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Recent interest in new early dark energy (NEDE), a cosmological model with a vacuum energy
component decaying in a triggered phase transition around recombination, has been sparked by its impact
on the Hubble tension. Previous constraints on the model parameters were derived in a Bayesian framework
with Markov-chain Monte Carlo (MCMC) methods. In this work, we instead perform a frequentist analysis
using the profile likelihood in order to assess the impact of prior volume effects on the constraints. We
constrain the maximal fraction of NEDE fNEDE, finding fNEDE ¼ 0.076þ0.040

−0.035 at 68% CL with our baseline
dataset and similar constraints using either data from SPT-3G, ACT or full-shape large-scale structure,
showing a preference overΛCDMeven in the absence of a SH0ESprior onH0.While this is stronger evidence
for NEDE than obtained with the corresponding Bayesian analysis, our constraints broadly match those
obtained by fixing the NEDE trigger mass. Including the SH0ES prior onH0, we obtain fNEDE ¼ 0.136þ0.024

−0.026
at 68% CL. Furthermore, we compare NEDE with the early dark energy (EDE) model, finding similar
constraints on themaximal energydensity fractions andH0 in the twomodels.At 68%CL in theNEDEmodel,
we find H0 ¼ 69.56þ1.16

−1.29 km s−1 Mpc−1 with our baseline and H0 ¼ 71.62þ0.78
−0.76 km s−1 Mpc−1 when

including the SH0ES measurement of H0, thus corroborating previous conclusions that the NEDE model
provides a considerable alleviation of the H0 tension.
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I. INTRODUCTION

The well-known 5-σ discrepancy between the SH0ES
collaboration’s measurement of the Hubble constant of [1]
H0 ¼ 73.04� 1.04 km s−1 Mpc−1 using type Ia superno-
vae (SNe) up to a redshift of order one and the similar
measurement of the Hubble constant by the Planck col-
laboration using the cosmic microwave background (CMB)
of [2] H0 ¼ 67.36� 0.54 km s−1 Mpc−1 is model depen-
dent. That is because the latter measurement assumes the
ΛCDM model in order to propagate the CMB signal from
the time of last scattering until today. There is, therefore,
hope that a modification of ΛCDM can resolve the Hubble
tension (for reviews see Refs. [3–6]).

However, a different, rather model-independent, con-
straint severely limits the type of modifications of ΛCDM,
which can successfully resolve the tension. From fits to
baryonic acoustic oscillations (BAO) and Pantheon SNe we
learn that there is a degeneracy between H0 and the sound
horizon rs, which requires H0 ∝ 1=rs [3,7–9]. Thus any
model that fits the CMB with a larger value of H0 needs to
do so with a smaller value of the sound horizon in order to
satisfy this constraint, indicating that new physics before
recombination is required in order to accommodate the
tension. New late-time physics after recombination, such as
phantom dark energy or late-time modified gravity models
[3,7–9], are therefore severely obstructed as a solution to
the Hubble tension.
Several proposals for new prerecombination physics

have been put forward as solutions to the Hubble tension.
But simple proposals, such as adding an extra component
of noninteracting dark radiation, have the problem that their
effect on the CMB spectrum are too large and, therefore,
they are overconstrained as a solution to the Hubble tension
[2], although interacting scenarios provide more freedom
[10–13]. One class of models capable of modifying the
expansion history sufficiently to solve the Hubble tension
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while only leading to a small localized effect on the CMB
has nevertheless emerged as particularly successful. In this
class of models, one has a new component with an equation
of state like dark energy until it decays just before
dominating the energy density of the Universe slightly
before recombination.
In the first generation of this type of model [14–18], the

EDE-model, the new component decays as a scalar field,
which is initially frozen in its potential due to Hubble
friction, becomes heavier than the Hubble rate and slowly
rolls toward the minimum of its potential where it starts to
oscillate. For the decay of the scalar field, and the effect on
the CMB to be sufficiently localized to solve the Hubble
tension, this class of models requires some fine-tuning of
the initial condition of the field and the shape of the
potential around the minimum [19]. This motivated another
group to introduce a more natural model of early-type dark
energy, the NEDE-model [20,21], where the NEDE com-
ponent decays in a fast-triggered phase transition (see also
Refs. [22,23] for closely related models, and Ref. [24] for
further microscopic explorations of the NEDE framework).
At the background level, the EDE and NEDE models have
many similarities, but they are very different at the level of
perturbations and imprint themselves differently on CMB
and large scale structure (LSS) perturbations [25,26].
Early parameter constraints on the (N)EDE models were

constructed within the Bayesian statistical paradigm, and
were thus impacted by prior volume effects [15,21,27–29].
The latter refer to the increased preference for regions in
parameter space associated with large volumes of non-
negligible likelihood, which are emphasized upon margin-
alization. In the (N)EDE models, this occurs in the limit
where the maximal energy density fraction of (N)EDE,
fðNÞEDE, vanishes, since the other model parameters, such
as the decay redshift zdecay, thus become unconstrained,
enlarging the volume in parameter space that is probed by a
sampling algorithm such as an MCMC. It was argued that
this leads to non-Gaussian artefacts in the posterior dis-
tributions for fðNÞEDE and H0, impeding a clear assessment
of the models’ ability to resolve the H0 tension without
using a late-time prior on H0 [15,21]. Most notably, this
issue has led to diverging claims about the models’ ability
to address the Hubble tension when the parameter inference
includes full-shape LSS data (see the claims in Refs. [30–
32] as opposed to Refs. [16,21,25,33,34]). A simple albeit
ad-hoc way of dealing with this issue was proposed in
Ref. [21] in the context of NEDE (but also used for EDE in
Ref. [33]). It consists in fixing all the NEDE parameters
except fNEDE close to their best-fit value. This keeps the
sampling volume finite in the limit fðNÞEDE → 0 and hence
avoids the issue. However, it comes at the price of giving up
information about the covariances between (N)EDE param-
eters, e.g., between zdecay and fðNÞEDE, and reduces the
generality of the model given that the best-fit values of the
fixed parameters may as well vary across parameter space.

Alternatively, the sampling volume issue can be avoided
by performing a frequentist analysis based on profile
likelihoods [35]. Here, the idea is to infer the likelihood
LðθiÞ of a given parameter θi by fixing all other parameters
θj≠i to their maximum likelihood estimates. This approach
also avoids the limitations of the Bayesian analysis with
fixed parameters and has recently been used to confirm the
EDE model [27,29] as a phenomenologically viable sol-
ution to the Hubble tension. The aim of this paper is to use
the profile likelihood analysis to constrain the NEDEmodel
using recent CMB, BAO, SNe, big bang nucleosynthesis
(BBN), and LSS data. Particular emphasis is put on
establishing the effect of including full-shape LSS data
and supplementing Planck data with ground-based CMB
data from the Atacama Cosmology Telescope (ACT) and
the South Pole Telescope (SPT). This complements and
tests two recent, purely Bayesian, analyses in Refs. [25,26].
In doing so, we show that the one-dimensional margin-
alized posterior and profile likelihood in fNEDE coincide
when the trigger field mass is fixed, in support of the
method described above. Moreover, we provide a direct

FIG. 1. Top: profile likelihoods for five different data combi-
nations as specified by the legend in the bottom panel. The
horizontal dashed and dotted lines represent the lines Δχ2 ¼ 1.0
and Δχ2 ¼ 3.84, giving the approximate 68% and 95% confi-
dence intervals, respectively, from the intersection with the
profiles. Bottom: confidence intervals for the maximum fraction
of NEDE, fNEDE, for different combinations of datasets, com-
puted with the Neyman construction from profile likelihoods.
The points correspond to best-fit values and the inner (outer) error
bars represent (approximate) 68% (95%) confidence levels.
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comparison between EDE and NEDE and assess the
models’ differences.
In Sec. II, we review the phenomenological NEDE

model and highlight its differences from EDE, manifesting
themselves on the perturbation level. In Sec. III, we
introduce the profile likelihood and explain how it can
be constructed using an efficient optimization procedure.
We present our main results in Sec. IV. This includes the
profile likelihoods for the maximal fraction of NEDE,
fNEDE, in Fig. 1 and H0 in Fig. 5. Results are summarized
in Table I. We conclude in Sec. V.

II. NEW EARLY DARK ENERGY

The NEDE model, introduced in Refs. [20,21], falls in
the category of early time modifications of ΛCDM. It
suggests a solution to the Hubble tension by means of
reducing the size of the sound horizon, rs. On a purely
phenomenological level—we discuss a microscopic model
later—the model adds a new energy component, ρNEDE, to
ΛCDM. Initially, it behaves as dark energy up to a certain
time, t�, alternatively a redshift zdecay, at which it begins to
redshift away. In order to have a noticeable impact on the
Hubble parameter, it is required that the decay of this new
component must occur not too long before recombination,
around matter-radiation equality. Thereafter, the energy
fraction stored in it starts to decay rapidly, i.e., faster than
radiation; in this way, the model avoids creating big
deviations in other cosmological parameters.
The equation of state of the NEDE component can be

stated as

wNEDE ¼
�−1 for t < t̄�
wNEDEðtÞ for t ≥ t̄�

; ð1Þ

where t̄� corresponds to the background quantity when
decomposing the trigger time as t�ðxÞ ¼ t̄� þ δt�ðxÞ. Here
the spatial dependence of the perturbation δt�ðxÞ encodes
the details of how the transition is triggered. It affects the
decay of NEDE as seen by integrating its continuity
equation (valid close to the transition surface) [26]

ρNEDEðt;xÞ≃ ρ̄�NEDE exp
�
−3

Z
t

t�ðxÞ
dt̃Hðt̃Þð1þwNEDEðt̃ÞÞ

�
:

ð2Þ

This setup has been shown to alleviate the Hubble tension
when the energy density fraction of NEDE at the time of
decay is fNEDE ≡ ρNEDEðt̄�Þ=ρtotðt̄�Þ ≈ 10% [21]. The main
features distinguishing NEDE from the earlier EDE model
[14–16] is the way the transition to the decaying stage
happens. In EDE it occurs when the Hubble drag of an
ultralight scalar field gets released. This means that EDE
does not admit (at least initially) the above fluid descrip-
tion; instead, the oscillations of the scalar field need to be
tracked explicitly. NEDE, on the other hand, relies on an
external trigger to initiate a phase transition, which is
subsequently described as a decaying perfect fluid.
Independent of the specific implementation of the NEDE
trigger (cold [21], hot [24,36], or hybrid [21]) and the
nature of the transition (first or second order), NEDE can be
described as a decaying perfect fluid after the phase

TABLE I. Summary of profile likelihood constraints obtained in this paper. All datasets are described in Sec. IV, and the confidence
intervals are obtained from the Neyman method as described in Sec. III.

Data Model Parameter 68% CL 95% CL Figures

Baseline NEDE fNEDE 0.076þ0.040
−0.035 < 0.154 Fig. 1

H0 ½km s−1 Mpc−1� 69.56þ1.16
−1.29 69.56þ2.41

−2.18 Fig. 5

3wNEDE 1.992þ0.279
−0.323 unconstrained Fig. 6

EDE fEDE 0.079þ0.031
−0.040 < 0.137 Fig. 4

H0 ½km s−1 Mpc−1� 70.02þ1.20
−1.22 70.02þ2.41

−2.38 Fig. 5

Baseline þ SH0ES NEDE fNEDE 0.136þ0.024
−0.026 0.136þ0.047

−0.057 Fig. 1

H0 ½km s−1 Mpc−1� 71.62þ0.78
−0.76 71.62þ1.58

−1.55 Fig. 5

EDE fEDE 0.112þ0.030
−0.008 0.112þ0.044

−0.030 Fig. 4

H0 ½km s−1 Mpc−1� 71.80þ0.72
−0.73 71.80þ1.55

−1.55 Fig. 5

Baseline þ FS NEDE fNEDE 0.084þ0.034
−0.046 < 0.157 Fig. 1

EDE fEDE 0.069þ0.030
−0.029 < 0.137 Fig. 3

Baseline þ ACT NEDE fNEDE 0.051þ0.031
−0.030 < 0.119 Fig. 1

Baseline þ ACTþ SH0ES NEDE log10 zdecay 3.645þ0.056
−0.058 3.645þ0.121

−0.139 Fig. 7

Baseline þ SPT NEDE fNEDE 0.061þ0.038
−0.037 < 0.136 Fig. 1
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transition, as in (2). In particular, on a field theoretic level,
the model can be implemented in terms of a more natural
potential.
The trigger is described in terms of an auxiliary field

q ¼ qðt;xÞ. It carries along adiabatic perturbations that
introduce a spatial dependence, meaning different regions
transition at different cosmological times. In cold NEDE, a
physical, subdominant scalar field plays the role of the
trigger, while in hot NEDE it is the temperature of a dark
sector thermal bath. In all cases it makes the phenomeno-
logical model in (2) sensitive to the underlying microscopic
theory.
In the following, we briefly review the cold NEDE

implementation, which is constrained in this article. In such
a version of NEDE, a pair of scalar fields are responsible for
achieving the behavior described above. A first scalar field,
ψ , with a mass M ∼ eV, is associated with the NEDE
energy density, and a second scalar field, ϕ, with
m ∼ 10−27 eV, acts as a trigger. By means of a coupled,
two-field potential,

Vðψ ;ϕÞ ¼ λ

4
ψ4 þ 1

2
M2ψ2 −

1

3
αMψ3 þ 1

2
m2ϕ2 þ 1

2
λ̃ϕ2ψ2;

ð3Þ

the rolling down of ϕ, which starts whenH ≲m, opens up a
new lower minimum for ψ to tunnel into and permits the
first-order phase transition to take place. The phase
transition proceeds in the usual sense, by the nucleation
of expanding bubbles of the new phase.
Under specific requirements [21], which can be cast as

conditions on the dimensionless parameters λ, α, and λ̃, the
transition occurs very rapidly and only relatively small
bubbles percolate, later covering the whole region of the
universe where the transition has been triggered. The
bubble collisions, interactions and evolution can be under-
stood by means of an effective fluid description. On small
scales, we expect this field condensate to be dominated by
anisotropic stress, which manifests itself on large scales
as a fluid that decays faster than radiation, i.e., 1=3 <
wNEDEðtÞ < 1 with t > t̄�, while also producing gravita-
tional waves and other microscopic decay products.
Parametrizing the condensate as a perturbed perfect fluid,

ρNEDEðt;xÞ ¼ ρ̄NEDE þ δρNEDEðt;xÞ, one can employ per-
turbation matching to initialize the perturbations of the fluid
with the perturbations of the trigger field. That is, by tracking
the evolution of the trigger field ϕ and its adiabatic
perturbations and employing Israel matching conditions
[37], the NEDE density fluctuation, δNEDE ≡ δρNEDE=
ρ̄NEDE, and its velocity divergence θNEDE, can be initialized
via:

δ�NEDE ¼ −3½1þ wNEDEðt�Þ�H�
δq�
_̄q�

; ð4aÞ

θ�NEDE ¼ k2

a�

δq�
_̄q�

; ð4bÞ

where the role of the trigger, q is played by ϕ, i.e. q≡ ϕ, in
cold NEDE, and the star denotes quantities evaluated at t̄�.
The subsequent evolution can then be carried out with the
usual equations governing the dynamics of fluid perturba-
tions [38]. For the concrete case of cold NEDE, we assume
vanishing viscosity and anisotropic stress (for the scales that
may impactCMB), andan effective sound speed in the fluid’s
rest frame that equals the adiabatic sound speed,

c2a ¼ wNEDEðtÞ −
1

3

_wNEDEðtÞ
1þ wNEDEðtÞ

1

H
: ð5Þ

Finally, we assume that the NEDE equation of state is
constant after the decay. At this stage, the cold NEDE setup
can be implemented in a Boltzmann code to perform
comparisons and analysis against different data sources
(for more details on the implementation and microscopic
picture of cold NEDE, see Ref. [21]).

III. PROFILE LIKELIHOOD

A profile likelihood LðθiÞ (PL) of a parameter θi is
obtained from the likelihood function Lðθ1;…; θNÞ by
fixing all parameters θj; j ≠ i to their maximum likelihood
estimate,

LðθiÞ ¼ max
θj;j≠i

Lðθ1; θ2;…; θNÞ: ð6Þ

Since for each fixed θj, LðθjÞ is a maximum likelihood
estimate, the profile likelihood inherits the reparameteriza-
tion invariance of the maximum likelihood estimator [35].
This property, along with the inherent independency of
prior distributions, is the key difference between frequentist
likelihood-based inference and Bayesian inference.
The statistical significance of the profile likelihood

arises from Wilks’ theorem [35], which states that the
distribution of the quantity −2 logðLðθjÞ=LmaxÞ, with
Lmax ¼ maxθj LðθjÞ, asymptotes toward a χ2 distribution
with one degree of freedom. We therefore write Δχ2ðθjÞ≡
−2 logðLðθjÞ=LmaxÞ in the following. From this, an approxi-
mate 68% (95%) confidence interval in θj can be obtained as
the region Δχ2ðθjÞ < 1.0ð3.84Þ according to the Neyman
construction [39]. These confidence levels are exact in the
case that the profile likelihood is Gaussian, however, since
the profile likelihood is reparameterization invariant, the
confidence levels also hold whenever there exists a repar-
ametrization in which the profile likelihood is Gaussian. In
practice it is difficult to determine towhat extent this holds, so
in the following,we cite these confidence levels but acknowl-
edge that they may only approximate the true confidence
levels.
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The Feldman-Cousins prescription [40] provides a con-
fidence interval construction with more accurate coverage
close to physical boundaries of the quantity under study.
Since the profiles we find for the maximum fraction
of NEDE, fNEDE have a non-negligible intersection with
the natural boundary at fNEDE ¼ 0, we have computed
Feldman-Cousins intervals for these profiles in a manner
similar to Refs. [27,29], but find that they coincide with the
Neyman intervals at 68% CL and differ only marginally at
95% CL. All results stated in this paper are therefore based
on Neyman intervals.
In practice, constructing profile likelihoods consists of

optimizations in an often high-dimensional, noisy like-
lihood function. We carry out the optimization with
simulated annealing [41], using the same procedure as
Ref. [42]. We modify the likelihood according to
L → L1=T , where T is referred to as the likelihood
temperature. For T > 1, the likelihood surface is smooth-
ened. For T < 1, peak structures are enhanced. Simulated
annealing consists in running MCMC chains with iter-
atively decreased temperatures. This works since the
MCMC chain is increasingly localized around the like-
lihood peaks as the temperature is decreased; however,
due to the randomness of the MCMC chain, the algorithm
may still escape local optima. Thus, simulated annealing
generally works well in likelihood functions with many
local optima, at the cost of relying somewhat strongly on
the particular temperature values chosen. In practice, we
start from the proposal covariance matrices from the
Bayesian analyses of NEDE [21,25,26] to inform the
MCMC proposal distribution, and we furthermore
decrease the step size in addition to the temperature in
order to increase the resolution around the successively
narrower likelihood peaks. In agreement with earlier
results [42,43] we found that exponentially decreasing
temperatures and step sizes performed well; the particular
schedule used depended on the quality of the covariance
matrix employed. Our code, identical that of Ref. [42],1

uses MontePython [44,45] and the CLASS [46] implementa-
tion of NEDE in TriggerCLASS

2 [21]. For the EDE-model
computations, we use a slightly modified version of the
CLASS_EDE implementation of EDE3 [31].

IV. RESULTS

In this section, we present the results of a series of profile
likelihoods in different parameters and using different
datasets. In the general case, we vary all of the usual
cosmological parameters

fωb;ωcdm; H0; ln 1010As; ns; τreiog: ð7Þ

In addition, we vary all the nuisance parameters required
for the datasets we employ. The NEDE sector is para-
meterized in terms of the maximal energy density fraction
of NEDE, fNEDE, the logarithm of the redshift of the onset
of the decay, log10 zdecay, and the NEDE equation of state,
wNEDE. Except for those fixed in a particular profile
likelihood, all of these are varied in our analysis.
Our baseline dataset consists of the following:
(i) Planck 2018 high-l TTTEEE, low-l TTand EE and

lensing data [2].
(ii) BAO data, including BOSS DR12 [47] and low

redshift data from 6dF [48] and the BOSS main
galaxy sample [49], as well as growth structure
measurements from the CMASS and LOWZ galaxy
samples of BOSS DR12 [47].

(iii) The Pantheon catalogue of type Ia supernovae in the
redshift range 0.01 < z < 2.3 [50].

(iv) A Gaussian likelihood on the primordial helium
abundance Yp ¼ 0.2449� 0.0040 from the mea-
surements of Ref. [51].

We note that this baseline coincides with the baseline of
Ref. [21] up to the particular prior used on Yp, but we
expect this difference to contribute negligibly to the
constraints obtained. In addition to the baseline, we employ
the following datasets when specified.

(i) SH0ES: AGaussian likelihood on the value ofH0 ¼
73.04� 1.04 km s−1 Mpc−1 as measured by the
SH0ES collaboration [1]. We note that putting the
likelihood on H0 directly instead of the calibration
of the intrinsic SNIa magnitudeMb nuisance param-
eter of the Pantheon dataset is appropriate since in all
parameter space regions of interest, the NEDE
model does not radically alter the luminosity dis-
tance at small redshifts [52,53].

(ii) FS: Full-shape analysis of the LOWZ and CMASS
redshift splits of the monopole and quadrupole of the
BOSS power spectrum [54] with reconstruction of
the BAO peak scale from Ref. [55]. This includes a
consistent normalization of the window function
following the prescription of Ref. [56], contrary to
the previous NEDE result of Ref. [25]. We have
taken a scale cut of kmax ¼ 0.25h Mpc−1 similarly to
previous studies of EDE [27,29,57]. The weakly
non-linear theory power spectrum out to this scale
cut is computed from the effective field theory of
large-scale structure (EFTofLSS) by the PyBird

1github.com/AarhusCosmology/montepython_public/tree/
2211.01935.

2github.com/flo1984/TriggerCLASS/tree/NewEDEv5.0.
3In shooting algorithm of the unmodified code, the EDE

critical redshift zc, corresponding to the maximum of the EDE
energy density fraction, could only assume the discrete set of
values corresponding to the ones in the internal table of CLASS.
We allowed zc to vary continuously by using Hermite interpo-
lation around the maximum value. The modification can be found
at github.com/AarhusCosmology/class_ede/tree/make-shooting-
continuous-and-fast. For an alternative implementation of
EDE, see [16].
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code [58].4 We use the standard PyBird EFT param-
eterization (theWest-coast parameterization) as well
as the standard PyBird priors on the EFT parameters
with analytical marginalization over those with
Gaussian priors [58,59].5 Although these choices
may generally affect final results [60,61], they
should have little impact in our analysis since we
always pair the FS data with the strongly con-
straining baseline dataset. Finally, when using this
FS data, we omit the BAO and growth structure data
in the baseline to avoid double counting.

(iii) ACT: Temperature and polarization anisotropy mea-
surements of the CMB spectrum by the Atacama
Cosmology Telescope [62,63]. In order to avoid
double counting of the Planck-range multipoles, we
exclude the ACT multipoles l ≤ 1800 as suggested
by the ACT collaboration. We employ the PYACT-

LIKE likelihood provided by the ACT collaboration.6

The ACT collaboration suggests using a strict set of
CLASS precision parameters for the EDE-model [64];
however, we find only little variation in the χ2 values
obtained with the default settings and therefore use
those in the interest of computational resources.

(iv) SPT: The year one data release of the South Pole
Telescope EE and TE power spectra at multipoles
300 ≤ l < 3000 [65]. We use the CLIK implemen-
tation provided by the SPT collaboration.7

We take wide, uniform priors on all of the cosmological
parameters and include two massless and one massive (with
m ¼ 0.06 eV) neutrino species equivalent to the Neff
measurement of the Planck collaboration [2]. Since
Ref. [66] found this to coincide with the best-fit configu-
ration, we do not view it as a restriction of the cosmological
model used. Table I summarizes all constraints obtained in
this paper.

A. Constraints on the maximal fraction of NEDE

First, we present profile likelihood constraints on the
maximum fraction of NEDE, fNEDE. The top panel in Fig. 1
illustrates profile likelihoods for the baseline (black),
baseline including SH0ES (blue), baseline including FS
(green), baseline including ACT (magenta) and baseline
including SPT (red). The points correspond to the fixed
values of fNEDE at which we have computed the profile, and
the fully drawn lines represent cubic interpolations between
them. The horizontal dashed and dotted lines correspond to
Δχ2 ¼ 1.0 and Δχ2 ¼ 3.84, such that the intersection
between these and the profiles define the approximate

68% and 95% confidence intervals, respectively. The
intervals obtained from each profile is shown in the bottom
panel for each data combination, with the inner (outer) error
bars representing the approximate 68% (95%) confidence
levels and the points marking the global best-fit values of
fNEDE. The profiles are evaluated at a set of ≈10 values of
fNEDE and interpolated cubically. Since cubic interpolation
rarely creates new minima, this results in poor best-fit
resolution, so our best-fit values instead have been obtained
as the minimum of an exact parabolic fit to the three points
of smallest Δχ2 values in each profile.
The overall picture is that the inclusion of either of FS,

ACT, and SPT has little impact compared to the strongly
constraining baseline. Indeed, all of these find a best-fit that
is nonzero, with two-sided bounds on fNEDE at 68% CL but
upper bounds at 95% CL.
Generally, these constraints allow larger values of fNEDE

than suggested by the Bayesian analyses of Refs. [21,25,26].
The frequentist analysis therefore suggests a greater ability of
the model to alleviate theH0 tension than the corresponding
Bayesian analysis. This pattern also emerges in the EDE-
model [27,29], and is explained by the presence of volume
effects in the NEDE sector: In theΛCDM limit where fNEDE
approaches 0, the additional model parameters 3wNEDE and
log10 zdecay become unconstrained and significantly increase
the volume of the posterior around ΛCDM, leading to a bias
toward ΛCDM when 3wNEDE and log10 zdecay are margin-
alized over. The presence of this volume effect was already
noted in Ref. [21], who bypassed it by fixing one of the
NEDE model parameters at its best fit. In Sec. IVA 1 we
evaluate the correctness of this approach.Wenote that similar
argumentswere recently used to explainvolume effects in the
EDE-model [29] and decaying dark matter model [42], and
that this phenomenon is to be expected in any ΛCDM
extension involving additional parameters that become
unconstrained in the ΛCDM limit.
Below, we discuss the result from each data combination

individually.

1. Baseline

With baseline data, we find the 68% confidence interval
fNEDE ∈ ½0.041; 0.116�. As noted above, our baseline coin-
cides with the baseline of Ref. [21], who found the Bayesian
credible interval fNEDE ∈ ½0.037; 0.115� when fixing the
value of the trigger field mass close to its best-fit value.
These intervals are thus identical up to the accuracy of the
simulated annealing and MCMC algorithm used to produce
them. As explained in Ref. [21], fixing the trigger field mass
m (or the decay redshift zdecay, equivalently) removes the
large posterior volume in the fNEDE ∼ 0 region of parameter
space occurring fromm being unconstrained in this limit. To
test the validity of this work-around,we have plotted in Fig. 2
the (arbitrarily normalized) profile likelihoodLðfNEDEÞ from
Eq. (6) along with the Bayesian one-dimensional margin-
alized posteriors in fNEDE from Ref. [21] both with and

4github.com/pierrexyz/pybird.
5Although marginalization is ill defined in the frequentist

approach, it increases computational efficiency and should not
have a large impact on the results [58].

6github.com/ACTCollaboration/pyactlike.
7github.com/SouthPoleTelescope/spt3g_y1_dist.
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without fixing the trigger field mass. Evidently, the profile
likelihood, which is inherently free from volume effects,
coincides almost exactly with the marginalized posterior
with fixed trigger mass. On the other hand, the posterior with
a varied trigger field mass is biased toward the fNEDE → 0
region due to the volume effect described. We conclude that
fixing the trigger field mass, as done in Refs. [21,25,26],
makes the Bayesian credible intervals agree with the fre-
quentist confidence intervals.
By evaluating the profile at fNEDE ¼ 0, we can estimate

the best-fit χ2 value of the baseline dataset under the
ΛCDM model. Hence, we get a mild statistical preference
of NEDE over ΛCDM at χ2min;ΛCDM − χ2min;NEDE ¼ −3.2,
similar to the value −2.9 obtained in Ref. [21]. Since the
model extends ΛCDM with three new parameters, Δχ2 ¼
−3.2 sits just below the 1σ significance level as a model
nested in ΛCDM.

2. Baseline + SH0ES

Adding the SH0ES likelihood increases the preference
for large values of fNEDE due to the well-known correlation
between fNEDE and H0 [21]. We believe this combined
analysis is justified as the baseline constraint, given in
Table I, implies a reduced tension of approximately 2.1σ. In
any event, this data combination allows the computation of
the quantity [5,67]

QDMAP ¼ ðχ2min;baselineþSH0ES − χ2min;baselineÞ1=2

which quantifies the extent to which the model is able to
reduce the inconsistency between the baseline and the
SH0ES likelihood, and is often used to assess the ability of
ΛCDM extensions to resolve the H0 tension [5]. By
evaluating the profiles in fNEDE at fNEDE ¼ 0, we can

approximate the best-fit χ2 value for ΛCDM, and thereby
compute QDMAP in the ΛCDM model as

QDMAP;ΛCDM ¼ ðΔχ2baseline − Δχ2baselineþSH0ES

þQ2
DMAP;NEDEÞ1=2;

where Δχ2 ≡ χ2minðNEDEÞ − χ2minðΛCDMÞ denotes the
difference in best-fit χ2 values between the NEDE and
ΛCDM models. We find QDMAP;NEDE ¼ 2.1 for the NEDE
model, in excellent agreement with the Gaussian tension
measure, and QDMAP;ΛCDM ¼ 4.8 for the ΛCDM model,
corresponding approximately to a ∼2.7σ alleviation of the
tension between the baseline and the SH0ES likelihood.

3. Baseline +FS

Using full-shape BOSS data out to kmax ¼ 0.25h Mpc−1,
we obtain the confidence interval fNEDE ∈ ½0.038; 0.118� at
68% CL and fNEDE < 0.157 at 95% CL. These confidence
intervals are very similar to those obtained without FS,
fNEDE ∈ ½0.041; 0.116� at 68% CL. and fNEDE < 0.154 at
95% CL; arguably identical within the uncertainty of the
simulated annealing algorithm. This indicates that the
constraining power of large scale structure is still largely
dominated by the information in the BAO peak, which is
also included in the baseline, and that the additional full-
shape data is subdominant. A similar conclusion was
reached in Ref. [25]. Figure 3 illustrates the profile like-
lihoods of fðNÞEDE for NEDE and EDE with and without the
inclusion of full-shape data. Evidently, we do not find a
statistically significant increase in the constraining power
when including full-shape data. We note that the EDE
constraints obtained with FS broadly match those of
Ref. [29].
Reference [25], who obtained the Bayesian credible

interval fNEDE ∈ ½0.087; 0.150� using EFTofLSS, found a
larger preference for NEDE since they included a Gaussian

FIG. 2. One-dimensional marginalized posteriors in fNEDE
from Ref. [21] while varying the NEDE trigger field mass m
(blue) and while fixing it close to its best-fit value (red), using the
baseline dataset; as well as a profile likelihood in the form of
Eq. (6) (dashed black line). Evidently, the profile likelihood
coincides with the posterior obtained when fixing the NEDE
trigger field mass, showing that the latter is an appropriate
method of avoiding volume effects.

FIG. 3. Profile likelihoods for the NEDE and EDE models
using the baseline (blue) and FS (red) datasets, respectively. The
difference between the latter is that our FS analysis includes full-
shape information on the power spectrum as predicted by
EFTofLSS. There is no gain in constraining power for either
model when including the full-shape analysis.

PROFILING COLD NEW EARLY DARK ENERGY PHYS. REV. D 108, 023518 (2023)

023518-7



prior onH0 from the SH0ES measurement in order to evade
volume effects. Additionally, we note that Ref. [25]
included an inconsistently normalized window function
[60] (based on an earlier version of PyBird), which we have
corrected. Ref. [29] note that the correctly normalized data
prefers a larger value of σ8. Since fNEDE is known to
correlate positively with σ8 [21], we expect the correction
of the normalization to have increased the preference for
NEDE in comparison with the inconsistent normalization.
In conclusion, our result represents the first constraint on
fNEDE using correctly normalized EFTofLSS, without the
SH0ES prior, that is free from volume effects.

4. Baseline +ACT

Including ACT data, we obtain the 68% confidence
interval fNEDE ∈ ½0.021; 0.083� and a weak preference of
χ2min;ΛCDM − χ2min;NEDE ¼ −3.2. Although the level of the
preference is the same as for the baseline only, the
confidence interval including ACT lies at smaller values
of fNEDE than the one using only the baseline, which was
also found in the Bayesian analysis of Ref. [26]. There is a
very precise reason for this, which we return to in
Sec. IV C.
Our confidence interval may be compared to the

Bayesian credible intervals of Ref. [26], derived with the
same data combination. The latter find the 68% credible
interval fNEDE ∈ ½0.011; 0.082� when varying all NEDE
parameters. Interestingly, this interval has the same upper
bound as our frequentist interval, but a smaller lower
bound, corroborating the earlier sentiment that volume
effects act to increase the favor for small values of fNEDE.
When fixing the trigger field mass, Ref. [26] found the 68%
credible interval fNEDE ∈ ½0.0336; 0.1003�, which lies at
substantially larger values than our frequentist interval. The
reason is that by fixing the trigger field mass, a local
optimum occurring from ACT, which favors smaller values
of fNEDE, is excluded. Indeed, we note that the latter
interval approximately coincides with our baseline con-
fidence interval since the fixing of the trigger mass
essentially excludes the ACT contribution to the likelihood.
We elaborate on this point in Sec. IV C.

5. Baseline + SPT

With baseline andSPTdata,weobtain the68%confidence
interval fNEDE ∈ ½0.023; 0.100� and a weak preference of
χ2min;ΛCDM − χ2min;NEDE ¼ −2.5 for NEDE relative toΛCDM.
This interval has the same lower bound as the interval derived
from the baselineþ ACT data combination but a larger
upper bound, and similarly to ACT generally lies at slightly
smaller values of fNEDE than the baseline itself. This is
consistent with the pattern found inRef. [26]. The latter fixed
the NEDE equation of state atwNEDE ¼ 2=3, consistent with
its best-fit value (see Sec. IV C), in order to avoid the usual
volume effects. In comparison, they obtain the 68%Bayesian

credible interval fNEDE ∈ ½0.014; 0.086� without fixing the
NEDE trigger mass and fNEDE ∈ ½0.030; 0.101�while fixing
it. Evidently, our frequentist results are similar to the results
of Ref. [26] with fixed NEDE trigger mass and equation
of state.

B. Comparison with EDE

Although NEDE has been compared to EDE at several
occasions [5,68], these comparisons use Bayesian inference
which, as explained above, can be heavily influenced by the
choice of parameters describing the cosmological model.
For example, the severity of volume effects may vary
strongly with different parametrizations. Thus, we present
here a comparison of constraints on fðNÞEDE and H0

between EDE and NEDE using profile likelihoods in order
to circumvent any effects related to the choice of para-
metrizations and Bayesian priors in the models.
Figure 4 shows the profile likelihoods in fEDE and fNEDE

both without (blue) and including (red) a likelihood on the
SH0ES measurement of H0. The profiles are normalized
differently than otherwise in this paper; the χ2 values from
the optimizations are subtracted the global best fit of the
ΛCDM model. Hence, all profiles intersect at the origin.
Firstly, we note that, as expected, larger values of fðNÞEDE
are preferred when including SH0ES, and the improvement
of the models over ΛCDM increases accordingly. Within
each data combination, fEDE and fNEDE have similar
constraints, with the slight systematic difference that the
NEDE model admits larger values of fNEDE than the values
of fEDE admitted by the EDE model. This may be related to
the fact that data usually prefers NEDE to decay earlier than
EDE [26], which would require NEDE to have a larger
abundance in order to obtain the same energy density
around recombination as EDE. However, this difference is

FIG. 4. Profile likelihoods of the maximal energy density
fraction fNEDE in the NEDE model and the maximal energy
density fraction fEDE in the EDE model from the baseline data
with and without a Gaussian likelihood on the SH0ES measure-
ment ofH0. The profiles are normalized according to the χ2 value
of the best-fit ΛCDM cosmology, such that they intersect at the
origin.
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still small, and since fNEDE and fEDE are in principle two
different parameters in the two models, there is no reason
that their constraints should coincide. Globally, EDE
provides a marginally better fit to data than NEDE, with
a difference in χ2 values of χ2min;NEDE − χ2min;EDE ≈ −1.0.
The numerical constraints are given in Table I.
The difference in abundances between EDE and NEDE

seen in Fig. 4 is not very significant, and if it were, it could
not be used to distinguish the models since the early dark
energy abundance is not an observable quantity itself.
Arguably, the biggest observable impact of this difference
should be on the predictions for H0 in the two models.
Therefore, we have computed profile likelihoods of H0 in
the two models, respectively, with and without a Gaussian
likelihood on the SH0ES measurement of H0. They are
shown in the top panel of Fig. 5 with the same normali-
zation as the fðNÞEDE profiles above. The inferences that
include the SH0ES measurement naturally prefer larger
values ofH0 leading to a larger improvement of the NEDE/
EDE models over ΛCDM due to their ability to increase
H0. Between the NEDE and EDE models, constraints on
H0 are similar, with EDE constraints slightly relaxed at
values of H0 larger than the best-fit. The result that EDE
provides a slightly better fit to data than NEDE is also clear
from these profiles. The second panel in Fig. 5 shows the
values of fEDE and fNEDE obtained by optimization at each
point in the profiles of the EDE and NEDE models,

respectively. There is a clear one-to-one correspondence
between the values of H0 and fðNÞEDE at each fixed H0,
which is a manifestation of the strong correlation between
the two parameters [15,26]. Apparently, the relationship is
the same with and without SH0ES data, but with NEDE
admitting a marginally larger value of fNEDE than the
corresponding value of fEDE in the EDE model, as also
found in Fig. 4 and discussed above.
In terms of addressing the Hubble tension, the baseline

constraints on H0, given in Table I, imply an alleviation of
the Hubble tension from ≈4.8σ to ≈2.1σ and ≈1.9σ in the
NEDE and EDE models, respectively, using the Gaussian
tension metric of Ref. [5] (with the standard deviation
approximated as the average of the upper and lower error
bars). In terms of the QDMAP tension metric introduced in
Sec. IVA 2, the NEDE and EDE models also give allevia-
tions from ≈4.8σ in ΛCDM to ≈2.1σ and ≈1.9σ, respec-
tively (which we checked is approximately the same when
computed from the fðNÞEDE andH0 profiles). Thus, we find,
unlike Ref. [5], that the Gaussian tension and the QDMAP
metrics coincide: Our Gaussian metrics indicate a stronger
alleviation than Ref. [5] and vice-versa for the QDMAP
estimates. To the extent that our baseline differs from that of
the review in Ref. [5], the models retain their status as some
of the most promising solutions to the Hubble tension.
Finally, we note that models of early dark energy may

lead to increased values of σ8 due to the correlation
between fðNÞEDE and the cold dark matter density ωcdm

[21,29], thereby worsening the tension between the CMB
inferences of σ8 and low-redshift measurements, such as
the Dark Energy Survey [69], of the same. We leave a
profile likelihood analysis of σ8 in the (N)EDE models for
future work.

FIG. 5. Top: profile likelihoods of the Hubble constant H0 in
the NEDE and EDE models from the baseline data with and
without a likelihood on the SH0ES measurement of H0, respec-
tively. The profiles are normalized according to the χ2 value of the
best-fit ΛCDM cosmology. Bottom: values of the maximal
energy density fraction fðNÞEDE in the (N)EDE-model as obtained
from optimization at each point in the profiles, illustrating the
correlation between H0 and fðNÞEDE.

FIG. 6. Top: profile likelihood for the NEDE equation of state
3wNEDE. The horizontal dashed (dotted) lines corresponds to the
value Δχ2 ¼ 1.0ð3.84Þ, representing the 68% ð95%Þ confidence
band. Bottom: values of the maximal NEDE fraction fNEDE
obtained by optimization at each point in the profile.
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C. Constraints on other parameters

In addition to the above results, we have computed a
profile likelihood in the equation of state of the NEDE field
after its decay, wNEDE, under the baseline dataset. This is
shown on Fig. 6, where the top panel shows the profile
likelihood and the bottom panel shows the values of fNEDE
obtained from the optimization at each point in the profile. At
68%CL,we obtain the constraint 3wNEDE ¼ 1.992þ0.279

−0.323 , i.e.
an approximate best-fit equation of state of wNEDE ≈ 2=3,
corresponding to a relatively stiff fluid that redshifts faster
than radiation. This is consistent with earlier findings
[21,26,68]. Evidently, for smaller equations of state
approaching the radiative limit of 1=3, ΛCDM is entirely
preferred over NEDE, as can be seen from the vanishing of
fNEDE at these points in the profile. On the other hand, there is
a heavy tail toward larger values of the equation of state. The
emerging picture is that the equation of state is relatively free
as long as it is large enough for an adequately fast redshifting
of the NEDE field after its decay. Note finally that the
equation of state is entirely unconstrained at 95% CL, in
agreement with fact that the value fNEDE ¼ 0 lies inside the
95% C.I. as observed on Fig. 1.
Reference [26] find a bimodality in the Bayesian posterior

of NEDEwhen analyzed with the baseline, ACTand SH0ES
data. In addition to the main peak characterized by wNEDE ≈
2=3 and log10 zdecay ≈ 3.7, the posteriors indicate a weaker
mode (henceforth the bi-mode) around wNEDE ≈ 1=3 and
log10 zdecay ≈ 4.0 which is associated with a smaller value of
fNEDE. To study this double peak structure, we have
computed a one-dimensional profile likelihood in the decay
time ofNEDE, log10 zdecay, which is shownonFig. 7. The top
panel of the figure shows the Bayesian two-dimensional
marginalizedposterior in theNEDEequationof state3wNEDE
and decay redshift log10 zdecay obtained in Ref. [26]. The
second panel shows the profile likelihood in log10 zdecay,
sampledwith increased resolution around the two peaks. The
third and fourth panels show the values of fNEDE and 3wNEDE
obtained through optimization at each point in the profile of
the second panel. Lastly, the fifth panel shows the individual
contribution to the χ2 budget of the likelihood from the
baseline and ACT, respectively, at each point in the profile.
As seen on the second panel, the profile likelihood

recovers the double peak structure of the Bayesian pos-
terior. The dashed and dotted lines represent the values
Δχ2 ¼ 1.0 and Δχ2 ¼ 3.84, respectively: As explained
earlier, the intersection of these lines with the profile gives
the approximate 68% and 95% confidence intervals.
Apparently, the significance of the bimode is somewhat
weaker in the profile than in the Bayesian analysis, hinting
at a volume effect, but the difference is relatively small and
may be due to computational uncertainties.
It is seen on the fifth panel of Fig. 7 that the ACT

likelihood exclusively prefers the bi-mode and that the
baseline exclusively prefers the main mode. This tension
between Planck and ACT was also noted in Ref. [68].

Although less significant, the bimode prefers intermedi-
ate values of fNEDE, possibly explaining our finding in
Sec. IVA 4 that smaller values of fNEDE are more viable
when including ACT. Since the bimode is exclusively
driven by the ACT likelihood, fixing the trigger mass (or
zdecay, equivalently) as in Ref. [26] to the value at the main
peak diminishes the contribution of ACT to the total
likelihood (since the ACT contribution is seen to be mostly
flat around the main peak). Furthermore, since the ACT
peak is associated with smaller values of fNEDE than the

FIG. 7. Constraints on NEDE using the baseline, ACT and
SH0ES data. Top panel: 1σ and 2σ contours of the two-
dimensional marginalized posterior of the NEDE parameters
3wNEDE and log10 zdecay from Ref. [26]. Second panel: profile
likelihood in log10 zdecay. Third and fourth panels: values of
fNEDE and 3wNEDE obtained from optimization at each point in
the profile of the second panel. Fifth panel: individual contribu-
tion of the baseline and ACT likelihoods to the χ2 budget at each
point in the profile likelihood.
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main peak, this explains the fact that Ref. [26] found a
preference for larger values of fNEDE than in our profile
likelihood analysis.

V. CONCLUSION

In this work, we have studied the NEDE extension of the
ΛCDM model for the first time using profile likelihoods,
which are inherently unaffected by the prior volume effects
that tend to bias Bayesian constraints of ΛCDM extensions
toward the ΛCDM limit [27,29,42]. Our results are sum-
marized in Table I. The constraints on the maximal energy
density fraction of NEDE, fNEDE, generally prefer larger
values than the corresponding Bayesian analyses, corrobo-
rating the existence of volume effects in the model noted in
Refs. [21,25,26]. We have shown that when fixing the
NEDE trigger field mass to its best-fit value, as done in the
latter references to circumvent the volume effects, one
obtains one-dimensional marginalized posterior distribu-
tions in fNEDE that coincide with the profile likelihood. We
therefore conclude that fixing the trigger field mass is an
appropriate strategy to avoid the volume effects in NEDE.
Using our baseline data, mainly dominated by Planck CMB
measurements, we find fNEDE ¼ 0.076þ0.040

−0.035 at 68% CL.
Including full-shape power spectrum data from BOSS does
not change the baseline constraints, indicating that Planck
remains the dominating constraint on NEDE. On the other
hand, including high-l CMB data from ACT gives similar
constraints with a slightly smaller preference for NEDE due
to a likelihood bimodality arising from ACT data.

An analysis using the baseline and SPT data again provides
a similar constraint on fNEDE.
Since the profile likelihood is reparametrization invariant,

it is an excellent tool for comparing NEDE to the EDE-
model. With our baseline, we find similar constraints on the
maximal energy density fractions fNEDE and fEDE, respec-
tively, with NEDE admitting slightly larger values of
fðNÞEDE, possibly due to the fact that NEDE decays earlier
than EDE around best fit. We also find similar constraints on
H0 in the two models, with EDE being a slightly better fit at
large values of H0. Although EDE provides a marginally
better global fit than NEDE, at χ2min;NEDE − χ2min;EDE ≈ −1.0,
both models reduce the Hubble tension from ≈4.8σ to ≈2σ
and remain some of the most promising solutions to the
Hubble tension [5].
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Witte, V. Poulin, and J. Lesgourgues, The H0 olympics: A
fair ranking of proposed models, Phys. Rep. 984, 1 (2022).

[6] E. Abdalla et al., Cosmology intertwined: A review of the
particle physics, astrophysics, and cosmology associated
with the cosmological tensions and anomalies, J. High
Energy Astrophys. 34, 49 (2022).

[7] J. L. Bernal, L. Verde, and A. G. Riess, The trouble withH0,
J. Cosmol. Astropart. Phys. 10 (2016) 019.

[8] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan, and
W. L. K. Wu, Sounds discordant: Classical distance ladder
& ΛCDM -based determinations of the cosmological sound
horizon, Astrophys. J. 874, 4 (2019).

[9] G. Efstathiou, To H0 or not to H0?, Mon. Not. R. Astron.
Soc. 505, 3866 (2021).

[10] C. Brust, Y. Cui, and K. Sigurdson, Cosmological con-
straints on interacting light particles, J. Cosmol. Astropart.
Phys. 08 (2017) 020.

[11] N. Blinov and G. Marques-Tavares, Interacting radiation
after Planck and its implications for the Hubble tension, J.
Cosmol. Astropart. Phys. 09 (2020) 029.

[12] M. A. Corona, R. Murgia, M. Cadeddu, M. Archidiacono, S.
Gariazzo, C. Giunti, and S. Hannestad, Pseudoscalar sterile
neutrino self-interactions in light of Planck, SPT and ACT
data, J. Cosmol. Astropart. Phys. 06 (2022) 010.

[13] J. M. Berryman et al., Neutrino self-interactions: A white
paper, Phys. Dark Universe 42, 101267 (2023).

[14] T. Karwal and M. Kamionkowski, Dark energy at early
times, the Hubble parameter, and the string axiverse, Phys.
Rev. D 94, 103523 (2016).

PROFILING COLD NEW EARLY DARK ENERGY PHYS. REV. D 108, 023518 (2023)

023518-11

https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1103/PhysRevD.101.043533
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1016/j.physrep.2022.07.001
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1088/1475-7516/2016/10/019
https://doi.org/10.3847/1538-4357/ab0898
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1088/1475-7516/2017/08/020
https://doi.org/10.1088/1475-7516/2017/08/020
https://doi.org/10.1088/1475-7516/2020/09/029
https://doi.org/10.1088/1475-7516/2020/09/029
https://doi.org/10.1088/1475-7516/2022/06/010
https://doi.org/10.1016/j.dark.2023.101267
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1103/PhysRevD.94.103523


[15] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,
Early Dark Energy Can Resolve the Hubble Tension, Phys.
Rev. Lett. 122, 221301 (2019).

[16] V. Poulin, T. L. Smith, D. Grin, T. Karwal, and M.
Kamionkowski, Cosmological implications of ultralight
axionlike fields, Phys. Rev. D 98, 083525 (2018).

[17] T. L. Smith, V. Poulin, and M. A. Amin, Oscillating scalar
fields and the Hubble tension: A resolution with novel
signatures, Phys. Rev. D 101, 063523 (2020).

[18] M. Kamionkowski and A. G. Riess, The Hubble tension and
early dark energy, arXiv:2211.04492.

[19] N. Kaloper, Dark energy, H0 and weak gravity conjecture,
Int. J. Mod. Phys. D 28, 1944017 (2019).

[20] F. Niedermann and M. S. Sloth, New early dark energy,
Phys. Rev. D 103, L041303 (2021).

[21] F. Niedermann and M. S. Sloth, Resolving the Hubble
tension with new early dark energy, Phys. Rev. D 102,
063527 (2020).

[22] I. J. Allali, M. P. Hertzberg, and F. Rompineve, Dark sector
to restore cosmological concordance, Phys. Rev. D 104
(2021), L081303,

[23] K. Freese and M.W. Winkler, Chain early dark energy: A
proposal for solving the Hubble tension and explaining
today’s dark energy, Phys. Rev. D 104, 083533 (2021).

[24] F. Niedermann and M. S. Sloth, Hot new early dark energy,
Phys. Rev. D 105, 063509 (2022).

[25] F. Niedermann and M. S. Sloth, New early dark energy is
compatible with current LSS data, Phys. Rev. D 103,
103537 (2021).

[26] J. S. Cruz, F. Niedermann, and M. S. Sloth, A grounded
perspective on new early dark energy using ACT, SPT, and
BICEP/Keck, J. Cosmol. Astropart. Phys. 02 (2023) 041.

[27] L. Herold, E. G. M. Ferreira, and E. Komatsu, New con-
straint on early dark energy from Planck and BOSS data
using the profile likelihood, Astrophys. J. Lett. 929, L16
(2022).

[28] A. Gómez-Valent, Fast test to assess the impact of margin-
alization in Monte Carlo analyses and its application to
cosmology, Phys. Rev. D 106, 063506 (2022).

[29] L. Herold and E. G. M. Ferreira, Resolving the Hubble
tension with early dark energy, arXiv:2210.16296.

[30] G. D’Amico, L. Senatore, P. Zhang, and H. Zheng, The
Hubble tension in light of the full-shape analysis of large-
scale structure data, J. Cosmol. Astropart. Phys. 05 (2021)
072.

[31] J. C. Hill, E. McDonough, M.W. Toomey, and S.
Alexander, Early dark energy does not restore cosmological
concordance, Phys. Rev. D 102, 043507 (2020).

[32] M.M. Ivanov, E. McDonough, J. C. Hill, M. Simonović,
M.W. Toomey, S. Alexander, and M. Zaldarriaga, Con-
straining early dark energy with large-scale structure, Phys.
Rev. D 102, 103502 (2020).

[33] R. Murgia, G. F. Abellán, and V. Poulin, Early dark energy
resolution to the Hubble tension in light of weak lensing
surveys and lensing anomalies, Phys. Rev. D 103, 063502
(2021).

[34] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M.
Kamionkowski, and R. Murgia, Early dark energy is not
excluded by current large-scale structure data, Phys. Rev. D
103, 123542 (2021).

[35] Y. Pawitan, In All Likelihood (Oxford University Press,
New York, 2013).

[36] F. Niedermann and M. S. Sloth, Hot new early dark energy:
Towards a unified dark sector of neutrinos, dark energy and
dark matter, Phys. Lett. B 835, 137555 (2022).

[37] W. Israel, Singular hypersurfaces and thin shells in general
relativity, Il Nuovo Cimento B (1965-1970) 44, 1 (1966).

[38] C.-P. Ma and E. Bertschinger, Cosmological perturbation
theory in the synchronous and conformal Newtonian
gauges, Astrophys. J. 455, 7 (1995).

[39] J. Neyman, Outline of a theory of statistical estimation
based on the classical theory of probability, Phil. Trans. R.
Soc. A 236, 333 (1937).

[40] G. J. Feldman and R. D. Cousins, A unified approach to the
classical statistical analysis of small signals, Phys. Rev. D
57, 3873 (1998).

[41] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization
by simulated annealing, Science 220, 671 (1983).

[42] E. B. Holm, L. Herold, S. Hannestad, A. Nygaard, and T.
Tram, Discovering a new well: Decaying dark matter with
profile likelihoods, Phys. Rev. D 107, L021303 (2023).

[43] S. Hannestad, Stochastic optimization methods for
extracting cosmological parameters from cosmic microwave
background radiation power spectra, Phys. Rev. D 61,
023002 (2000).

[44] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet,
Conservative constraints on early cosmology: An illustra-
tion of the MontePython cosmological parameter inference
code, J. Cosmol. Astropart. Phys. 02 (2013) 001.

[45] T. Brinckmann and J. Lesgourgues, MontePython 3: Boosted
MCMC sampler and other features, Phys. Dark Universe 24,
100260 (2019).

[46] D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear
anisotropy solving system (CLASS) II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

[47] S. Alam et al. (BOSS Collaboration), The clustering of
galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological analysis of the
DR12 galaxy sample, Mon. Not. R. Astron. Soc. 470,
2617 (2017).

[48] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson,
The 6dF galaxy survey: Baryon acoustic oscillations and the
local Hubble constant, Mon. Not. R. Astron. Soc. 416, 3017
(2011).

[49] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A.
Burden, and M. Manera, The clustering of the SDSS DR7
main Galaxy sample—I. A 4 per cent distance measure at
z ¼ 0.15, Mon. Not. R. Astron. Soc. 449, 835 (2015).

[50] D. M. Scolnic et al. (Pan-STARRS1 Collaboration), The
complete light-curve sample of spectroscopically confirmed
SNe Ia from Pan-STARRS1 and cosmological constraints
from the combined pantheon sample, Astrophys. J. 859, 101
(2018).

[51] E. Aver, K. A. Olive, and E. D. Skillman, The effects of He I
λ10830 on helium abundance determinations, J. Cosmol.
Astropart. Phys. 07 (2015) 011.

[52] G. Benevento, W. Hu, and M. Raveri, Can late dark energy
transitions raise the Hubble constant?, Phys. Rev. D 101,
103517 (2020).

JUAN S. CRUZ et al. PHYS. REV. D 108, 023518 (2023)

023518-12

https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevD.98.083525
https://doi.org/10.1103/PhysRevD.101.063523
https://arXiv.org/abs/2211.04492
https://doi.org/10.1142/S0218271819440176
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.102.063527
https://doi.org/10.1103/PhysRevD.102.063527
https://doi.org/10.1103/PhysRevD.104.L081303
https://doi.org/10.1103/PhysRevD.104.L081303
https://doi.org/10.1103/PhysRevD.104.083533
https://doi.org/10.1103/PhysRevD.105.063509
https://doi.org/10.1103/PhysRevD.103.103537
https://doi.org/10.1103/PhysRevD.103.103537
https://doi.org/10.1088/1475-7516/2023/02/041
https://doi.org/10.3847/2041-8213/ac63a3
https://doi.org/10.3847/2041-8213/ac63a3
https://doi.org/10.1103/PhysRevD.106.063506
https://arXiv.org/abs/2210.16296
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1103/PhysRevD.102.043507
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1103/PhysRevD.103.063502
https://doi.org/10.1103/PhysRevD.103.063502
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1016/j.physletb.2022.137555
https://doi.org/10.1007/BF02710419
https://doi.org/10.1086/176550
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1103/PhysRevD.57.3873
https://doi.org/10.1103/PhysRevD.57.3873
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1103/PhysRevD.107.L021303
https://doi.org/10.1103/PhysRevD.61.023002
https://doi.org/10.1103/PhysRevD.61.023002
https://doi.org/10.1088/1475-7516/2013/02/001
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.1088/1475-7516/2015/07/011
https://doi.org/10.1088/1475-7516/2015/07/011
https://doi.org/10.1103/PhysRevD.101.103517
https://doi.org/10.1103/PhysRevD.101.103517


[53] D. Camarena andV.Marra, On the use of the local prior on the
absolute magnitude of Type Ia supernovae in cosmological
inference, Mon. Not. R. Astron. Soc. 504, 5164 (2021).

[54] P. Zhang, G. D’Amico, L. Senatore, C. Zhao, and Y. Cai,
BOSS correlation function analysis from the effective field
theory of large-scale structure, J. Cosmol. Astropart. Phys.
02 (2022) 036.

[55] H. Gil-Marín et al., The clustering of galaxies in the SDSS-III
baryon oscillation spectroscopic survey: BAO measurement
from the LOS-dependent power spectrum of DR12 BOSS
galaxies, Mon. Not. R. Astron. Soc. 460, 4210 (2016).

[56] F. Beutler and P. McDonald, Unified galaxy power spectrum
measurements from 6dFGS, BOSS, and eBOSS, J. Cosmol.
Astropart. Phys. 11 (2021) 031.

[57] T. Simon, P. Zhang, V. Poulin, and T. L. Smith, Updated
constraints from the effective field theory analysis of BOSS
power spectrum on early dark energy, Phys. Rev. D 107,
063505 (2023).

[58] G. D’Amico, L. Senatore, and P. Zhang, Limits on wCDM
from the EFTofLSS with the PyBird code, J. Cosmol.
Astropart. Phys. 01 (2021) 006.

[59] G. D’Amico, L. Senatore, P. Zhang, and T. Nishimichi,
Taming redshift-space distortion effects in the EFTofLSS
and its application to data, arXiv:2110.00016.

[60] T. Simon, P. Zhang, V. Poulin, and T. L. Smith, On the
consistency of effective field theory analyses of BOSS
power spectrum, Phys. Rev. D 107, 123530 (2023).

[61] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore, and
P. Zhang, The BOSS bispectrum analysis at one loop from

the effective field theory of large-scale structure, arXiv:
2206.08327.

[62] S. K. Choi et al. (ACT Collaboration), The Atacama
Cosmology Telescope: A measurement of the cosmic
microwave background power spectra at 98 and
150 GHz, J. Cosmol. Astropart. Phys. 12 (2020) 045.

[63] S. Aiola et al. (ACT Collaboration), The Atacama Cosmol-
ogy Telescope: DR4 maps and cosmological parameters, J.
Cosmol. Astropart. Phys. 12 (2020) 047.

[64] J. C. Hill et al., Atacama Cosmology Telescope: Constraints
on prerecombination early dark energy, Phys. Rev. D 105,
123536 (2022).

[65] B. A. Benson et al. (SPT-3G Collaboration), SPT-3G: A
next-generation cosmic microwave background polarization
experiment on the South Pole Telescope, Proc. SPIE Int.
Soc. Opt. Eng. 9153, 91531P (2014).

[66] A. Reeves, L. Herold, S. Vagnozzi, B. D. Sherwin, and
E. G. M. Ferreira, Restoring cosmological concordance with
early dark energy and massive neutrinos?, Mon. Not. R.
Astron. Soc. 520, 3688 (2023).

[67] M. Raveri and W. Hu, Concordance and discordance in
cosmology, Phys. Rev. D 99, 043506 (2019).

[68] V. Poulin, T. L. Smith, and A. Bartlett, Dark energy at early
times and ACT data: A larger Hubble constant without late-
time priors, Phys. Rev. D 104, 123550 (2021).

[69] T. M. C. Abbott et al. (DES Collaboration), Dark energy
survey year 3 results: Cosmological constraints from galaxy
clustering and weak lensing, Phys. Rev. D 105, 023520
(2022).

PROFILING COLD NEW EARLY DARK ENERGY PHYS. REV. D 108, 023518 (2023)

023518-13

https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1088/1475-7516/2022/02/036
https://doi.org/10.1088/1475-7516/2022/02/036
https://doi.org/10.1093/mnras/stw1264
https://doi.org/10.1088/1475-7516/2021/11/031
https://doi.org/10.1088/1475-7516/2021/11/031
https://doi.org/10.1103/PhysRevD.107.063505
https://doi.org/10.1103/PhysRevD.107.063505
https://doi.org/10.1088/1475-7516/2021/01/006
https://doi.org/10.1088/1475-7516/2021/01/006
https://arXiv.org/abs/2110.00016
https://doi.org/10.1103/PhysRevD.107.123530
https://arXiv.org/abs/2206.08327
https://arXiv.org/abs/2206.08327
https://doi.org/10.1088/1475-7516/2020/12/045
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1103/PhysRevD.105.123536
https://doi.org/10.1103/PhysRevD.105.123536
https://doi.org/10.1117/12.2057305
https://doi.org/10.1117/12.2057305
https://doi.org/10.1093/mnras/stad317
https://doi.org/10.1093/mnras/stad317
https://doi.org/10.1103/PhysRevD.99.043506
https://doi.org/10.1103/PhysRevD.104.123550
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520

