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Relativistic and free-streaming particles like neutrinos leave imprints in large scale structures (LSS),
providing probes of the effective number of neutrino species Neff . In this paper, we use the Fisher
formalism to forecast Neff constraints from the bispectrum (B) of LSS for current and future galaxy redshift
surveys, specifically using information from the baryon acoustic oscillations (BAOs). Modeling the galaxy
bispectrum at the tree-level, we find that adding the bispectrum constraints to current CMB constraints from
Planck can improve upon the Planck-only constraints on Neff by about 10%–40% depending on the survey.
Compared to the Planckþ power spectrum (P) constraints previously explored in the literature, using
Planckþ Pþ B provides a further improvement of about 5%–30%. Besides using BAO wiggles alone, we
also explore using the total information which includes both the wiggles and the broadband information
(which is subject to systematics challenges), generally yielding better results. Finally, we exploit the
interference feature of the BAOs in the bispectrum to select a subset of triangles with the most information
on Neff . This allows for the reduction of computational cost while keeping most of the information, as well
as for circumventing some of the shortcomings of applying directly to the bispectrum the current wiggle
extraction algorithm valid for the power spectrum. In sum, our study validates that the current Planck
constraint on Neff can be significantly improved with the aid of galaxy surveys before the next-generation
CMB experiments like CMB-Stage 4.

DOI: 10.1103/PhysRevD.108.023522

I. INTRODUCTION

Large scale structure (LSS) surveys have proved useful
in furthering our understanding of the Universe, con-
straining various cosmological parameters such as the
initial conditions, energy content and evolution of the
Universe. Current and future specstrocopic surveys such
as BOSS [1], eBOSS [2], DESI [3,4], Euclid [5], PFS [6],
SPHEREx [7], and Roman [8] are designed to measure the
distribution of galaxies in redshift space, which is espe-
cially well-suited for measuring properties of the baryon
acoustic oscillations (BAOs) [9–13].
The BAOs are imprints left behind by the propagation

of sound waves inside the photon-baryon plasma before
recombination. They induce a strong correlation of galaxies
separated by the sound horizon scale rs (∼100h−1Mpc),
while in the Fourier space, they show up as oscillatory
features with a frequency of roughly 2π=rs. This sound
horizon (also called BAO scale) is sensitive to various
cosmological parameters like the baryon and dark matter
densities, and can be used to constrain those parameters.
Moreover, in the precision cosmology era, it is possible to
not only extract information from the frequency of the

baryon acoustic oscillations in Fourier space, but also from
their amplitude envelope and phases. Studies have shown
that phases in the BAO of LSS were able to survive
nonlinear and local gravitational evolution [14], which
makes it a novel probe of physical phenomena that alter the
BAO phases.
One notable example of physics that induces phase shifts

in the BAO is the effective number of neutrino species Neff .
This parameter parametrizes the effect on the energy
density from any dark radiation relic after the big bang,
but whose fiducial value in the standard cosmology with
three neutrino species is predicted to be 3.046. For various
beyond standard model physics such as axions [15], light
sterile neutrinos [16] or dark photons [17], the predictions
for Neff would be different, so precision measurements of
Neff can provide evidence for either the Standard Model or
new physics.
Observationally, a positive deviation from the fiducial

value ΔNeff (either from neutrinos or other light par-
ticles) would result in a stronger damping envelope for
the BAO wiggles in Fourier space due to diffusion
damping [18], which arises from the photon diffusion
that erases the anisotropies at scales smaller than the
mean free path of photons. Due to neutrinos’ free-
streaming, it would also affect the dark matter clustering*yanlong@caltech.edu

PHYSICAL REVIEW D 108, 023522 (2023)

2470-0010=2023=108(2)=023522(22) 023522-1 © 2023 American Physical Society

https://orcid.org/0000-0002-0087-3237
https://orcid.org/0000-0003-0426-1948
https://orcid.org/0000-0001-7432-2932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023522&domain=pdf&date_stamp=2023-07-24
https://doi.org/10.1103/PhysRevD.108.023522
https://doi.org/10.1103/PhysRevD.108.023522
https://doi.org/10.1103/PhysRevD.108.023522
https://doi.org/10.1103/PhysRevD.108.023522


driving the oscillations in the plasma at early times,
resulting in a predictable phase shift [19]. Past studies
have used these effects to constrain Neff using either the
cosmic microwave background (CMB) [18,20] or the
galaxy power spectrum measurements [21,22].
Besides the power spectrum, the bispectrum, which is

the three-point correlation function of the density field
in Fourier space, often contains additional information
on the cosmological parameters (e.g., [23,24]). As the
bispectrum describes how densities at three different
scales are correlated, it is known to be a probe of the
primordial density field such as the primordial non-
Gaussianity, as well as the late-time nonlinear growth
of structures [25–27]. The BAO scale information is also
contained in the bispectrum measurement of spectrosopic
surveys and have been detected in the BOSS data using
the total bispectrum which includes both the broadband
and wiggle components [28] (as well as in the real-space
three-point correlations [29–31]).
Later in Ref. [32], the authors showed that one can also

extract the BAO wiggles from the bispectrum instead of
using the entire broadband plus wiggles information, using
the technique of “bispectrum interference.” The bispectrum
interference consists of the interplay of BAO wiggles
between different wave vectors in the bispectrum signal,
leading to constructive or destructive interferences which
are made explicitly manifest in a new parametrization of the
triangle configurations. In this new coordinates, it becomes
clear that the BAO information is rather concentrated to
some subsets of triangle configurations, which can be used
to reduce computational cost. More importantly, the inter-
ference is sensitive to amplitude and phase shift effects,
which makes it ideal for constraining Neff .
In this paper, we use the bispectrum interference tech-

nique, and apply it for the first time to study the constraints
on Neff using the BAO wiggles in the bispectrum. We also
investigate, for comparison, the constraints from using the
total bispectrum (broadbandþ wiggles). In both cases,
the bispectrum yields better constraints than the power
spectrum. Although as in the case of the power spectrum
study in Ref. [21], the current LSS bipectrum constraints
themselves are not as competitive as the current CMB
constraints, we find that when combined, the Planckþ LSS
results improve significantly upon the Planck-alone con-
straints. This can be useful for achieving a better Neff
constraints before CMB-Stage 4 (CMB-S4), which would
require a more futuristic LSS survey to be improved upon
(or possibly modeling to higher kmax than our fiducial
kmax ¼ 0.2hMpc−1 with the upcoming LSS surveys).
Finally we show that the bispectrum interference is helpful
in reducing computational costs by effectively reducing the
triangle configurations used.
The paper is structured as follows. In Sec. II, we

introduce the background on neutrino physics and their
effects on the matter power spectrum and the matter

bispectrum; we also review the technique of bispectrum
interference. In Sec. III, we describe the modeling of our
observables, namely the galaxy power spectrum and the
galaxy bispectrum. We present the Fisher matrix formalism
in Sec. IV used to obtain the forecast constraints. In Sec. V
we present the results, comparing the bispectrum to the
power spectrum constraints, as well as showing how one
can use the bispectrum interference to decrease the com-
putational cost. Finally, in Sec. VI we summarize and
discuss our conclusions.
Throughout the paper, we use the fiducial ΛCDM

cosmology based on Planck 2018 results with the data
TT; TE; EEþ lowEþ lensing [33] with the initial spec-
trum amplitude and tilt As¼2.207×10−9 and ns ¼ 0.9645,
the baryon and cold dark matter densities ωb ≡ Ωbh2 ¼
0.0223 and ωc ≡Ωch2 ¼ 0.1188, the sound horizon
angular extent at recombination θ⋆ ≡ rsðz⋆Þ=Dðz⋆Þ ¼
1.0411 × 10−2, and the reionization optical depth τ ¼
0.0544. The resulting fiducial value of the sound horizon
at recombination is rs ¼ 147.49 Mpc. Finally the fiducial
value of Neff used is 3.046. We use a helium fraction
Yp ¼ 0.239 that is consistent with BBN results.

II. BACKGROUND

In this section, we first briefly review the neutrino-
induced effects in the matter power spectrum, before
introducing the matter bispectrum and its corresponding
response to Neff . Then we review the technique of the
bispectrum interference developed in Ref. [32] and apply it
to the specific case of Neff .

A. Effects of Neff on the matter power spectrum

We now briefly review the neutrino-induced phase shifts
in the BAOs and describe the how we model these effects in
the matter power spectrum. For more details, we refer the
readers to Ref. [21].
At very early times (∼1 s after the big bang), when the

temperature of the Universe was high (≳3 MeV), neutrinos
were kept in equilibrium with the rest of the plasma; they
decoupled from the plasma when their interaction rate
decreased below the expansion rate of the Universe.
Around the same time, the annihilation of electrons and
positrons, and the entropy of these particles was mostly
transferred to photons. While this event increased the
photon temperature, it did not affect that of the neutrinos
as much. Assuming that neutrinos decoupled instantane-
ously, the neutrino’s temperature would have been lower
by a factor of Tν=Tγ ¼ ð4=11Þ1=3 relative to that of the
photons. The effective number of neutrino species Neff is
then defined from

ϵν ¼
ρν

ργ þ ρν
¼ Neff

αν þ Neff
; ð1Þ

YANLONG SHI, CHEN HEINRICH, and OLIVIER DORÉ PHYS. REV. D 108, 023522 (2023)
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which is the neutrino energy density relative to the total
radiation, and

αν ¼
8

7

�
11

4

�
4=3

: ð2Þ

In reality, the neutrino decoupling was not instantaneous;
taking this into account along with various QED correc-
tions, we have that Neff ¼ 3.046 (corresponding to
ϵν ¼ 0.405) in the Standard Model [34,35]. Because the
presence of any additional light particles that were rela-
tivistic at early times would simply add to the effective
number of neutrinos measured, detecting deviations from
Neff ¼ 3.046 could be hints of new physics beyond the
Standard Model.
Because the free-streaming particles like neutrinos alter

the BAO signatures observed in the CMB and in galaxy
surveys, BAOs can be used to probe Neff . These oscil-
lations originate from before recombination, when the
photons and baryons were tightly coupled in a photo-
baryon plasma (due to the Thomson scattering between
photons and free electrons and the Coulomb interactions
between electrons and protons). Acoustic oscillations
perturbations propagated inside this plasma at the sound
speed of cs ∼ c=

ffiffiffi
3

p
. When the Universe cooled enough to

form stable neutral hydrogen from protons and electrons
(at around T ∼ 0.3 eV, z ∼ 1100), the photons and baryons
became decoupled, and the acoustic oscillations froze.
This pattern of overdensities frozen in space gave rise to
the anisotropies observed in the CMB; they also seeded
dark matter perturbations by attracting dark matter, which
later caused a preferential formation of galaxies around
the sound horizon scale, which is observable in galaxy
surveys [12,13].
Since neutrinos had already decoupled from the photon-

baryon plasma, they free-streamed at nearly the speed of
light which is faster than the sound speed of the plasma at
the time of recombination. As a result, their perturbations
traveled ahead of the sound waves, altering the gravita-
tional potential perturbations, which is the driving force of
the acoustic oscillations [36]. This change left observa-
tional signatures that are reflected in both the amplitude and
the phases of the acoustic oscillations. The most remark-
able effect is a nearly-constant phase shift on small scales
proportional to the neutrino energy fraction ϵν [19–21].
More specifically, let the comoving matter density

contrast be defined as δðx⃗Þ ¼ ðρðx⃗Þ − ρ̄Þ=ρ̄ where ρ̄ is
the mean matter density in the Universe. The matter power
spectrum PmðkÞ is defined as the correlation of the density
contrast δðk⃗Þ in Fourier space:

hδðk⃗Þδðk⃗0Þi ¼ ð2πÞ3δDðk⃗þ k⃗0ÞPmðkÞ; ð3Þ

where the Dirac delta δD arises due to statistical homo-
geneity and isotropy.

We can decompose the linear matter power spectrum into
a smooth (non-wiggle) part Pnw

m ðkÞ and a wiggle part Pw
mðkÞ

which contains the BAO, and further define OðkÞ as the
ratio Pw

mðkÞ=Pnw
m ðkÞ such that

PmðkÞ ¼ Pnw
m ðkÞ½1þOðkÞ�: ð4Þ

To understand the effects of Neff on the matter power
spectrum, let us approximate the oscillatory part as
OðkÞ ¼ AðkÞ sinðrskþ ϕðkÞÞ [21,22], where AðkÞ is the
scale-dependent amplitude, rs is the sound horizon, and
ϕðkÞ is the phase shift term.
The most visible impact of Neff is on the damping

envelope of the oscillations AðkÞ as a result of diffusion
damping during recombination. The finite mean free path
of the Thompson scattering between electrons and photons
allows the photons to diffuse and erase anisotropies on
that scale. More specifically, the damping effect can be
described as an exponential term expð−k2=k2dÞ applied to
the undamped wiggles in the power spectrum, where kd is
the damping scale which is related to the number density ne
of the free electrons responsible for scattering the photons.
The strength of damping can be characterized with the
ratio rd=rs ∝

ffiffiffiffiffiffiffiffiffiffiffi
H=ne

p
, where rd ≡ 2π=kd. When aeq is

fixed, we have rd=rs ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½neð1 − ϵνÞ�

p
[18], which means

that the diffusion damping effect is stronger when Neff
increases [21]. Moreover, since ne ∝ 1 − Yp, there is a
degeneracy betweenNeff and Yp when constrained from the
diffusion damping effects alone; we expect therefore that
Neff constraints from BAO wiggles be degraded when Yp is
marginalized over [18,21].
Besides the damping envelope, another important effect

of Neff is on the scale-dependent phase shift ϕðkÞ. As
shown in Ref. [14], even though there is the nonlinear
evolution of the matter density field, the phase shift of BAO
in the power spectrum is still a robust probe of additional
species of light particles. If the phase shift effect is only due
to Neff , it could be used to relieve part of the degeneracy
between Neff and Yp mentioned above.
The authors of Ref. [21] found that the oscillations can

be well described as

OtempðkÞ ¼ Ofid

�
k
α
þ ðβ − 1Þ fðkÞ

rfids

�
; ð5Þ

whereOfidðkÞ is the oscillatory piece of the power spectrum
in the fiducial cosmology. Here α ¼ rfids =rs accounts for
the “stretching” or “compressing” the BAO oscillations in
Fourier space as the sound horizon may be different in the
given cosmology than that of the fiducial cosmology. The
additional phase shift due to the deviation from the fiducial
Nfid

eff is proportional to β − 1, where β≡ ϵν=ϵfidν is normal-
ized such that β ¼ 1 for Neff ¼ Nfid

eff. The function fðkÞ
describes the shape of the scale-dependent phase shift and
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can be approximated using the template derived from
simulations in Ref. [21]

fðkÞ ¼ ϕ∞

1þ ðk⋆=kÞξ
; ð6Þ

with ϕ∞ ¼ 0.227, k⋆ ¼ 0.0324hMpc−1, and ξ ¼ 0.872.
Later in Ref [22], the amplitude of the phase shift β was
successfully measured in the BOSS DR12 data (e.g., β ¼
2.22� 0.75 when marginalizing over the ΛCDMþ Neff ,
using a prior on α from Planck).

B. Effects of Neff on the matter bispectrum

The bispectrum is the three-point function of the density
contrast in Fourier space

hδðk⃗1Þδðk⃗2Þδðk⃗3Þi ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3ÞBmðk1; k2; k3Þ;
ð7Þ

where k⃗1, k⃗2 and k⃗3 form a closed triangle. In the standard
perturbation theory (SPT) [37], the tree-level contribution
to the matter bispectrum is

Bmðk⃗1; k⃗2; k⃗3Þ ¼ 2F2ðk⃗1; k⃗2ÞPmðk1ÞPmðk2Þ þ 2 cyc; ð8Þ

where

F2ðk⃗1; k⃗2Þ ¼
5

7
þ k̂i · k̂j

2

�
ki
kj

þ kj
ki

�
þ 2

7
ðk̂i · k̂jÞ2 ð9Þ

is the second-order density kernel in SPT, and Plin
m is the

linear matter power spectrum. The tree-level expression is
only valid in the linear regime for k≲ 0.2hMpc−1 at z ¼ 0
(see tests shown in Ref. [38]). At higher redshifts, the
linear regime extends to a higher k since there is less
nonlinearity, but we choose kmax ¼ 0.2hMpc−1 in our
conservative forecast.
In Fig. 1 top panel, we show the tree-level matter

bispectrum at z ¼ 0, calculated using the linear matter
power spectra from CAMB [39]. We order the triangle
configurations first by increasing k1, then by increasing k2,
and then by k3. To avoid double-counting, we only include
triangle configurations that satisfy k1 ≤ k2 ≤ k3. The gray
lines correspond to where k1 steps up and the orange dots,
where k2 steps up. The value of k3 increases from one
orange dot k3 ¼ k2 until kmax before coming back down at
the next orange dot. The green dots show increasing k3 for
fixed k1 ¼ k2.
In the lower panels, we examine the changes in the

different parts of the matter bispectrum corresponding to a
step ΔNeff ¼ 1 from its fiducial value. In this process, we
keep aeq fixed to break the degeneracy between Neff and
ωc. The second row shows the change in the total matter
bispectrum, which includes both the broadband and the

BAO wiggles. The third row shows the changes in Bw
m, the

wiggle part of the bispectrum Bw
m ¼ Bm − Bnw

m relative to
the total bispectrum, where the non-wiggle bispectrum Bnw

m
is defined as in Eq. (8) but using the smooth part of the
matter power spectrum Pnw

m , so that

Bw
m ¼ 2F2ðk⃗1; k⃗2ÞPnw

m ðk1;Nfid
effÞPnw

m ðk2;Nfid
effÞ

× ½Oðk1;NeffÞþOðk2;NeffÞþOðk1;NeffÞOðk2;NeffÞ�
þ 2 cycperm: ð10Þ

Finally, the last row of Fig. 1 shows the change in the
phase shift part of the matter bispectrum Bϕ

m relative to the
total matter bispectrum, where

Bϕ
m ¼ 2F2ðk⃗1; k⃗2ÞPnw

m ðk1; βfidÞPnw
m ðk2; βfidÞ

× ½Otempðk1; βÞ þOtempðk2; βÞ
þOtempðk1; βÞOtempðk2; βÞ�
þ 2 cyc perm: ð11Þ

Here Pnw
m ðk; βfidÞ is obtained with the fiducial Neff , while

Otempðk; βÞ is the template defined in Eq. (5) with Ofid

fixed, so that varying βðNeffÞ in Bϕ
m represents only the

phase-shift effects induced by Neff while ignoring other
effects in the BAO wiggles as well as the broadband effects.
Comparing the three signals, we find that the total

fractional change ΔBm=Bm is always positive since Ωm
increases when we increase Neff but keep aeq fixed, which
means the amplitude of matter density fluctuations entering
the horizon during the matter-dominated era is larger. The
fractional changes in the BAO wiggles ΔBw

m=Bm and in the
BAO phase shifts ΔBϕ

m=Bm are oscillatory. The amplitude
of the deviations are also indicators of the information
contained: The change in the total bispectrum ΔBm=Bm
contains all the information one can extract from the matter
bispectrum, so it has the largest amplitude, up to a few
times that of the fractional changes illustrated in the third
row from wiggles alone.
The total signal is generally increasing with larger

triangle configuration index which corresponds to going
to larger k’s, since it is dominated by the effects of Neff on
the broadband matter power spectrum, while the ampli-
tude in the third row for the wiggle parts stay mostly stable
over the range of triangle configurations we consider, but
should damp out at high enough k (not shown here) as the
BAO wiggles become suppressed. Finally, the phase-
induced BAO deviation is an order of magnitude smaller
in its overall amplitude than the other two cases, so it is
expected to give much less stringent constraints on Neff .
We will study Neff constraints with the phase shift effect
alone in the appendix only for the purpose of literature
comparison.
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023522-4



C. Bispectrum interference

In this study we will extract information from the BAO
wiggles in the bispectrum in order to constrain Neff . As we
have seen in the previous subsection, the Neff signal in the
BAO part of the bispectrum oscillates around zero with
triangle configurations. Using the techniques of bispectrum
interference, first introduced in Ref. [32], we will identify
later in Sec. V C the subset of triangles that contribute the
most to the Neff constraint and show how it can increase
computational efficiency. We now briefly review the con-
cept of bispectrum interference and show its effects for
the Neff .
In Ref. [32], the authors proposed a new set of

coordinates ðk1; δ; θÞ (hereafter “Child18 coordinate”)
where

k2 ¼ k1 þ πδ=rs and cos θ ¼ k̂1 · k̂2: ð12Þ

The parameter δ now parametrizes the phase difference
between k1 and k2 in terms of the number of half periods

given an oscillation frequency of π=rs. The angle θ is
defined as the angle between k⃗1 and k⃗2 and is confined to
0 ≤ θ < π. See Fig. 2 for an example of configurations with
θ > π=2 and θ < π=2.
When k1; k2 ≪ k3, the first of the three permutations,

2F2ðk⃗1; k⃗2ÞPmðk1ÞPmðk2Þ dominates over the other cyclic
permutations due to the weighting by F2ðk⃗1; k⃗2Þ (see Fig. 2
of Ref. [32]). In this case, omitting the second and third
permutations, we can approximate the ratio Obis as

Obisðk1; δ; θÞ≡ Bwðk1; δ; θÞ
Bnwðk1; δ; θÞ

≈Oðk1Þ þOðk2Þ þOðO2Þ;

ð13Þ

where the second-order term in O is negligible since the
BAO wiggles are only a small fraction of the broadband
matter power spectrum with O ≪ 1. This prediction can be
verified explicitly by plotting Bw=Bnw in the Child18
coordinates ðk1; δ; θÞ [32].

FIG. 1. The matter bispectrum and the fractional changes of its various components, due to a step ΔNeff ¼ 1 from the fiducial
value (with aeq fixed for all the variations in the lower three panels). Top: matter bispectrum at redshift z ¼ 0. Upper middle:
fractional change in the total bispectrum including broadband and BAO wiggles effects [see Eq. (8)]. Lower middle: Fractional
change in the wiggle part of the matter bispectrum [see Eq. (10)]. This includes both the diffusion damping and the phase shift
effects. Bottom: Fractional change in the phase shift part of the BAO wiggles where the phase shift is modeled using the template
derived in Ref. [21] [see Eq. (11)]. The triangle configurations are ordered first by increasing k1 (steps corresponding to gray lines),
then k2 (corresponding to orange dots) and then k3. Each k is sampled linearly between 0.01hMpc−1 and 0.2hMpc−1 with a bin
size Δk ¼ 0.01hMpc−1 (yielding nk ¼ 20). We impose triangle conditions and count only the unique triangles by imposing the
order k1 ≤ k2 ≤ k3.
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In Fig. 3 we plot Bw=Bnw as a function of k1 for fixed δ
and θ to show the effect of bispectrum interference for
various values of Neff . It is clear how the wiggle part of the
bispectrum for the constructive triangle configuration
(δ ¼ 0) looks significantly different than that of the “destruc-
tive” configuration (δ ¼ 1). For our choice of θ ¼ π=4, we
have k1 ≤ k2 ≪ k3, so the permutations containing Pmðk3Þ
are further suppressed compared to the ðk1; k2Þ permutation,
and we have that Bw

m=Bnw
m ≈Oðk1Þ þOðk2Þ. Indeed, we

have verified that for the constructive interference in the top
panel for which k1 ¼ k2, the amplitude is approximately
twice that of Oðk1Þ.
In the destructive interference case with δ ¼ 1 in the

bottom panel, the cancellation is not perfect since there is a
decaying amplitude envelope and the oscillations are not
exactly with constant periods, but the amplitude is an order
of magnitude lower than that of the constructive interfer-
ence with the same θ. We show also that shiftingNeff by�1
around the fiducial value introduces phase shifts that are
small enough such that the definition of constructive and
destructive interference can still be used largely unaffected
using the fiducial rs.

III. MODELING

We have introduced the effects of Neff on the matter
power spectrum and bispectrum, and now we will describe
our modeling of the observables, the galaxy power spec-
trum and bispectrum.

A. Galaxy power spectrum

We observe the galaxies rather than the matter distribu-
tion in the Universe. We model the galaxies as a biased

tracer of the underlying matter distribution and account
for redshift space distortions (RSD), since we can only
measure the galaxy redshifts rather than their true distances.
We follow Ref. [21] in modeling the observed power

spectrum as:

Pgðk⃗Þ ¼
Z2
1ðμ0Þ
q3

Pnw
m ðk0Þð1þOðk0ÞDðk0; μ0ÞÞ þ 1

ng
; ð14Þ

where we omitted the redshift bin dependence. Let us now
walk through each effect considered.
(1) Redshift space distortions and galaxy bias

The linear redshift space distortion effects and the
galaxy bias are grouped into one kernel

Z1ðμÞ ¼ b1 þ fμ2; ð15Þ

where fðaÞ ¼ d lnD=d ln a is the linear growth rate,
and μ is the cosine of the angle between the line-of-
sight vector and the wave vector k⃗.

FIG. 3. Effects of different Neff on the wiggle part of the matter
bispectrum at redshift z ¼ 0 for triangle configurations with
constructive (top, δ ¼ 0) and destructive (bottom, δ ¼ 1) inter-
ference. We show Neff ¼ 2, 3 and 4 in blue, orange and green
lines respectively. The angle θ between k1 and k2 is fixed at
θ ¼ π=4. The matter bispectrum here is computed from the tree-
level expression using the linear power spectrum, fixing matter-
radiation equality aeq as done in Fig. 1, and further fixing the
sound horizon rs to better illustrate the phase shifts. No damping
effects on the wiggles from nonlinear structure formation was
included. Here the wiggles in the constructive configuration are
about an order of magnitude larger than those in the destructive
configuration. The two effects from Neff on the wiggles are
shown: More diffusion damping of the wiggles with k at larger
Neff , and higher phase shifts with higher Neff. The phase shifts are
small enough that our definition of constructive and destructive
interference is not affected.

FIG. 2. An illustration of the Child18 coordinates (k1, δ, θ)
(Eq. (12) for two triangle configurations. Top and bottom are
examples of a triangle with θ > π=2 and θ < π=2 respectively,
where θ is the angle between k⃗1 and k⃗2. As pointed out in
Ref. [32], this description of the triangle shape which is an
alternative to ðk1; k2; k3Þ can be used to determine whether BAO
wiggles are interfering constructively (δ is even) or destructively
(δ is odd) in the bispectrum.
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We model the galaxy bias to linear order using
the linear bias b1 as a function of redshift which we
assume to scale as 1=DðzÞ, as is appropriate for the
evolution of samples in which the galaxy number is
conserved:

b1ðzÞ ¼
Dð0Þ
DðzÞ b1ð0Þ: ð16Þ

(2) Nonlinear damping of BAO wiggles and its
reconstruction
Baryon acoustic oscillations OðkÞ are damped by

nonlinear structure formation, and we model the
damping as

Dðk; μÞ ¼ exp
h
−
1

2
ðk2μ2Σ2

k þ k2ð1 − μ2ÞΣ2⊥Þ
i
:

ð17Þ

Here Σk and Σ⊥ describe respectively the damping
scales for directions parallel and perpendicular to the
line-of-sight and they are redshift dependent:

Σ⊥ðzÞ ¼ 9.4r

�
σ8ðzÞ
0.9

�
h−1 Mpc;

ΣkðzÞ ¼ ½1þ fðzÞ�Σ⊥ðzÞ; ð18Þ

where σ8ðzÞ is the variance of the matter density
field within 8 h−1Mpc at redshift z. BAO
reconstruction techniques [40–44] are often used
to revert some of the damping effects due to non-
linear evolution, rendering sharper BAO features.
Here we model the reconstruction with a fraction r:
r ¼ 1 means no reconstruction, whereas r ¼ 0
means full reconstruction. In practice r is modeled
as a function of galaxy number density (following
Ref. [21] Eq. 3.13) and satisfy 0.5 ≤ r ≤ 1.

(3) Alcock-Paczynski effect
A reference cosmology needs to be assumed when

converting the observed galaxy redshifts to distan-
ces. As a result, in a given cosmology, the different
mapping from redshifts to distances results in a
different wave number k0, which is related to k in the
fiducial model as

k0ðk; μ; zÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

q2kðzÞ
þ 1 − μ2

q2⊥ðzÞ

s
; ð19Þ

μ0ðμ; zÞ ¼ μ

qkðzÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

q2kðzÞ
þ 1 − μ2

q2⊥ðzÞ

s
: ð20Þ

where

qkðzÞ ¼ DAðzÞ=Dref
A ðzÞ; ð21Þ

q⊥ðzÞ ¼ HrefðzÞ=HðzÞ: ð22Þ

Here, DA is the angular diameter distance and HðzÞ
the Hubble parameter. All the functions appearing
in Eq. (14) are evaluated at k0ðk; μÞ and μ0ðμÞ.
Furthermore, a volume factor multiplies the power
spectrum due to the different survey volume inferred
comoving volumes in the two cosmologies

q ¼ q1=3k q2=3⊥ : ð23Þ

We choose the reference cosmology to be the same
as our fiducial cosmology. We use h−1 Mpc as our
distance unit, thus in practice all the AP factors will
be adapted by multiplying with h=href .

(4) Systematics
To account for measurement systematics in the

broadband such as stellar contaminations, we add
extra terms that are polynomials of k to the non-
wiggle power spectrum, and marginalize over their
amplitudes [21]

Pnw
m ðkÞ → B̃ðkÞPnw

m þ ÃðkÞ; ð24Þ

where

ÃðkÞ ¼
X
n

ãnkn; B̃ðkÞ ¼
X
m

b̃mk2m: ð25Þ

In the fiducial case we have b̃0 ¼ 1, b̃m≠0 ¼ 0 and
ãn ¼ 0. Note that b̃0 is degenerate with the linear
galaxy bias b1, so we do not vary it in the Fisher
forecast.
For the BAO-only forecast, we use a similar

relation on the oscillations to account for systematics
such as those arising from the modeling uncertain-
ties in the nonlinear damping of the wiggles (we
assumed a particular model in Eq. (17) and (18) or
from the wiggle extraction algorithm

OðkÞ → B0ðkÞOðkÞ þ A0ðkÞ; ð26Þ

where A0ðkÞ and B0ðkÞ are defined similarly as in
Eq. (25).
Note that the choice of polynomials terms to

marginalize over can sometimes have a significant
impact on the result. We study and discuss this more
in detail in Sec. V B.

When calculating the covariance of the observed power
spectrum, we include the shot noise term 1=ng which arises
from the sampling of the underlying matter density field
with galaxies assuming a Poisson statistics. We assume a
constant galaxy density nig for the ith redshift bin with
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middle redshift zi; for the case of cosmic variance we
set 1=ng ¼ 0.

B. Galaxy bispectrum

To model the observed galaxy bispectrum in redshift
space, we follow Ref. [23] to include RSD, galaxy biases
and the nonlinear damping of BAOs, and use a new set of
polynomial terms to account for systematics. The tree-level
galaxy bispectrum is modeled as

Bgðk⃗1; k⃗2; k⃗3Þ ¼ 2
1

q6
Z2ðk⃗01; k⃗02ÞZ1ðk⃗01ÞZ1ðk⃗02Þ

× Pnw
m ðk01Þð1þOðk01ÞDðk01; μ01ÞÞ

× Pnw
m ðk02Þð1þOðk02ÞDðk02; μ02ÞÞ

þ 2 cyc perm: ð27Þ

Note that here each k⃗0i (i ¼ 1, 2, 3) is corrected from the
original k⃗i due to the Alcock-Paczynski effect. We also
defined μ0i ¼ k̂0 · ŝ and k0i ¼ jk⃗0ij. The correction follows
Eqs. (19) and (20), so k0i ¼ k0iðki; μi; zÞ and μ0i ¼ μ0iðμi; zÞ.
More specifically,

k0iðki; μi; zÞ ¼ ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i

q2kðzÞ
þ 1 − μ2i

q2⊥ðzÞ

s
; ð28Þ

μ0iðμi; zÞ ¼
μi

qkðzÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i

q2kðzÞ
þ 1 − μ2i

q2⊥ðzÞ

s
: ð29Þ

where the q factors are defined the same way as that in the
power spectrum for each redshift bin. As also suggested
in Eq. (27), in our codes we first convert each k⃗i into k⃗0i
before computing quantities like Z2, Pnw

m ,O, andD at these
wave vectors.
The redshift kernel Z2 encodes the RSD and the second-

order bias effects:

Z2ðk⃗i; k⃗jÞ ¼
b2
2
þ b1F2ðk⃗i; k⃗jÞ þ fμ2ijG2ðk⃗i; k⃗jÞ

þ fμijkij
2

�
μi
ki
Z1ðkjÞ þ

μj
kj

Z1ðkiÞ
�

þ bs2
2

S2ðk⃗i; k⃗jÞ; ð30Þ

where μi ¼ k⃗i · n̂, k⃗ij ¼ k⃗i þ k⃗j and μij ¼ k⃗ij · n̂, and
where G2 is the second-order kernel of velocity divergence
in SPT and S2 is the tidal tensor:

G2ðk⃗1; k⃗2Þ ¼
3

7
þ k̂i · k̂j

2

�
ki
kj

þ kj
ki

�
þ 4

7
ðk̂i · k̂jÞ2; ð31Þ

S2ðk⃗1; k⃗2Þ ¼ ðk̂1 · k̂2Þ2 −
1

3
: ð32Þ

The second-order bias b2 in the fiducial model is
calculated using the relation fit from simulations [45]

b2ðzÞ ¼ 0.412 − 2.143b1ðzÞ þ 0.929b21ðzÞ þ 0.008b31ðzÞ;
ð33Þ

and the fiducial tidal bias bs2 is modeled with [46]

bs2ðzÞ ¼
4

7
ð1 − b1ðzÞÞ: ð34Þ

Both are evaluated at the center of the redshift bin and
assumed to be constant within the bin.
Note that in addition to the linear galaxy bias in the power

spectrum, we also model the second-order bias contributions
to the bispectrum in order to account for all contributions
at tree-level. This is not consistent with the power spectrum
in the sense that we are not cutting the galaxy density at

the same order in δðnÞm in perturbation theory to model our
observables (say by including including one-loop terms in
the power spectrum induced by second-order terms in δg).
But in terms of modeling the lowest-order contributions as a
good approximation for each observable in the linear regime,
this is a reasonable choice.
Similarly to the power spectrum, the nonlinear damping

of BAOs is accounted for by multiplying the wiggle part
of matter power spectrum OðkÞ by a damping factor D
(Eq. (17). The AP effect is also included just as in the power
spectrum: Each wave vector k⃗i is mapped to k⃗0i following
Eq. (19) and there is a volume factor 1=q6 that is different
than in the power spectrum, where q was defined
in Eq. (23).
To mimic the effects of marginalizing over systematics

in the measurements of the broadband bispectrum, we
introduce a new set of polynomials Ã and B̃, different from
those used for the power spectrum, such that the galaxy
bispectrum becomes

Bgðk⃗1; k⃗2; k⃗3Þ → B̃ðk1; k2; k3ÞBgðk⃗1; k⃗2; k⃗3Þ þ Ãðk1; k2; k3Þ:
ð35Þ

They allow for different powers of k1, k2 and k3 and are
composed of terms proportional to kr1k

s
2k

t
3:

Ãðk1; k2; k3Þ ¼
X
n¼0

X
ðr;s;tÞ∈SðnÞ

ãrstn ðkr1ks2kt3 þ 2 cyc permÞ;

B̃ðk1; k2; k3Þ ¼
X
n¼1

X
ðr;s;tÞ∈SðnÞ

b̃rstn ðkr1ks2kt3 þ 2 cyc permÞ:

ð36Þ
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At each total power n ¼ rþ sþ t, we sum over all r, s and
t combinations in the set SðnÞ ¼ fðr; s; tÞjrþ sþ t ¼
n; r ≥ s ≥ tg. For example, Sð3Þ ¼ fð3; 0; 0Þ; ð2; 1; 0Þ;
ð1; 1; 1Þg. For each ðr; s; tÞ combination, all cyclic permu-
tations of the term are included and assumed to be
affected in the same way, being assigned to the same
coefficient ãrstn . This is purely for simplicity, as there could
be systematics terms that affect the different permutations
differently.
As suggested in Ref. [32], one can also extract the

BAO wiggles from the bispectrum using the interference
coordinates ðk1; δ; θÞ. Recall that Obisðk1; δ; θÞ from
Eq. (13) is the equivalent of the fractional BAO con-
tribution of the BAO wiggles in the bispectrum. It could
have additional terms than those shown in the right hand
side of Eq. (13) for a general triangle shape where the
two other cyclic permutations also contribute signifi-
cantly. We assume that an algorithm can be developed to
successfully extract Obisðk1; δ; θÞ for all configurations
(for a list of necessary problems to solve to reach this
assumption, see Appendix A.)
Working under this assumption that BAO wiggles can

be successfully extracted to match the theory Obis, we now
use a similar technique to marginalize over the modeling
uncertainties in the nonlinear damping term for the bispec-
trum measurement of BAO wiggles, as well as those that
possibly arise during the wiggle extraction procedure for
the bispectrum. Like in the case for the power spectrum, we
apply the polynomials Ã0ðk1Þ and B̃0ðk1Þ to the undamped
part of the oscillations:

Obisðk1; δ; θÞ → Dðk1; μ1Þ½B̃0ðk1ÞObisðk1; δ; θÞ þ Ã0ðk1Þ�;
ð37Þ

where Dðk1; μ1Þ accounts for the damping of wiggles at k1
due to the nonlinear evolution. Note that this is not an exact
treatment, since Obisðk1; δ; θÞ ≈Oðk1Þ þOðk1 þ δÞ to first
order in O if the first cyclic permutation in the tree-level
expression dominates, so the damping treatment applied
as a function of k1 (and but not k1 þ δ) here is only
approximate. Yet we expect that marginalizing over the
polynomials Ã0 and B̃0 would account for some of the
uncertainties in the damping treatment as in the power
spectrum case. The definition for Ã0ðkÞ and B̃0ðkÞ is just as
in the power spectrum case:

Ã0ðkÞ ¼
X
n

ã0nkn; B̃0ðkÞ ¼
X
m

b̃0mk2m: ð38Þ

In the rest of this paper, we will drop for simplicity the
tilde and prime symbols that are used to distinguish
between the an and bm coefficients of the various observ-
ables, but they should still be distinguishable through the
context.

IV. FISHER MATRIX SETUPS

In this section, we use the Fisher matrix formalism to
study the constraining power on Neff and other cosmo-
logical parameters from the power spectrum, bispectrum
and their combination.
Let us call the data vector d⃗ a series of data taken by the

observer. The data can be modeled given a set of theory
parameters p⃗ (which we call parameter vector) with a
likelihood function Lðd⃗jp⃗Þ. For unbiased estimation of the
parameter vectors from the data, denoted p̂, the variance
Varðp̂Þ is constrained by the Cramer-Rao inequality
Varðp̂iÞ ≥ ð−∂2 lnLðd⃗jp⃗Þ=∂p2

i Þ−1. In the limit where the
likelihood function is well-approximated by a Gaussian,
the Fisher matrix

Fij ¼ −
∂
2 lnLðd⃗jp⃗Þ
∂pi∂pj

¼ ∂d⃗
∂pi

C−1 ∂d⃗
∂pj

; ð39Þ

where Cab ¼ Covðda; dbÞ is the covariance matrix of the
data vector, gives the best possible constraint on the
parameter i: σpi

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
.

A. Power spectrum

Using the power spectrum as our data vector, and for a
single survey volume in which the galaxy number density
n̄g is constant, the Fisher matrix is given by [21,23]

Fij ¼
Z

1

−1

dμ
2

Z
kmax

kmin

dkk2

ð2πÞ2
∂ lnPgðk; μÞ

∂pi

∂ lnPgðk; μÞ
∂pj

Veff ;

ð40Þ

where

Veff ¼
�

n̄gPgðk; μÞ
n̄gPgðk; μÞ þ 1

�
2

V; ð41Þ

is the effective survey volume (which is smaller than the
real comoving volume V), and where we also assumed the
Gaussian covariance matrix.
In realistic surveys, one often measures the power

spectrum in multiple redshift bins. We will treat such cases
with the galaxy number density assumed to be constant
within each bin, but different from bin to bin. We also
assume that there is no correlation between galaxies of
different redshift bins, in which case the total Fisher matrix
is just the sum over that of all the redshift bins.
To evaluate the Fisher matrix, we need to compute the

derivatives of the galaxy power spectrum with respect to the
cosmological, bias and systematics parameters. We con-
sider two different ways of evaluating the derivatives and
call them loosely here the total and BAO wiggles, reflecting
where the information is drawn from. The authors of
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Ref. [21] also derived constraints on Neff from the phase
of the BAO wiggles (see also Ref. [22]); for the sake of
comparison with previous literature, we also include this
method in Appendix C along with its description and
constraints from the power spectrum and bispectrum. We
now detail the total and BAO wiggle measurements which
we focus on in the main text.

1. Total constraints

We start by considering the effect of the parameters pi on
the entire power spectrum including both the broadband
shape and the BAO wiggles. Our parameter vector is

p⃗ ¼ ðNeff ; θ⋆;ωb;ωc; As; ns; τ; Yp; b⃗1; an; bmÞ:

The first set of parameters are the cosmological parameters
that we label ΛCDMþ Yp þ Neff . We use CAMB [39] to
evaluate their derivatives numerically. To do so, we change
the fiducial value of each parameter one at a time by a step
size of �h:

∂Pg

∂pi
≈
½Pgðpi ¼ pfid

i þ hÞÞ − Pgðpi ¼ pfid
i − hÞ�

2h
: ð42Þ

Note that we did not fix θ⋆ or aeq here when varying Neff .
The second set of parameters are the galaxy biases.

We treat them as independent parameters from different
redshift bins. For example, if we have nz redshift bins
in a survey, then there are nz bias parameters in the
Fisher matrix.
Finally, for the polynomial coefficients an and bm

[defined in Eq. (24)] the derivatives are calculated analyti-
cally. The polynomial terms are also dependent on the
redshift bin, so there will also be nz coefficients to consider
for every n or m in an or bm. For our fiducial setup, we
choose bm≤1 following Ref. [21], amounting to nz poly-
nomial parameters in the Fisher matrix. Later in Sec. V we
will explore the effects of using a different set of poly-
nomial parameters on our results.
In realistic surveys, the broadband measurement is often

prone to systematics like stellar contaminations and those
in our modeling of the nonlinear evolution effects and
galaxy bias [47]. On the other hand, the scale and phase of
BAO wiggles are more robust to nonlinear evolution [48],
which can also be partly reversed by reconstruction
techniques [40–43]. For this reason, we will also consider
extracting information from only the BAO wiggles in the
next subsection.
For our fiducial forecast for the total power spectrum,

we set kmin ¼ 0.01hMpc−1 and kmax ¼ 0.2hMpc−1.

2. BAO wiggles

We now consider using the information from BAO
wiggles alone. Here we take the data vector as the wiggle

part of the power spectrum, so that the derivatives are
computed as follows, keeping only terms with Pnw

g fixed at
the fiducial cosmology while calculating the derivatives
∂Oðkjp⃗Þ=∂pi numerically:

∂Pw
g

∂pi
¼ Pnw

g ðk; μÞDðk; μÞ ∂Oðkjp⃗Þ
∂pi

: ð43Þ

To do so, we need to calculate the matter power spectrum
with different cosmological parameters, and separate
smooth and oscillatory parts. We follow Ref. [21] to
extract the nonwiggle power spectrum by applying a
discrete sine transform, cutting the characteristic
“bump” of the BAO before doing an inverse discrete
sine transform. Details of the algorithm may be found in
Appendix C of Ref. [21].
For power spectrum BAO wiggles, we set kmin¼

0.01hMpc−1 and kmax¼0.5hMpc−1. The polynomial terms
to include are an≤3, bm≤4 [21].

B. Bispectrum

For the bispectrum, the Fisher matrix of a single redshift
bin with volume V is given by [23,24]

Fij ¼
Z

kmax

kmin

dk1

Z
kmax

k1

dk2

Z
kmax

k2

dk3

Z
1

−1
dμ1

Z
1

−1
dμ2

×
∂B
∂pi

∂B
∂pj

Vk1k2k3γðcos θÞΣðμ1; μ2; cos θÞ
8π4s123Pðk⃗1ÞPðk⃗2ÞPðk⃗3Þ

; ð44Þ

where kmin ¼ 0.01hMpc−1 and kmax ¼ 0.2hMpc−1 in
our fiducial setup for both bispectrum broadband and
BAO constraints. Note that we use k1 ≤ k2 ≤ k3 in
order to count only a unique set of triangles. Similar to
the power spectrum, we only consider the Gaussian
contribution to the covariance matrix (for details, see
Appendix B).
Here ki ¼ jk⃗ij and μi ¼ k̂i · n̂ (i ¼ 1, 2, 3) where n̂ is

the line-of-sight direction. The factor γðcos θÞ describes
contributions of different combinations of ðk1; k2; k3Þ,
and the angular factor Σðμ1; μ2; cos θÞ accounts for
the orientation of the triangle configuration in the
redshift space (see Appendix B for explicit expressions).
Finally, the factor s123 accounts for the symmetry factor
for different types of triangle configurations: 1, 2, and 6
for the scalene, isosceles and equilateral triangles
respectively.
Here again, we have two types of derivatives, one that

uses the total information from the broadband and the BAO
wiggles, and one that solely extracts information from the
wiggles. For the total, we differentiate Eq. (27). For the
BAO wiggles, the derivatives ∂Bw

g =∂pi are calculated by
applying the product rule on the tree-level expression
for the bispectrum in Eq. (27) keeping only the terms with
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Pnw
m and q fixed at fiducial cosmology where q ¼ 1.

More specifically,

∂Bw
g

∂pi
≈ 2

1

q6
Z2ðk⃗1; k⃗2ÞZ1ðk⃗1ÞZ1ðk⃗02Þ

�
Pnw
m ðk1jpfid

i Þ ∂P
w
mðk2Þ
∂pi

þ Pnw
m ðk2jpfid

i Þ ∂P
w
mðk1Þ
∂pi

�
þ 2 cyc perm: ð45Þ

where

∂Pw
m

∂pi
¼ Pnw

m ðk; μÞDðk; μÞ ∂Oðkjp⃗Þ
∂pi

: ð46Þ

The parameter vector for the bispectrum is slightly
different than that of the power spectrum:

p⃗ ¼ ðNeff ; θ⋆;ωb;ωc; As; ns; τ; Yp; b⃗1; b⃗2; b⃗s2 ; an; bmÞ;

where we have the usual set of cosmological parameters,
but now with two additional sets of second-order bias
parameters b2 and bs2 . Note that we do not model the
effects of the second-order bias parameters in the power
spectrum, so this is not a consistent truncation in the
expansion of δg in perturbation theory; however, we are
adhering to taking the lowest order term in the power
spectrum and bispectrum observables themselves.
For the polynomial parameters that marginalize over

systematics, we have an and bm defined differently for the
bispectrum than in the power spectrum [see Eq. (36) for
more details]. We choose for the fiducial set of parameters
bm≤1 for the broadband version and an≤4, bm≤3 for the BAO
wiggle version. The choice of polynomials and how they
impact our results are discussed in Sec. V B.
Note that the combined constraints from the power

spectrum and the bispectrum are obtained by simply adding
the corresponding Fisher matrices (Pþ B hereafter), while
their covariance (CPB) are ignored in this study (see the
next paragraph for caveats). In this treatment, the poly-
nomial coefficients in the power spectrum and the bispec-
trum Fisher matrices are treated as independent parameters,
since we assume that they marginalize over systematic
effects that affect these observables differently.
We caution the reader that this simplification only

gives the lower bound of the real Pþ B constraint, and
the missing CPB contribution can in principle be significant
[23]. In reality, our Pþ B constraints are generally better
than the P-only constraint and only slightly better than
the B-only constraint (except for BOSS), which indicates
that the joint constraint is dominated by the bispectrum.
We expect therefore that the full results including CPB to
fall somewhere in between the B-only and the Pþ B
constraint, and will indicate our results for Pþ B in tables
with a > sign as a reminder of this fact.

In order to evaluate the integral in Eq. (44), we use a quasi
Monte-Carlo method based on low-discrepancy sequences,
more precisely, the Sobol sequence [49]. Compared with
integration on a regular grid or the ordinary Monte-Carlo
integration method, the Sobol sequence method features a
much faster convergence:OðN−1Þ versusOðN−0.5ÞwhereN
is the number of sampling points. For the 5-dimensional
integral in the bispectrum Fisher matrix above, we only
needed a total of 104–105 sampling points for it to converge
with a relative error below 5%.
Finally, we note also that since we are taking our

derivatives using the chain rule on the tree-level expression
for the bispectrum, where we make use of the power
spectrum wiggle extractions, we do not perform a wiggle
extraction directly on the bispectrum itself for calculating
our Fisher forecast. In real data analysis, however, one
would need to extract the wiggles directly from the
measured bispectrum. This is best done by going into
the ðk1; δ; θÞ coordinates. We show a naive attempt of
directly using the same extraction algorithm for the power
spectrum on the bispectrum in Appendix A. Since the
algorithm assumes a near-constant period in wiggles, we
see a high-fidelity recovery of the BAO information for
constructive configurations but worse performance for the
destructive ones.

C. Survey specifications

We will forecast the constraints for a variety of galaxy
redshift surveys: BOSS,1 DESI,2 Euclid,3 PFS,4 SPHEREx5

and Roman Space Telescope.6 Note that for SPHEREx, we
do not use all five samples listed as in past forecasts [7], but
only the sample with the best redshift accuracy between
σz=ð1þ zÞ ¼ 0 and 0.003, amounting to negligible damp-
ing of modes along the line-of-sight due to photometric
redshift errors for the scales we consider. For Roman,
instead of using both the Hα and the OIII samples, we
restrict only to the Hα sample which dominates at lower
redshifts up to z ≈ 1.8 [50]. For each survey, the key survey
parameters include the mean galaxy number density at
different redshift bins n̄gðziÞ and the sky coverage fsky,
which are summarized in Table I.
For comparison, we also include an idealized survey in

the cosmic variance limit (CVL), setting n̄g ¼ ∞, fsky ¼ 1,
and zmax ¼ 4, while maintaining the BAO reconstruction
rate fixed at 0.5.

1https://www.sdss.org/surveys/boss/.
2https://www.desi.lbl.gov/.
3https://www.cosmos.esa.int/web/euclid/euclid-survey.
4https://pfs.ipmu.jp/.
5https://spherex.caltech.edu/; for the number density see

https://github.com/SPHEREx/Public-products/blob/master/galaxy_
density_v28_base_cbe.txt.

6https://roman.gsfc.nasa.gov/.
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All of our LSS results are combined with a CMB
Fisher matrix for a mock Planck 2018 experiment
with ΛCDMþ Neff þ Yp following the formalism and
specifications detailed in Ref. [21]. The Planck-only
constraint gives σNeff

¼ 0.32, and serves as our baseline
when comparing with CMBþ LSS constraints in the next
section.

V. RESULTS

We now present the constraints on Neff from the power
spectrum and the bispectrum for the various surveys using
the Fisher formalism presented above.

A. Fiducial results

In Fig. 4, we show our fiducial results for the constraints
on θ⋆ andNeff using BAOwiggles for various LSS surveys.
As in Ref. [21] for the case of the power spectrum, the
LSS constraints by themselves are not as competitive as
Planck alone. So here we show their joint constraints with
Planck. The power spectrum (P), bispectrum (B), and joint
Pþ B (ignoring CPB) constraints with Planck are shown in

FIG. 4. Marginalized 68% confidence-level contours for Neff
and θ⋆ for Planck alone (filled gray ellipses), and Planck
combined with various LSS surveys (colored lines) in our fiducial
setup where the information comes from the BAO wiggle part of
the LSS observables. Adding the power spectrum (P) to Planck
(blue solid) improves on Planck alone, while adding the bispec-
trum alone (orange solid) to Planck represents an even further
improvement. Planckþ Pþ B (green dashed) does not do much
better than Planckþ B alone since the bispectrum is much more
constraining than the power spectrum (note that though corre-
lations between P and B are not included in this study, this
conclusion remains true). Here we have marginalized over all the
ΛCDM parameters, Yp, galaxy biases (b1 for the power spectrum,
and fb1; b2; bs2g for the bispectrum), and polynomial coefficients
for the effects of systematics.

TABLE I. Survey specifications used in this study. Here we list
the galaxy number density (ng, in units of ðMpc=hÞ−3) as a
function of median redshift (zmid) at different redshift bins, as
well as the sky coverage fsky.

zmid 0.050 0.150 0.250 0.350 0.450 0.550
103ng 0.289 0.290 0.300 0.304 0.276 0.323

zmid 0.650 0.750
103ng 0.120 0.010

(a) BOSS: fsky ¼ 0.242 (10000 deg2).
zmid 0.150 0.250 0.350 0.450 0.550 0.650
103ng 2.380 1.070 0.684 0.568 0.600 0.696

zmid 0.750 0.850 0.950 1.050 1.150 1.250
103ng 0.810 0.720 0.560 0.520 0.510 0.450

zmid 1.350 1.450 1.550 1.650 1.750 1.850
103ng 0.360 0.240 0.130 0.070 0.030 0.010

(b) DESI: fsky ¼ 0.339 (14000 deg2).
zmid 0.650 0.750 0.850 0.950 1.050 1.150
103ng 0.640 1.460 1.630 1.500 1.330 1.140

zmid 1.250 1.350 1.450 1.550 1.650 1.750
103ng 1.000 0.840 0.650 0.510 0.360 0.250

zmid 1.850 1.950 2.050
103ng 0.150 0.090 0.070

(c) Euclid: fsky ¼ 0.364 (15000 deg2).
zmid 0.700 0.900 1.100 1.300 1.500
103ng 0.300 0.300 0.400 0.400 0.400

(d) PFS: fsky ¼ 0.048 (2000 deg2).
zmid 0.100 0.300 0.500 0.700 0.900 1.300
103ng 9.970 4.110 0.501 0.071 0.032 0.016

zmid 1.900 2.500 3.100 3.700 4.300
103ng 0.004 0.001 0.002 0.002 0.001

(e) SPHEREx: fsky ¼ 0.750 (30940 deg2).
zmid 0.425 0.475 0.525 0.575 0.625 0.675
103ng 0.482 0.638 0.862 0.975 1.134 1.242

zmid 0.725 0.775 0.825 0.875 0.925 0.975
103ng 1.266 1.282 1.248 1.224 1.189 1.120

zmid 1.025 1.075 1.125 1.175 1.225 1.275
103ng 1.053 0.984 0.903 0.842 0.769 0.713

zmid 1.325 1.375 1.425 1.475 1.525 1.575
103ng 0.645 0.604 0.542 0.487 0.439 0.394

zmid 1.625 1.675 1.725 1.775 1.825
103ng 0.347 0.309 0.260 0.217 0.187

(f) Roman: fsky ¼ 0.048 (2000 deg2).
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red, green, and blue respectively, whereas Planck alone is
plotted in gray.
To start with, we compare the improvement of adding

the LSS power spectrum to the Planck-only constraints.
Typically we see small improvements for most surveys
except DESI and Euclid. This is consistent with that in
Ref. [21]. Then for the LSS bispectrum, we can also see
improvement upon the Planck-only result for different
surveys, though for BOSS and PFS the improvement is
not significant. For Euclid, we see that with bispectrum
there is about a factor of ∼1.5 improvement in σNeff

and θ⋆
when compared to Planck-only. Finally, the combination
Pþ B offers negligible further improvement upon bispec-
trum alone.
More precisely, we show in Table II(a) the 1D margin-

alized constraints for Neff from BAO wiggles. Compared to

the Planck constraint σNeff
¼ 0.32, the final CMBþ Pþ B

result is better by a factor of ranging from 1.15 for BOSS to
1.84 for Euclid. We note that DESI and Euclid have the best
improvements because of the large volume they probe.
Tab. II(b) shows similar results but for using both the

broadband and the wiggle parts of the LSS observables.
As expected, these results are better than using the BAO
wiggles alone and would reflect the reality if all system-
atics could be successfully controlled to yield reliable
broadband measurements. Here again, the improvement
from the bispectrum alone over the power spectrum
alone is about a factor of 1.05–1.30, whereas going to
joint Pþ B results improves upon the power spectrum
only by about 1.23–1.50. Not limiting ourselves to the
BAO wiggles only, the best measurement from next-
generation surveys would allow us to probe Neff with
σNeff

¼ 0.08, a factor of 4 improvement from the Planck
alone result of 0.32, and merely a factor of 2 from an
actual CVL experiment.
As stated before, we also checked that the improvements

from LSS power spectrum or bispectrum based on a CMB-
Stage 4 experiment instead of Planck would be negligible.
For a CMB-Stage 3 experiment, there is insignificant
improvement from power spectrum BAO for all surveys
as was also shown in Ref. [21], but a slight improvement
(by a factor of ∼1.1) from the bispectrum BAO wiggles for
DESI and Euclid.
In sum, we find that the LSS bispectrum signals, both the

BAO wiggles and total, can help to improve the Planck-
only constraint on Neff . The Planckþ B also have a better
constraint on Neff than the Planckþ P.

B. Forecast dependencies

The Fisher information is dependent on kmax, and the
constraint on Neff is also affected by the polynomial
parameters used for marginalizing over systematics, as
well as other cosmological parameters that are beyond
ΛCDM cosmology but are highly degenerated with Neff .
We now investigate the dependencies of the Fisher matrix
on these setup choices.

1. Varying kmax

Recall that throughout this work we set an upper limit
k ≤ kPmax for the power spectrum and k1; k2; k3 ≤ kBmax for
the bispectrum Fisher computation, where we used the
fiducial values kPmax ¼ 0.2hMpc−1 for power spectrum
BAO wiggles, kPmax ¼ 0.5hMpc−1 for power spectrum
broadband, and kBmax ¼ 0.2hMpc−1 for both cases in the
bispectrum. Now we explore the dependence of our
forecast results for each survey in Fig. 5 as we vary
kmax from kmin to 0.25hMpc−1. In the left, middle and
right panels, we show respectively the power spectrum,
bispectrum and the joint Pþ B constraints. We do this for

TABLE II. Forecasted joint constraints on Neff (68% CL) from
the Planck 2018 CMB experiment (ΛCDMþ Neff þ Yp) and
different LSS surveys, after marginalizing over (b1; b2; bs2 ) and
polynomial coefficients. For reference, the forecasted Planck-
only constraint is σNeff

¼ 0.32. We report constraints at the
fiducial kmax ¼ 0.2hMpc−1, and also show in the parenthesis
results with a more conservative assumption where the bispec-
trum has kmax ¼ 0.15hMpc−1. For joint CMBþ Pþ B con-
straints, we only show the lower bound computed by ignoring the
correlations between the power spectrum and bispectrum modes,
but do not expect the full results to vary much since they cannot
be worse than the bispectrum-only results.

Planckþ Survey P B Pþ B

BOSS 0.30 0.28 (0.30) > 0.28 (0.29)
DESI 0.27 0.21 (0.26) > 0.20 (0.25)
Euclid 0.26 0.18 (0.25) > 0.17 (0.24)
PFS 0.30 0.27 (0.29) > 0.27 (0.29)
SPHEREx 0.28 0.24 (0.27) > 0.23 (0.27)
Roman 0.30 0.26 (0.29) > 0.26 (0.28)
CVL 0.08 0.08 (0.15) > 0.06 (0.07)

(a) Our fiducial results of BAO-only constraints from power
spectrum and bispectrum, and a Planck 2018 Fisher matrix
are included for all cases.
Note that the Pþ B constraint does not have CPB in
consideration, thus only indicates a lower bound.

Planckþ Survey P B Pþ B

BOSS 0.23 0.22 (0.27) > 0.18 (0.22)
DESI 0.13 0.11 (0.16) > 0.09 (0.12)
Euclid 0.12 0.09 (0.14) > 0.08 (0.11)
PFS 0.22 0.20 (0.27) > 0.17 (0.21)
SPHEREx 0.16 0.14 (0.21) > 0.12 (0.15)
Roman 0.19 0.17 (0.25) > 0.15 (0.19)
CVL 0.05 0.04 (0.06) > 0.03 (0.04)

(b) Same as above, but for total constraints including the
broadband and BAO wiggles.
Note that the Pþ B constraint does not have CPB in
consideration, thus only indicates a lower bound.
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both the BAO-only (dashed lines) and the total results
(solid lines).
As expected, the constraining power gets better with

higher kmax. It does so faster for the bispectrum than for the
power spectrum because the number of triangle configu-
rations increases faster with kmax than the number of
k-modes in the power spectrum. Additionally, for the
power spectrum results, we see that the BAO constraints
get a relatively sharp decrease near around 0.14hMpc−1

after the third peak in the BAOwiggles. For the bispectrum,
this sharp decline is not at the same place as in the power
spectrum, reflecting the fact that the information on Neff is
not coming from a peak in the oscillations with respect to
one of the k’s, but rather in the interference between two k’s
(see Fig. 9). Finally, this feature is carried over into the
Pþ B BAO constraints since they are dominated by the
bispectrum results for k≳ 0.08hMpc−1.
Now comparing between the surveys, Euclid gives

the most optimistic result, for which the BAO constraints
could reach σNeff

≈ 0.25 for the PS and σNeff
≈ 0.17 for the

bispectrum (whereas the total constraints reach σNeff
≈ 0.12

for the PS and σNeff
≈ 0.07 for the bispectrum) for our

fiducial kmax ¼ 0.2hMpc−1. The results become even
better at higher kmax. We caution the readers however that
past k ∼ 0.2hMpc−1, the linear scale modeling that we use
for both the power spetrum and the bispectrum becomes
less accurate.

2. Varying the polynomial model

As we introduced in the previous section, the polynomial
terms are included in the galaxy power spectrum and

bispectrum modeling to account for uncertainties say, in
measurement or modeling measurement, or in the extrac-
tion the BAO wiggles. However, the specific number of
terms we choose to include could impact the forecasted
constraints significantly. Including not enough parameters,
one may get too optimistic forecast; including too many
parameters could over-penalize the analysis. Recall that we
follow Ref. [21] to choose a specific set of terms for the
power spectrum and keep the same powers of k for the
bispectrum, namely, bm≤1 for the total bispectrum and an≤3,
bm≤4 for BAO wiggles.
In Fig. 6 we vary the fiducial set of polynomial

parameters for the Euclid bispectrum forecast. For the total
in the upper panel, we see that the impact of polynomial
terms is not as significant when using a high kmax, but
the additive coefficients bm do cast significant impact at
lower kmax. For kBmax ¼ 0.2hMpc−1, our fiducial choice of
bm≤1 (red) does not deviate much from other choices.
For the BAO wiggles in the bottom panel, we see that the

polynomial coefficients do affect the result more signifi-
cantly. At kmax ¼ 0.2hMpc−1, the constraints on Neff can
vary between ∼0.1 to ∼0.2 depending on the choice of
polynomials. Our fiducial setup of an≤3, bm≤4 (red) is on
the more conservative side.

3. Additional cosmological parameters beyond ΛCDM
Besides the standard parameter space we explored

(Neff ; θ⋆;ωb;ωc; As; ns; τ; Yp), we also investigate the
known degeneracy between Neff and a set of extended
parameters—the neutrino mass mν, the curvature ΩK,
and the dark energy equation-of-state parameter w0

FIG. 5. The 1D marginalized uncertainties for Neff as a function of the maximum wave number kmax from Planck combined with the
power spectrum (left), the bispectrum (middle) and Pþ B (right, with CPB ignored) for various LSS surveys. The fiducial constraints
where the information comes from BAO wiggles only are shown in dashed lines, whereas the total constraints using the broadband and
the BAO wiggles are shown in solid lines. As in Fig. 4, these are marginalized results over ΛCDM parameters, Yp, bias parameters and
polynomial coefficients.
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(w0 ≡ PDE=ρDE)—and how they could affect our forecasts.
As a test case, we evaluate the impact of these new
parameters on the Planckþ DESI BAO-only constraints,
by varying the parameters one at a time from their default
values mν ¼ 0.06 eV, ΩK ¼ 0, and w0 ¼ −1.
In Tab. III, we show how the Planck and Planckþ DESI

constraints onNeff degrade after marginalizing over each of
the extended parameters. Typically, we find that the Planck-
only constraints on Neff are similar to before, about ∼0.32,
while there is a degradation for the Planckþ P and
Planckþ B constraints. Specifically, the Planckþ B con-
straints typically reach σNeff

∼ 0.27 after marginalizing over

these new parameters, which is about 30% worse than the
fiducial result of σNeff

¼ 0.21.
In Fig. 7, we visualize the degeneracy between Neff and

each extended parameter (mν, ΩK, and w0 from top to
bottom). We compare the 68% CL contours of the Planck-
only, Planckþ P, and Planckþ B constraints in the
ðθ⋆; NeffÞ plane in the left column, and in the (X, Neff )
plane in the right column, where X is the new parameter.
An improvement in σNeff

for both the Planckþ P and
Planckþ B constraints upon the Planck-only constraint
still remains. However, it is not as significant as before

TABLE III. Constraints on Neff (68% CL) after marginalizing
over one extended parameter, for the Planck and DESI (BAO
only) configurations. Here “Base” denotes the default set of
parameters listed in Sec. IV. The improvement of the bispectrum
over the power spectrum seen in the base model starts to become
erased when considering the wCDM model or a model with
curvature.

Parameters Planck Planckþ P Planckþ B

Base 0.32 0.27 0.21
Baseþmν 0.32 0.31 0.27
Baseþ ΩK 0.32 0.29 0.28
Baseþ w0 0.33 0.28 0.27

FIG. 7. The impact of marginalizing over additional parameters
beyond ΛCDM. In each row, we add a new parameter mν, ΩK, or
w0 to the baseline Planck and DESI (BAO only) forecasts. We
show 68% CL contours of Neff and θ⋆ in the left panel of each
row, and those of Neff and the new parameter in the right one.
After adding these parameters, there is a significant degradation
in both the power spectrum (P) or bispectrum (B) BAO wiggle-
only constraints. In particular, with w0 added, we also see that the
constraint on θ⋆ degrades significantly due to the high degen-
eracy between θ⋆ and w0.

FIG. 6. The 1D marginalized uncertainties for Neff from Planck
combined with the Euclid bispectrum for various choices of
polynomial terms that are used to marginalize over systematics.
We show in the top panel the total constraints from the broadband
bispectrum and BAO wiggles, and in the bottom panel the
constraints from BAO wiggles alone, where the polynomials
are defined differently [see Eqs. (36) and (38)]. The fiducial set of
polynomial terms are bm≤1 for the broadband (light blue) and
an≤3, bm≤4 for BAO-only (red).
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(see Table III). Perhaps the most striking is the improve-
ment of the constraints on the extended parameters
themselves (mν, ΩK, and w0) when adding LSS data
to Planck, as shown in the right panels of Fig. 7. With
further inspection, we find more Fisher information of mν

and ΩK in the LSS than the CMB (Planck), explaining
the improvement in constraints of these parameters.
For w0, the improvement is primarily due to the fact
that LSS breaks the strong degeneracy between w0 and
θ⋆ in the CMB.
There is also an interplay between these new parameters

and other fiducial parameters (ωb, ωc, etc.). For example, in
Fig. 7 we find that the constraint on θ⋆ degrades signifi-
cantly after adding w0, and this is due to the very strong
degeneracy between w0 and θ⋆, though the impact on Neff
is much less significant.

C. Note on bispectrum interference
and computational costs

One of the advantages of using bispectrum for
spectroscopic survey is that one can exploit the interfer-
ence structure in order to simplify the analysis. Most of
the signal will be concentrated around the constructive
configurations as explained in Sec. II C. In this section
we will investigate how much Fisher information we can
preserve when choosing to measure only a subset of
configurations.
In Fig. 8 we present the Fisher information of Neff ,

F̃NeffNeff
, in the ðδ; θÞ plane. Here F̃NeffNeff

ðδ; θÞ is obtained
from the same integrand as in Eq. (44), but integrated over
0.01hMpc−1 ≤ k1 ≤ 0.2hMpc−1 and −1 ≤ μ1; μ2 ≤ 1, and
then normalized over the whole plane:

F̃NeffNeff
∝
Z

kmax

kmin

dk1

Z
1

−1
dμ1

Z
1

−1
dμ2

�
∂B
∂Neff

�
2

×
Vk1k2k3γðcos θÞΣðμ1; μ2; cos θÞ

8π4s123Pðk⃗1ÞPðk⃗2ÞPðk⃗3Þ
Θðkmax − k2ÞΘðkmax − k3Þ: ð47Þ

Here the step function Θ ensures that k2; k3 ≤ kmax. Thus
F̃NeffNeff

is the density distribution function of the bispec-
trum BAO information in terms of Neff .
As expected the information is mostly concentrated

around constructive interferences δ ¼ 0 and 2. However,
there are some deviations around δ ¼ 4. We have verified
that this is due to imposing an upper bound k3 ≤ kmax,
which excludes some triangle configurations around δ ¼ 4.
More specifically, since δ ¼ 1 corresponds to k2 − k1 ≈
0.03hMpc−1, at δ ¼ 4 and for k1 ≳ 0.08hMpc−1 (a large
part of the k1 range noted above), we have that k2 ≳ kmax ¼
0.2hMpc−1 for which there are no triangle configurations
available.

Now, to quantify how the interference can help reduce
computational costs without much loss of information, we
first select the regions where most of the information is
contained (see boxed regions in Fig. 8). Then we calculate
the number of triangle configurations as well as the Fisher
information enclosed in these regions, and report their
fractions compared to the total.
For a setup mimicking the first redshift bin (0.6≤ z≤0.7)

of the Euclid experiment, we get that 51% of the Fisher
information is enclosed within the boxed regions which
contain 36% of the triangle configurations. This reduction
in the number of triangles can represent a significant cut in
computation time during real data analysis: Cutting the data
vector dimension by a factor f△ means a similar cut on time
spent on computing the estimator and theory prediction in a
MCMC analysis, as well as a significant larger cut (∼f2

△
)

on the number of simulations required to generate the
bispectrum covariance matrix.
Finally, we recommend doing the Fisher analysis before

the real data analysis to identify the ideal boundaries for
the regions with most information, as they could change

FIG. 8. The normalized contribution F̃NeffNeff
ðδ; θÞ to the

Fisher information for the parameter Neff as a function of
Child18 coordinates δ and θ. We integrate the integrand of the
Fisher matrix element FNeffNeff

[Eq. (44)] over k1 as well as the
angular variables (μ1, μ2) and normalize over the whole plane
[see Eq. (47)]. This is an example using the first redshift bin
(0.6 ≤ z ≤ 0.7) of the Euclid survey. The Fisher information
shows peaks near even δ’s which are the constructive interfer-
ence configurations. Using only the boxed regions which
represent about ∼36% of the total number of triangle configu-
rations, we recover ∼51% of the total Fisher information on
Neff . Note that there are negligible information around δ ¼ 4
because there are no triangle configurations there given our
conditions 0.01hMpc−1 ≤ k1; k2; k3 ≤ 0.2hMpc−1.
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depending on the survey setup. For example, we find that
the peaked regions may move in the θ direction between
different redshift bins. In the setup we explored, the peaked
regions shift toward the right in the θ − δ plane with higher
redshift because of the redshift evolution of the galaxy bias
and the linear growth rate.

VI. DISCUSSION AND CONCLUSION

In this paper we forecast constraints on the effective
number of neutrino species Neff from various LSS surveys
using the Fisher formalism, examining for the first time the
impact of including bispectrum measurements with BAO
wiggles. We present two versions of the forecasts where the
information comes from the BAO wiggles alone, which is
our fiducial results, as well as from the total bispectrum
including both the broadband shape of the bispectrum and
the BAO wiggles.
We find for both cases that, although the LSS constraints

alone are not competitive with Planck, combining the LSS
constraints with Planck provides a clear improvement over
Planck alone (σNeff ¼ 0.32). This is in alignment with what
the authors of Ref. [21] found for the power spectrum,
which we also reproduce. Using BAOwiggles only, we find
that Planckþ B clearly improves upon Planck alone, with a
σNeff ranging from 10% to 40% improvement depending on
the survey. There is also a notable improvement from
Planckþ P to Planckþ B of about 5%–30% depending on
the survey. Planckþ Pþ B (by ignoring the correlation
between power spectrum and bispectrum modes CPB,
which is a lower bound of this constraint) does not in
general provides better constraints than Planckþ B
because the bispectrum constraints were already very good,
except for the case of CVL where combining all data allows
one to reach σeff ¼ 0.06.
When using the total bispectrum including both the

broadband and wiggles, we obtain better constraining
power as expected. The broadband information is valu-
able if the systematics in the measurement can be reliably
controlled. Here the Planckþ B constraint reaches
σNeff

¼ 0.09 for Euclid, and as low as σNeff
¼ 0.04 for

a CVL experiment up to zmax ¼ 4. However, measure-
ments of the broadband are challenged by systematics
and modeling uncertainties. The latter could be well-
controlled using an effective field theory of LSS [38],
especially when using higher kmax than our fiducial
choice of kmax ¼ 0.2hMpc−1.
We caution the reader that some extensions of the

ΛCDM model can weaken the improvement we have been
reporting in the ΛCDM model from the LSS bispectrum,
due to the strong correlations between the extended
parameters and Neff . In particular, for the same CMBþ
LSS configuration, we found a ∼30% degradation in the
case of marginalizing over the parameters mν, ΩK, and w0

one at a time. Simultaneously, we find the CMBþ LSS

data can significantly help improve the constraints on
nonstandard parameters like mν, ΩK, and w0.
We also utilize the template modeled in Ref. [21] to

study the constraints from the BAO phase shift. Similarly
here, we see better performance for the bispectrum over the
power spectrum. However, the phase-shift constraint is not
as competitive as the BAO-only or total constraints. For
example, for CVL the phase shift constraint with prior
from Planck is σNeff

¼ 0.27 for the bispectrum. This probe
can however be useful for probing physical effects that
mainly show up as a phase shift, such as the isocurvature
perturbations.
Note that we have chosen kmax ¼ 0.2hMpc−1 for the

bispectrum forecasts, the regime of validity for the tree-
level bispectrum and linear theory. To push kmax higher
into the weakly nonlinear regime, one may choose to add
higher loop terms [51]; alternatively, one may use the
tree-level form with a nonlinear matter power spectrum
and an effective second-order kernel F2;eff fit from
simulations in the nonlinear regime for the broadband
modeling [52].
To fully simulate the wiggles and the broadband in the

nonlinear regime, one would measure the bispectrum
directly from simulations, though it takes special simu-
lations capable of capturing the neutrino-induced BAO
effects However, this may not be necessary since, due to
nonlinear damping of BAO signals at smaller scales, the
BAO information will be limited there and there may not
be significant improvement by extending kmax in the
BAO modeling. However, there would be more informa-
tion to be gained from the broadband in principle.
EFTofLSS has been shown to be promising in this
regard, and it may be worth applying it to the measure-
ment of Neff [38].
Additionally, we extended the concept of bispectrum

interference, first explored in Ref. [32] for the sound
horizon measurement, by applying it to Neff here. The
bispectrum interference technique allows us to reduce
computational cost by identifying the set of triangle
configurations that contain the most information (those
exhibiting constructive interference). We find for example
that using only about a third of the triangles would give us
half of the Fisher information in Neff for the Euclid
experiment’s lowest redshift bin. This can dramatically
reduce the computational challenges involved in measuring
the bispectrum, especially when deriving covariance matri-
ces from simulations.
The bispectrum interference coordinates ðk1; δ; θÞ also

offer a natural way to extract the BAO wiggles from a
bispectrum measurement. We attempted a naive application
of the current wiggle extraction algorithm designed for the
power spectrum directly on the bispectrum in Appendix A.
We found that the while the algorithm does not work well
for the destructive interference configurations, these are
exactly the configurations that do not contain much
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information on Neff and can therefore be neglected in a real
data analysis.
We also showed that improvements are needed in the

current algorithm are for getting better results in the
constructive configurations in the bispectrum: While
the main shape of the damping envelope is well captured
for several δ ¼ 0 and δ ¼ 2 configurations tested, the
amplitude of the first two peaks are not accurately
measured. It may be that the periodicity assumptions
in the algorithm is a less good approximation in the
case of bispectrum interference case than in the power
spectrum. Therefore, improvements on the algorithm
or a rigorous characterization of the errors induced are
needed in order to directly measure BAO wiggles in the
bispectrum. In our forecast, we have chosen to margin-
alize over a set of polynomials in order to capture some
of the measurement errors induced.
In sum, the next-generation LSS surveys can improve on

current constraints on Neff from Planck by up to a factor
of 2 using observations in the linear regime. Future work
could include extending the modeling of the galaxy
bispectrum into the weakly non-linear regime, which
may provide improvement upon even CMB-Stage 4 like
experiments without requiring a more futuristic LSS
survey. Developing wiggle extraction algorithms specifi-
cally tailored for the bispectrum interference could also
open doors for alternative measurements the BAO wiggles
in the bispectrum, which is useful for constraining physical
effects that affect the BAOs such as Neff and isocurvature
perturbations.
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APPENDIX A: EXTRACTION OF BAO WIGGLES
FROM BISPECTRUM

To extract the BAO wiggles from the measured
bispectrum, one would need to transform the bispectrum
from the ðk1; k2; k3Þ coordinates to the ðk1; δ; θÞ coor-
dinates. There the interference of wiggles are made
explicitly manifest and wiggle extraction algorithms
similar to those used in the power spectrum can be
developed to extract them. In Fig. 9, we show the results
directly applying one of the standard algorithms devel-
oped for the power spectrum (that described in

Appendix C of Ref. [21]) on a variety of ðδ; θÞ configu-
rations. In the top and bottom panels, we show the result
for the constructive interference configurations δ ¼ 0
and 2, whereas in the middle panel we show the result
for the destructive interference with δ ¼ 1, where the
amplitude of the wiggles are about 10 times lower.
The solid lines, call it intrinsic wiggles, correspond to the

ratio Bw
m=Bnw

m where the wiggle and nonwiggle parts of the
bispectrum are obtaining by computing the tree-level
expressions with Pw

m and Pnw
m , where the wiggle-extraction

algorithm has been applied on the power spectrum. The
dashed lines, call it extracted wiggles, correspond to
applying the extraction algorithm directly on the matter
bispectrum with wiggles, which is more in line with what
one would do in an actual measurement when we do not
make use of the measured power spectrum. These two
methods end up defining a different nonwiggle bispectrum,

FIG. 9. BAO wiggles in the bispectrum. We show the results for
constructive interference (δ ¼ 0, 2) and destructive interference
(δ ¼ 1) configurations with θ ¼ 0, π=4 and π=2. The solid lines
are intrinsic wiggles computed with the tree-level bispectrum
where the wiggle and non-wiggle split has been performed on the
theory prediction for the linear power spectrum using the standard
wiggle extraction algorithm, while the dashed lines are wiggles
directly extracted from the bispectrum Bmðk1; δ; θÞ using the
same algorithm. The assumption of periodic oscillations in the
algorithm breaks down more severely for the destructive inter-
ference, but these configurations can be ignored since they do not
contain much information on Neff .
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hence the differences in the plotted ratios Bw
m=Bnw

m . The
differences seen may be related to the fact that the
extraction algorithm employed assumes a near-constant
period in wiggles. This assumption is broken in slightly
different ways for the wiggles in the bispectrum and in the
power spectrum.
It is clear from the plot that the difference is less

significant for the constructive configurations (δ ¼ 0, 2)
than for the destructive configurations (δ ¼ 1). Since one
may select to only measure the constructive configurations
where most of the information resides, this makes it
possible to model the bispectrum wiggles by doing the
split in the power spectrum space first and then using the
tree-level expression to get the bispectrum wiggle predic-
tions during an MCMC analysis, which would be faster
than performing the split on every bispectrum configuration
in the theory calculation. How well this works in practice
will depend on the details of the algorithm chosen, and
should be tested on a simulated data first prior to use in an
actual data analysis.
In sum, developing extraction algorithm specifically

tailored to the bispectrum interference, perhaps without
the stringent assumption of periodicity could be useful.
Alternatively, characterizing the error induced when apply-
ing a non-ideal extraction algorithm could be useful as well.
Finally, this illustration is done on the matter bispectrum.
Further tests with the galaxy bispectrum including the
realism of redshift space distortions would be necessary
as well.

APPENDIX B: GAUSSIAN BISPECTRUM
COVARIANCE

To evaluate the Fisher matrix for the bispectrum, we start
with the covariance matrix, e.g., the correlation between
Bðk⃗1; k⃗2; k⃗3Þ (for brevity B hereafter) and Bðk⃗01; k⃗02; k⃗03Þ
(for brevity B0). We consider the small range of
ðk⃗i − dk⃗i=2; k⃗i þ dk⃗i=2Þ (i ¼ 1, 2, 3), the Gaussian con-
tribution to the covariance matrix is given by [23,54]

CovðB;B0Þ ¼ V
Ntri

s123Pobsðk⃗1ÞPobsðk⃗2ÞPobsðk⃗3Þ

× δDðk⃗1 þ k⃗01ÞδDðk⃗2 þ k⃗02ÞδDðk⃗3 þ k⃗03Þ:
ðB1Þ

Here Ntri is the number of modes, which follows
Ntri ¼ V123=k6f , where k3f ¼ ð2πÞ3=V ¼ Vf is the funda-

mental volume and V123 is the volume constrained by ½k⃗i −
dk⃗i=2; k⃗i þ dk⃗i=2� (i ¼ 1, 2, 3). Since k⃗1 þ k⃗2 þ k⃗3 ¼ 0,
we only need k⃗1 and k⃗2.
To derive V123, we may decomposed the k⃗’s into

spherical coordinate, e.g., ðk1; μ1;ϕ1Þ and ðk2; μ2;ϕ2Þ,

where ϕ1 and ϕ2 are azimuthal angles. Note that in
RSD there is azimuthal symmetry for the triangle configu-
ration, we may set ϕ1 ¼ 0 without loss of generality.
By definition we have

V123 ¼
Z
½k⃗1;��

d3p⃗
Z
½k⃗2;��

d3q⃗
Z
∞
d3r⃗δDðp⃗þ q⃗þ r⃗Þ

¼ 2πk21dk1dμ1 · k
2
2dk2dμ2dϕ2: ðB2Þ

Here ½k⃗i;�� denotes a volume region constrained by

½k⃗i − dk⃗i=2; k⃗i þ dk⃗i=2�. To relate ϕ2 to k3, we have

k23 ¼ k21 þ k22 þ 2k1k2 cos θ; ðB3Þ

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ21

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ22

q
cosϕ2 þ μ1μ2; ðB4Þ

∂ϕ2

∂k3
¼ −

2πk3
k1k2

· Σðμ1; μ2; cos θÞ; ðB5Þ

where (also refer Ref. [23])

Σ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2θ − μ21 − μ22 þ 2μ1μ2 cos θ

p : ðB6Þ

One may check that
R
1
0 dμ1

R
1
0 dμ2Σ ¼ 1. Numerically, we

will encounter singularities and waste many sampling
points if choosing μ1 and μ2 as our angular coordinate,
especially when j cos θj → 1. This is also illustrated in
Fig. 1 of Ref. [23] (see the lower two panels, where there
are no triangle configurations outside the ellipse). To avoid
this problem, we can perform a coordinate transformation
and use new coordinate ðμs; ζÞ such that

μ1 → μ̃1 ¼
ffiffiffi
2

p ðμ1 − μ2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p ¼ cos ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2s

q
; ðB7Þ

μ2 → μ̃2 ¼
ffiffiffi
2

p ðμ1 þ μ2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos θ

p ¼ sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2s

q
; ðB8Þ

Σdμ1dμ2 →
1

2π
dμsdζ: ðB9Þ

The setup can dramatically improve efficiency and accu-
racy of the integration.
We also note that for θ and 2π − θ (or equivalently

ϕ2 → 2π − ϕ2) we have the same triangle configuration
despite different chirality, and this property will bring in an
additional factor of 2 in V123. However, the chirality will
not contribute twice if all the three k⃗’s are parallel to each
other, i.e., cos θ ¼ �1. This explains the factor γðcos θÞ we
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introduced in the text, which has the explicit form (also
refer Ref. [54] for a different derivation)

γðxÞ ¼
8<
:

1 jxj < 1;

1=2 x ¼ �1;

0 else:

ðB10Þ

APPENDIX C: PHASE-SHIFT CONSTRAINTS ON
EFFECTIVE NEUTRINO SPECIES

In this appendix we consider a third case for the analysis
where the information is solely extracted from the phase
shift in the BAO wiggles. To do so, we make use of the
phase shift template described in Sec. II.
Here we only include α and β as parameters and infer

constraints onNeff through βðNeffÞ, to facilitate comparison

with literature results (e.g., in Ref. [21]). Since α is redshift-
dependent, there are nz values at different redshift bins,
while β is a constant over all bins. We evaluate the
derivatives of α and β from the analytical model shown
in Eq. (5). With the reduced wave number kt defined as that
inside O, we have

∂Pϕ
m

∂p
¼ Pnw

m
∂O
∂k

����
k¼kt

∂kt
∂p

: ðC1Þ

The expression can also be extended to the galaxy power
spectrum by adding additional terms referring RSD, damp-
ing, etc. However, in this prediction, we ignore multiple
additional parameters like bias and polynomial terms, and
keep only α and β.
Note that we assumed a Gaussian likelihood function for

β here, which means that the inferredNeff distribution using
the relation between β and Neff will be non-Gaussian
[Eq. (1)]. As a result, we define the 1σ constraint on Neff

as σNeff
≡ Neffðβfid þ σβÞ − NeffðβfidÞ.

Similarly, for the galaxy bispectrum, we obtain ∂Bϕ
g=∂p

through the tree level expression.
A prior on α from a CMB experiment, here Planck 2018,

will also be included to increase constraints on β. We
choose the same definition as that of Ref. [21]. The prior
matrix Cα is derived from C−1

α ¼ ATFA, where F is the
Fisher matrix of ΛCDM from Planck 2018, and A is the

FIG. 10. Forecasted posterior distribution for β from measure-
ments of phase shifts in various LSS survey. We show the
distribution for the LSS power spectrum alone (blue), the
bispectrum alone (orange), or the combined power spectrumþ
bispectrum (green). No CMB constraint on Neff is added, but
we explore including (solid) and not including (dashed) a
Planck 2018 prior on the BAO scale α from the ΛCDMþ
Neff cosmology.

TABLE IV. Phase-shift only constraints onNeff for various LSS
surveys, with or without imposing a CMB prior on α.

Survey P B Pþ B

BOSS 11 7.6 > 6.0
DESI 3.0 2.0 > 1.6
Euclid 2.4 1.5 > 1.3
PFS 8.8 5.9 > 4.8
SPHEREx 4.4 3.1 > 2.5
Roman (Hα) 6.8 4.3 > 3.5
CVL 0.96 0.59 > 0.47

(a) Phase shift only constrains from the power spectrum and the
bispectrum. Note that the Pþ B constraint does not have CPB

in consideration, thus only indicates a lower bound.

α-prior þ Survey P B Pþ B

BOSS 3.4 2.6 > 2.3
DESI 1.3 1.0 > 0.87
Euclid 1.0 0.76 > 0.70
PFS 2.7 1.9 > 1.6
SPHEREx 2.1 1.7 > 1.5
Roman (Hα) 2.0 1.4 > 1.3
CVL 0.39 0.27 > 0.23

(b) Same as above, but with an α-prior from Planck Fisher matrix.
Note that the Pþ B constraint does not have CPB in
consideration, thus only indicates a lower bound.
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Moore–Penrose inverse of the matrix ∇θ⃗α⃗ which is
obtained with CAMB.
In Fig. 10 we show the β for different surveys. Unlike in

the main text, we do not include Planck constraints here.
For some of the surveys like BOSS and PFS, their
constraints alone without α prior (dashed lines) are not
stringent enough to distinguish between Neff ¼ 0 and ∞;
but with an α-prior from Planck 2018 (solid lines), the
constraints improve considerably. These results are in
agreement with Ref. [21], where we add in addition the
bispectrum results. In all the surveys, with or without the
Planck prior, the bispectrum yields better constraints than
the power spectrum alone, typically about 30% improve-
ment, with negligible further improvement when using
Pþ B. More precise results are shown in Tab. IV tabulates
the 1-σ constraints on Neff .
In Fig. 11, we also reproduce the σβ resultsfor toy surveys

with varying zmax fromRef. [21], but showing in addition the
bispectrum contraints. Using the same setup as in Ref. [21],
we use fsky ¼ 0.5 and a redshift range going from a fixed
redshift lower limit zmin ¼ 0.1 to an upper limit zmax, with a
binwidth ofΔz ¼ 0.1. The galaxies are uniformly distributed
inside the comoving volume enclosed between zmin and zmax,
while the total number of galaxies Ng remains fixed to 106,
107, 108, and ∞ for the CVL case—so the galaxy number
density is constant with redshift at a given zmax, and is lower
for a higher zmax at a fixed total Ng. Again the bispectrum
performs better than the power spectrum, except for the low
galaxy number density setups (low Ng and high zmax) where
the shot-noise dominates. We show both the results with and
without α-prior in solid and dashed lines respectively.
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