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Perturbations to the cosmic baryon density—and thus to the total-matter density—can be induced by
magnetohydronamic forces if there are primordial magnetic fields. The power spectrum for these density
perturbations was first provided in 1996, but without much in the way of detail in the derivation, and there
has been confusion in the intervening years about this calculation. In this brief note, we rederive this power
spectrum using modern conventions, provide a simplified result, and identify some of the discrepancies in
the literature.
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I. INTRODUCTION

Although no current observations or measurements
indicate the existence of magnetic fields in the early
Universe, there is an abundance of models for new
physics that predict primordial magnetic fields [1,2]. In
1978, Ref. [3] showed that if there are primordial
magnetic fields (PMFs), then magnetohydrodynamic
effects induce density perturbations in the cosmic baryon
density and thus, in the total-matter density. The power
spectrum for these density perturbations, for a given
spectrum of magnetic fields, was then calculated in
Ref. [4]. This result was then reproduced in subsequent
papers [5–10] exploring various empirical consequences,
and the results also used for numerical work in yet other
papers [11–16].
In this brief note, we rederive the original result [4] for

the magnetic-field power spectrum using modern conven-
tions and provide calculational details left out of the
original work. We also derive a simpler (and more easily
evaluated) expression and identify errors in some of the
intervening literature.

II. EQUATIONS OF MOTION

We surmise a primordial magnetic field Bðx; tÞ as a
function of comoving position x and time t. Prior to
recombination, the tight coupling of the baryons to pho-
tons, as well as the large photon energy density, suppresses
the dynamical effects of the magnetic fields. After recom-
bination, the baryons experience a magnetohydrodynamic
force that provides a source to the linearized equation of

motion for the fractional total-matter-density perturbation
δmðx; tÞ. Following Refs. [4,17,18], this equation is

δ̈m þ 2H _δm − 4πGρ̄mδm ¼ fb
vðxÞ

μ0ρ̄b;0½aðtÞ�3
; ð1Þ

where fb ¼ ρ̄b=ρ̄m is the fraction of the mean total-matter
density ρ̄m contributed by baryons; ρ̄b;0 the mean baryon
density today; aðtÞ the scale factor (normalized to unity
today); H ¼ _a=a is the Hubble parameter; and t0 the
cosmic time today. We recognize this as the usual equation
for matter perturbations with a source, with

vðxÞ≡∇ · fBðxÞ × ½∇ ×BðxÞ�g; ð2Þ

where we invoke the shorthand BðxÞ≡Bðx; t0Þ, and
hereafter take the magnetic field BðxÞ and its Fourier
B̃ðkÞ without an explicit time argument to be evaluated at
t0. We note that the scaling Bðx; tÞ ¼ BðxÞ=a2ðtÞ, of the
magnetic field with scale factor, has been used in
the derivation of Eq. (1). We work in SI units, with μ0
the magnetic permeability of the vacuum, and the energy
density in the magnetic field is ρB ¼ B2=ð2μ0Þ.1 The
fractional matter perturbation is then obtained as the special
solution of this differential equation as

δmðx; tÞ ¼ MðtÞαvðxÞ; ð3Þ

where we define α≡ fb=ðμ0ρ̄b;0Þ to declutter. The time
dependence MðtÞ satisfies*talabadi@post.bgu.ac.il
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M̈ðtÞ þ 2HðtÞ _MðtÞ − 4πGρ̄mðtÞMðtÞ ¼ 1

a3ðtÞ ; ð4Þ

with initial conditions MðtrÞ ¼ _MðtrÞ ¼ 0 imposed at the
time tr of recombination. Under the approximation that the
Universe is fully matter dominated at recombination, this
becomes

MðtÞ → 9

10
t2r

DþðtÞ
DþðtrÞ

; ð5Þ

at t ≫ tr, where DþðtÞ is the linear-theory growth function
(∝ t2=3 during matter domination). In practice, though, in
current work, the equation is solved numerically to take
into account the fact that the Universe is not fully matter
dominated at tr.

III. THE MATTER POWER SPECTRUM

The matter power spectrum Pðk; tÞ is defined as

hδ̃mðk; tÞδ̃�mðk0; tÞi ¼ ð2πÞ3δDðk − k0ÞPðk; tÞ; ð6Þ

where δDðkÞ is the Dirac delta function,

δ̃mðk; tÞ ¼
Z

d3x e−ik·xδmðx; tÞ ð7Þ

is the Fourier transform of the density field, and

δmðx; tÞ ¼
Z

d3k
ð2πÞ3 δ̃mðk; tÞe

ik·x ð8Þ

is the inverse Fourier transform.
Given Eq. (3), the total matter power spectrum can be

written,

Pðk; tÞ ¼ D2þðtÞPðk; t0Þ þM2ðtÞΠðkÞ; ð9Þ

where M2ðtÞΠðkÞ is the magnetic-field-induced matter
power spectrum.

IV. THE MODE-COUPLING INTEGRAL

We now calculate ΠðkÞ assuming some spectrum of
PMFs. We define the power spectrum PBðkÞ of the
magnetic field (today) by

hBpðkÞB�
p0 ðk0Þi ¼ ð2πÞ3δDðk − k0Þδpp0

1

2
PBðkÞ; ð10Þ

where BpðkÞ are coefficients in the Fourier expansion,

BðxÞ ¼
X
p

Z
d3k
ð2πÞ3 e

ik·xBpðkÞϵ̂pðkÞ; ð11Þ

of the magnetic field today. The two polarization (unit)
vectors ϵ̂pðkÞ, p ¼ f1; 2g, are orthogonal to k and to each
other. Given the completeness relation,

X
p

ϵ̂p;αðkÞϵ̂�p;βðkÞ ¼ δαβ −
kαkβ
k2

; ð12Þ

for the polarization vectors (where the subscripts α, β
denote Cartesian components), the Cartesian components
BαðkÞ of the magnetic field satisfy

hBαðkÞB�
βðk0Þi ¼ ð2πÞ3δDðk − k0Þ 1

2

�
δαβ −

kαkβ
k2

�
PBðkÞ;

ð13Þ

as in prior literature.
From Eq. (3), it follows that

ΠðkÞ ¼ α2PvðkÞ; ð14Þ

where PvðkÞ is the power spectrum for vðxÞ, defined by

hṽðkÞṽ�ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPvðkÞ; ð15Þ

The Fourier coefficients for vðxÞ are written

ṽðkÞ ¼
X
p1p2

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 ð2πÞ

3δDðk1 þ k2 − kÞ

× k · ½ðk1 × ϵ̂p1
ðk1ÞÞ × ϵ̂p2

ðk2Þ�Bp1
ðk1ÞBp2

ðk2Þ;
ð16Þ

where pi is the index of the polarization vectors identified
with the vector ki. The Dirac delta function restricts the
three vectors k, k1, and k2 in Eq. (16) to be the sides of a
triangle, as shown in Fig. 1. We take kk ẑ, and choose the
triangle to be in the y-z plane. One of the polarization unit
vectors for k1 can be chosen to be in the x̂ direction and the
other in the plane, and similarly for k2. There are four
possible combinations of the polarization vectors for k1

and k2. However, only two of these give nonzero
k̂ · ½ðk̂1 × ϵ̂p1

ðk1ÞÞ × ϵ̂p2
ðk2Þ�; the combinations where

k̂1 × ϵ̂p1
ðk1Þ and ϵ̂p2

ðk2Þ are either both out of the plane
or both in the plane contribute nothing. A nonzero con-
tribution arises only when one is in the plane and the other
is out. As shown in Fig. 1, one of these combinations gives

k̂ · ½ðk̂1 × ϵ̂p1
ðk1ÞÞ × ϵ̂p2

ðk2Þ� ¼ cos θ ¼ k̂ · k̂1 ≡ μ1;

ð17Þ

and the other gives

k̂ · ½ð̂k1× ϵ̂p1
ðk1ÞÞ× ϵ̂p2

ðk2Þ� ¼ cosγ ¼ k̂ ·k̂2≡μ2: ð18Þ

ADI, CRUZ, and KAMIONKOWSKI PHYS. REV. D 108, 023521 (2023)

023521-2



The needed Fourier amplitudes can thus be written,

ṽðkÞ ¼
Z

d3k1
ð2πÞ3

Z
d3k1
ð2πÞ3 ð2πÞ

3δDðk−k1 −k2Þkk1

× ½B1ðk1ÞB1ðk2Þð k̂ ·k̂1Þ þB2ðk1ÞB2ðk2Þðk̂ ·k̂2Þ�;
ð19Þ

where the subscripts p on BpðkÞ refer to the two polari-
zation amplitudes associated with k.
Assuming a Gaussian distribution for the magnetic

fields, we use Wick’s theorem along with Eq. (15) and
find the power spectrum to be

PvðkÞ ¼
1

4
k2

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 ð2πÞ

3δDðk − k1 − k2Þ

× PBðk1ÞPBðk2Þ½k21ðμ21 þ μ22Þ þ 2k1k2μ1μ2�: ð20Þ

We then note that k1 and k2 are here dummy variables that
are integrated over, and so we can make the replacement
k21 → k22 in the first term. We then use k ¼ k1μ1 þ k2μ2 and
k22 ¼ k2 þ k21 − 2kk1μ1 (as will be imposed by the Dirac
delta function) and d3k1 ¼ ð2πÞk21dk1dμ1 and add the
prefactor relating ΠðkÞ to PvðkÞ to obtain

ΠðkÞ ¼
�
αk
4π

�
2
Z

∞

0

k21dk1

Z
1

−1
dμ

× PBðk1ÞPB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k21 − 2kk1μ

q �

× ½k2 þ ðk2 − 2kk1μÞμ2�; ð21Þ

where we dropped the subscript 1, setting μ ¼ μ1.
If we proceed as above but without making the replace-

ment k1 → k2 in the integrand in Eq. (20), then we arrive at
the same result,

ΠðkÞ ¼
�
α

4π

�
2

k3
Z

∞

0

k31dk1

Z
1

−1
dμ

×
PBðk1ÞPBð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k21 − 2kk1μ

p
Þ

k2 þ k21 − 2kk1

× ½2k2μþ kk1ð1 − 5μ2Þ þ 2k21μ
3�; ð22Þ

for the power spectrum derived in Ref. [4]. A simple
numerical integration verifies that Eqs. (21) and (22) agree.
The simpler expression, Eq. (21), avoids a quantity that
goes to zero in the denominator of the integrand and is thus
a bit more easily evaluated numerically.

FIG. 1. Schematic triangles of the vectors k, k1, and k2 along
with the polarization vectors ϵ̂pi

ðkiÞ orthogonal to ki used to
describe the magnetic field vectors. Only the terms in which
ϵ̂pi

ðkiÞ both point in the þx̂ direction (out of the page) or in the
ŷ-ẑ plane (in the plane of the page) will contribute a nonzero
integrand in Eq. (16).

FIG. 2. A comparison plot for the magnetic contribution to the
linear matter power spectrum (The linear power spectrum was
computed using CLASS [20].) for PBðkÞ ¼ ABknB. The dashed
lines correspond to the contribution without the 1=ð4πÞ2 factor,
reproduced according to Refs. [2,11]. Whereas the solid lines
correspond to the contribution according to the derivation in this
work. The parameter B0 represents the magnetic field strength
today in nGauss, and the cutoffs are at the magnetic Jeans scale;
both are determined in a similar manner as described in
Refs. [2,11].
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V. DISCUSSION

Our analytic result for the matter power spectrum is
smaller by a factor of ð4πÞ2 than the analytic expressions in
several prior papers [5–7,19] (and an earlier version of
Ref. [18]), as we visualize in Fig. 2. We have not been able
to trace the origin of these discrepancies, but in at least one
case [6], we believe it is due partially to inconsistencies in
Fourier conventions. We have also checked that the errors
are propagated in the numerical work and also in other
papers [8,11–14] that use the results.

We advocate using Eq. (21) in future work on density
perturbations from PMFs.
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