constant (Λ ¼ 0), the
perturbed equation for the density contrast, δm, in the linear
regime, coincides with the ones in the GTR cosmology [49]:

δ00m þ 3

2a
δ0m −

3δm
2a2

¼ 0: ð33Þ

In Fig. 3, within the range 10 < z < 20 of redshift, we have
plotted the matter density contrasts as a function of z for the
different values of the EMSG model parameter η. We
observe that the EMSG cosmology leaves distinguishable
imprints from ΛCDM on the density contrast of matter.
More exactly, in the presence of η, the density contrast of
matter starts growing from its initial value so that, in an
expanding Universe, its growth is faster than the ΛCDM
profile. However, Fig. 3 reflects an inconsistency in the
behavior of η < 0. Although we see for η > 0 as it
decreases, the growth of matter disturbances becomes
slower and eventually goes to the ΛCDM model, for
η < 0, the opposite happens, and the matter perturbations
grow faster. In light of Fig. 3, we expect that with the
increase of the η parameter, the matter perturbations will
grow faster so that the behavior of η < 0 is nothing but an
anomaly.4 Then, from now on, we ignore it in our consid-
erations and limit ourselves to the positive range of η. In
general, quadratic contribution added to gravity from the

side of the matter in the framework of EMSG is the
principal reason for amplifying the growth of matter
perturbations relative to the ΛCDM model.
In this regards, by serving the growth function as [63]

fðaÞ ¼ dlnD
dlna

; DðaÞ ¼ δmðaÞ
δmða ¼ 1Þ ; ð34Þ

one can investigate the growth rate of matter perturbations.
Let us recall that, in the absence of the EMSG model
parameter (η ¼ 0), the growth function is a constant of
unity. In Fig. 4, we display the growth function in terms of
the redshift parameter. First, like the ΛCDM model, we
observe that the amplitude of perturbations in high redshifts
approaches unity, while it starts to decrease at low redshifts.
It means that the role of the EMSG model parameter is not
in conflict with Λ to reduce the growth function from unity.
Besides, the current value of fðzÞ crucially depends on the
η parameter so that, by increasing it, fðzÞ deviates more
from ΛCDM model.
There is also another possibility of measuring the growth

rate matter perturbations, which come from the redshift-
space distortion of the clustering pattern of galaxies. This
distortion is caused by the odd velocity of the inward
collapse motion of the large-scale structure, which is
directly linked to the growth rate of the matter density
contrast δm [64]. The recent surveys of galaxy redshift have
provided bounds on the growth rate fðzÞ or fðzÞσ8ðzÞ in
terms of the redshift, where fðzÞ comes from Eq. (34) and
σ8 is the rms (root mean square) amplitude of δm at the

FIG. 3. The evolution of the matter density contrast for differ-
ent values of η during the evolution of the Universe. We have
chosen δmðziÞ ¼ 0.0001, zi ¼ 400, with different values for the
EMSG model parameter η: η ¼ 0 (ΛCDM, black solid line),
η ¼ 10−6 (red dash-dotted line), η ¼ 10−4 (green dashed line),
and η ¼ −10−6 (blue dotted line).

4Already also discussed in Ref. [19] is the unsatisfactory
behavior of η < 0 in other contexts and the possibility of its
discarding in case of repeating such an unrealistic physical result.
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comoving scale 8h−1 Mpc [65,66] and can be written
as [67]

σ8ðzÞ ¼
δðzÞ

δðz ¼ 0Þ σ8ðz ¼ 0Þ: ð35Þ

With this supposition5 that σ8ðz ¼ 0Þ ¼ 0.983 [66], we
release the redshift evolution of fðzÞσ8ðzÞ for different
values of η in Fig. 5. While in small redshifts (z < 1) the
EMSG model with a larger η predicts a larger value of the
cosmological growth rate, by going to large redshifts
the behavior of models turns the same. Indeed by adding
the quadratic contributions to gravity frommatter terms in the
EMSGmodel, we observe from Fig. 5 that in small redshifts
the growth rate function is larger than the ΛCDM model.
With the presence of EMSG model parameter η, we also see
that fσ8 reaches themaximum value at redshifts smaller than
ΛCDM. Namely, the large structures form in the EMSG
model later than the standard counterpart.

IV. NUMBER OF GALAXY CLUSTER
IN EMSG COSMOLOGY

In addition to the evolution of matter density contrast,
another quantity that we are interested in surveying in the
framework of EMSG cosmology is the number count
of collapsed objects. This section indeed studies the

distribution of the number density of collapsed objects
of a given mass range in the framework of EMSG
cosmology. The collapsed objects, which, in essence, are
the chief source of large-scale structure formation of the
Universe, are called DM halos. Besides, the baryonic
matter, due to gravitational attraction, follows the DM
distribution. In this way, tracing the distribution of DM
halos becomes possible by seeing the distribution of galaxy
clusters. To do so, i.e., the investigation of the number
distribution of the collapsed objects or the galaxy clusters
along the redshift commonly a semianalytic approach
known as the Press-Schechter formalism is employed [68].
From the view of the mathematical formulations of the halo
mass function, the matter density field usually should enjoy
the Gaussian distribution.
The comoving number density of the gravitationally

collapsed objects (equivalent to galaxy clusters) at a certain
redshift z having mass from M to M þ dM is given by the
following analytical formula [69]:

dnðM; zÞ
dM

¼ −
ρm;0

M
d ln σðM; zÞ

dM
fðσðM; zÞÞ; ð36Þ

where ρm;0, σðM; zÞ, and fðσÞ, respectively, denote the
present matter mean density of the Universe, the rms of
density fluctuation in a sphere of radius r surrounding a
mass M, and the mathematical mass function proposed by
Press and Schechter [68], as follows:

fPSðσÞ ¼
ffiffiffi
2

π

r
δcðzÞ

σðM; zÞ exp
�
−

δ2cðzÞ
2σ2ðM; zÞ

�
: ð37Þ

FIG. 4. The evolution of the growth function for different
values of the EMSG model parameter η: η ¼ 0 (ΛCDM, black
long-dashed line), η ¼ 10−9 (red dash-dotted line), and η ¼ 10−8

(blue solid line).

FIG. 5. The behavior of fðzÞσ8ðzÞ for different values of the
EMSG model parameter η: η ¼ 0 (ΛCDM, black solid line),
η ¼ 10−8 (red dashed line), and η ¼ 10−6 (blue dash-dotted line).

5Throughout this manuscript the values of Hubble constant
H0 and the σ8 are fixed at the Planck-ΛCDM measurements
as H0 ¼ 67.66� 0.42 km s−1 Mpc−1 and σ8 ¼ 0.983� 0.0060
(CMBpower spectraþ CMB lensingþ BAO) [66].
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Subscript “PS” refers to Press and Schechter. Note that
δcðzÞ in the mass function above is the critical density
contrast above which structures collapse. By serving the
linearized growth factor DðzÞ ¼ δmðzÞ=δmðz ¼ 0Þ, as
well as the rms of density fluctuation at a fixed length
r8 ¼ 8h−1 Mpc, then σðM; zÞ is expressed as follows:

σðz;MÞ ¼ σð0;M8Þ
�
M
M8

�
−γ
3

DðzÞ; ð38Þ

where the index γ is reads as [70,71]

γ ¼ ð0.3Ωm;0hþ 0.2Þ
�
2.92þ 1

3
log

�
M
M8

��
; ð39Þ

and M8 ¼ 6 × 1014Ωð0Þ
M h−1M⊙ is the mass inside a sphere

of radius r8 (M⊙ is the solar mass) [72].
We first in Fig. 6 display the redshift evolution of

mass function [dn=dMð1=Mpc3Þ] of objects with mass
1013h−1M⊙ for different values of EMSG model parameter
η. It is important since this is one of the quantities involved
in the number of DM halos. Figure 6 explicitly shows that
the presence of the η causes the growth of the mass function
to start around redshift less than the ΛCDM model; i.e., the
halo abundance is formed later. Namely, as the parameter η
becomes larger, the halo abundance grows rapidly at lower
redshifts.
Finally, to survey the number of DM halos in EMSG

cosmology, we employ the effective number of collapsed
objects between a given range of mass binMinf<M<Msup
per unit of redshift:

N bin ≡ dN
dz

¼
Z
4π
dΩ

Z
Msup

Minf

dn
dM

dV
dzdΩ

dM; ð40Þ

where dV
dzdΩ is the comoving volume element and is

defined as

dVðzÞ
dzdΩ

¼ r2ðzÞ
HðzÞ ; rðzÞ ¼

Z
z

0

H−1ðxÞdx: ð41Þ

Here rðzÞ denotes the comoving distance. We depict the
redshift evolution of the comoving volume element
[dV=dzdΩðMpc3Þ] with various values of the EMSG

FIG. 6. The evolution of mass function for objects with mass
M ¼ 1013ðh−1M⊙Þ and different values of the EMSG model
parameter η: η ¼ 0 (ΛCDM, black solid line), η ¼ 10−5 (red
dash-dotted line), and η ¼ 10−3 (blue dashed line). In general, for
objects with the mass range 1013–1016h−1M⊙, we are faced with
this same qualitative behavior.

FIG. 7. The behavior of the comoving volume element with
different values of the EMSG model parameter η: η ¼ 0 (ΛCDM,
black solid curve), η ¼ 10−5 (green dashed curve), η ¼ 10−4

(blue dotted curve), and η ¼ 10−3 (red dash-dotted curve).

FIG. 8. The evolution of cluster number count with redshift
from the ΛCDM (solid curves), and EMSG with η ¼ 10−5

(dashed curves), for objects with mass within the range:
1012<M=ðh−1M⊙Þ<1013 (black), 1013<M=ðh−1M⊙Þ<1014

(blue), and 1014 < M=ðh−1M ⊙Þ < 1015 (red).
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model parameter η in Fig. 7. As we see, the comoving
volume element becomes smaller in the presence of the η
parameter. It is worth noting that the comoving volume
element just depends on the cosmological background and
the growth factor of the perturbationDðzÞ does not affect it.
By setting a certain value for EMSG model parameter η, as
well as taking ΛCDM into account, for various mass bins
½Minf ;Msup� from 1012h−1M⊙ to 1015h−1M⊙, we display in
Fig. 8 the behavior of N bin − z (the number count in mass
bins). It has two clear messages. First of all, the cluster
number count in the presence of the EMSG model
parameter is less than its standard counterpart. Second,
the more massive structures are less abundant and form at
later times which is in agreement with what we expect from
the hierarchical model of structure formation.

V. CONCLUSION

It is well known that utilizing the SC formalism of
matter’s overdensity is a suitable method to study the
effects of “modified gravity” on the large-scale structure of
the Universe. In the present work, by serving SC formal-
ism, we have studied the linear evolution of matter’s
overdensity in the cosmology framework arising from
EMSG, which affects the behavior of standard ΛCDM
in the early Universe due to inducing quadratic contribu-
tions from matter to gravity. These corrections affect the
expansion history of the Universe, too. In practical phe-
nomenological terms, one may imagine it as a potential
extension of the ΛCDM model of cosmology. More
precisely, using Friedmann dynamics equations (in the
presence of a cosmological constant) modified with terms
containing EMSG model parameter η, and by taking
into account these new effects on the growth of
perturbations, we have investigated the structure formation
beyond ΛCDM.
It is well known from standard cosmology that the

Universe in the past around a redshift ztr has been switched

from a decelerated phase to an accelerated phase, and it
continues today. We found that the presence of η terms in
dynamics of EMSG cosmology affects the value of ztr so
that it increases (decreases) with η > 0 (η < 0) meaning
that our Universe experiences this phase transition sooner
(later) than ΛCDM. Our evaluation of the evolution of the
matter density contrast for different values of η ruled out
case η < 0 and showed that the matter density contrast
grows up faster than the ΛCDM profile. It is, in essence,
due to nonlinear matter extensions appearing in the
dynamics of EMSG cosmology. The growth function
increases in the presence of the EMSG model parameter
η, too. In this regard, we have investigated fσ8 for EMSG
cosmology and found that, in the presence of η parameter,
fσ8 reaches the maximum value at smaller redshifts.
Namely, the large-scale structures in the framework of
EMSG cosmology form later compared to ΛCDM.
The modifications caused by EMSG cosmology affect

the number of DM halos so that the presence of η makes
halo abundances smaller than ΛCDM. In other words, for
larger η, the mass function starts to grow in smaller
redshifts, meaning that the halo abundance is formed later
relative toΛCDM. The comoving volume element becomes
smaller in EMSG cosmology, too. In addition, in light of
analyzing the number counts in mass bins for the cosmol-
ogy model at hand, two results were obtained. First, the
number of galaxy clusters in EMSG is less than the ΛCDM
model. Second, we found that in EMSG more massive
structures are less abundant and form at later times,
as expected from the hierarchical model of structure
formation.
The present study shows that the evolution of linear

perturbation reacts to the EMSG model parameter and it
leaves distinguishable imprints from ΛCDM. For this
reason, the outputs of such studies would be helpful to
constrain the models based on future observations like type
Ia supernovas and baryon acoustic oscillations, etc.
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