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The quantum cosmology of the flat Friedmann-Lemaître-Robertson-Walker universe, filled with a
scalar field, is considered in the de Broglie–Bohm (dBB) interpretation framework. A stiff-matter quantum
bounce solution is obtained. The bouncing and subsequent pre-inflationary and inflationary dynamics are
studied in details. We consider some representative primordial inflation models as examples, for which
analytical expressions characterizing the dynamical quantities can be explicitly derived. The dependence of
the inflationary dynamics on the quantum bounce parameters is then analyzed. The parameters emerging
from our description are constrained by requiring the produced dynamics to be in accordance with some
key cosmological quantities. The constraining conditions are also illustrated through regions of parameter
space in terms of the bounce quantities.
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I. INTRODUCTION

The standard cosmological model predicts that the
Universe began in a very hot and dense state, followed
by a radiation-dominated expansion phase, which is in turn
followed by a pressureless matter-dominated phase and
then to a dark energy expansion phase more recently (in
terms of cosmological time scales). This model responds
to important observations of the current Universe [1], such
as the cosmic microwave background (CMB) radiation,
the large-scale structure, the cosmological redshift, among
others. Despite its successes, the hot big bang (HBB)
standard model suffers from the well-known flatness and
the horizon problems. The standard solution for these
problems is provided by inflation [2–6], which consists
of an accelerated expansion phase, typically attributed to
the vacuum energy of a scalar field, the inflaton. In addition
of providing a simple explanation for the spatial flatness
and homogeneity of the Universe, inflation models can also
provide an origin for the primordial anisotropies (e.g., due
to quantum fluctuations of the inflaton field, like in cold
inflation [7], or due to classical thermal fluctuations, like in
warm inflation [8]). These are the same anisotropies
leading later to the origin of the large-scale structure of
the Universe and the spectrum of temperature fluctuations
measured in the CMB. Despite of all its success, inflation is

not the only paradigm able to provide a solution for the
aforementioned problems of the HBB standard model and
also to give a way of producing scale-invariant perturbations
(or very close to scale-invariant perturbations, as required by
the observations [1]). In this context, bouncing models have
been shown (see e.g., Refs. [9–20]) to be able to achieve
those same features produced by inflation.1 Furthermore,
bouncing models can also avoid the issue faced by the theory
of General Relativity (GR), the initial singularity, which is
not addressed in the inflationary paradigm [22,23]. When a
bounce is present, the Universe has a contraction phase and
can go to an expansion phase without passing through a
singularity.
Nevertheless, the existence of a bounce does not exclude

the possibility of an inflationary period in the Universe and
vice versa. In fact, a Universe filled with the inflaton field
can have a bounce dominated by its kinetic energy and
eventually to evolve to an inflationary phase. Such situation
is common place in the context of loop quantum cosmology
(LQC) for instance [17,24–30]. More precisely, after the
bounce, in the presence of an inflaton field with an
appropriate potential able to support inflation, an infla-
tionary phase is almost inevitable [31–39]. In these
descriptions, the bounce is then followed by inflation, after
a short nonaccelerating regime, such that the postinfla-
tionary Universe can be sensible to the previous bounce
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1For a recent comparison of the inflationary and bouncing
paradigms in terms of the explanatory depth provided by both,
see Ref. [21].
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dynamics (see e.g., Ref. [27]). One appealing feature of this
combined dynamics is that the bounce dynamics plays the
role of a preinflationary scenario, which can lead to
observational signatures and connect the quantum bounce
to observations. Furthermore, by combining the dynamics
of bounce and inflation, it can offer an unique opportunity
for exploring the positive points of both scenarios and,
hence, for having a better hope towards our goal of
understanding the primordial Universe.2

The main purpose of this work is to consider this same
combined scenario of bounce and inflation dynamics, but
using a different quantization strategy than that of LQC.
Here, we discuss the preinflationary physics that follows
from the contracting phase before the bounce to the end of
inflation and how the existence of the bounce affects the
inflationary dynamics. We constrain the bounce parameters
in order to provide a minimum number of e-folds to solve
the standard model puzzles and, additionally, guarantees
that the bounce scales are consistent with the forthcoming
processes after the bounce. For this proposal, we closely
follow the strategy recently considered for the case of LQC
and put forward in Ref. [42] and which will be extended to
the problem we will study in this paper.
In order to establish the bounce model, we perform the

canonical quantization of GR in the Arnowitt-Deser-Misner
(ADM) formalism [43–45] and construct the Wheeler-
DeWitt (WDW) equation [46–48]. Then, for the quantization
of the resulting wavefunction, we consider the de Broglie-
Bohm (dBB) interpretation [49–51], where no external agent
and collapse postulate are necessary. In the dBB interpre-
tation (also known as Bohmian quantum mechanics),
particles have a deterministic trajectory and are guided by
the wave function. It is important to mention that there are
other suitable alternatives that can be applied to quantum
cosmology, such as, e.g., the many-worlds interpretation
and collapse models [52–54], but we will not consider
them here. From the quantization of the model, a bounce
dynamics emerges and in which the initial singularity is
resolved. This is similar to the resolution of the singularity
by the quantum bounce in LQC, but here performed in
the context of the dBB quantum cosmology (see e.g.,
Refs. [20,55] for reviews). We write the WDWequation in
the minisuperspace [56,57], which restricts all possible
geometries of the full superspace to a homogeneous and
isotropic scenario and preserves its main qualitative
aspects. Quantum cosmology models in minisuperspace
in the dBB interpretation have been extensively discussed
in the literature, like, for example, in Refs. [58–85].
Among these papers, some authors consider bouncing
models described by perfect fluids using the Schutz
formalism [86,87] for different values for the equation
of state parameter ω, whereas others consider bouncing

models described by a scalar field. In the latter, the bounce
is usually dominated by the kinetic part of the energy
density of the scalar field, which behaves as a stiff-matter
fluid. Particularly, in Ref. [70] it was introduced a back-
ground model for a bounce dominated by a free and
massless scalar field, whose scalar spectrum, however,
revealed to be incompatible with observations [72]. On
the other hand, the authors in Ref. [80] introduced an
observational consistent bouncing model involving a
single scalar field with an exponential potential, which
is responsible for a dust contracting phase, a stiff-matter
bounce phase, radiation and dust phases, a dark-energy
phase and a final dust phase. While the work in Ref. [72]
indicated that a pure stiff-matter bounce is not compatible
with observations, Ref. [80] showed that this same bounce
is consistent only if a potential energy density dominates
after the bounce phase. In other words, in the context of a
stiff-matter bounce, a phase where the potential energy
density dominates is required. This is sufficient to argue
that an inflationary phase following the bounce is also a
reasonable alternative, which will be the situation con-
sidered in this work.
The model presented here consists of a quantum

Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy in minisuperspace in the dBB interpretation, whose
material content is a scalar field. In the bounce phase,
where the quantum effects are relevant, the kinetic part of
the scalar field dominates, i.e., the bounce is dominated by
stiff-matter. In the expanding phase far from the bounce, the
quantum effects are negligible, the potential energy density
eventually dominates and an inflationary phase occurs.
In the bounce phase, following Ref. [75], we write an
analytical solution for the scale factor, which provides an
expression for the nonsingular Hubble parameter. On the
other hand, in the inflationary phase, we consider some
well-motivated inflationary potentials, which are the mono-
mial chaotic potentials, namely, the quadratic, quartic and
sextic power-law potentials, as well as the Starobinsky
potential. The choice of the monomial power-law potentials
is due more for the easy of treating our problem in terms of
these potentials. Even though they are in strong tension
with the observations, e.g., by predicting a too large tensor-
to-scalar ratio, at least in the context of cold inflation, they
are still viable potentials in the context of the warm
inflation picture [8]. We do not address in the present
work the cosmological perturbations aspects of the theory,
which will be the subject of future research, and dedicate
in this work, as an initial study, to first understand the
background dynamics of the model.
The dynamics of our model will be traced back to the

contracting phase, where the initial conditions are set,
passing through the bounce point, where the amplitude of
the inflaton field, ϕðtBÞ ¼ ϕB, is uniquely determined [42]
(tB denotes here the cosmic time at the bounce). The
bounce phase ends when the kinetic term stops being

2For other works combining the dynamics of both bounce and
inflation, see also Refs. [40,41].
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dominant, i.e., when the equation of state parameter ω is
zero, and where a transition phase begins. This phase
briefly ends when ω ¼ −1=3, where the inflationary phase
begins. Each of these phases can be characterized analyti-
cally as we are going to see, allowing us, for example, to
obtain the duration of each phase, including the determi-
nation of the number of inflationary e-folds, which is
explicitly dependent on the bounce parameters. These
results also help us when constraining the many parameters
added in the quantization procedure, breaking the, in
principle, arbitrariness in their choice.
The paper is organized as follows. In Sec. II, we introduce

the classical background cosmological model, which is the
FLRW universe filled with a canonical scalar field. We also
present a canonical transformation, which results in a
transformed Hamiltonian that is suitable for our calculations.
A classical solution for the scale factor is obtained in a new
time variable for a flat spatial section, k ¼ 0, and when the
kinetic term dominates over potential term, V=ð _ϕ2=2Þ ≪ 1,
which describes a stiff-matter (ω ¼ 1) solution. In Sec. III,
we quantize the FLRW cosmological model in the dBB
interpretation using the WDW equation. The quantum
solution for the scale factor is obtained in the dBB
interpretation from the solution of the WDW equation.
The nonsingular Hubble parameter and the critical density
are also derived. In Sec. IV, we present the full background
dynamics, starting from the prebounce contracting phase,
passing through a quantum bounce, the subsequent transition
phase and until the end of inflation. In Sec. V, we introduce
the physical conditions that the quantum bounce and infla-
tionary phases must attain for consistency. In Sec. VI, we
present the results of our analysis. Regions of parameter
space involving the quantum bounce are determined by
requiring that consistent bounce and proper duration of the
inflationary phase are produced. Finally, in Sec. VII, we
present our conclusions along also with a discussion of
perspectives for future research. Some of the most technical
details of the calculations are presented in the Appendix.
Throughout this work we use the natural units system, in
which c ¼ ℏ ¼ 1. We will also be working in the context of
a standard flat FLRW cosmology with the spacetime metric
given by the line element ds2 ¼ −dt2 þ a2ðtÞdx2, where t is
the physical time, x are the comoving coordinates and aðtÞ is
the scale factor.

II. CLASSICAL BACKGROUND MODEL

The geometry of spacetime is generated by a matter
content. We consider here as the matter content a canonical
scalar field ϕ with potential energy VðϕÞ. The scalar field
action in curved spacetime is

S ¼ SEH þ Smat

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð2:1Þ

where κ ≡ ffiffiffiffiffiffi
8π

p
=mPl, mPl is the Planck mass (mPl ≃

1.22 × 1019 GeV), gμν is the metric tensor, g is the
determinant of the metric tensor and R is the Ricci scalar.
From the action S, Eq. (2.1), the Lagrangian density for a
homogeneous scalar field in the flat FLRW universe is
given by

L ¼ −
3

κ2
a _a2 þ 1

2
a3 _ϕ2 − a3VðϕÞ; ð2:2Þ

where the dot denotes the derivative with respect to cosmic
time. The Hamiltonian density is given by

Hϕ ¼ −κ2
P2
a

12a
þ P2

ϕ

2a3
þ a3VðϕÞ; ð2:3Þ

where Pa and Pϕ are the canonical momenta conjugated to
a and ϕ, respectively. The classical equations of motion
with respect to cosmic time read,

_a ¼ fa;Hϕg ¼ −κ2
Pa

6a
; ð2:4aÞ

_Pa ¼ fPa;Hϕg ¼ −κ2
P2
a

12a2
þ 3P2

ϕ

2a4
− 3a2VðϕÞ; ð2:4bÞ

_ϕ ¼ fϕ;Hϕg ¼ Pϕ

a3
; ð2:4cÞ

_Pϕ ¼ fPϕ;Hϕg ¼ −a3V;ϕðϕÞ: ð2:4dÞ

By following for instance Ref. [88], it becomes convenient
for the quantization procedure to be introduced shortly and,
for making easy the technical analysis of the resulting
equations, to introduce and work with a new set of variables
ðT; PTÞ instead of ðϕ; PϕÞ. We perform the canonical
transformation3 ðϕ; PϕÞ → ðT; PTÞ,

T ¼ ϕ

Pϕ
; PT ¼ P2

ϕ

2
; ð2:5Þ

where PT is a new canonical momentum conjugated to the
new variable T. The transformed Hamiltonian density, from
Eq. (2.3), now becomes

HT ¼ −κ2
P2
a

12a
þ PT

a3
þ a3VðT; PTÞ: ð2:6Þ

The new system of equations in these variables becomes
more involved for a nonzero potential. Since in this paper
the objective is to explore the bounce for a kinetic

3This canonical transformation will be relevant only in the
canonical quantization context, but it is important to consider the
same variables in the classical solutions for comparison.

BOUNCING AND INFLATIONARY DYNAMICS IN QUANTUM … PHYS. REV. D 108, 023517 (2023)

023517-3



dominated (stiff matter) field, we set V ¼ 0 from now on.
In this case, in the variables ðT; PTÞ one then has that

_T ¼ fT;HTg ¼ 1

a3
; and dt ¼ a3dT; ð2:7Þ

from which T can be understood as a new time variable.
From the relation between the cosmic time t and the new
time variable T, the dynamical equations with respect to the
time variable T are now given by

a0 ¼ −
κ2

6
a2Pa; ð2:8aÞ

P0
a ¼ −

κ2

12
aP2

a þ
3PT

a
; ð2:8bÞ

P0
T ¼ 0; ð2:8cÞ

where the prime denotes the derivative with respect to T.
From Eq. (2.6), setting the super-Hamiltonian constraint
HT to zero, one obtains

−κ2
P2
a

12a
þ PT

a3
¼ 0: ð2:9Þ

From Eqs. (2.8a) and (2.9), the Friedmann equation
expressed in terms of the new variables ðT; PTÞ becomes

H2 ¼
�
a0

a4

�
2

¼ κ2

3

PT

a6
; ð2:10Þ

where H is the Hubble parameter.
This simple analytical solution for the scale factor can be

seen as the case of a pure stiff-matter (i.e., a kination
regime) case, which then leads to the solution

aðTÞ ¼ a0e�λT; ð2:11Þ

where λ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffi
PT=3

p
is a constant. In this particular case,

from Eq. (2.8c), PT is a constant of motion. The positive
and negative signs in the exponential represent, respec-
tively, expanding and contracting universe solutions.
Therefore, these are separate classical solutions. Note that
by using Eq. (2.5), the parameter λ can also be expressed
like

λ ¼ κPϕffiffiffi
6

p : ð2:12Þ

From the fact that PT (and Pϕ) is a constant of motion, the
term PT=a6 in the Friedmann equation, Eq. (2.10), repre-
sents correctly a stiff-matter fluid. This is what is expected,
since for a scalar field with zero potential energy the
equation of state parameter is simply given by ω ¼ 1.

III. QUANTUM BACKGROUND MODEL: DE
BROGLIE–BOHM INTERPRETATION

In order to obtain the quantum behavior of the model, we
first make use of the WDWequation, ĤΨða; TÞ ¼ 0. In this
equation, the super-Hamiltonian constraint H, which is
given by Eq. (2.6), is promoted to an operator Ĥ, and
Ψða; TÞ is the wave functional of the primordial universe
and from which the Bohmian trajectories for the observ-
ables are assumed to follow. The canonical momenta
ðPa; PTÞ are replaced by operators ð−i∂a;−i∂TÞ. From
these requirements, the WDW equation is then given by

i∂TΨða; TÞ ¼
κ2

12
a2∂2aΨða; TÞ; ð3:1Þ

where we have considered V ¼ 0, as in the classical case
and discussed in the previous section. Note that when
working with Eq. (3.1) and if for instance one tries to
rescale the wave functional or change the time variable, a
novel first-order derivative ∂a term will appear. However,
this first-order derivative term can always be eliminated.
In a sense, we can see the possible appearance of such a
term as an ambiguity in the ordering of the factors a and
Pa in the first term in the right-hand-side of Eq. (3.1).
Nevertheless, its presence is often useful in order to obtain
an analytical result for the WDWequation. It then becomes
more convenient to rewrite Eq. (3.1) as

i∂TΨða; TÞ ¼
�
κ2

12
a2∂2a þ

sκ2

12
a∂a

�
Ψða; TÞ; ð3:2Þ

where the parameter s represents the above mentioned
ambiguity. As shown in the Appendix, a suitable choice
for s is s ¼ ð3ω − 1Þ=2, from which we can obtain an
analytical solution for the WDW equation. In this case, for
stiff-matter, Eq. (3.2) reduces to

i∂TΨða; TÞ ¼
κ2

12
ða2∂2a þ a∂aÞΨða; TÞ; ð3:3Þ

which reproduces the WDW equation for a single fluid
when ω ¼ 1 (see e.g., Ref. [20]). An explicit analytical
solution for the WDW equation in this case can be found
(see the Appendix for details). To apply the Bohmian
quantum mechanics, we first write the wavefunction
solution for the WDW equation, Eq. (A12), which was
obtained for ω ¼ 1, in the polar form as

Ψða; TÞ ¼ Ωða; TÞeiSða;TÞ; ð3:4Þ
where Ωða; TÞ and Sða; TÞ are real functions given by

Ωða; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΨða; TÞj2

q
¼

�
8T0

πðT2
0 þ T2Þ

�
1=4

exp

�
−

3T0ln2ðϵaÞ
κ2ðT2

0 þ T2Þ
�
; ð3:5Þ
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and

Sða; TÞ ¼ −
3Tln2ðϵaÞ
κ2ðT2

0 þ T2Þ −
1

2
arctan

�
T0

T

�
þ π

4
; ð3:6Þ

where T0 and ϵ are constants coming from the solution of
the WDW equation.
One can interpret Ω2 ¼ jΨj2 as the probability density,

whereas S is the phase, which guides the trajectory
according to the dBB interpretation. In the present case,
the trajectory is the evolution of the scale factor. Hence,
following the dBB interpretation, the guidance equation
can be defined as

Pa ¼ ∂aS: ð3:7Þ

Thus, from Eqs. (3.6) and (3.7), we have that Eq. (2.8a)
becomes

a0 ¼ Ta ln ðϵaÞ
ðT2

0 þ T2Þ : ð3:8Þ

Working out the solution of Eq. (3.8), subject to the initial
condition að0Þ ¼ aB and to the classical limit, Eq. (2.11),
for T → �∞, we obtain that

aðTÞ ¼ aBeλT0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðT=T0Þ2

p
−1�; ð3:9Þ

where λ has already been defined by Eq. (2.12), aB is the
scale factor at the bounce (i.e., at T ¼ 0) and we must
impose a0 ¼ aBe−λT0 for consistency. This also allows us
to express the constant ϵ appearing in the WDW wave
function solution Eq. (3.4) in terms of λ, T0 and aB as

ϵ ¼ eλT0

aB
: ð3:10Þ

The result given by Eq. (3.9), which is different from
Eq. (2.11), represents a bouncing universe solution. Note
that in the asymptotic limits T → �∞, we obtain the
classical solutions,

aðTÞ ¼ aBe�λðT∓T0Þ: ð3:11Þ

One must notice that the quantum bounce solution,
Eq. (3.9), is a natural match of the latter classical solutions,
which happens at T ¼ 0. If there are other bounces phases
related to our quantum solution, we do not address them in
this work.
Finally, it is important to check the consistency of the

quantum bounce solution and that it is indeed free of a
classical big bang singularity at T ¼ 0. First of all, note that
by considering the probability density, jΨj2 ¼ Ω2, from
Eq. (3.5) and that ϵ > 0, one obtains that the singularity

a ¼ 0 is resolved for all values of T. Particularly, using
Eq. (3.10), at T ¼ 0, we obtain that

jΨða; 0Þj2 ¼
�

8

πT0

�
1=2

exp

2
64− 6ln2

�
a
aB
eλT0

�
κ2T0

3
75: ð3:12Þ

One can notice that in the limit where a → 0, the expo-
nential in Eq. (3.12) tends to zero. Therefore, there is no
probability of a quantum solution for a vanishing (a ¼ 0)
scale factor.
From the analytical solution for the scale factor,

Eq. (3.9), we can determine the Hubble parameter, which
we find to be given by

H2 ¼ λ2

a6

2
641 − λ2T2

0

ln2
�

a
aB
eλT0

�
3
75: ð3:13Þ

The above result reproduces the expected bounce at
a ¼ aB, where H ¼ 0. In the limit a → ∞, we must
reobtain the classical Friedmann equation, which, from
Eq. (3.13), gives

H2 ¼ λ2

a6
≡ κ2

3
ρ: ð3:14Þ

Therefore, we notice that ρ ¼ 3λ2=ðκ2a6Þ. Additionally, at
the bounce, where a ¼ aB, one obtains the so-called critical
density (i.e., the energy density at the bounce), ρB, which is
given by

ρB ¼ 3λ2m2
Pl

8πa6B
: ð3:15Þ

Solving for λ, one obtains λ ¼
ffiffiffiffiffiffiffiffiffiffiffi
κ2a6BρB

3

q
¼

ffiffiffiffiffiffiffi
8πρB
3m2

Pl

q
a3B. Hence,

Eq. (3.13) can be expressed as

H2 ¼ κ2

3
ρ

8<
:1 −

1h
1 − 1

6λT0
ln
�

ρ
ρB

�i
2

9=
;: ð3:16Þ

Equation (3.16) is the quantum version of the Friedmann
equation, Eq. (3.14) and our main result of this section. It is
important to mention that the result for the quantum scale
factor of this section, Eq. (3.9), has been already considered
in Ref. [75], but our result is more general and obtained by
a different method, which follows Ref. [69]. In Ref. [75],
the solution for the scale factor is obtained from a solution
of the WDW equation for an arbitrary separation of
variables, whereas in our case the solution for the WDW
equation is obtained by propagating an initial Gaussian
wave packet as widely considered in the literature [55]
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for ω ≠ 1. Additionally, we obtain that að0Þ ¼ aB, whereas
in Ref. [75] this requirement is not addressed. In fact, our
result is a novel extension of Ref. [69] for ω ¼ 1, where the
analytical quantum scale factor was obtained for all values
of ω except for ω ¼ 1.
Some relevant remarks must be made about the param-

eters in Eq. (3.16). The first one is that T0 and ρB are novel
parameters, which are integration constants that arise due to
the WDW quantization in the dBB interpretation. The
former comes from the wave function initial condition,
Eq. (A10), whereas the latter arises from the nonsingular
behavior of the bounce dynamics. When ρ ¼ ρB, one
obtains H ¼ 0, which is the transition between contracting
and expanding phases, connected by a bounce. On the
other hand, when T0 → 0 one obtains the classical limit,
Eq. (3.14). The second one is that λ, although explicitly
present in the quantum Hubble parameter, it is a parameter
already of the classical theory. From Eq. (3.15), λ is present
in the definition of ρB. However, the definition of λ as a
constant parameter, given by Eq. (2.12), holds only before
the beginning of the inflationary phase. This can be noticed,
e.g., from Eq. (2.4d), which shows that Pϕ is constant only
for negligible potential energy, i.e., around the bounce and
according to what we will be considering throughout the
next section. In all of our subsequent calculations in which
will be involving λ, it is then well justified to assume its
constancy, or more specifically, its value at the bounce
instant, λB. Hence, only T0 and ρB (or λB) will be
constrained by cosmological considerations.4 The bounce
depth aB, which also arises from the nonsingular behavior,
will be set to unit without loss of generality.

IV. BACKGROUND DYNAMICS

In the previous section, we presented the quantum
bounce solution in the case where, at the bounce, the
matter content of the Universe is dominated by stiff matter,
which is described by a massless scalar field. We now
explore the implications of this result for the background
dynamics of a scalar field that goes through the bounce
phase. In bouncing inflationary cosmologies, the Hubble
antifriction term in the contracting phase generally leads to
dynamics where the scalar field is kinetic dominated,
whereas in the expanding phase an inflationary potential
is included when a classical description is possible. Once
an appropriate potential is assigned to the scalar field, an
inflationary phase far from the bounce becomes highly
likely to happen. This prediction follows generically, much

in the same way as it happens in the context of LQC and
where similar conditions prevail at the bounce [27,31–35].
To study the background evolution for the inflaton field

here, we will closely follow the same strategy implemented
in Ref. [42]. The evolution is considered to start deep in the
contracting phase, where the inflaton field is expected to be
performing small oscillations around the minimum of its
potential.5 As the universe contracts towards the bounce
and considering the evolution starting sufficiently in the
past, the kinetic energy of the scalar field will tend to
become dominant, realizing the conditions leading to the
solutions obtained in the previous section for a quantum
bounce dominated by stiff matter.
Here we present the different phases of the background

evolution, starting from the prebounce (classical regime)
contracting phase, the quantum bounce phase, and the
subsequent expansion (again in the classical regime) of the
pre-inflation transition and inflationary phases. For our
analysis, we will focus on a scalar inflaton field described
by the following primordial potentials: (a) the power-law
monomial chaotic potential,

V ¼ V0

2n

�
ϕ

mPl

�
2n
; ð4:1Þ

and (b) the Starobinsky potential [90],

V ¼ V0

�
1 − e−

ffiffiffiffi
16π
3

p
ϕ

mPl

�
2

: ð4:2Þ

For the power-law monomial potential, for definiteness, we
will consider the cases of the quadratic (n ¼ 1), quartic
(n ¼ 2) and the sextic (n ¼ 3) as working examples. In
Eqs. (4.1) and (4.2), V0 is fixed by the amplitude of the
CMB scalar spectrum, which gives (see e.g., Ref. [42]),
for the monomial potentials, for n ¼ 1: V0=m4

Pl ¼
1.355 × 10−12; for n ¼ 2: V0=m4

Pl ¼ 1.373 × 10−13; and
for n ¼ 3: V0=m4

Pl ¼ 4.563 × 10−15, whereas for the
Starobinsky potential, V0=m4

Pl ¼ 1.497 × 10−13.

A. Setting the initial conditions

We set the initial conditions in the classical contracting
phase. From the classical scale factor in the contracting
phase, Eq. (3.11), the Hubble parameter is given by

H ¼ _a
a
¼ a0ðTÞ

aðTÞ4 ¼ −
λ

a3Be
−3λðTþT0Þ : ð4:3Þ

From Eqs. (2.7) and (3.11), in the contracting phase, hence
the minus sign in Eq. (4.3), one obtains

t − tB ¼ −
1

3

a3Be
−3λðTþT0Þ

λ
; ð4:4Þ

4In other approaches, e.g., LQC, ρB is a free parameter of the
theory, related to the Barbero-Immirzi parameter γ, which is in
turn fixed by black hole entropy calculations in LQG [89]. The
possibility of varying γ as a free parameter of the underlying
quantum theory can also be considered [42]. However, in
Bohmian quantum gravity, even if we can develop black hole
entropy calculations, there remains a free parameter that must be
constrained by observations.

5Here, we only consider inflaton potentials that have a
minimum.
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where tB is the cosmic time at the bounce. On the other
hand, from Ref. [42] one obtains that t − tB is also given by

tα − tB ≃ −
1þ ᾱ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

Plᾱ

8πð1þ ᾱÞVðϕαÞ

s
; ð4:5Þ

where α≡ V=ð _ϕ2=2Þ is the ratio between potential and
kinetic energy densities for the scalar field. The quantum
bounce, as assumed in the present study, is dominated by
stiff-matter fluid. Thus, we can see the choice of α as
indicating how far in the past we set the initial conditions
for the inflaton field. The amplitude ϕα ≡ ϕðtαÞ is the
inflaton amplitude at the time where the fraction of
potential and kinetic energy densities has some given value
α. In the latter equation we also wrote ᾱ instead of α, where
ᾱ is taken as the “average” value for α and we approximate
it as a constant within the range (0,1) (see Ref. [42] for
details). From this approximation, we estimate in the
following Tα and ϕα ≡ ϕðTαÞ. In particular, from the
Eqs. (4.4) and (4.5), we find that

Tα ≃
1

3λ
ln

"
a3B

ð1þ ᾱÞλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πð1þ ᾱÞVðϕαÞ

3m2
Plᾱ

s #
− T0: ð4:6Þ

For the power-law potential, Eq. (4.1), and Starobinsky
potential, Eq. (4.2), one can obtain ϕα as [42]

ϕα ¼
n

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p

2
ffiffiffiffiffiffi
3π

p mPl; ð4:7Þ

and

ϕα ¼
1

4

ffiffiffi
3

π

r
ln

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p

3

�
mPl; ð4:8Þ

respectively.
Let us now see how we can connect the solution ϕα with

the one valid around the bounce phase. From Eqs. (2.4c),
(2.4d), and (2.7) at the bounce phase (i.e., when _ϕ2=2 ≫ V),
we can integrate ϕðTÞ with the initial condition ϕð0Þ ¼ ϕB
to obtain

ϕðTÞ ¼ ϕB �
ffiffiffi
3

p
λmPl

2
ffiffiffi
π

p T; ð4:9Þ

where we have also used that Pϕ ¼ ffiffiffiffiffiffiffiffi
3=π

p
λmPl=2 from

Eq. (2.12). Finally, we can obtain ϕB evaluating Eq. (4.9) at
T ¼ Tα to obtain

ϕB ¼ ϕα ∓
ffiffiffi
3

p
λmPl

2
ffiffiffi
π

p Tα: ð4:10Þ

Explicit expressions for ϕB, Eq. (4.10), can be obtained
analytically for specific potentials, in particular for the
potentials we are considering in our study, Eqs. (4.1) and
(4.2). Firstly, we substitute Tα given by Eq. (4.6), which
depends on V. Secondly, we substitute ϕα for each potential.
For the power-law potential, using Eq. (4.7), one obtains

ϕB=mPl ¼
n

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p

2
ffiffiffiffiffiffi
3π

p � 3λT0

2
ffiffiffiffiffiffi
3π

p
	
1 −

1

3λT0

ln

�
a3B
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3m2
Plᾱð1þ ᾱÞ

V0

2n

s �
n

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p

2
ffiffiffiffiffiffi
3π

p
�n�


; ð4:11Þ

whereas for the Starobinsky potential, using Eq. (4.8), we obtain

ϕB=mPl ¼
1

4

ffiffiffi
3

π

r
ln

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ffiffiffi
3

p
�
� 3λT0

2
ffiffiffiffiffiffi
3π

p
	
1 −

1

3λT0

ln

�
4

ffiffiffiffiffiffi
2π

p
a3B

ð3þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ÞλmPl

ffiffiffiffiffiffi
V0

3ᾱ

r �

; ð4:12Þ

where for both cases in � the plus (minus) sign refers to
_ϕc > 0 ( _ϕc < 0).
The expressions of ϕB for both type of potentials depend

on the parameters λ, T0 and α. In the following, we will fix
the value of α in order to establish the initial condition at
the prebounce phase, whereas for λ and T0, we will show
that they can be constrained by appropriate cosmological
scales. Therefore, additionally to the natural condition
ð _ϕ2

B=2Þ=VðϕBÞ ≫ 1 at the bounce, ϕB will be constrained
by λ and T0.

B. Bounce phase

This phase is characterized by the dominance of the
kinetic energy over the potential energy, ð _ϕ2=2Þ=V ≫ 1,
i.e., α ≪ 1, where the scalar field behaves as stiff matter.
From Eqs. (2.4c) and (2.4d) at the bounce phase and
Eqs. (2.12) and (3.15), one obtains that

_ϕðtÞ ¼ �
ffiffiffiffiffiffiffiffi
2ρB

p �
aB
aðtÞ

�
3

: ð4:13Þ
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From Eq. (2.7), with respect to variable T, Eq. (4.13) will
read as

ϕ0ðTÞ ¼ �
ffiffiffiffiffiffiffiffi
2ρB

p
a3B; ð4:14Þ

whose solution, for the initial condition ϕð0Þ ¼ ϕB, is
given by Eq. (4.9).
It is useful to verify how good is the solution Eq. (4.9)

for ϕðTÞ, which was obtained by neglecting the inflaton
potential in its derivation, with the full numerical solution
for ϕðTÞ, obtained by solving the inflaton equation of
motion and keeping explicitly the potential. In Fig. 1 we
show that the analytical approximation is indeed very
good when compared with the numerical result. This
agreement extends from the contracting bounce phase up
until right after the beginning of the transition phase
(when the potential starts dominating the kinetic energy),
indicated by the vertical blue dotted line, and already in
the expanding phase. Actually, we can confidently extend
this approximation until the beginning of inflationary
phase, which occurs immediately after the end of the
transition phase and, for this reason, was omitted from
the graph.

C. Postbounce transition phase

The post-bounce transition phase begins at the end of
the bounce phase, when the potential and kinetic energies
become of equal magnitude, i.e., when _ϕ2=2 ≃ V or ω ≃ 0.
Therefore, the transition time occurs at the instant where

_ϕðTcÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕðTcÞÞ

p
; ð4:15Þ

where T ¼ Tc is the transition time. In order to obtain Tc,
we need to specify the potential energy. For the power-law

potential given by Eq. (4.1), after some algebra, we find
the result

Tc ¼

nW0

0
B@3λmPle

3λ
n

�
ϕBffiffiffiffiffi
2ρB

p
a3
B

þT0

�
ffiffi
n

p
a3BV

1
2n
0
ð2nρBÞ

1
2
ð1−1nÞ

1
CA

3λ
−

ϕBffiffiffiffiffiffiffiffi
2ρB

p
a3B

; _ϕc > 0;

ð4:16aÞ

Tc¼

nW−1

0
B@−3λmPle

3λ
n

�
−

ϕBffiffiffiffiffi
2ρB

p
a3
B

þT0

�
ffiffi
n

p
a3BV

1
2n
0
ð2nρBÞ

1
2
ð1−1nÞ

1
CA

3λ
þ ϕBffiffiffiffiffiffiffiffi

2ρB
p

a3B
; _ϕc <0;

ð4:16bÞ

where W0ðxÞ and W−1ðxÞ are Lambert functions. On the
other hand, for the Starobinsky potential, given by
Eq. (4.2), Tc is obtained by solving the equation

ffiffiffiffiffiffiffiffi
2V0

p �
1 − e−

ffiffiffiffi
16π
3

p ϕB�ð
ffiffiffiffiffi
2ρB

p
a3
B
ÞTc

mPl

�
¼

ffiffiffiffiffiffiffiffi
2ρB

p

e3λðTc−T0Þ ; ð4:17Þ

where the plus (minus) signal refers _ϕc > 0 ( _ϕc < 0). The
analytical solution for Tc, when _ϕc > 0, is found to be
given by

Tc ¼
ln

8<
:

2
ffiffi
π
2

6
p

e
−4

ffiffi
π
3

p
ðϕBmPl

Þ
h
1þ1

4

ffiffi
2
π

3
p

e
4

ffiffi
π
3

p
ðϕBmPl

ÞðfðϕBÞÞ2=3
i

ffiffi
3

p ðfðϕBÞÞ1=3

9=
;

λ
; ð4:18Þ

FIG. 1. Comparison between analytical and numerical results for the evolution of inflaton amplitude ϕ. The evolution coincide during
the kinetic energy dominated regime ( _ϕ2=2 ≫ V) and breaks right after its end, indicated by the vertical blue dotted line, which marks
the beginning of the transition phase (ω ¼ 0). For the transition phase, we have considered the quadratic power law potential. The
evolution is given in terms of both the scale factor [panel (a)] and in terms of the time variable T [panel (b)].
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whereas the solution for Tc when _ϕc < 0 can only be
obtained numerically. In Eq. (4.18), fðϕBÞ is defined as

fðϕBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

�
8πρB
3V0

�
e6λT0 − 32πe−4

ffiffi
π
3

p
ðϕBmPl

Þ
s

þ 9e3λT0

ffiffiffiffiffiffiffiffiffiffi
8πρB
3V0

s
: ð4:19Þ

As was shown in Fig. 1, our analytical approximated
expressions are good even up to the transition time,
indicated by the vertical blue dotted line in that figure.
Therefore, we can use the bounce phase expressions to
calculate ϕðTcÞ ¼ ϕc, _ϕðTcÞ ¼ _ϕc, aðTcÞ ¼ ac and also
the number of e-folds lasting from the bounce instant up to
the transition point, NeðTcÞ ¼ Nc.
In the following we perform the next stage in our

derivation, which is connecting the solution obtained at
the transition point to the one at the start of the infla-
tionary phase.

D. Beginning of the slow-roll inflationary phase

The beginning of the inflationary phase happens when
ä > 0, i.e., at the start of the accelerating phase and where
ω ¼ −1=3, which means that _ϕ2 ¼ VðϕÞ. We define as

T ¼ Ti this instant where the inflationary phase begins.
Due to the fact that the transition phase is very short (see
e.g., Ref. [27]), we can expand the relevant variables
around Tc. For instance, we obtain that

ϕðTÞ ≃ ϕc þ Tcϕ
0
c ln

T
Tc

; ð4:20Þ

aðTÞ ≃ ac

�
1þ Tca3cHc ln

T
Tc

�
; ð4:21Þ

VðϕÞ ≃ VðϕcÞ þ Tcϕ
0
cVϕðϕcÞ ln

T
Tc

; ð4:22Þ

Hc ¼
a0c
a4c

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

3

�
ϕ02
c

a6c
þ VðϕcÞ

�s
: ð4:23Þ

From Eq. (4.20) and using Eq. (2.7), one obtains

_ϕi ¼
Tc

Ti

ϕ0
c

a3i
: ð4:24Þ

Using Eq. (4.24) together with _ϕ2
i ¼ VðϕiÞ, one then

obtains for Ti the result

Ti ¼
1

a3c
�
1þ 6a3cHcVðϕcÞ

ϕ0
cVϕðϕcÞ

� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕcÞ

p

VϕðϕcÞW0

0
BB@ 2

ffiffiffiffiffiffiffiffiffi
VðϕcÞ

p

a3cTcVϕðϕcÞ
�
1þ6a3cHcVðϕcÞ

ϕ0cVϕðϕcÞ

� e

2VðϕcÞ

Tcϕ0cVϕðϕcÞ

�
1þ6a3cHcVðϕcÞ

ϕ0cVϕðϕcÞ

�1CCA
; _ϕc > 0; ð4:25aÞ

Ti ¼ −
1

a3c
�
1þ 6a3cHcVðϕcÞ

ϕ0
cVϕðϕcÞ

� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕcÞ

p

VϕðϕcÞW−1

0
BB@ −2

ffiffiffiffiffiffiffiffiffi
VðϕcÞ

p

a3cTcVϕðϕcÞ
�
1þ6a3cHcVðϕcÞ

ϕ0cVϕðϕcÞ

� e

2VðϕcÞ

Tcϕ0cVϕðϕcÞ

�
1þ6a3cHcVðϕcÞ

ϕ0cVϕðϕcÞ

�1CCA
; _ϕc < 0; ð4:25bÞ

which is valid for an arbitrary potential.

Next, we perform the final stage of our calculations,
where, by using the above expressions, we can
calculate ϕðTiÞ ¼ ϕi, _ϕðTiÞ ¼ _ϕi, aðTiÞ ¼ ai, and
NeðTiÞ ¼ Ni. From these results, we can finally
derive the total duration of the phase lasting from
the instant of the bounce up to the end of the infla-
tionary phase.

E. Inflationary phase

In the inflationary phase, the evolution can be para-
metrized by the slow-roll parameter ϵV,

ϵV ¼ m2
Pl

16π

�
V;ϕ

V

�
2

; ð4:26Þ

where ϵV ≪ 1 holds during inflation and ϵV ≈ 1 when
inflation ends. By setting ϵV ¼ 1, we can obtain ϕend, the
inflaton amplitude at the end of inflation. The number of
e-folds of inflation is defined as

Ninf ≡ ln

�
aend
ai

�
≈

8π

m2
Pl

Zϕi

ϕend

V
V 0 dϕ; ð4:27Þ
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where ϕi is computed by using Eqs. (4.20) and (4.25a) (for
_ϕ > 0) or (4.25b) (for _ϕ < 0). For the power-law potential,
Eq. (4.1),

Ninf ≈
2π

nm2
Pl

ðϕ2
i − ϕ2

endÞ; ð4:28Þ

where

ϕend ≈
n

2
ffiffiffi
π

p mPl: ð4:29Þ

On the other hand, for the Starobinsky potential, we have
that

Ninf ≈
3

4

�
e

ffiffiffiffi
16π
3

p
ϕi
mPl −e

ffiffiffiffi
16π
3

p
ϕend
mPl

�
þ

ffiffiffiffiffiffi
3π

p

mPl
ðϕi−ϕendÞ; ð4:30Þ

where

ϕend ≈
ffiffiffiffiffiffiffiffi
3

16π

r
ln

�
1þ 2ffiffiffi

3
p

�
mPl: ð4:31Þ

From the expression for Ninf obtained for each potential,
we can determine under which conditions the minimum
number of e-folds required for a successful inflationary
model is achieved (e.g., Ninfl ∼ 60). The number of e-folds
depends on ϕi, which in turn depends on ϕc, which in turn
depends onϕB, i.e., it depends on thebounce dynamics. In the
next section, we will explore the consequences of all of this.
Before closing this section, let us compare the validity

of the above derived analytical equations with the numeri-
cal ones. This way we can certify the accuracy of these
equations when we apply them when constraining the
quantum bounce parameters. In Table I, we show the
comparison between numerical and theory values for
the inflaton field at the beginning (ϕi) and end of inflation
(ϕend), for the number of e-folds between the bounce and
the start of inflation (Npre) and for the duration of inflation
(Ninf ) obtained for the power-law monomial and
Starobinsky potentials. For illustration, we have considered
the case of _ϕc > 0 and the bounce parameters were fixed by
assuming the values λ=mPl ¼ 1 and mPlT0 ¼ 1. We have
started the numerical evolution at the bounce considering
the value of ϕB fixed according to Eq. (4.10) with

parameter α fixed in the value α ¼ 1=3. This value for α
has been shown in Ref. [42] to provide the best match
between the analytical and numerical results and it is the
same value we have adopted in this study. The results for
the total number of inflationary e-folds, which is the
relevant quantity in our subsequent analysis, are never-
theless weakly dependent on other choices made for α
around the chosen value. Similar results shown in the
Table I can also be obtained for _ϕc < 0 when assuming the
derived equations for this case.6 As shown in Table I,
the differences between the analytical and numerical
quantities are small, specially for the number of inflationary
e-folds, which differ by around one percent or less for the
monomial power-law potentials, except for the Starobinsky
potential, which displays a relatively larger variation, but
still acceptable, given the much larger number of e-folds
produced for the given initial conditions. The larger
e-folding number in the Starobinsky model makes it also
to be more sensitive to the value of the inflaton field at the
beginning of inflation as a consequence of the much longer
evolution. Typically, we find that the smaller the number of
e-folds is for any of the models, the more accurate are the
analytical expressions. We also note from the results shown
in Table I that the preinflationary phase between the bounce
and the start of inflation lasts around four e-folds, which is
much similar to the case also seen in LQC [42].

V. COSMOLOGICAL CONSTRAINTS ON THE
MODEL PARAMETERS

Let us now consider how the bounce parameters ρB and
T0, which were defined and introduced in Sec. III, can be
constrained. For this objective, we can use the fact that the
bounce length and energy scales, as well as the inflationary
dynamics (e.g., its duration) are not arbitrary, but need to be
set in such a way to guarantee the consistency of our model
and also to satisfy the constraints coming from the HBB
cosmology.

TABLE I. Comparison between numerical and analytical results for inflaton field amplitudes and number of e-folds values for the
power-law monomial and Starobinsky potentials for the case of _ϕc > 0. The bounce parameters were fixed at the values λ=mPl ¼ 1 and
mPlT0 ¼ 1 and parameter α fixed at the value α ¼ 1=3.

Model ϕB=mPl ϕnum
i =mPl ϕtheory

i =mPl ϕnum
end =mPl ϕtheory

end =mPl Nnum
pre Ntheory

pre Nnum
inf Ntheory

inf

Quadratic 2.99 5.27 5.32 0.20 0.28 3.87 3.87 175.39 177.46
Quartic 3.47 5.69 5.74 0.47 0.56 3.75 3.76 101.89 102.65
Sextic 3.93 6.14 6.19 0.64 0.85 3.73 3.74 78.93 78.80
Starobinsky 2.91 5.59 5.62 0.19 0.19 4.68 4.64 6.56 × 109 7.49 × 109

6Note that while the monomial power-law potentials analyzed
here are symmetrical, the Starobinsky potential is asymmetric.
However, in the Starobinsky potential inflation is assumed to
happen along the plateau region, which resides in the right-hand
side of the potential, while the left-hand side of the potential is too
steep to favor inflation in general.
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Firstly, we note that the bounce energy scale must be at
least larger than that of big bang nucleosynthesis (BBN)
(likewise, inflationmust also occur at least at the energy scale
of the BBN). Weaker conditions can be imposed by also
demanding that the bouncing and inflationary energy scales
be at least of those corresponding to the quark-gluon plasma
phase transition of quantum chromodynamics (QCD) and
electroweak (EW) phase-transition energy scales. We can
associate each one of these relevant cosmological eras as
corresponding to temperatures TBBN ≃ 10 MeV, TQCD ≃
100 MeV, and TEW ≃ 100 GeV, respectively.
Note that for these temperature regimes, we are in the

radiation dominated regime (considering that at the end of
inflation the universe quickly reheats and transits into the
HBB radiation dominated phase). Then, we can associate
the energy density with that of radiation, i.e.,

ρðTÞ ¼ g�π2

30
T4; ð5:1Þ

where g� is the number of relativistic degrees of freedom at
the temperature T. From Ref. [91], we find for instance that

gðBBNÞ� ≃ 10.76, gðQCDÞ� ≃ 17.75 and gðEWÞ
� ≃ 102.85, respec-

tively. By imposing the bounce energy density to satisfy
ρB ≫ ρi, where i ¼ ðBBN;QCD;EWÞ, then

ρB ≫
gðiÞ� π2

30
T4
i : ð5:2Þ

On the other hand, it is reasonable to impose that the
bounce energy density scale must not exceed that of the
Planck scale, i.e., ρB ≪ m4

Pl, assuming the Planck scale to be
the largest energy scale which our (effective) quantum
dynamics can likewise be applicable. Note that here we
are conservatively assuming, following some points of view
in the literature [92,93], theWheeler-DeWitt equation to be a
valid approximation for any fundamental quantum gravity
theory at scales not so close to the Planck length, while for
energy scales closeor above thePlanck scale, amore involved
theory of quantumgravity is not excluded.Therefore, herewe
assume the physical ρB to lie within the range

gðiÞ� π2

30
T4
i ≪ ρB ≪ m4

Pl: ð5:3Þ

The second condition [93,94] is imposed on the length
scale of the bounce. From the Ricci scalar for our scale
factor, Eq. (3.9), at the bounce instant (where the time
variable T is valued T ¼ 0),

R ¼ 6λ

a6BT0

; ð5:4Þ

we can define the curvature scale at the bounce as

LB ¼ 1ffiffiffiffi
R

p
����
T¼0

¼ a3B

ffiffiffiffiffi
T0

6λ

r
: ð5:5Þ

We impose that the bounce curvature scale must be larger
than the Planck length, LB ≫ m−1

Pl . This condition is also
required such that the Wheeler-DeWitt equation is consid-
ered a valid approximation (this can also be seen as
equivalent to the previous imposition for the validity of
the WDW equation below the Planck energy density). At
the same time, the length scale must be smaller that H−1

(causal condition). We consider the Hubble scale H in the
BBN, QCD, and EW phase transition scales. Using that
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρðTiÞ=ð3m2

PlÞ
p

, it results on the condition on LB,

LB ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
45

4π3gðiÞ�

s
mPlT−2

i : ð5:6Þ

Therefore, the physical LB lies within the range given by

m−1
Pl ≪ LB ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
45

4π3gðiÞ�

s
mPlT−2

i : ð5:7Þ

The third condition that we can impose is related to the
amplitude of the inflaton field at the bounce, ϕB. In order to
have a stiff-matter bounce, we require that _ϕ2

B=2 ≫ VðϕBÞ.
From ρB ¼ _ϕ2

B=2þ VðϕBÞ, one can write that

ρB ≫ 2VðϕBÞ: ð5:8Þ
Finally, we consider the condition related to the number

of e-folds of inflation, Ninf , which must satisfy

Ninf ≳ 60; ð5:9Þ
in order for inflation to provide a solution for the HBB
model flatness and horizon problems. Note that even
though bouncing models can by themselves provide a
solution for these problems, we still need some minimal
number of inflationary e-foldings as been around Ninf ∼
50–60 if inflation is to provide consistent observables and
as far as the primordial cosmological perturbations gen-
erated during inflation are concerned [1].
In the next section, we explore how each one and the

combination of the above constraining conditions help in
restricting the quantum bounce parameters generated in the
present study.

VI. RESULTS

In this section we present our results for the physical
region of the bounce parameters that give a successful
realization of inflation and that are derived from the
analytical expressions derived ealier in Sec. IV. From the
Hubble parameter endowed by quantum corrections,
Eq. (3.16), one notices that the free parameters are ρB
and T0. Note that parameter λ directly controls the energy
density scale of the bounce, ρB, while the product of both λ
and T0 controls the magnitude of the quantum correction in
the Hubble parameter. Additionally, the bounce curvature
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scale, LB, as well as the number of inflationary e-folds,
Ninf , also depend on these parameters. Hence, ρB and T0

are subjected to the conditions set in the previous section
and can be constrained by them. Note also that ρB and LB
are also dependent on the scale factor at the bounce, aB,
which we can set to unit without loss of generality.7 We

restrict our analysis to the case _ϕc > 0 due to the fact that
the results for _ϕc < 0 are qualitatively similar.
For all the potentials considered, we display in Fig. 2

the region of parameters constrained by conditions (5.3)
and (5.8), which limit the bounce energy density by (5.7),
which limits the bounce length scale; and by (5.9), which
imposes the minimum number of e-folds of inflation.
The regions are restricted to avoid the Planck scale by
the conditions ðρB=m4

PlÞ ≪ c and ðLBmPlÞ ≫ c−1=4, for the

FIG. 2. Regions of allowed bounce parameters ρB and T0 in the logarithm scale for quadratic (n ¼ 1) [panel (a)], quartic (n ¼ 2)
[panel (b)], sextic (n ¼ 3) [panel (c)] power-law potentials, and for the Starobinsky potential [panel d]. All cases are for _ϕc > 0. The
results for different regions are constrained by ðρB=m4

PlÞ ≪ c and ðLBmPlÞ ≫ c−1=4 in terms of the parameter c for different values of c.

7For aB ≠ 1, we can rescale the term λ=a6B present in ρB and LB
and obtain a new equivalent condition.
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representative values of c ¼ 10−1; 10−2; 10−3; 10−4, and
10−5. The value of c indicates how far from the Planck
scale we consider our results.
Additionally to the Planck scale restrictions, the regions

are limited also by each specific condition. The minimum
number of e-folds, given by condition (5.9), restricts the
left side region of the plots. The higher the minimum
number of e-folds required, the more restricted the region.
The conditions for ρB and LB, given respectively by (5.2)
and (5.6), from BBN, QCD, and EW phase transitions are
also relevant. The former restricts a small tip on the right
hand side of each region, whereas the latter avoids that the
bottom of each region continues for arbitrarily smaller
values of T0 for the same range of ρB. Finally, the condition
on ϕB, given by (5.8), restricts the upper tip of each region
to continue to grow to the upper left.
On the other hand, the condition LB ≫ m−1

Pl , set on (5.7),
fromEq. (5.5) for aB ¼ 1 reads T0=λ ≫ 6

ffiffiffi
c

p
m−2

Pl , imposing
that for a fixed T0, there is an upper limit for λ (and vice
versa), which in turn constrains ρB. Likewise, the condition
ρB ≪ m4

Pl thatwas set in Eq. (5.3) and consideringEq. (3.15)

for aB ¼ 1, we have that λ ≪
ffiffiffiffi
8π
3c

q
mPl, which is also an

upper limit for λ, but in this case independent of T0.
The constrained region of parameters for the quadratic,

quartic, and sextic potentials are shown, respectively, in
Figs. 2(a)–2(c). The results show that the range of the
parameters are similar for all of those potentials. However,
we can also notice that the larger is the power n, the allowed
regions tends to shrink. In fact, as seen in both panels
shown in Fig. 2, as we move away from the Planck scale,
the region of allowed parameters decreases, until it even-
tually vanishes. For the monomial power-law potentials, in
particular, the strongest restraining condition is on the
minimal number of e-folds that is required and which
produces the saturation of the regions at lower values of ρB
and T0, as seen in Figs. 2(a)–2(c). For bounce energy
density scales that are smaller than approximately
ρB ∼ 10−6m4

Pl, inflation no longer becomes viable for
these type of potentials. In Fig. 2(d), we notice that the
Starobinsky potential has no significant differences along
the horizontal axis when compared to the results obtained
with the power-law potentials. The Starobinsky potential,
as it generically predicts a much larger number of e-folds, it
can as a consequence allow much smaller energy scales. In
addition, the restrictions that we have imposed only
constrain T0 at very high values, T0 ∼ 1067.

VII. CONCLUSIONS

In this work, we have considered the nonsingular
quantum cosmology of the flat FLRW universe filled with
a scalar field in the dBB interpretation. The bounce solution
is considered to be due to the stiff-matter behavior of a
scalar field (the inflaton). The bounce is then followed by

an inflationary phase when the potential energy density
dominates over the kinetic one. The intermediate preinfla-
tionary dynamics is established and provides a link
between the bouncing and inflationary phases. The entire
evolution from the contracting phase to the end of inflation
is analytically determined when the initial conditions are
set in the deep contracting phase and where the inflaton
field oscillates around the minimum of its potential.
We have investigated the dependence of the inflationary

dynamics on the quantum bounce parameters. Furthermore,
we have shown how the quantum bounce parameters can be
restricted by looking at the specific cosmological epochs
where the bounce and inflation regimes can possibly
happen, e.g., at the BBN, QCD, and EW phase transition
epochs. Likewise, the bounce energy density and length
scales have an upper constraint set by the Planck scale in
order to the WDW equation to be able to provide a valid
description. All relevant conditions were discussed and we
have presented the restraining conditions through different
values for ρB=m4

Pl, as illustrated in Fig. 2. The results shown
in Fig. 2 indicate that the broader regions of valid
parameters are the ones closer to the Planck scale. In this
work, we have focused and performed our analysis for the
quadratic, quartic and sextic monomial power-law poten-
tials, as well as for the Starobinsky potential, but our study
can as well be generalized for other appropriate primordial
inflaton potentials. The results for the potentials that we
have considered here are qualitatively similar when we look
for the allowed regions in terms of the magnitude of the
quantum bounce parameters ρB and T0, with the exception
for the Starobinsky potential, which allows for a much
larger region of parameter values in general.
It would also be interesting to consider the bounce

effects in the postinflationary dynamics, as far as its
effects on the perturbations and on the observables
derived from the power spectrum. The study of the
perturbations in the context of bouncing models is more
delicate, as earlier studies have shown (as examples, see
e.g., Refs. [17,27,29,69,72,80,95,96]). The study of the
perturbations in the context of the models here studied
will be presented in a future work.
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APPENDIX: SINGLE FLUID IN DE BROGLIE–
BOHM THEORY FOR ω= 1 AND ω ≠ 1

In this appendix we present the general wave function
solutions for an ideal fluid with arbitrary equation of state
parameter ω. From these solutions, a deterministic dynam-
ics for the scale factor can be obtained in the dBB
interpretation.
Using the Schutz formalism [86,87], after some canoni-

cal transformations [97], the Hamiltonian for a single fluid
with equation of state ω ¼ p=ρ in the minisuperspace for a
flat FLRW background reads as

H ¼ −κ2
P2
a

12a
þ PT

a3ω
: ðA1Þ

In this case, the classical equations of motion, for a given
value of ω, reads

_a ¼ −κ2
Pa

6a
; ðA2aÞ

_Pa ¼ −κ2
P2
a

12a2
þ 3ωPT

a3ωþ1
; ðA2bÞ

_T ¼ 1

a3ω
; ðA2cÞ

_PT ¼ 0: ðA2dÞ

From Eq. (A1), H ¼ 0 together with Eq. (A2) leads to

�
_a
a

�
2

¼ κ2

3

PT

a3ωþ3
: ðA3Þ

From the quantum point of view, ĤΨða; TÞ ¼ 0, replacing
ðPa; PTÞ by the operators ð−i∂a;−i∂TÞ, we obtain that

i∂TΨða; TÞ ¼
κ2

12
a3ω−1∂2aΨða; TÞ: ðA4Þ

Due to the ambiguity in the ordering of factors a and Pa
in the right-hand side of the latter equation, we can rewrite
it as

i∂TΨða; TÞ ¼
κ2

12
a3ω−1

�
∂
2
a þ

s
a
∂a

�
Ψða; TÞ: ðA5Þ

For ω ≠ 1, choosing s ¼ ð3ω − 1Þ=2 and performing the
change of variable

χ ¼ 2ffiffiffi
3

p
κ

a
3ð1−ωÞ

2

ð1 − ωÞ ; ðA6Þ

one obtains that

i∂TΨðχ; TÞ ¼
1

4
∂
2
χΨðχ; TÞ: ðA7Þ

On the other hand, due to the fact that Eq. (A6) is singular
for ω ¼ 1, in this particular case we choose s ¼ 1 and
consider the following logarithmic change of variable,

χ ¼
ffiffiffi
3

p

κ
ln ðϵaÞ; ðA8Þ

where ϵ > 0 is an arbitrary constant. Under these circum-
stances, we obtain Eq. (A7).
Equation (A7) can be interpreted as a Schrödinger-type

equation for a free particle in one dimension, with mass
m ¼ 2 and negative kinetic energy. Also, due to the fact
that the a > 0 (hence, χ > 0), this is restricted to the half
axis [98]. Unitary solutions can be obtained by performing
a self-adjoint extension, which are given by the boundary
condition (for more details, see Ref. [83]),

ðΨ�
∂χΨ −Ψ∂χΨ�Þjχ¼0

¼ 0: ðA9Þ

Considering a Gaussian initial condition,

Ψðχ; 0Þ ¼
�

8

πT0

�
1=4

e−
χ2

T0 ; ðA10Þ

which satisfies the boundary condition given by Eq. (A9),
one obtains the following general solution:

Ψðχ; TÞ ¼
�

8T0

πðT2
0 þ T2Þ

�
1=4

exp

�
−

T0χ
2

T2
0 þ T2

�

× exp

	
−i
�

Tχ2

T2
0 þ T2

þ 1

2
arctan

�
T0

T

�
−
π

4

�

;

ðA11Þ

where T0 is an arbitrary constant.
The wave function Ψða; TÞ, Eq. (A11), can be obtained

for ω ≠ 1 and ω ¼ 1, using Eqs. (A6) and (A8), respec-
tively. Particularly, for ω ¼ 1 it reads

Ψða;TÞ ¼
�

8T0

πðT2
0 þ T2Þ

�
1=4

exp

�
−
3T0ln2ðϵaÞ
κ2ðT2

0 þ T2Þ
�

× exp

	
−i
�
3Tln2ðϵaÞ
κ2ðT2

0 þ T2Þ þ
1

2
arctan

�
T0

T

�
−
π

4

�

:

ðA12Þ

The arbitrary parameter ϵ, in addition to the parameter T0,
must be chosen to ensure that χ in Eq. (A8) is always
positive.
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