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Global dynamics in Einstein-Gauss-Bonnet scalar field
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We study the dynamics of the field equations in a four-dimensional isotropic and homogeneous spatially flat
Friedmann-Lemaitre-Robertson-Walker geometry in the context of Einstein-Gauss-Bonnet theory with a
matter source and a scalar field coupled to the Gauss-Bonnet scalar. In this theory, the Gauss-Bonnet term
contributes to the field equations. The mass of the scalar field depends on the potential function and the Gauss-
Bonnet term. For the scalar field potential, we consider the exponential function and the coupling function
between the scalar field and the Gauss-Bonnet scalar is considered to be the linear function. Moreover, the
scalar field can have a phantom behavior. We consider a set of dimensionless variables and write the field
equations into a system or algebraic-differential equations. For the latter, we investigate the equilibrium points
and their stability properties. We use compactified variables to perform a global analysis of the asymptotic
dynamics. This gravitational theory can explain the Universe’s recent and past acceleration phases. Therefore,
it can be used as a toy model for studying inflation or as a dark energy candidate.
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I. INTRODUCTION

In the theory of general relativity, the physical space is
described by a four-dimensional Riemannian manifold [1],
and Ricci’s scalar of the Levi-Civita connection expresses
the Lagrangian of the field equations. In [2], it has been
shown that the Einstein-Hilbert action integral of general
relativity generated by Ricci’s scalar with or without the
cosmological constant term is the unique Action which
gives second-order field equations in a four-dimensional
manifold. That is not true in higher-order theories, where in
[3], the most generic action integral was presented, provid-
ing second-order differential equations in an arbitrary
dimensional spacetime. The so-called Lovelock gravity
is the natural extension of general relativity.

General relativity is a well-tested theory for the descrip-
tion of astrophysical phenomena [4] and compact objects
[5,6]; nevertheless, general relativity fails to explain the
observational phenomena in cosmological scales. The
cosmological observations indicate that the Universe at
present is under an acceleration phase known as late-time
acceleration [7,8]. However, it was proposed that the
Universe had been under a previous acceleration phase
in its very early stages. The inflationary mechanism can
solve various observational phenomena such as the horizon
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problem, the flatness problem, the homogeneity of the
Universe and other observations [9,10].

For the description of inflation, a scalar field is intro-
duced in gravitational theory; in the slow-roll limit, the
scalar field potential dominates the cosmological fluid
drives acceleration dynamics to occur [11]. Furthermore,
scalar fields have been introduced as dark energy candi-
dates for the description of the late-time acceleration, see
for instance [12—19] and references therein. Besides, scalar
fields can attribute the degrees of freedom provided in the
field equations from the introduction of geometric invar-
iants during the modification of the Einstein-Hilbert action
integral [20]. There is a taxonomy of modified theories of
gravity proposed in the literature, which is divided into DE
models linked to a fluid with the capability of accelerating
the Universe and models in which the Einstein field
equations of the general theory of relativity are modified;
see the review articles [21-23].

Gauss-Bonnet gravity belongs to the family of Lovelock’s
theory, where the Gauss-Bonnet scalar is introduced in the
action integral [24-28]. Compared to other modified gravity
theories, some review of such theory is given in [29], and
recently, was studied the cosmology of such theory con-
cerning GWs [30-33].

The Gauss-Bonnet scalar is a topological invariant in a
four-dimensional manifold, meaning it does not provide
any terms in the field equations. In [34], to overpass this
problem, the authors introduced a re-scale on the Gauss-
Bonnet coupling constant such that a singular limit is
introduced in Lovelock’s gravity in the limit of the four

© 2023 American Physical Society
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dimensions (see, however, comment on this work in [35]).
With the latter, the Gauss-Bonnet term introduces nontrivial
terms to gravitational dynamics, and the field equations
remain free from Ostrogradsky instabilities. The introduction
of a nonlinear function of the Gauss-Bonnet scalar is another
attempt to introduce nontrivial dynamical terms in the field
equations in four-dimensional gravity [36—39]. Interestingly,
in [37] was presented the possibility of eternal universes in
Gauss-Bonnet theories of gravity in four dimensions for zero
spatial curvature and a constraint over the derivative of the
coupling function. Moreover, when the spatial curvature is
present, they proposed generic results about the nature of the
singularities. The authors generalized [40].

In this work, we are interested in the Einstein-Gauss-
Bonnet scalar field gravity, where a scalar field coupled to
the Gauss-Bonnet term is introduced in the gravitational
action integral. The coupling function ensures that the
Gauss-Bonnet term survives during the variation and
affects the gravitational dynamics. In this theory, the mass
of the scalar field depends on the Gauss-Bonnet compo-
nent. The theory has been studied in cosmological scales
[37,41,42] and astrophysical objects [31,43]. In the limit of
a spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) the phase-space analysis for the field equations
performed in [44-46]. It was found that the only equilib-
rium point where the Gauss-Bonnet term contributes to the
cosmological fluid is that of the de Sitter universe.
Nevertheless, in [47], a systematic analysis of the phase-
space was presented where it was found that the new
scaling solutions are supported in the Einstein-Gauss-
Bonnet scalar theory, where the Gauss-Bonnet term con-
tributes to the cosmological fluid. In the following, we
extend the analysis presented in [47], where we introduce
an ideal gas in the field equations. The latter is necessary to
investigate if the Einstein-Gauss-Bonnet scalar theory can
reproduce the cosmological history and to infer the theory’s
viability.

Interestingly, the model by [48,49] has no inflaton
potential, but the inflaton couples to the Gauss-Bonnet term.
In the case of quadratic coupling, they find inflation occurs
with a graceful exit. Moreover, in [50], gradient instability
exists in the tensor perturbations in this inflationary model.
They further prove the no-go theorem for the Gauss-Bonnet
inflation without an inflaton potential was proven.

The dynamical analysis of the gravitational field equations
is a powerful method for the analysis of the asymptotic
dynamics of the theory [51,52]. Gravity is a nonlinear theory,
and even in cosmological studies where the field equations are
ordinary differential equations, exact and analytic solutions
are challenging to be found. Moreover, we can study
asymptotic solutions’ existence conditions and stability
properties by analyzing the dynamics. Thus, we can solve
the initial value problem and reconstruct the cosmological
evolution and history [47,53]. The method has been widely
applied in various gravitational models in cosmological
studies [46,54—69] and for analyzing compact objects [70,71].

The structure of the paper is as follows. In Sec. II, the
gravitational theory of our consideration, which is that of the
four-dimensional Einstein-Gauss-Bonnet theory with a sca-
lar field coupled to the Gauss-Bonnet term is presented. We
consider a quintessence and a phantom scalar field. In
Sec. IlI, we perform a detailed analysis of the phase-space
for the exponential scalar field potential V(¢) = Vye?? and
the linear coupling function f(¢) = fo¢. In Sec. 1V, we
consider the case where the scalar field is massless. Section V
studies the case where the model has no scalar field potential.
Finally, we summarize our results in Sec. VL.

II. EINSTEIN-GAUSS-BONNET SCALAR FIELD 4D
COSMOLOGY WITH MATTER

The gravitational theory of our consideration is that of
the four-dimensional Einstein-Gauss-Bonnet theory with a
scalar field coupled to the Gauss-Bonnet term. Hence, the
gravitational action integral reads [38]

s= | d4x¢——g(§—§gw¢w¢w—v<¢> —f(¢>G+me),
()

where R is the Ricci scalar of the metric tensor g,,, ¢ is the
scalar field, which inherits the symmetries of the background
space, parameter ¢ takes the values € = 41 indicates if the
scalar field ¢ is quintessence (¢ =+1) or phantom
(e =—1), V(¢) is the scalar field potential, G is the
Gauss-Bonnet term, f(¢) is the coupling function, which
is considered to be a nonconstant and L. 1S the
Lagrangian for the matter source. For an ideal gas with
energy density p,,, the latter Lagrangian reads L .10 = —Pom-

For a spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) geometry with scale factor a(¢) and line
element

ds? = —dt* + a*(t)(dr* + r*(d6* + sin® 0d¢?)), (2)
the Ricci scalar and the Gauss-Bonnet scalars are
R=6(2H*+H), (3)
and
G = 24H*(H + H?). (4)

in which H = % is the Hubble function, where a dot means
derivative with respect to the independent variable ¢, that
. - dll
1S a = a

Thus, from the action integral (1) we can write the point-

like Lagrangian for the field equations

L(a,a,¢.¢) =—3aq* +§a3¢2 + 8&3f,4,g.b -a’V(p)—d’p,,.
(5)
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where for the matter source it holds

pm +3H(py + pw) =0, (6)

in which p,, is the pressure for the matter source. Hence,
for a constant equation of state parameter, i.e. p,, = W,
it follows

P = poa—3(l+wm)’ (7)

from where it follows that (5) reads [38]

L(a,a, ¢, ) = —3ad® + §a3é52 + 8 4 — V()
— poa™>"n. (8)

For f , = 0, the latter Lagrangian function describes the
scalar field theory without the Gauss-Bonnet term. Indeed
in a four-dimensional spacetime, the Gauss-Bonnet term is
a total derivative, and its contribution to the Euler-Lagrange
equation is eliminated.

The gravitational field equations follow from the varia-
tion of the latter Lagrangian with respect to the dynamical
variables {a, ¢}, while the constraint equation is the
Hamiltonian function.

Indeed, the field equations are

—A8H>Pf (§)? = 2p, =2V () —ed” =0, (9)

~ GHH /()3 (#) + 5 e = V(@) + W
+ HX(=84°f"(¢) — 8df'(#) +3) +2H =0,  (10)
3H(-8H(H + H*)f'(¢) —edp) = V'(¢) —ep = 0. (11)

The effective density and pressure of the scalar field are
given by

Py = 5 DUSH['(9) + ) + V(@). (12

by SHf'(9)V'(¢) _eV(9)

P _BeHpf (9) F (92 +e —8cHS () f' () +e

+192H6f’(¢)2+€¢(16H2(¢f”(¢)—4Hf’(¢)>—6<?>)
16eHf' (§) —2(96H*f'()? +€)

’

(13)

dx 1

where we can define the effective equation of state
(EoS) wy = 7%,

In the following, we shall perform a detailed analysis
of the phase-space for the exponential scalar field potential
V(¢) = Ve and the linear coupling function f(¢) = fo¢.

III. LINEAR COUPLING
The field equations (9)—(11) become

—48f H3p 4+ 6H? — 2p,, —2V(§) —ed® =0,  (14)
— 16foHH ¢ +H?(3 — 8f o) — 16foH>p + 2H — V()
—3H(8foH(H + H?) +ed) —V'(¢p) —ep = 0.  (16)

together with the Eq. (6).

A. Dynamical system in dimensionless variables

To study the phase space, we introduce the following
normalized dimensionless variables,

e ¢ v V(p)
VOVH? +1° V3IVH? + 17
P ~H
Cisweny " Virm (17)

With these definitions, the first modified Friedmann
equation is written in the algebraic form as

6(7> = 1) (= +ex* +y* +2) —48V6fo’x = 0. (18)

Using Eq. (18) we can find the following definition for z

+ 177 —ex? —y2 (19)

8\/6f0113x
n—1

Observe that when x = y = 0, we acquire z = %, which
means Q,, = p,,/(3H?) = z/n* = 1, and we have matter-
dominated solutions.

By combining (17) and (19) we can write system (15)
and (16) as follows

— = — [n(192f3n*x(1* = 3w,,) + V6 £ (? = D)n(?(2(3w,, — 1ex? = 3w, — 1) + 3(w,, — 5)ex?))

dr K

— (1P = 1)y* (V6112 (A = 12f(w,, + 1)) = 2) + 3nx(16 oA + (8 d + Wy + €) — (w,, + 1)e))
+n(3e(* = 1)2x((w,, + 1) + x*(e = wy€) = 2))]. (20)
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dy y > 7 2 2 8\/6fowm’73x 2 2 2
D _ Y 1384 _ 1)y (LWl —wy€) — (2 -
4Tk [38 fon' + 6e(n )n = +x*(e =wye) = (wy + D = 1%)
— 16fo(n* — )P (V6enx + 32y?) + 2\/6/1)6], (21)
a1 NI

% {(n2 -1) <192f%n6 + 3e(n? - 1)2(

+ (=8fo(n* = 1)2*(V6enx + 3/18y2))} 7

where we defined K := K(x,y,n,¢, fo) = 192f3* +
2e(n? — 1)(8V6fgnx +n*—1) and introduce the time

derivative df/dr = 1/v/'1 + H*df/dt. We will also con-
sider -1 <xp<land 0<w, <1.

B. General case for e=1
The equilibrium points for system (20)—(22) fore = 1 in
the coordinates (x,y,#) are the following:
(1) M = (0,0,0), with eigenvalues {0, 0, 0}. The asymp-
totic solution is that of the Minkowski spacetime.
(2) P15, =1(0,0,£1), with eigenvalues {%I,=2,
+(1 —=3w,,)}. These points describe a universe
dominated by the Gauss-Bonnet term, and they
verify that w, = —% and g = 0. These points are
(a) P, is a source (P, is a sink) for 0 <w,, < %
(b) saddles for { < w,, <1, and

(c) nonhyperbolic for w,, = 1.

) P3:(O,1 /ﬁ,, /ﬁ) This  point  exists
for fo=0 and A#0 or f, <0 and A >0 or

_ 3VA(w,,+1)
V8o

ViB\/324244/512418) \/71(\/51/12+18—3\/3/12+2)} This
20/324+2,/1=8, 24/31242+ /3-8, '

W,=0, e=1, A=1, fo=-1

fo > 0and A < 0. The eigenvalues are {

n -1

wp,=1/3, e=1, A=1, fo=-1

+ x2(€ = Wpe) = (W, + 1)(3% = '72)>>

(22)

point describes a de Sitter universe, and we verify that
wy = —1 and g = —1. We also verify that the point is
a saddle.

@ Py = (0. =\ )

with eigen-

values {3\/71(wm+1) VA3V 322 42—1/5122+18)
Vi-sfo T n/3Re2/i8f,
A/272 A/ 2
VIGY32 121/ 51 HS)}. This point existence condi-

21/32242,/1-8f,
tions, values for @, g, physical interpretation and
stability are the same as P;.
InFig. 1 we present the stability analysis for system (20)—(22)
with e = 1 and different values of the parameters 4 and f). We
consider y > 0; however, the system is unbounded, sug-
gesting nontrivial dynamics at infinity. We also considered the
three cases w,, = 0 (dust), % (radiation) and 1 (stiff matter). A
summary of the results of this section is presented in Table I.
Figure 2 displays the expressions wy(7), x(z), y(z),
and 7(z) evaluated at a solution of system (20)—-(22)
for ¢ =1 for the initial conditions for the left plot are

x(0) = 0.001,y(0) = /=47 1(0) = — /%7 (e, near

the saddle point P53). The solution is past asymptotic to @y =
—1 (¢ = —1), then remains near the de Sitter point Ps,
then tending asymptotically to wj = —% (the Gauss-Bonnet

wp=1, e=1, A=1, fo=-1

FIG. 1.

the three cases w,, = 0,1, 1.

130

Phase-space analysis for system (20)—(22) for e = 1 and different values of the parameters 4, f. Here we consider ¥ > 0 and
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TABLE 1. Equilibrium points of system (20)—(22) for ¢ = 1 with their stability conditions. Also includes the value of w, and q.

Label X y n Stability wy q
M 0 0 0 Nonhyperbolic Indeterminate Indeterminate
Py 0 0 1 Source for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -3 0
P, 0 0 -1 Sink for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -1 0
P; 0 ) \/T Saddle -1 -1
=81 2=8f0o
P, 0 1 -/ Saddle -1 -1

eigenvalues slightly change to {—3%—%%1),

_ VaBVER-2+V512-18) \//—1(\/5122—18—3\/3/12—2)} there-

point P,) from below. The initial conditions for the plot
on the right are x(0) = 0.001,y(0) = 0.001,%(0) = 0.9
(i.e., near the source point P;). The solution is past

. | . . 2V32-2VA-8f0 ' 2V312-2V1-8f0
asymptotic to wy = —3,q = 0 (zero acceleration), then it fore the stability changes to
grows to my, g > 0, finally, it tends asymptotically to @, = (a) a sink for
0,g = % describing a matter-dominated solution. 1 fo<0,0<i< \/; or

Gi) fo >0, —\ﬁ</1<o,

. 1 f =-1
C. General case for ¢ (b a saddle for

The equilibrium points for system (20)—(22) are the same (i) fo<0, 1> \/' or
as in Sec. [II B plus some additional points, the complete
list of equilibrium points in the coordinates (x,y,#) is the (i) fo>0,1<~- \/
following. /1
(1) M = (0,0,0). The stability analysis and physical @) Py= ( Vo= 7rilVo= Sf) The existence con-
interpretation are the same as in Sec. III B. ditions and physical interpretation are the same

(2) P15 =(0,0,+1). The stability analysis and physi- as in the Sec. IIIB however, the second and

cal interpretation are the same as in Sec. III B. . . . 30wy +1)
3 3 ) . third eigenvalues slightly change to {?
3) P3= (0, \ /W’ A /W) The existence condi- 4=8f0
. o VAR . VABV32-2-V512-18) VA(3V322-2+V5122—-18) theref
tions and physical interpretation are the same as Wirkavisto | 2vV3rR—vioso eretore
in the Sec. III B; however, the second and third the stability changes to
‘ E=1,f0=1,A=—2,Wm=0 ‘ ‘ €=1,f0=1,A=—2,Wm=0
1.5¢ ; -
' ] 1.5
1.0
L N ‘ T
0.5} F ’ b 4
I B fw, 05 1w,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . ] X 0.0 4o X
-050 T / Ty ) s y
-1.0f Poeen 708 1. .4
‘ ‘ ‘ ] -1.0f—— : : :
40 -20 0 20 40 -40 -20 0 20 40

T

FIG. 2. wy(7), x(7), y(z), and 7(z) evaluated at a solution of system (20)—(22) for € = 1. The initial conditions for the left plot are

x(0) = 0.001, y(0) =, /A o ,1(0) = —, /ﬁ (i.e., near the saddle point P5). The solution is past asymptotic to w, = —1 (¢ = —1),
then remains near the de Sitter point Ps, then tending asymptotically to wy = —% (the Gauss-Bonnet point P,) from below. The initial
conditions for the plot on the right are x(0) = 0.001, y(0) = 0.001,7(0) = 0.9 (i.e., near the source point P;). The solution is past
asymptotic to wy = —%,q =0 (zero acceleration), then it grows to w,,q > 0, finally, it tends asymptotically to w, =0, g :%
describing a matter-dominated solution.
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(a) a source for
) f0<o,0<,1<\@or
Gi) fy >0, —\/§<A<o,
(b) a saddle for
Q) fy<0,1> \@or
(i) fo>0,4<—/3

— / 1 1 H :
(5) P5 = ( m, O, \/§ m), with €1gen-
3wutl)  _9(4V10fy+V3) 34 }

VLol (4V30£0+3)" " /40v/30f+30
This point exists for f, > 0, the asymptotic solution
it describes is that of a de Sitter universe; also, we
verify that w, =—1 and g = —1. The stability
conditions are
(a) a sink for f; >0, 1 <0,

(b) a saddle for f, >0, 4 > 0, and
(c) nonhyperbolic for f, >0, A = 0.

(6) Pg= (— /W,O,—\@ m), with eigen-

94VI0fp+V3)  B(wutl) 32 }
(4V30fo+3)" 7 VSl V40V307+30)
This point exists for f, > 0, the asymptotic solution
it describes is that of a de Sitter universe; also, we
verify that w, = —1 and g = —1. The stability
conditions are

(a) a source for f >0, 4 <0,

values

values {

Win=0, €=—1, A=1, fy=—1

-1.0
Wa=113, €==1, A=—1, fy=1

Win=0, €=—1, A=—1, fy=1

(b) a saddle for f, >0, A > 0, and
(c) nonhyperbolic for f, >0, 1 = 0.

_ / 1 _ 1 1
(7) P7 - ( 5_20\/§f0’ 07 \/§ 3_4\/3_0f0>, WIth

. 31 .
eigenvalues A, = —32—— and 1 iven
& ! 30-40v/30f, 23 &

b {9( Vv (\/5_4\/mfo)zwm_4mf0(wm+2)+\/§(wm +2))
y 2(3_4mf0)3/2 )

_9 (\/§—4\/-1_0f0)zwm+36\/mfo(Wm+2)_9\/§(wm+2)} This
2(3-4/30f,)" .

point exists for f; <0, the asymptotic solution it
describes is that of a de Sitter universe; also, we
verify that w, = —1 and g = —1. The stability
conditions are

(a) a source for f <0, 4> 0,

(b) a saddle for f, <0, 1 <0, and

(c) nonhyperbolic for f, <0, 1 =0.

_(_ T 1 :
®) PS_( \/ 5—20\/'3§f0’0’\/§ 3—4\/@fo>’ with

34
30-40V/30f,

b {9\/(ﬁ—wﬁfo>2wm+36JEfo(wm+2)—9ﬁ(wm+2)
y 2(3-4v/30f,)? :

_a (x/?—4\/ﬁfo)Zwm—4x/ﬁfo(wm+2)+x/§(wm+2))} This
2(3-4v/30f0)** :

eigenvalues 1; = — and 4,3 given

Wa=113, =1, A=A, fy=—1

FIG. 3. Phase-space analysis for system (20)—(22) for e = —1 and different values of the parameters 4, f,,. Here we consider ¥ > 0 and
the three cases w,, = 0,1, 1.
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TABLE II.  Equilibrium points of system (20)-(22) for e = —1 with their stability conditions. Also includes the value of w, and g.

Label X y n Stability oM q
M 0 0 0 Nonhyperbolic Indeterminate Indeterminate
Py 0 0 1 Source for 0 <w,, < 1/3

Saddle for 1/3 <w,, <1

Nonhyperbolic for w,, = 1/3 -3 0
P, 0 0 -1 Sink for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -1 0
P, 0 i A Saddle -1 -1
7=8f 4=8fo
P 0 —\ [ Saddle -1 -1
4 par =80
P 1 0 1 Sink for f5 > 0,4 <0
> 204/9f+5 V3 4/30fo+3 fo
Saddle for f5 > 0,4 <0
Nonhyperbolic for fy, > 0,4 =0 -1 -1
P 1 0 1 Source for >0,4<0
6 204/2f)+5 V3 4V/30f(+3 fo
Saddle for fy > 0,4 <0
Nonhyperbolic for f, > 0,4 =0 -1 -1
1
P, m 0 -3 AV, Source for f, <0,A>0
3
Saddle for f, <0,4 <0
Nonhyperbolic for f, <0,4 =0 -1 -1
P - —1 0 1 Sink for f, <0, >0
8 5220\/57, V3 TS fo
Saddle for f, <0,4 <0
Nonhyperbolic for f, <0,A =0 -1 -1

point exists for fo <0, the asymptotic solution it e consider y > 0; however, the system is unbounded,
describes is that of a de Sitter universe; also, we

verify that wy = —1 and g = —1. The stability
conditions are

suggesting nontrivial dynamics at infinity. We also considered
the three cases w,,, = 0 (dust), % (radiation) and 1 (stiff matter).

(a) a sink for f, <0, 2> 0, A summary of the results of this section is presented in

(b) a saddle for f, <0, A < 0, and Table IL. '

(c) nonhyperbolic for f, <0, A = 0. In Fig. 4 we present the expressions @, (7), x(z), y(z),
InFig. 3 we present the stability analysis for system (20)—(22) and 7(z) evaluateq at the SO?L}thI‘l of system (20)—(22)
with € = —1 and different values of the parameters 2 and fO- for ¢ = —1. The initial conditions for the left plot are

e=-1,f=1,A=-2,w,,=0 e=-1,f=1,A=-2,w,,=0
150 - ' T 1of T L ] ' R
1.0 ] 1 ]
————— -1/3 0.5} 4 - =113
0.5 o e 14
ool — Wy 0.0 — Wy
77777777777777777777777777777777 i X X
S / """" Yy -05 Doy
-1.0 n n
‘ ‘ ‘ ‘ -1.0f—— ‘ - 2
-40 -20 0 20 40 -40 =20 0 20 40

T

FIG. 4. wy(7), x(7), y(r), and 5(7) evaluated at the solution of system (20)—~(22) for ¢ = —1. The initial conditions for the left plot are

x(0) =0.001, y(0) = , /#, n(0) = — MTfo(i.e., near the saddle point P3). The solution is past asymptotic to w,;, = —1 (¢ = —1), then
remains near the de Sitter point P, then tending asymptotically to w,, = — % (the Gauss-Bonnet point P,) from below. The initial conditions
for the plot on the right are x(0) = 0.001, y(0) = 0.001,7(0) = 0.9 (i.e., near the source point P,). The solution is past asymptotic to

Wy = —% (zero acceleration), then it tends asymptotically to a de Sitter phase w, = —1, ¢ = —1 describing a late-time acceleration.
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x(0) = 0.001, y(0) = \/; n(0) = —\ /i (ie.,
near the saddle point P;). The solution is past asymp-
totic to wy = —1 (¢ = —1), then remains near the de
Sitter point P, then tending asymptotically to w, = —l
(the Gauss-Bonnet point P,) from below. The 1n1t1a1
conditions for the plot on the right are x(0)=
0.001, y(0) = 0.001,7(0) = 0.9 (.e.,
point P;). The solution is past asymptotic to wy = —%

near the source

(zero acceleration), then it tends asymptotically to a de
Sitter phase wy = —1,q =—1 describing a late-time

acceleration.

dX 1

—— = =[P = 1)(48f0AXn + V6Z((A = 12fo(w,, + )7

ds L

IV. DYNAMICS AT INFINITY

As suggested before, we are interested in the behavior of
the dynamical system at infinity; for that purpose, we
define the new compact variables

X y

X=—— Y =—— 23
V122 +y? VI+a%+y? .
and the new derivative
af df
=7, Z=V1-X?>-Y>2 24
ds dr’ (24)

With these definitions, we obtain the following dynamical
system

—))r

+ (48fein(n® — X3 + \/62((96/1f(2) —12(w,, = 5)efo + et = 2e(A — 6f5(w,, — 5))n* + ed) X?
+3Z2n((192w,, /G + 84f o + (W + 3)e)* = 2((w,, + 3)e = 4fo)* + (wy, + 3)e = 16f4)X

+V6Z3 (i = 1)(ABwafo + fo)n* + (A= 12f5(w,, +

= Z2n(=3(wy, = 1)

+3Z2((6415 + wine + €)n° = 2(96w,,f§ +

)y —2))Y?
— 1)2X3 + 4V6foeZn(n® = 1)((6w,, — 2)1* + 3(w,, — 5))X>
(Wa +2)e)n*

+ (W, + 5)en® — 2€)X

—4V6fo(Bwn + 1) ZP (1 = 1))], (25)
‘Z Y[48foe/117(:1 —1)X* +V6Z((96Af2 = 12(w,, —5)efo+eA)n* —=2e(A=6f (W —5))n? +€A) X3 +3n(16f A2 = 1)Y?
+ Z2((192w,, f3+e(—wpe+e+2))n* +2e((w,, — 1)e+8foA=2)n> +e(—wye+e—16foA+2)))X>
+VOZ((1 = 1) (A= 12f 5 (wy + 1)) =)V + Z2(4f o (=26 +w,, (66 +3) + 1)1
+ (96413 — 4(6ew,, +3w,, —2e+ 1) fo +eA)n* —2edn? +€l)) X
=3Y2Z2n(? = 1) ((we+e+8f o) — (W + 1)) +3Zn* (6413 + wye+e)n* —2(w,, + Den? + (w,, +1)e)],  (26)
% = @ 8V6£0(3w,, — DeXZ (1> = 1)ip? + 3Z2((64f% + wpe + )i = 2(w,, + Den? + (wy, + 1)e)n?
=3(wy = )EX (1 = 1)° = 3Y2(* = 1)(wae + € + 8fo)n* = (wy, + De)], (27)
where
= 2(8V6foeXn(n* — 1) + Z((96/2 + €)y* — 2en? + €)). (28)

To obtain the equilibrium points at infinity, we define the cylindrical coordinates (p, 6, 1)

X = pcos(0),
such that X> 4+ Y2 — 1 corresponds to p — 1.

Then, as p — 1 we have the leading terms

d£ 1
ds 8f0€

—16fA(e — 1) sin?(0) + e(=((w,, + 1) sec*())

Y = psin(6),

n=n, (29)

3(1 — p) cos(0)[n* (8 foAtan®(0) + e((w,, + 1) sec?(0) + (w,, — e —w,, — 1))

_Wm€+wm+€+1>]’ (30)
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((e=1)cos(20) +e+ 1)

\/'/1 sin(0
2¢ ’
PR )

R T [7*(sin(0) tan(6) (8 fp4 + Wye + €)

+ (w,, = 1)€? cos(0)) — e((w,, + 1) sin(6) tan(6)
+ (w,, — 1)ecos(0))]. (32)

(31)

A. Analysis at infinity for e=1

Recall that the equilibrium points for this case are the
same ones as the finite regime in Sec. III B plus the
following additional points described in this section.
Since Y > 0, we set 0 € [0, z]. Therefore, the points at
infinity for ¢ = +1 in the coordinates (p, 0,7) are

(1) Q1,=1(1,0,£1), with eigenvalues {0,0, %/1}
These points satisfy w, = —%, g = 0, this means
that the points described a universe dominated by the
Gauss-Bonnet term.

2) 054 = (1.7, £1), with eigenvalues {0, o,—\/g/l}.
These points satisfy w, = —%, g = 0, the physical
interpretation is the same as the previous points.

The third eigenvalue corresponds to the #-axis. To analyze
the nonhyperbolic nature of the critical points in the
plane (p,7), we consider the variable 7 as the independent
variable. This is equivalent to divide the system
(30)~(32) by /1 - p2.

The points Q; , in the re-scaled system have the eigen-
space given by
sign(4)oo

(oo ooy ) O

For the points Q3,4 in the rescaled system has the eigen-
space given by
—sign(4)oo

<{0,jzf1} {0,1,0} ) (34)

The last column with infinity entries is an artefact of the

division by /1 — p? as p — 1. Therefore, by combining

the two approaches, we obtain that,
(1) Q,, with eigenvalues {+2,+2(3w,, — \/7/1}
sink) for

+2(3w,, — 1)
{1.0,0}

+2(3w,, — 1)
{1,0,0}

satisfy the following

(a) O, is a source (Q, is a
2>0,1<w, <L

(b) They are saddles for
i 1#0, 0 <w, <3,
(i) 1<0,3 <wm§l

PHYS. REV. D 108, 023519 (2023)
(c) Nonhyperbolic for A =0 or w,, = %
(2) Q34 with eigenvalues {£2, +2(3w,, — \/7/1}
satisfy the following.
(@) O3 is a source (Q, is a sink) for 1 <0,
T<w, <L
(b) They are saddles for
@ 4#0, 0<wm <l
@) 21>0, 3 < wy, < 1

(c) They are nonhyperbohc for A=0orw, = %

In Fig. 5 we present the phase-space analysis for system
(25)—(27) for € = 1 and different values of the parameters
A, fo. Where we defined the region 0 < X?+ Y2 <1,
Y >0 and —1 <5 <1 defining half a cylinder. We also
considered the three cases w,, =0 (dust), % (radiation),

and 1 (stiff matter).

B. Analysis at infinity for e= -1

As in the previous section, we consider 6 € [0, z]. The
equilibrium points for this case are the same ones from
Sec. III C plus the following the points at infinity for ¢ =
—1 in the coordinates (p, 8, 7), say,

(1) Oy, =(1,0,+1), with eigenvalues {0,0,/3}.

These points verify that w, = —% and g = 0. These
points describe a universe dominated by the Gauss-
Bonnet term, and the analysis is the same as in
Sec. IVA.

(2) Q34 =(1,7,£1), with elgenvalues {0,0, \//1}

These points verify that w, = —3 Land g = 0. These
points describe a universe dominated by the Gauss-
Bonnet term, and the analysis is the same as in
Sec. IVA.
() Os6 = (1.§.£1),

—@}. These points verify that o, = —% and
g = 0. These points describe a universe dominated
by the Gauss-Bonnet term. Using a strategy similar
to that shown in Sec. IVA that is, re-scaling the

system dividing by /1 —p? we obtain that the
stability of points Qs is given by the eigenval-
ues {:I:2,—@,—@}.

(a) Qs is a source (Qg is a saddle) for 4 < 0,

(b) Qs is a saddle (Qg is a sink) for 4 > 0, and
(c) they are nonhyperbolic for 1 = 0.

(4) Q75 = (1,2, £1), with eigenvalues {O \[’1}
These points verify that wy = —l and q=0.
These points describe a universe dominated by the
Gauss-Bonnet term. Using a strategy similar to that
shown in Sec. IVA that is, re-scaling the system

dividing by /1 — p?, we obtain that the stability of
the points Qs¢ is given by the eigenval-
ues {£2,% V34 ‘/_1}

with eigenvalues {0, —¥%*
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=1, Wy=0, A=1, fy=—1
X

=1, Wp=113, A=—1, fy=1
X

0.5-1.0

e=1, wp,=1/3, A=1, fp=-1
X 1.0
5-1.

€=1, W,,,=1, )\=1, f0='1
X

FIG. 5. Phase-space analysis for system (25)—(27) for € = 1 and different values of the parameters 4, f,,. Here we consider ¥ > 0 and

the three cases w,, = 0, 1

vanish.

(a) Q5 is a source (Qg is a saddle) for 1 > 0,
(b) Q5 is a saddle (Qy is a sink) for 4 < 0, and
(c) they are nonhyperbolic for 4 = 0.

® 0= (155 ).  with

{=¥3%,—V/31,—/32}. These points verify that

Wy = Wy, —;—‘ and g = 3(W'§_1), in Fig. 6 we see the

plot of these observables and note for instance that:
for w,, =0 the values are w, = —3%, g = —3; for

eigenvalues

w, = %the values are Wy = —1, g = —1 that is, they

0.0 0.2 0.4 0.6 0.8 1.0
Wm

FIG. 6. Plot of w; and g where we set w,, € [0,1].

,3» L. The points W , are singularities where both the numerator and denominator of the equations of the system

are de Sitter points; for w, =1 the values are
Wy = — %, g = that is, they are Gauss-Bonnet points.
These points are

(a) sources for A < 0,

(b) sinks for 4 > 0, and

(©) nonhy{)erbolic for A =0.

— 3z 1
(6) Q11,12 - 17 4 ,:I:\/W)’

{@ .\/32,1/3}. These points also verify that wy =

Wy, — 4 and g ==l

with

eigenvalues

, again in Fig. 6 we see the

plot of these observables this means that the inter-
pretation is the same as in the previous points. These
points are

(a) sources for 4 > 0,

(b) sinks for 4 < 0, and

(c) nonhyperbolic for 4 = 0.
Figure 7 shows a phase-space analysis for system (25)—(27)
for e = —1 and different values of the parameters A, f.
Here we consider Y > 0 and the two cases w,, = 0 (dust)
and % (radiation). The points W, are singularities where
both the numerator and denominator of the equations of the
system vanish.
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e=-1, w,=0, A=-1/2, f,=2

5 0.0

e=-1, wp,=0, A=1/2, fy=-2

FIG.7. Phase-space analysis for system (25)—(27) for e = —1 and different values of the parameters 4, f,,. Here we consider ¥ > 0 and
the two cases w,, = 0, % The points W , are singularities where both the numerator and denominator of the equations of the system

vanish.

V. DYNAMICAL SYSTEM ANALYSIS
FOR: y=0, A=0

In this section, we study the case where the model has no
scalar field potential, equivalent to setting 1 =y =0 in
system (20)—(22). With these assumptions, we have a
reduced 2-dimensional system given by

dx _ 1
dr K
+ (4 2)€) £ (0 + S)er? = 26)
+n(=4v6fo (3w, + (i = 1)
+4V6foen(r? — 1)x2((6w,, — 2)n* + 3(w,, = 5))
=3(wp = 1)(* = 1)227)], (35)

[;1(3x(;16(64f% +w,e+e)— 2114(96f(2)wm

D L7 = 1192340 + 86 By — Vel = i

dr K
+3e(? = 1)* (W + D) + 2% (e =wye)))]. (36)

A. Dynamical analysis for e=1

The equilibrium points for system (35) and (36) in the

coordinates (x,7) are the following.

(1) M = (0,0), with eigenvalues {0, 0}. The asymptotic
solution is that of the Minkowski spacetime.

(2) P,=(0,£1), with eigenvalues {£2,4(1-3w,,)}.
The asymptotic solution described by P;, is a
universe dominated by the Gauss-Bonnet term. We
also verify that w, = —%, and g = 0. These points are
(a) P; is a source (P, is a sink) for 0 <w,, < %,

(b) saddles for 1 < w,, <1, and

(¢) nonhyperbolic for w,, = 1.

In Fig. 8 we present a phase portrait of system (35) and (36)
for ¢ = 1, for the three values w,, = 0 (dust), % (radiation)
and 1 (stiff matter). A summary of the analysis performed
in this section is given in Table III.

B. Dynamical analysis for e= -1

The equilibrium points of system (35) and (36) fore = —1
in the coordinates (x, y) are the same as in the previous section
plus some additional points, the complete list is the following
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FIG. 8.

e=1, =3, w,,=0 e=1, =3, w,,=1/3 e=1, fo=3, wp=1
1.0 —~ 1.0 I e 0p PR
“s //// 1\ \\ ) \ \\\ il // /vlt/ ( d L \\ 1/'/ /‘/‘d‘7
\\\\ [ ~ | N ~— |
SN TN I e P
05 \l\\ ST 0.5 RN l“ e 0.5/ e \.\T« / e
B\ | - \ \ S — N\ AT
S N T B el I e, S
= 0.0 wx T \' T '\!}'X Il*\"j\"'\:} BB ! = 0.0 h \'1 E-\'-- \‘ !\:b\ ‘\J = 0.0 77--" M \. """"
™ ) AN P e —.
ANNRNRN i \\\\\,, N AL . PR o 7 ~
JPrTad . — - ~— .- '<\\ \ T— - /k‘_-"" ~a_ T
—0.5f == sl \ 1\ R -0.5F .- 20 [\ -05f .-t . \ Th——
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I N, ol W @ SO N S e
” ) 0 2 4 Za ) 0 2 4 ! ) 0 2 4

Phase portrait for (35) and (36) for € = 1, for w,, = 0,

13

1. The black-dashed lines correspond to the values where K = 0,

which corresponds to singular curves where the flow direction and the stability change.

6]

(@)

3

C)

M = (0,0), with eigenvalues {0,0}. This is a
Minkowski point, and the analysis is the same as

in Sec. VA.
P, = (0,£1), with eigenvalues {£2, +(1 — 3w,,)}.

These are Gauss-Bonnet points; the analysis is the

same ? in Sec VA.
P; = ) with eigenvalues
’ \/20\/Wf0+5 \/4x/—fo+? s

{_ 3<wm+l) — 4\/—f0+\/—

VBt V300047
for f, > 0 and it describes a de Sitter universe since
wy = —1 and g = —1. This point is a sink for all

}. This point exists

fo>0and w, E[()l]
P, = (— V3 ) with eigenval-
\/17_°f0+5  Vaa0fe3)
3(Wm+l) 9(4\/—f0+\/—

ues { \/4 i W00 13)7 } This point exists for
3Jo

fo =0 and it describes a de Sitter universe since

(©)

point exists for f, <0 and it describes a de Sitter

universe since wy = —1 and ¢ = —1. This point is a

source for all fo <0 and w,, € [0, 1].

P6 — (_ 1 , V3 )’
V/5-200/Tf, " V/3-4V30,

9v/ (V3=4v/10£)*w,, +36710 £ (W), +2)—=9v3(w,, 42)
2(3- 4\/—f0 32 s

IV (\/5—4\/@'0)2wm—4mfo(wm+2)+\/§(wm+2)>} This
2(3-4/30f)) " ‘
point exists for fj <0 and it describes a de Sitter
universe since wy = —1 and ¢ = —1. This point is a
sink for all f, <0 and w,, € [0, 1].

with  eigen-

values {

In Fig. 9, we present different phase portraits for system
(35) and (36) for ¢ = —1 with two configurations: in the top
row, we fix f, = 3 to show points P; 4; we also show Psg

by setting f, =

—3 in the bottom row. The values for the

w4 = —1 and g = —1. This point is a source for all ~ EoS parameter used for the plots are w,, =0 (dust), 3
fo >0 and w,, € [0,1]. (radiation), and 1 (stiff matter). A summary of the analysis
5) P = ( 1 - V3 ), with  eigen- of this section is presented in Table IV.
) s V/5-20/%f, " \/3-4V30, g
values {9(\/(\/5—4\/Wfo)zwm—4\/ﬁf'o§z,n+2)+\/§(wm+2)) C. Infinity analysis for system (35) and (36) for e=1
2(3-4v3070) The numerical results in Secs. VA-V B suggest non-
W P36V T0f 0 (W +2)9v/3 (1w +2) . trivial dynamics when x — £oo. For that reason, we
2(3-4/30f,)" } This  introduce the compacted variable
TABLEII.  Equilibrium points of system (35) and (36) for ¢ = +1 with their stability conditions. Also includes the value of w,, and g.
Label X n Stability on q
M 0 0 Nonhyperbolic Indeterminate Indeterminate
P, 0 1 Source for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 —% 0
P, 0 -1 Sink for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -1 0
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FIG. 9. Phase portrait for (35) and (36) for ¢ = —1, for w,, = 0,1, 1 and f, = £3. The black-dashed lines correspond to the values

3

where K = 0, which corresponds to singular curves where the flow direction and the stability change.

X

ST Hdf
U=—— (37) =1 —-u*=. 39
V14 x? f dr (39)
with inverse u Note that for u — £1 we have dynamics for x — oo.
X = 71 —— (38) Using the compacted variable (37) together with system
u (35) and (36) we obtain the following compacted dynami-
and the new time variable cal system
TABLETV. Equilibrium points of system (35) and (36) for e = —1 with their stability conditions. Also includes the value of w, and g.
Label Stability g q
M 0 0 Nonhyperbolic Indeterminate Indeterminate
P, 0 1 Source for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -1 0
P, 0 -1 Sink for 0 <w,, < 1/3
Saddle for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3 -1 0
P, ! V3 Sink -1 -1
204/%fo+5 VAaV30f0+3
P _ 1 ___\3 -1 -1
¢ 204/0f,+5 4V30fo+3 Source
P 1 S - Source -1 -1
’ 5-20/2f, V3-4V30,
Pg - V3 Sink -1 -1
5-20/5fo 3-4v/30f,
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FIG. 10. Phase-plot analysis for system (40) and (41) for e = 1 and f, = 3. We also consider the cases w,, = 0

lines correspond to singularities where the flow changes direction.

u = 11(1K——1u2){3(1 — ) u(6413n* (> = 3w,,)
+ (7 = 1)%e(r* (wy, + 1) = 2))
=46 s’ (i = 1)(1 =) (3w, + 1)
+4fon(r* = 1)V6 —6ulue(i* (6w, —2)
+3(Wm_5))_3(772_1)2u3(wm_1)}’ (40)

2 _
=D arp ) 6473+ 7 = 12+ 1))

+8fo(n* = n*uv6 — 6u*(3w,, — 1)e
=30 = 1)’u?(w, = 1)}, (41)

where Ky :=K(u,n, e fo) =2(V1—u?(96f3n* +

(* = 1)%€) + 8v/6 (1> — 1)ue).

Setting ¢ = 1 in system (40) and (41) and rescaling the
system dividing by v'1 — u?, the equilibrium points are the
same ones as in Sec. VA plus new points at infinity that
satisfy u = £1. We present first the new points followed by
the points from the finite regime.

(1) Q12 =(1,%£1), with eigenvalues {2,
+2(3w,, — 1)}. These points describe a universe
dominated by the Gauss-Bonnet term; we also verify
that w,, —% and g = 0. These points are
(a) Q) is a source (Q, is a sink) for 1 <w,, <1,
(b) a saddle for 0 <w,, <%, and
(¢) nonhyperbolic for w,, = 1.
Q34 =(—1,£1), with  eigenvalues  {+£2,

+2(3w,, —1)}. These are Gauss-Bonnet points;
the analysis is the same as O and Q,, respectively.

(3) M =(0,0), see Sec. VA.

(4) P, =(0,1), see Sec. VA.

(5) P, =(0,—1), see Sec. VA.

In Fig. 10, we present various phase portraits for system
(40) and (41) for € = 1 and different values of the EoS

(@)

1

,3» 1. The dashed black

parameter w,, = 0 (dust), % (radiation) and 1 (stiff matter).
These plots contain the finite regime points M and P; and
the infinite regime points Q;. In Table V, we present a
summary of the stability analysis only for the points on the
infinite regime; this table can be complemented with the
information from Table III.

D. Infinity analysis for system (35) and (36) for e= -1

Setting ¢ = —1 in system (40) and (41), the equilibrium
points are the same ones as in Sec. V B plus new points at
infinity that satisfy u = 41. As before, we present first the
new points followed by the points from the finite regime.

(1) 01, =(1,%£1), with eigenvalues {2,

+2(3w,, — 1)}. These points are Gauss-Bonnet
points, and the analysis is the same as in Sec. V C.
(2) Q34 =(-1,%£1), with eigenvalues  {£2,
+2(3w,, — 1)}. These points are Gauss-Bonnet
points, and the analysis is the same as in Sec. V C.
(3) M = (0,0), see Sec. VA.
4) P, =1(0,1), see Sec. VA.

TABLE V. Equilibrium points of system (40) and (41) for ¢ =
+1 with their stability conditions. Also includes the value of w,
and gq.

Label
0,

X

1

Stability

Saddle for 0 <w,, < 1/3
Source for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3
Saddle for 0 <w,, < 1/3
Sink for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3
Saddle for 0 <w,, < 1/3
Source for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3
Saddle for 0 <w,, < 1/3
Sink for 1/3 <w,, <1
Nonhyperbolic for w,, = 1/3

n
1

Dy

0,

W=

[SST

SIS
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FIG. 11. Phase-plot analysis for system (40) and (41) for e = —1 and f, = 3. We also consider the cases w,, = 0,3,

black lines correspond to singularities where the flow changes direction.

(5) P, =(0,-1), see Sec. VA. performed a detailed analysis of the phase space and
6) Py = ( 1 3 ) see Sec. VB. reconstructed the asymptotic behavior of the physical
’ \/ 200/D0+5 V/4V/30£0+3 parameters.
(7 P, = ( 1 ,— V3 , see Sec. VB. New dimensionless variables different from that of the
V20/Df0t5 " \/4V30f0+3

H-normalization have been introduced. We wrote the field

(8) Ps = (0,~1), see Sec. VB. equations in the equivalent form of a four-dimensional
©) Pg = (0.~1), see Sec. VB. algebraic-differential system of first-order equations.
In Fig. 11, we present various phase portraits for system  Because of the algebraic constraint, the dimension of the

(40) and (41) for ¢ = —1 different values of the EoS  latter system is reduced to three. Moreover, for p,, = 0, we
parameter w,, = 0 (dust), 1 (radiation) and 1 (stiff matter).  recover the two-dimensional system investigated in [46].
As before, we set two values for f, to show the points P34 We determined the equilibrium points for the field

and Ps . These plots contain the finite regime points M and ~ equations in the finite and infinite regimes. For the latter,
P; as well as the infinite regime points Q;. Note that the =~ we define a set of compact variables. Then, we calculated
infinite regime points are the same for both values of ¢; the asymptotic behavior of the physical parameters for each
therefore, we present the summary of the stability analysis ~ equilibrium point. For the linear coupling between the
in Table V once again, but in this case, the information can ~ scalar field and the Gauss-Bonnet component, asymptotic
be complemented with Table IV. solutions exist that describe the de Sitter spacetime or a
universe dominated by the Gauss-Bonnet scalar.
We have shown that the stability properties of the
VL. CONCLUSIONS equilibrium points depend on the nature of the ideal gas
In this paper, we have extended our previous study [46] (its equation of state parameter), the scalar field and the scalar
by introducing an ideal gas which can describe the  f of the coupling function for the Gauss-Bonnet term.
radiation, dark matter, or dark energy, depending on the For the general case described in Sec. III B with € = 1
equation of state, in the Einstein-Gauss-Bonnet scalar field ~ we obtained the following results: the Gauss-Bonnet point
model in a four-dimensional cosmology. In addition, we  P;isasource for0 <w,, < %; the Gauss-Bonnet point P, is
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a sink for 0 <w,, < % For the general case described in
Sec. III C with € = —1 we obtained the following results:
the Gauss-Bonnet point P, is a source for 0 < w,, < %; the
Gauss-Bonnet point P, is a sink for 0 <w,, < %; the

de Sitter point P53 is a sink for fp <0 and 0 < 1 < \/%;
the de Sitter point P, is a source for f, <0 and
0<i<

and 4 < 0; the de Sitter point Py is a source for f; > 0 and
A < 0; the de Sitter point P5 is a source for f, <0 and
A > 0; the de Sitter point Py is a sink for f; <0 and 4 > 0;

The numerical results suggested that there must be
nontrivial dynamics at infinity; given this, in Sec. IVA,
we investigated the infinity behavior for ¢ = 1 and obtained
the following results: the Gauss-Bonnet point Q; is a
source for 4 > 0 and % <w,, < 1; the Gauss-Bonnet point
0O, is a sink for A > 0 and % <w,, < 1; the Gauss-Bonnet

point Q5 is a source for 4 < 0 and% <w,, < 1; the Gauss-

\/%; the de Sitter point Ps is a sink for f, >0

Bonnet point Qy is a sink for 2 <0 and  <w,, < 1.

Similarly we obtained the following results fore = —1 in
Sec. IV B for the behavior at infinity: the Gauss-Bonnet
point Q; is a source for A > 0 and% <w,, <1; the Gauss-
Bonnet point Q, is a sink for 4 > 0 and % <w,, <1; the
Gauss-Bonnet point Q5 is a source for 4 <0 and
% < w,, < 1; the Gauss-Bonnet point Q, is a sink for 4 <
0 and % < w,, < 1; the Gauss-Bonnet point Q5 is a source
for 4 < 0; the Gauss-Bonnet point Qg is a sink for 4 > 0;
the Gauss-Bonnet point Q5 is a source for 4 > 0; the Gauss-
Bonnet point Qg is a sink for 4 < 0; the Gauss-Bonnet
points Qy j are sources for 4 < 0 and sinks for 4 > 0; the
Gauss-Bonnet points Qy , are sources for 4 > 0 and sinks
for 4 <O.

In Sec. V we study the case where y =0 and 4 = 0.
There we studied a two-dimensional system for the
variables x and 7. Setting ¢ = 1 in Sec. VA we obtained
the following results: the Gauss-Bonnet point P, is a source
for 0 < w,, <1; the Gauss-Bonnet point P, is a sink for
0<w, < % On the other hand, setting ¢ = —1 in Sec. VB
we obtained the following results: the Gauss-Bonnet point
PqisasourceforO <w,, < %; the Gauss-Bonnet point P, is
a sink for0 <w,, < % the de Sitter point P5 is a sink for
fo=>0and 0 <w,, < 1; the de Sitter point P, is a source
for fo > 0and 0 < w,, < 1; the de Sitter point Pj is a sink
for fy <0and 0 <w,, < 1; the de Sitter point Py is a sink
for f<0and 0 <w, < 1.

As in the general case, in Secs. VC and VD we
investigated the behavior at infinity for the reduced
system setting € = 41 and obtained the following results:
the Gauss-Bonnet point O is a source for % <w, <1;
the Gauss-Bonnet point Q, is a sink for % <w,, <1; the
Gauss-Bonnet point Q5 is a source for % <w,, <1; the

Gauss-Bonnet point Qy is a sink for % <w, <1

Observe that when x = y = 0, we acquire z = 5, which
means Q,, = p,,/(3H?) = z/n* = 1, and we have matter-
dominated solutions. Accordingly, the gravitational models
can admit a cosmological solution where the matter source
dominates, Q,, = 1 (see Fig. 2).

For investigating the viability of the theory, it is desirable
to have complete cosmological dynamics [72]; it should
describe an early radiation-dominated era, later entering
into an epoch of mater domination and finally reproducing
the present acceleration of the Universe. In the dynamical
systems language, complete cosmological dynamics can be
understood as an orbit connecting a past attractor, also
called a source, with a late-time attractor, also called a sink,
that passes through some saddle points, such that radiation
precedes matter domination. Some solutions interpolating
between critical points can provide information on the
intermediate stages of the evolution, with interest in orbits
corresponding to a specific cosmological history [51,52].

To present one possible evolution of the physical model,
Fig. 2 displays the expressions w,(z), x(z), y(7),
and 7(z) evaluated at a solution of system (20)-(22) for
e =1 for the initial conditions for the left plot are

x(0) = 0.001, y(0) = ,/#,n(O) =—, /i——éfo' The solu-

tion is past asymptotic to w, = —1 (¢ = —1), then remains
near the de Sitter point, then tending asymptotically
to w,; = —% (the Gauss-Bonnet point) from below. The
initial conditions for the plot on the right are x(0) =
0.001,y(0) = 0.001,7(0) = 0.9. The solution is past
asymptotic to w, = —%,q =0 (zero acceleration), then
it grows to wg, g > 0, finally, it tends asymptotically to
wy=0,9= % describing a matter-dominated solution.

In the same lines, Fig. 4 presents the expressions w,(z),
x(7), y(z), and 5(r) evaluated at the solution of system
(20)—(22) for € = —1. The initial conditions for the left

plot are x(0) = 0.001,y(0) = | /3757 1(0) = = /=57

The solution is past asymptotic to wy = —1 (¢ = —1),
then remains near the de Sitter point, then tending asymp-
totically to w,, = —% (the Gauss-Bonnet point) from below.
The initial conditions for the plot on the right are
x(0) = 0.001, y(0) = 0.001,7(0) = 0.9. The solution is
past asymptotic to w, = —% (zero acceleration), then it
tends asymptotically to a de Sitter phase w;, = —1,q = -1
describing a late-time acceleration.

Finally, one topic to be considered in further studies is
reconstructing the cosmological history using different
coupling functions between the scalar field and the
Gauss-Bonnet scalar.
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