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Measurements of the H0 and σ8 parameters within the standard cosmological model recently highlighted
significant statistical tensions between the cosmic microwave background and low-redshift probes, such as
local distance ladder, weak lensing, and galaxy clustering surveys. In this work, we frame geometrical
distances in a model-independent way by means of cosmographic approximations in the range z ∈ ð0; 2.3Þ to
take into account a robust dataset composed of baryon acoustic oscillations (BAOs), type Ia supernovae (SN),
cosmic chronometer (CC) data, and measurements from redshift space distortions (RSDs). From the joint
analysis BAOþ SNþ CCþ RSD, we find an accuracy of ∼1.4% and ∼3.7% on H0 and σ8, respectively.
Our result for H0 is at 2σ tension with local measurements by the SH0ES team, while our σ8 estimate is at
2.6σ tension with Planck-CMB analysis. This inference shows a tension statistically smaller when compared
to those estimated via the Lambda cold dark matter (ΛCDM) model. We also find that the jerk parameter can
deviate more than 3σ from the ΛCDM prediction. Under the same cosmographic setup, we also present
results by considering a SH0ES Gaussian prior on H0 that allows for improved accuracy of the parameter
space of the models. The present work brings observational constraints on H0 and σ8 into a new model-
independent perspective, which differs from the predictions obtained within the ΛCDM paradigm.

DOI: 10.1103/PhysRevD.108.023523

I. INTRODUCTION

Within the standard framework of general relativity, the
acceleration of the Universe observed today could be
attributed to dark energy under the form of the cosmological
constant (Λ), which drives the late-time cosmic evolution
and whose origins are traced back to early quantum
fluctuations of vacuum [1–6]. The flat Lambda cold dark
matter (ΛCDM) model is supported by robust observational
evidence promoting such a paradigm to be the standard
model of cosmology [7–9]. However, despite its success,
theoretical shortcomings related to the nature of Λ on the
one hand, and tensions among recent cosmological mea-
surements, on the other hand, challenge theΛCDM scenario
as the ultimate model to describe the dynamics and
evolution of the Universe [10,11]. The fine-tuning issues
emerging from the huge discrepancy between the observed
dark energy density and the predictions of quantum field
theory plague the standard interpretation of Λ as the energy
density of vacuum [10,12–15]. Moreover, the latest findings
of the Planck Collaboration have confirmed, up to a high

accuracy level, that the most suitable scenario able to
explain the primordial inflationary era is provided by the
Starobinsky model [16], which contemplates corrections
with respect to Einstein’s gravity.
On the other hand, some tensions and anomalies became

recently significant when analyzing different datasets,
placing the ΛCDM cosmology at a crossroads. The most
discussed and statistically significant tension in the literature
concerns the estimate of the Hubble constant H0 from the
cosmic microwave background (CMB) and the direct local
distance ladder measurements. Assuming the ΛCDM sce-
nario, Planck-CMB data analysis provides H0 ¼ ð67.4�
0.5Þ km=s=Mpc [9], which is in ∼5σ tension with the local
measurement H0 ¼ ð73.30� 1.04Þ km=s=Mpc found by
the SH0ES team [17]. Additionally, many other late-time
measurements are in agreement with a higher Hubble
constant value [18,19]. Motivated by such discrepancies,
unlikely to disappear completely by introducing multiple
systematic errors, it has been widely discussed in the
literature whether new physics beyond the standard cos-
mological model can solve the H0 tension (see [11,20,21]
and references therein). Still, in the context of the ΛCDM
model, CMB measurements from Planck and ACTþ
WMAP indicate values of S8 ¼ 0.834� 0.016 [9] and
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S8 ¼ 0.840� 0.030 [22], respectively, where S8≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0=0.3

p
, being σ8 the amplitude of matter fluctuations

averaged on spheres of radius 8 Mpc=h, and Ωm0 the
matter density parameter today. These values of S8 are
typically higher than those obtained by weak lensing and
galaxy clustering measurements, which range between
0.703 and 0.782, showing a tension of ∼3σ among these
datasets.1 Although this tension might be due to systematic
errors [24], it is worthwhile to investigate the possibility of
new physics beyond the standard model to explain the S8
tension [25–28]. Moreover, a large tension between red-
shift space distortion (RSD) and CMB measurements has
been identified by [29]. Disagreements between CMB and
RSD measurements with other datasets, including the EG

statistic, are discussed in detail in [30], pointing out a
tension up to 5σ.
The need to further investigate the nature of cosmic

speedup appears therefore essential in order to cure the
aforementioned issues. At the same time, the degeneracy
among different paradigms proposed over the last years to
describe the dark energy behavior has motivated the devel-
opment of model-independent techniques that allow inves-
tigating the cosmic expansion without resorting to a priori
assumed cosmological setups [31–35]. Among these, of
remarkable interest is the cosmographic approach [36–41],
which relies only upon the cosmological principle and
involves series expansions of the luminosity distance around
the present time. Cosmography represents a powerful
method as it provides a set of observable quantities that
can be directly compared to data, and assures the independ-
ence of any postulated equation of state for dark energy.
Hence, the cosmographic method has been widely used with
the aim of breaking the degeneracy among different theo-
retical scenarios that behave in the same manner when
compared to observations [42–47]. Alternative robust meth-
ods to reconstruct the cosmological parameters in a model-
independent way include, e.g., Gaussian process [48–55],
principal component analysis [56–59], or machine learning
algorithms [60–62].
Nevertheless, the cosmographic technique is affected by

two main problems that may limit its use as an accurate
descriptor of cosmic expansion. The first is due to the need
for a wide number of data in order to be able to properly
distinguish between Λ and an evolving dark energy
component. This, indeed, is required for reducing the
uncertainties over the cosmographic coefficients. A second
issue is related to the use of high-redshift data, which is
needed to explore possible departures from the ΛCDM
model. However, this contrasts with the foundation of the
standard cosmographic technique, which is based on the
Taylor expansion series around the present time, namely,

z ¼ 0. The resulting convergence problems often lead to
significant error propagations that, consequently, lower the
predictive power of the method itself [63].
Over the years, several alternatives to the standard

cosmographic approach have been then investigated with
the purpose of overcoming the aforementioned drawbacks.
One possibility is to make use of auxiliary variables and
provide expansion series of cosmological observables in
terms of reparametrizations of the redshift that converge to a
finite value for z → ∞ [44,64–66]. Further methods involve
the use of rational polynomials to stabilize the behavior of
the cosmographic series at large z [67]. A relevant example
of the latter class is offered by the Padé approximations,
which have been recently employed to study the nature of
the cosmic acceleration in different theoretical contexts, due
to their ability to overcome typical convergence issues
proper of the Taylor series and significantly reduce uncer-
tainties on fitting coefficients [68–71].
The aim of the present work is to assess cosmological

tensions in the measurements of H0 and σ8 from a model-
independent perspective through cosmography. In par-
ticular, we adopt the y-redshift parametrization proposed
by [64] and the (2,1) Padé approximation motivated by
previous results obtained by [72]. We describe the main
features of the cosmographic technique based on these
parametrizations in Sec. II. In Sec. III, we present the
methodology and the datasets employed to analyze the H0

and σ8 tensions. Then, in Sec. IV, we provide the main
results of this work and discuss possible implications in
view of the state of the art of the aforementioned tensions.
Finally, Sec. V is dedicated to the summary of our findings
and conclusive remarks. In this paper, we use natural
units, c ¼ ℏ ¼ 1.

II. THE COSMOGRAPHIC APPROACH

The global evolution of the Universe can be studied by
requiring the validity of the cosmological principle, accord-
ing to which the Universe is assumed to be isotropic and
homogeneous on the largest scales. Such a principle is
supported by an overwhelming number of observations and
formally leads to the Friedmann-Robertson-Walker metric:

ds2 ¼ dt2 − aðtÞ2½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð1Þ

where a vanishing spatial curvature is assumed, as suggested
by observations [9]. Here, aðtÞ is the cosmic scale factor
normalized such that aðt0Þ ¼ 1, being t0 the present time.
Different from standard cosmological approaches based

on the solutions of the Friedmann equations, cosmography
allows for a kinematic study of the cosmic expansion that is
totally independent of the underlying dynamics governing
the Universe’s evolution. Thus, by means of the cosmo-
graphic method, one can infer the history of aðtÞ directly
from observations, de facto avoiding the use of Einstein’s
field equations [36].

1For a review and additional information on S8 estimations,
see [11,20,23] and references therein.
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The cosmographic method is based on the Taylor
expansion of the scale factor around the present time [73]

aðtÞ ¼ 1þH0ðt− t0Þ−
1

2
q0H2

0ðt− t0Þ2 þ
1

3!
j0H3

0ðt− t0Þ3

þ 1

4!
s0H4

0ðt− t0Þ4 þ
1

5!
l0H5

0ðt− t0Þ5 þOððt− t0Þ6Þ;
ð2Þ

where H0 is the Hubble constant and fq0; j0; s0; l0g are the
current values of the deceleration, jerk, snap, and lerk
parameters, respectively, defining the so-called cosmo-
graphic series [74]

HðtÞ≡ 1

a
da
dt

; qðtÞ≡−
1

aH2

d2a
dt2

; jðtÞ≡ 1

aH3

d3a
dt3

;

sðtÞ≡ 1

aH4

d4a
dt4

; lðtÞ≡ 1

aH5

d5a
dt5

: ð3Þ

The ability to discriminate among different dark energy
models should, in principle, increase when considering
higher-order terms. However, the lack of large and accurate
observational data at high redshifts somewhat restricts the
use of cosmographic coefficients up to the lerk parameter.
Moving to the redshift variable through the relation

a ¼ ð1þ zÞ−1, one can write the luminosity distance for a
flat universe as

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð4Þ

In view of the above definitions, the latter provides

dLðzÞ ¼ H−1
0

�
zþ 1

2
ð1 − q0Þz2 −

1

6
ð1 − q0 − 3q20 þ j0Þz3 þ

1

24
ð2 − 2q0 − 15q20 − 15q30 þ 5j0 þ 10q0j0 þ s0Þz4

þ
�
−

1

20
−
9j0
40

þ j20
12

−
l0
120

þ q0
20

−
11j0q0
12

þ 27q20
40

−
7j0q20
8

þ 11q30
8

þ 7q40
8

−
11s0
120

−
q0s0
8

�
z5
�
þOðz6Þ; ð5Þ

which can be used to describe the late-time evolutionary
stage of the Universe without any assumptions on the
cosmological model. Furthermore, by inverting Eq. (4), it
is possible to find the corresponding Hubble series.
Comparing Eq. (5) directly with observations provides

numerical bounds over the cosmographic parameters and,
thus, allows one to reconstruct the cosmic expansion
history up to a desired z. However, it is worth to remark
that truncating the cosmographic series at a given order
may cause biases in the numerical outcomes. If, on one
hand, taking into account only low-order expansions may
compromise the accuracy of the method, then, on the other
hand, considering higher orders induces decreasing con-
vergence. The latter issue occurs when data at z > 1 are
employed in the analysis, and is a consequence of the
short convergence radius of the Taylor series. In what
follows, we shall face this problem by considering two
different strategies aiming to extend the suitability of the
cosmographic technique up to high redshifts.

A. y redshift

The first possibility to overcome the convergence prob-
lem is to introduce auxiliary variables and reparametrize the
redshift via a function that well behaves for z > 1. These
new variables must possess some suitable properties, such
as exhibiting smooth features throughout cosmic history
thus avoiding any divergence within the domain, and being
one-to-one invertible with the original z variable.
A relevant example in this respect is provided by the so-

called y redshift introduced by [64]:

y ¼ z
1þ z

; ð6Þ

which allows encoding the cosmic evolution back to the big
bang into the finite range y ∈ ð0; 1Þ. Therefore, we expect
that the luminosity distance expressed as a Taylor series in
powers of y well behaves from the present time up to early
epochs, and the convergence radius to be jyj ¼ 1, implying
the convergence of the series for jyj < 1.
In terms of the variable y, up to the fifth order, we have

dLðyÞ ¼H−1
0

�
yþ 1

2
ð3− q0Þy2 þ

1

6
ð11− j0 − 5q0 þ 3q20Þy3 þ

1

24
ð50− 7j0 − 26q0 þ 10j0q0 þ 21q20 − 15q30 þ s0Þy4

þ 1

120
ð274− 47j0 þ 10j20 − l0 − 154q0 þ 90j0q0 þ 141q20 − 105j0q20 − 135q30 þ 105q40 þ 9s0 − 15q0s0Þy5

�
; ð7Þ
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while the Hubble parameter is given as

HðyÞ ¼ H0

�
1þ k1yþ

k2y2

2
þ k3y3

6
þ k4y4

24

�
; ð8Þ

where

k1 ¼ 1þ q0; ð9aÞ

k2 ¼ 2 − q20 þ 2q0 þ j0; ð9bÞ

k3 ¼ 6þ 3q30 − 3q20 þ 6q0 − 4q0j0 þ 3j0 − s0; ð9cÞ

k4 ¼ −15q40 þ 12q30 þ 25q20j0 þ 7q0s0 − 4j20 − 16q0j0

− 12q20 þ l0 − 4s0 þ 12j0 þ 24q0 þ 24: ð9dÞ

B. Padé parametrizations

The issue of stabilizing cosmographic expansions at high
z can be also addressed by making use of rational approx-
imations. These are constructed from the ratio between a
generic nth degree polynomial and an mth degree poly-
nomial, leading to ðn;mÞ-order polynomials that can be used
to approximate cosmic observables in terms of the cosmo-
graphic coefficients. The advantage of rational approxima-
tions relies on the fact that they can be calibrated by
choosing the most suitable order for maximizing the con-
vergence radius, thus allowing for a stable fitting procedure.
The good properties of rational polynomials are testified

by the case of Padé approximations, which have been shown
to overcome the high-redshift divergences plaguing the
cosmographic analysis based on Talyor polynomials [75].
The ðn;mÞ Padé approximation of a generic function fðzÞ is
given as [76]

Pn;mðzÞ ¼
P

n
i¼0aiz

i

1þP
m
j¼1bjz

j ; ð10Þ

where the sets of coefficients ai and bi can be found by
requiring the matching of the nþm derivatives of Pn;m

evaluated at the origin and the corresponding derivatives
obtained from the Taylor series of fðzÞ.
The matter of choosing the correct order of expansion is

related to the best compromise between minimizing the
number of free parameters and reducing error propagation
in numerical analyses dealing with data beyond z ≃ 1. This
issue has been recently addressed by [72], who performed a
detailed study based on optimization procedures and
mathematical considerations on the degeneracy among
coefficients, showing that the most suitable Padé approxi-
mation for cosmographic purposes is the one of order (2,1).
The latter is characterized by the following luminosity
distance:

dLðzÞ ¼
1

H0

�
6ð−1þ q0Þzþ ð−5− 2j0 þ q0ð8þ 3q0ÞÞz2

6ð−1þ q0Þ þ 2ð−1− j0 þ q0 þ 3q20Þz
�
:

ð11Þ

In this case, the Hubble parameter is given by

HðzÞ ¼ 2H0ðzþ 1Þ2ðj0z − 3q20z − q0ðzþ 3Þ þ zþ 3Þ2
p0 þ p1zþ p2z2

;

ð12Þ

where

p0 ¼ 18ð−1þ q0Þ2; ð13aÞ

p1 ¼ 6ð−1þ q0Þð−5 − 2j0 þ 8q0 þ 3q20Þ; ð13bÞ

p2 ¼ 14þ 7j0 þ 2j20 − 10ð4þ j0Þq0 þ ð17 − 9j0Þq20
þ 18q30 þ 9q40: ð13cÞ

Motivated by the aforementioned arguments, in Sec. IV
we shall take into account the y-redshift and (2,1) Padé
approximations to investigate the expansion history of the
Universe in a model-independent way so as to gain further
insights into the cosmological tensions.

III. DATASETS AND METHODOLOGY

In the following, we define the datasets that will be used
in our analysis.

(i) BAO: From the latest compilation of baryon acoustic
oscillation (BAO) distance and expansion rate mea-
surements from the SDSS Collaboration, we use 14
BAO measurements, viz., the isotropic BAO mea-
surements of DVðzÞ=rd [where DVðzÞ and rd are the
spherically averaged volume distance and sound
horizon at baryon drag, respectively] and anisotropic
BAO measurements of DMðzÞ=rd and DHðzÞ=rd
[where DMðzÞ and DHðzÞ ¼ c=HðzÞ are the comov-
ing angular diameter distance and the Hubble dis-
tance, respectively], as compiled in Table 3 of [77].
This measurement sample covers the range z ∈ [0.15,
2.33], where the line-of-sight comoving distance is
calculated by assuming the expansion rate of the
Universe given from the cosmographic expressions
(8) and (12).

(ii) SN: We also consider the type Ia supernovae (SN)
distance moduli measurements from the Pantheon
sample, consisting of 1048 SNeIa in the range
0.01 < z < 2.3 [78], used to constrain the normal-
ized expansion rate EðzÞ ¼ HðzÞ=H0 [79].

(iii) CC: Our analysis involves the cosmic chronometer
measurements of HðzÞ from the differential age
evolution of massive, early-time, passively evolving
galaxies acting as standard clocks [80]. In particular,
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we make use of 31 CC measurements of HðzÞ in the
range 0.07 < z < 1.965 compiled by [81–88].

(iv) SH0ES: A Gaussian prior on the Hubble constant as
measured by the SH0ES Collaboration [17] is taken
into account, i.e., H0 ¼ ð73.04� 1.04Þ km=s=Mpc.

(v) RSD: The key dataset we use to constrain the
parameter space σ8-H0 through cosmography is
the redshift space distortion measurements. These
represent a velocity-induced mapping from the real
to the redshift space due to line-of-sight peculiar
motions of objects, which introduce anisotropies in
their clustering patterns [89]. This effect depends on
the growth of structure, making RSD probes sensi-
tive to the following combination [90,91]:

fσ8ðaÞ≡ fðaÞσ8ðaÞ; ð14Þ
where fðaÞ≡ dδm=d lna, with δm being the linear
matter density contrast. Here, σ8ðaÞ≡σ8δmðaÞ=
δmð1Þ is the linear amplitude of matter fluctuations
averaged in spheres of radius 8h−1 Mpc, and σ8 its
present-day value. On subhorizon scales and in
the linear regime, the evolution equation for fðaÞ
is given by

dfðaÞ
d lna

þ fðaÞ2 þ
�
2þ 1

2

d lnHðaÞ2
d ln a

�
fðaÞ

−
3

2
ΩmðaÞ ¼ 0; ð15Þ

where ΩmðaÞ≡Ωm0a−3H2
0=HðaÞ2. Notice that fðaÞ

is dependent onHðaÞ and, thus, on the cosmographic
parameters. SinceΩm0 ¼ 0.31 is the mean value used
in obtaining almost all RSD measurements, without
loss of generality, we assume this value in our work,
when RSD data are used. Because of the cosmo-
graphic approximations, all the other datasets have no
dependence onΩm0, so it will not be possible to break
the degeneracy in the matter density when they are
combined with RSD data. We checked that by letting
Ωm0 free, this parameter becomes unconstrained
without affecting the best-fit values of the cosmo-
graphic baseline parameters.
Several measurements of fσ8ðaÞ from a variety

of different surveys, based on different assumptions
(in particular, on the reference value of Ωm0) and

subject to different systematics, exist in the liter-
ature. Before using any of them, it is imperative to
assess their internal consistency. Such an analysis
has been recently performed by [92] in the context
of a Bayesian model comparison framework. There,
it was possible to identify potential outliers as well
as subsets of data affected by systematics or new
physics. In this work, we shall make use of the RSD
measurements of fσ8ðzÞ provided in Table I by [92],
consisting of 22 measurements of fσ8ðzÞ in the
redshift range 0.02 < z < 1.944.

A. MCMC

We use the Markov chain Monte Carlo (MCMC) method
to analyze the parameter set θi ¼ fH0; q0; j0; l0; s0; σ8g,
building the posterior probability distribution function

PðDjθÞ ∝ e−
χ2

2 ; ð16Þ

where χ2 is the chi-squared function associated with each
dataset. The goal of any MCMC approach is to draw N
samples θi from the general posterior probability density

Pðθi; αjDÞ ¼ 1

Z
Pðθ; αÞPðDjθ; αÞ; ð17Þ

where Pðθ; αÞ and PðDjθ;αÞ are the prior distribution and
the likelihood function, respectively. Here, D refers to the
dataset, α accounts for possible nuisance parameters, and Z
is a normalization term.
We perform our statistical analysis by means of the EMCEE

algorithm [93], assuming the theoretical setups described in
Sec. II and the following flat priors: H0 ∈ ½10; 90�,
q0∈ ½−2;0�, j0∈ ½−10;10�, s0 ∈ ½−100; 100�, l0 ∈ ½−100;
100�, and σ8∈ ½0.5;1.5�. We discard the first 20% steps of
the chain as burn-in. We measure the convergence of the
chains by checking that all parameters have R − 1 < 0.01,
where R is the potential scale reduction factor of the
Gelman-Rubin diagnostics [94]. The output from the chains
is analyzed through the package ChainConsumer [95].
Under the cosmographic approach, each analysis

involves at least three free parameters. Thus, given the
dimension of the parameter space, we consider BAOþ
SNþ CC as our minimal baseline. We divided our analysis
into two steps:

TABLE I. 68% CL intervals on the cosmographic parameters within the y-redshift parametrization inferred from
different combinations of datasets. The H0 values are given in units of km=s=Mpc.

Datasets H0 q0 j0 s0 l0 σ8

BAO þ SNþ CC 69.21þ0.97
−1.05 −0.56þ0.20

−0.17 −0.4þ2.0−2.5 −12þ11
−18 > −30 …

BAO þ SNþ CCþ SH0ES 71.09þ0.74
−0.77 −0.69þ0.16

−0.18 0.4� 2.0 −8þ10
−15 > −30 …

BAO þ SNþ CCþ RSD 69.21þ0.91
−1.10 −0.54þ0.17

−0.20 −0.2þ1.8−2.3 −7.7þ6.3−19.7 > −28 0.737þ0.029
−0.027

BAO þ SNþ CCþ RSDþ SH0ES 71.02þ0.88
−0.67 −0.70þ0.12

−0.21 0.8� 1.8 −1.9þ3.1−18.4 > −30 0.725þ0.026
−0.029
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(i) First, we analyze the BAOþ SNþ CC case. Then,
we include SH0ES prior, i.e., BAOþ SNþ CCþ
SH0ES.

(ii) Second, we add the RSD measurements to the
minimal baseline, i.e., BAOþ SNþ CCþ RSD.
Then, we also analyze the BAOþ SNþ CCþ
RSDþ SH0ES combination.

The above joint analyses provide us with an overview of
the observational constraints on the free parameters of both
models under study in this work. In what follows, we
present our main results.

IV. RESULTS AND DISCUSSION

Let us start by discussing the results emerging from the
perspective of the y-redshift cosmography. We summarize
in Table I our results at the 68% confidence level (CL).

We note that the first parameters of the cosmographic
series, namely, H0, q0, and j0, are well constrained. The
model-independent estimate of the Hubble constant is
H0 ¼ 69.21þ0.97

−1.05 km=s=Mpc, with 1.4% accuracy. This
result is competitive with other current estimates per-
formed by assuming the ΛCDM cosmology [96–99].
Also, the deceleration parameter is robustly constrained
to q0 ¼ −0.56þ0.20

−0.17 , suggesting the current accelerated
expansion of the Universe at high statistical significance
evidence. When the SH0ES prior is taken into account, the
constraints over the Hubble constant are further improved:
H0 ¼ 71.09þ0.74

−0.77 km=s=Mpc, with 1% accuracy.
In Fig. 1, we show the 68% CL and 95% CL contour

regions for the cosmographic series obtained from the joint
BAOþ SNþ CC and BAOþ SNþ CCþ SH0ES analy-
ses. It is important to emphasize that adding the SH0ES

FIG. 1. Two-dimensional marginalized confidence regions (68% and 95% CL) and one-dimensional posterior distribution for the
cosmographic coefficients obtained from the joint BAOþ SNþ CC and BAOþ SNþ CCþ SH0ES analyses for the y-redshift
parametrization. The H0 values are expressed in units of km=s=Mpc.

TABLE II. 68% CL intervals on the cosmographic parameters within the (2,1) Padé approximation inferred from
different combinations of datasets. The H0 values are given in units of km=s=Mpc.

Datasets H0 q0 j0 σ8

BAO þ CC 66.5þ2.0
−1.9 −0.38þ0.16

−0.21 0.59þ0.93
−0.53 …

BAO þ SNþ CC 69.11þ1.06
−0.98 −0.663þ0.088

−0.095 2.06þ0.60
−0.51 …

BAO þ SNþ CCþ SH0ES 71.06þ0.81
−0.71 −0.803þ0.079

−0.084 2.88þ0.63
−0.56 …

BAO þ SNþ CCþ RSD 69.2� 1.0 −0.663þ0.086
−0.094 2.05þ0.59

−0.49 0.740þ0.027
−0.029

BAO þ SNþ CCþ RSDþ SH0ES 71.09þ0.73
−0.75 −0.797þ0.077

−0.084 2.84þ0.61
−0.54 0.724þ0.028

−0.026
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prior produces an increase of H0, which, in turn, affects the
other cosmographic parameters.
Now, we shall discuss the main results related to the (2,1)

Padé parametrization summarized in Table II. With regard
to accuracy and observational limits on the parameters H0

and q0, we do not notice any significant differences with
respect to the y-redshift case. In short, we find 1.4% and 1%
accuracy constraints on H0 from the joint BAOþ SNþ
CC and BAOþ SNþ CCþ SH0ES analyses, respec-
tively. These measurements show, respectively, 2σ and
1.4σ tensions with the estimates of H0 provided by
the SH0ES team. From the perspectives of both Padé
and y-redshift parametrizations, the constraints onH0 are in
accordance with BAO, BBN, and CMB obtained in the
standard cosmological context [96–99].
Figure 2 shows the 68% and 95% CL contour regions

resulting from the three joint analyses, namely, BAOþ CC,
BAOþ SNþ CC, and BAOþ SNþ CCþ SH0ES. In
particular, the latter provides j0 values that are more than
3σ away from the ΛCDM prediction, i.e., j0 ¼ 1. However,
from the BAOþ CC analysis, we find j0 ¼ 0.59þ0.93

−0.53 ,
which is compatible with ΛCDM at 1σ. Thus, under the
(2,1) Padé approximation, when considering the SN sam-
ple, the constraints on j0 are not compatible with the
standard model. Our result is consistent with the findings
of [100] who, starting from another methodology and
dataset, conclude that SN and HðzÞ data are incompatible
with the ΛCDM model at 2σ CL, and also with each other.
Furthermore, using the Gaussian process, [101] finds that
the jerk parameter is more than 3σ away from that of Λ

cosmology. Therefore, it seems that, from a model-inde-
pendent point of view, ΛCDM may be incompatible with
the jerk parameter in light of SN data. Similar conclusions
are reported by [72,102].
As a guideline, we can compare our findings with the

predictions of the flat ΛCDM model. Specifically, assum-
ing the concordance value Ωm0 ¼ 0.3, one obtains the
following values for the cosmographic parameters:
ðq0; j0; s0; l0Þ ¼ ð−0.55; 1;−0.35; 3.115Þ.2 Thus, from
the perspective of the y-redshift parametrization, our
constraints on j0 are compatible with the ΛCDM predic-
tions. The high-order cosmographic parameters, namely, s0
and l0, although poorly constrained, are also fully com-
patible with the ΛCDM cosmology.
On the left panel of Fig. 4, we show the statistical

reconstruction at the 1σ CL of the Hubble parameter for
the (2,1) Padé model from the BAOþ SNþ CCþ RSD
analysis. The latter has been considered due to the fact
that it is free of the SH0ES H0 prior. Then, we can
compare our results with the ΛCDM predictions inferred
from some independent observations. In particular, we
anchor the ΛCDM dynamics to the 1σ values obtained
from the Planck-CMB data [9]. From a statistical point of
view, the Padé reconstruction includes the ΛCDM model
as a subset. The error bars for the Padé parametrization
appear larger due to the presence of extra free degrees of
freedom that are not robustly constrained when compared

FIG. 2. Two-dimensional marginalized confidence regions (68% and 95% CL) and one-dimensional posterior distribution for the
cosmographic coefficients obtained from the BAOþ SNþ CC and BAO þ SNþ CCþ SH0ES joint analyses for the y-redshift (2,1)
Padé parametrization. The H0 values are expressed in units of km=s=Mpc.

2It is worth noting that j0 ¼ 1 is a theoretical prediction, being
independent of any cosmological parameter (see the Appendix).
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to a model-dependent analysis based on the ΛCDM
paradigm. Anyway, the cosmic expansion rate given by
the Padé parametrization is compatible with ΛCDM for
the entire redshift range considered here. On the other
hand, we do not show the 1σ reconstruction for the
y-redshift model as this is very degenerate. Such a
behavior is indeed expected as the high-order cosmo-
graphic terms are not properly constrained due to less
accurate and few measurements at high redshifts [39,72].
Moreover, it is interesting to estimate the relative devia-
tions with respect to the ΛCDM model. This can be done
through the quantity

ΔH ≡ Hi

HΛCDM
− 1; ð18Þ

where the index i labels the y-redshift and the (2,1) Padé
parametrizations. In this regard, in the right panel of
Fig. 4, we show the relative difference of the Hubble rate
for both cosmographic approaches with respect to the
Planck-ΛCDM baseline [9]. In this case, we assume the
best-fit values from the BAOþ CCþ SNþ RSD analy-
sis, while the lerk parameter is fixed to the reference value
expected in the ΛCDM context, to overcome the uncon-
strained result of the y-redshift parametrization. For the
(2,1) Padé parametrization, we find a discrepancy of ≲3%

with respect to ΛCDM over the whole redshift interval
under consideration. This discrepancy increases up to
∼10% in the case of the y-redshift parametrization.
It is possible to quantify the level of tension between two

estimates i and j of H0 by means of the simple 1D tension
metric, which can be constructed as

FIG. 3. 68% and 95% CL contours in the σ8 −H0 parameter space obtained from the dataset combinations BAOþ SNþ CCþ RSD
and BAOþ SNþ CCþ RSDþ SH0ES, for the y-redshift (left panel) and (2,1) Padé parametrizations (right panel).

0.0 0.5 1.0 1.5 2.0 2.5
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FIG. 4. Comparison between the results of our BAOþ SNþ CCþ RSD joint analysis of the cosmographic parametrizations and
those of the ΛCDM model from Planck [9]. Left panel: 1σ reconstruction of the Hubble rate for the (2,1) Padé parametrization and the
ΛCDM model. Right panel: relative difference of the Hubble rate from the best-fit values of the y-redshift and (2,1) Padé
parametrizations, with respect to the best-fit values predicted by the ΛCDM model.
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TH0
≡ jH0;i −H0;jjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2H0;i
þ σ2H0;j

q ð19Þ

measured in equivalent Gaussian standard deviations. In
particular, we find that the results from the BAOþ SNþ
CC and BAOþ SNþ CCþ SH0ES combinations are in
1.9σ and 1.3σ tensions, respectively, with the local meas-
urement by the SH0ES team.
Let us now turn our attention to the implications of

the cosmographic frameworks under consideration on the
parameter σ8. In particular, the inclusion of the RSD
sample in our dataset combination allows us to obtain
direct constraints on σ8. In the context of the y-redshift
parametrization, from the joint BAOþ SNþ CCþ RSD
and BAOþ SNþ CCþ RSDþ SH0ES analyses, we
find σ8 ¼ 0.737þ0.029

−0.027 and σ8 ¼ 0.725þ0.026
−0.029 , respectively

(cf. Table I). Applying the 1D tension metric (19) to the σ8
parameter, we note that these estimates are, respectively, at
2.6σ and 3σ tensions with Planck-CMB data inferred from
the ΛCDM cosmology [9]. Our constraints are, however,
in agreement with those from weak lensing surveys
DES [103], KiDS [104,105], and galaxy clustering mea-
surements [106,107].
Very similar results are found when using the (2,1)

Padé parametrization. We can see this in Fig. 3, which
shows the σ8-H0 parameter space, together with the
corresponding 68% CL and 95% CL contours obtained
from the combinations BAOþ SNþ CCþ RSD and
BAOþ SNþ CCþ RSDþ SH0ES for both cosmo-
graphic approaches. Therefore, we can conclude that the
amplitude of matter fluctuations analyzed through cosmo-
graphic expansion at late times shows a significant tension
with CMB measurements. Finally, we note that the effects
of RSD data provide an improvement in the accuracy of the
j0 parameter, whose constraints are, in any case, much
more stringent for the (2,1) Padé approximation compared
to the y-redshift parametrization.

V. FINAL REMARKS

In this work, we showed how model-independent
approaches may reveal a promising tool for investigating
tensions among cosmological parameters when inferred
from different datasets. For our purposes, we specifically
considered the cosmographic technique based on a series
expansion of a cosmological observable around z ¼ 0, and
describing the late-time evolution of the Universe through a
set of kinematic parameters to be constrained directly
by data.
In particular, motivated by suitable properties able to heal

the convergence problems typical of standard cosmography,
we considered the improved y-redshift and Padé para-
metrizations of the Hubble expansion rate to accurately
describe the dynamics of the Universe independent of
cosmological model choices. Under these theoretical

frameworks, we chose a robust data sample consisting of
recent BAO, SN, CC, and RSDmeasurements in the redshift
range z ∈ ð0; 2.3Þ to explore possible inconsistencies with
the ΛCDM model predictions.
We thus performed an MCMC numerical analysis on the

combination BAOþ SNþ CCþ RSD, obtaining H0 and
σ8 estimates with an accuracy of ∼1.4% and ∼3.7%,
respectively. It is worth stressing that our model-independent
constraints are competitive with those inferred by assuming
specific cosmological backgrounds. Without including the
SH0ES prior on H0, our measurements are at 2σ tension
with the local measurements, which represents a significant
reduction compared to the Planck-CMB estimate assuming
the ΛCDM model. On the other hand, our measurements on
σ8 are at 2.6σ tension with the Planck-ΛCDM cosmology.
Furthermore, we found that the jerk parameter can

deviate >3σ from the prediction of the ΛCDM model.
Since different dark energy models predict different values
and behaviors for j0, a confirmation of our results by future
data, possibly through further improved cosmographic
modeling, may pose a new challenge and internal tension
within the standard cosmological model. Also, since
heterogeneous measurements have been combined to con-
strain H0 and σ8, it might be worth analyzing the impact of
different systematic errors and statistical weights on the
final results. We leave this subject for future work.
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APPENDIX: ΛCDM PREDICTION FOR THE
COSMOGRAPHIC PARAMETERS

In this appendix, we show the theoretical expressions of
the cosmographic parameters as expected for the flat
ΛCDM model, whose Hubble expansion rate at late times
is given by

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ 1 −Ωm0

q
: ðA1Þ

To do that, we start from the definitions (3) and convert
the time derivatives into derivatives with respect to the
redshift by means of the relation

dt ¼ −
dz

ð1þ zÞHðzÞ : ðA2Þ

In so doing, one finds the following expressions:
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qðzÞ ¼ −1þ ð1þ zÞH
0

H
; ðA3Þ

jðzÞ ¼ 1 − 2ð1þ zÞH
0

H
þ ð1þ zÞ2

�
H0

H

�
2

þ ð1þ zÞ2H
00

H
;

ðA4Þ

sðzÞ ¼ 1− 3ð1þ zÞH
0

H
þ 3ð1þ zÞ2

�
H0

H

�
2

− ð1þ zÞ3
�
H0

H

�
3

þð1þ zÞ2H
00

H
− ð1þ zÞ3H

ð3Þ

H
− 4ð1þ zÞ3H

0H00

H2
;

ðA5Þ

lðzÞ¼ 1−4ð1þ zÞH
0

H
þ6ð1þ zÞ2

�
H0

H

�
2

−4ð1þ zÞ3
�
H0

H

�
3

þð1þ zÞ4
�
H0

H

�
4

þ2ð1þ zÞ2H
00

H
þð1þ zÞ3H

ð3Þ

H

þð1þ zÞ4H
ð4Þ

H
− ð1þ zÞ3H

0H00

H2
þ7ð1þ zÞ4H

0Hð3Þ

H2

þ11ð1þ zÞ4H
02H00

H3
þ4ð1þ zÞ4

�
H00

H

�
2

: ðA6Þ

Thus, inserting Eq. (A1) into Eqs. (A3)–(A6), and
evaluating the results at z ¼ 0, we obtain

q0 ¼ −1þ 3

2
Ωm0; ðA7Þ

j0 ¼ 1; ðA8Þ

s0 ¼ 1 −
9

2
Ωm0; ðA9Þ

l0 ¼ 1þ 3Ωm0 þ
27

2
Ω2

m0: ðA10Þ

Notice that all the cosmographic parameters are indepen-
dent of the value of the Hubble constant. Moreover, j0 is
fixed to the unity in the ΛCDM scenario, regardless of the
Ωm0 value.
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