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We are in the era of precision cosmology which offers us a unique opportunity to investigate beyond
standard model physics. Toward this endeavor, inflaton is assumed to be a perfect new physics candidate. In
this submission, we explore the phenomenological impact of the latest observation of PLANCK and
BICEP=Keck data on the physics of inflation. We particularly study three different models of inflation,
namely α-attractor E, T, and the minimal plateau model. We further consider two different post-inflationary
reheating dynamics driven by inflaton decaying into bosons and fermions. Given the latest data in the
inflationary ðns − rÞ plane, we derive detailed phenomenological constraints on different inflaton
parameters and the associated physical quantities, such as inflationary e-folding number, Nk, reheating
temperatures Tre. Apart from considering direct observational data, we further incorporate the bounds from
primordial gravitational waves (PGWs) and different theoretical constraints. Rather than in the laboratory,
our results illustrate the potential of present and future cosmological observations to look for new physics in
the sky.
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I. INTRODUCTION

Over the last decade, increasingly precise measurements
of cosmic microwave background (CMB) have led to a
new era of precision cosmology. Inflation is assumed to be
a unique mechanism [1–3] in the early universe, which,
apart from solving the problems of the standard big bang,
has very precise predictions of large-scale inhomogeneous
fluctuations. During the course of subsequent evolution,
those fluctuations are translated into CMB anisotropy
[4–6]. Therefore, accurate measurement of CMB aniso-
tropy would be of fundamental importance for establishing
the early inflationary phase. Two fundamental observables
of interest are the scalar spectral index ns and tensor to
scalar ratio r, which are directly connected to the inflaton,
responsible for the inflation. In the realm of observations,
considering the BICEP=KeckðBKÞ 15 program [7], the
measurement yielded a constraint on the r0.05 < 0.07 at
95% CL, where subscript k0 ¼ 0.05 Mpc−1 is associated
with the pivot scale. However, the latest BICEP=Keck 18
[8] result along with Planck 2018 [6] yields the strongest
constraints in the ðns; rÞ plane with r0.05 < 0.036 and scalar
spectral index 0.958 < ns < 0.975 at 95% confidence level

for r ¼ 0.004. In this submission, we intend to explore the
impact of these latest observations on the three classes of
the plateau-type inflationary model.
In the minimal framework, the standard model Higgs

is assumed to be the best candidate for the inflaton
field. However, Higgs inflation [9] requires nonminimal
gravitational coupling, which later on reformulated as
Higgs-Starobinsky inflation [10,11], generically predicts
very low scalar to tensor ratio r ∼ 0.003 along with ns ∼
ð0.955; 0.965Þ within the observational limit. Further gen-
eralization of such a model into a bigger class was invented
as α-attractor E and T model, which can be obtained from a
spontaneously broken conformal invariant theory [12,13].
Another class of model which are also consistent with
observation is dubbed as minimal inflaton model [14]. The
common feature of all these models is the plateau region in
the large field limit, and that leads to quasi–de Sitter
expansion consistent with observation.
Inflation is not the end of the story, though. Reheating,

the phase when the inflaton field transfers its energy into
the standard model fields yielding the radiation-filled
universe is also of great importance when it comes to
understanding the inflaton’s real nature. Reheating is
generically characterized by reheating temperature Tre
and equation of state wϕ, which are directly related to
the inflaton ðϕÞ-radiation coupling and its potential VðϕÞ.
To realize reheating, we further investigate in detail the
reheating dynamics by solving the appropriate set of

*chakrabo@iitg.ac.in
†riaj.0009@gmail.com
‡debu@iitg.ac.in
§mrajesh@iitg.ac.in

PHYSICAL REVIEW D 108, 023515 (2023)

2470-0010=2023=108(2)=023515(19) 023515-1 © 2023 American Physical Society

https://orcid.org/0000-0002-6618-4899
https://orcid.org/0000-0002-3951-2666
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023515&domain=pdf&date_stamp=2023-07-14
https://doi.org/10.1103/PhysRevD.108.023515
https://doi.org/10.1103/PhysRevD.108.023515
https://doi.org/10.1103/PhysRevD.108.023515
https://doi.org/10.1103/PhysRevD.108.023515


Boltzmann equations considering two different decay
channels of inflaton, ϕ → f̄f (fermionic) and ϕ → bb
(bosonic) [15–17]. Where, these massless scalars or fer-
mionic decay products will be considered as radiation,
and their temperature at the end of reheating represents by
Tre. Lack of direct observation leads to a wide possible
range of these parameters, reheating temperature within
ð1015 GeV; TBBN ¼ 4 MeV), and equation of state within
ð−1=3; 1Þ. Where TBBN stands for the temperature when
big-bang nucleosynthesis (BBN) occurs and the light
elements form. While observable ðns; rÞ typically encodes
only the intrinsic nature of inflaton to the leading order,
reheating encodes much more. Inflaton is naturally thought
to be a part of beyond the standard model of particle
physics. Therefore, from the model-building perspective
inflaton field can play an outstanding role in constructing
a unified framework of cosmology and particle physics
[15–25]. Towards this goal recently few studies have
been done considering matter like reheating [26–28].
Our earlier attempts were mostly focused on the inflaton-
dark matter sector. In this paper, we explore phenomeno-
logical constraints on the parameters of inflaton potential
and its couplings and derive the bound on reheating para-
meters in the light of aforesaid combined data of Planck18,
BK18, and BAO, along with primordial gravitational
waves.
Primordial gravitational waves (PGWs) are one of the

profound predictions of inflation [29,30]. Because of weak
coupling, it carries not only the imprints of its own origin
through inflationary observable r but also of the postinfla-
tionary evolution, particularly the reheating phase. The
evolution of PGWs during the reheating phase and CMB
observation is observed to set severe constraints on the
inflation and reheating parameters. Around the CMB pivot
scale the PGW spectrum, Ωk

GW is constrained by r < 0.036
with typical dimensionless amplitude Ωk

GW ∼ 10−18.
However, PGW of subhorizon scale during reheating
develops a wϕ-dependent spectral tilt Ωk

GW ∝ 10−18k−nwϕ ,
with nwϕ

¼ 2ð1 − 3wϕÞ=ð1þ 3wϕÞ, which greatly enhan-
ces the magnitude of Ωk

GW for equation wϕ > 1=3. Such
enhancement will be observed to set a lower limit on the
reheating temperature, which we defined as TGW

re though
BBNconstraint on totalGWamplitudeΩGWh2 ≤ 1.7 × 10−6

obtained from dataset Planck-2018þ BICEP2=Keck array
[31]. To put final bounds on the inflaton parameters, we
further take into account perturbative and nonperturbative
limits on the inflaton-radiation coupling.
The paper is organized as follows: In Sec. II, we

have started our discussion by demonstrating the inflation
model. In Sec. III, we discuss in detail the reheating dyna-
mics for two different decay channels. PGWs is known to
be an interesting cosmological observable which can
significantly restrict the possible lower limit of reheating
temperature through BBN constraint. We discuss this in
detail in Sec. IV, and show the impact of such a limit on the

inflaton-radiation coupling. In Secs. Vand VI, we illustrate
different theoretical constraints, particularly on the inflaton-
radiation coupling and its potential impact on the inflaton
phenomenological parameter space. In Sec. VII, we discuss
in detail the resulting constraints on parameters of inflaton
and associated inflationary, reheating observable. Finally, we
conclude with some future directions.

II. MODEL OF INFLATION

As pointed out in the Introduction, we explore three
different single-field inflation models and left multifield
models for our future work. The associated potentials are

VðϕÞ ¼

8>>><
>>>:

Λ4½1− e−
ffiffiffi
2
3α

p
ϕ=Mp �n; E−model;

Λ4tanhn
�

ϕffiffiffiffi
6α

p
Mp

�
; T−model;

Λ4 ϕn

ϕnþϕn�
; Minimal−model;

ð2:1Þ

One particularly notices that for n ¼ 2, the minimal model
boils down to radion gauge inflation [32]. In the large field
limit, all the potential becomes constant VðϕÞ ≃ Λ4 setting
the scale of inflation, and the typical value it assumes
∼ð1015; 1016Þ GeV. The remaining parameters ðn; α;ϕ�Þ
parametrizing the shape of the potential near their mini-
mum. Here one important point is to note that α is a
dimensionless parameter whereas ϕ� is measured in Mp

unit. Near the minimum at ϕ ≃ 0, all the potential assumes
the form VðϕÞ ∼ ϕn. These inflationary model parameters
can be measured through CMB observable associated
with curvature, R power spectrum Δ2

R ¼ ARðk=k0Þns−1.
The amplitude of the spectrum is measured as AR ¼
ð2.19� 0.06Þ × 10−9 normalized at the pivot scale
k0 ¼ 0.05 Mpc−1. Another CMB observable is the scale-
invariant tensor power spectrum, Δ2

T ¼ AT , with the
upper limit on its amplitude, AT ¼ rAR ≤ 0.036 × AR.
Therefore, we have two inflationary observables ðns; rÞ,
that are expressed in terms of inflaton field through its slow
roll parameters ϵ and η as:

ns ¼ 1 − 6ϵðϕÞ þ 2ηðϕÞ; r ¼ 16ϵðϕÞ; ð2:2Þ

In any inflation model, the above two CMB observable
parameters are typically mapped to two important infla-
tionary quantities, and those are the inflationary energy or
Hubble parameter Hk, and the inflationary e-folding
number Nk. Under the slow roll approximation, all are
defined at the pivot scale k ¼ k0 as,

Hk ¼
πMp

ffiffiffiffiffiffiffiffiffi
rAR

p
ffiffiffi
2

p ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕkÞ
3M2

p

s

≃ 2 × 10−5Mp

�
r

0.036

�1
2

�
AR

2.19 × 10−9

�1
2

; ð2:3Þ
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Nk ¼
Z

ϕend

ϕk

jdϕjffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðϕÞp

Mp

: ð2:4Þ

Where, Mp ¼ 2.43 × 1018 GeV is the reduced Planck
mass. From the above expressions, one can obtain the
maximum limit on the inflaton potential in the large field
limit, VðϕkÞ ≃ Λ4 → Λ≲ 1.4 × 1016 GeV. However, more
general expressions for Λ are available (for α attractor E
and T-model see, Refs. [15,33] for details) which are
corrected by other inflationary parameters ðα; nÞ. Where
ðϕk;ϕendÞ represents the inflaton field value at the begin-
ning, which is usually set at the pivot scale and at the end of
inflation respectively. The condition of inflation end is
defined as ϵðϕendÞ ¼ 1. More general expressions for the
Nk and Hk in terms of inflationary parameters can be
obtained in terms of inflationary parameters (see [15,33] for
details). The tensor-to-scalar ratio r turns out as [see, last
expression of Eq. (2.2)]

r ¼

8>><
>>:

16n2
3α

�
e

ffiffiffi
2
3α

p
ϕk
Mp − 1

�−2
; E�model;

16n2
3α csch2

� ffiffiffiffi
2
3α

q
ϕk
Mp

�
; T�model:

ð2:5Þ

For the minimal model, r can be calculated numerically.
Post-inflationary dynamics, which we call reheating, will
be controlled by the energy of the inflaton (ρendϕ ), setting all
the other energy components to be negligible,

ρendϕ ∼
Λ4

αn1

�
ϕend

Mp

�
n
¼ 4.1 × 1064

αn1

�
ϕend

Mp

�
n
�

Λ
5.8 × 10−3Mp

�
4

;

ð2:6Þ

which is in unit of GeV4 and α1 ¼ ð ffiffiffiffiffiffiffiffiffiffi
3α=2

p
;

ffiffiffiffiffiffi
6α

p
;ϕ�Þ for

α-attractor E, T and minimal model respectively. This
immediately suggests the maximum value of the Hubble
parameter at the end of reheating Hmax

end ≃ πMp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAR=2

p
∼

5 × 1013 GeV. Any perturbation generated during infla-
tion will evolve through the subsequent phases and may
acquire distinct signatures of those phases. We particularly
study the reheating phase, which is directly involved with
inflaton decay.

III. REHEATING DYNAMICS AND CONSTRAINTS

Once inflation ends, the inflaton field coherently oscil-
lates around minimum with the potential VðϕÞ ∼ ϕn.
The coherently oscillating inflaton can be mode decom-
posed into, ϕðtÞ ¼ ϕ0ðtÞ:PðtÞ, with ϕ0ðtÞ representing
the decaying amplitude of the oscillation and PðtÞ ¼P

ν PνeiνΩt encoding the oscillation of the inflaton with
the fundamental frequency calculated to be [15],

Ω ¼ mϕðtÞξ ¼ mϕðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πn
2ðn − 1Þ

r Γð1
2
þ 1

nÞ
Γð1nÞ

: ð3:1Þ

The new symbol ξ is introduced for later purposes.
The effective mass of the inflaton is defined as m2

ϕ ¼
∂
2VðϕÞ=∂ϕ2jϕ0

, and we have

m2
ϕ ≃

ðn2 − nÞΛ4

αn1M
2
p

�
ϕ0

Mp

�
n−2

∼ ðmend
ϕ Þ2

�
a

aend

�
−6wϕ

; ð3:2Þ

where mend
ϕ is the inflaton mass defined at the end of the

inflation

mend
ϕ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp
α1

Λ4
n

Mp
ðρendϕ Þn−22n : ð3:3Þ

As an example, for n ¼ 6 and setting α1 ∼Oð1Þ, one can
obtain,

mend
ϕ ∼ 4.5 × 1014

�
Λ

1.4 × 1016

�4
3

�
ρendϕ

4.1 × 1064

�2
3

; ð3:4Þ

measured in GeV. Radiation fields coupled with inflaton
will be produced during this period quantum mechanically,
which is called reheating. Associated with this oscillating
field, we identify the effective inflaton equation state
wϕ ¼ ðn − 2Þ=ðnþ 2Þ. We assume n ≥ 2. Therefore, dur-
ing reheating, we will focus on the equation of state within
0 ≤ wϕ ≤ 1. The oscillating average energy density of the
inflaton is defined with respect to ϕ0 as ρϕ ¼ ð1=2Þ×
hð _ϕ2 þ VðϕÞÞi ¼ VðϕÞjϕ0

. In order to solve reheating
dynamics, the Boltzmann equations for the energy density
of radiation ðρRÞ and inflaton ðρϕÞ supplemented with the
Hubble equation are,

_ρϕ þ 3Hð1þ wϕÞρϕ ¼ −Γϕρϕð1þ wϕÞ;
_ρR þ 4HρR ¼ Γϕρϕð1þ wϕÞ;

H2 ¼ ρϕ þ ρR
3M2

p
; ð3:5Þ

where, Γϕ is the inflaton decay rate. As stated earlier,
inflaton is decaying into radiation, and for our study we
consider radiation to be either massless scalar or fermion.
We chose two phenomenological decay processes governed
by the following interaction Lagrangian,

Lint ⊃
�
hϕf̄f ϕ → f̄f

gϕb2 ϕ → bb
ð3:6Þ

with fðb) standing for fermionic(bosonic) particle. h is the
dimensionless Yukawa coupling, and g is a dimensionful
bosonic coupling. The associated Feynman diagrams are
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depicted in Fig. 1. Note that, although our analysis will be
limited to these two scenarios, using the same methodol-
ogy, one can analyze other inflaton-radiation couplings.
Incorporating the inflaton oscillation effect, the effective
inflaton decay rate Γϕ associated with these two processes
have been computed [15,17], and can be expressed in terms
of inflaton energy density as

Γϕ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffi
2nðn−1Þ

3α

q
ð Λ
Mp
Þ4n Mph2eff

8π ð ρϕM4
p
Þn−22n ; ϕ → f̄f

ffiffiffiffiffiffiffiffiffiffiffiffi
3α

2nðn−1Þ
q

ðMp

Λ Þ4n g2eff
8πMp

ð ρϕM4
p
Þ2−n2n ; ϕ → bb;

ð3:7Þ

The ratio of the oscillation induced effective coupling
parameters heff and geff over their respective tree level
values are calculated to be [15]

�
geff
g

	
2

¼ ðnþ 2Þðn − 1Þξ
X∞
ν¼1

νjPνj2 ð3:8Þ

�
heff
h

	
2

¼ ðnþ 2Þðn − 1Þξ3
X∞
ν¼1

ν3jPνj2: ð3:9Þ

In the Table I, we have tabulated the effective coupling
constant with respect to tree label one. It is interesting to
observe that the oscillation with a higher n value effectively
enhances the bosonic production rate but significantly
diminishes the fermionic production rate. For example,
going from n ¼ 2 (matter like) to n ¼ 10 (wϕ ¼ 0.67) for
inflaton, the tree-level bosonic coupling gets doubled
geff ≃ 2g, whereas that of the fermionic coupling reduced
by half heff ≃ 0.5h. With all these ingredients, we have

solved the coupled Boltzmann equation (3.5) numerically
with the appropriate boundary condition. For analytical
estimation, we also obtain the approximate analytical
solution for different energy density components as

ρϕ ≃ ρendϕ

�
a

aend

	
−3ð1þwϕÞ

;

ρR ≃

8>><
>>:

ρendϕ ð1þwϕÞmend
ϕ h2eff

4πð5−9wϕÞHend

h
ð a
aend

Þ−3−9wϕ2 − ð a
aend

Þ−4
i

ρendϕ ð1þwϕÞg2eff
4πð5þ3wϕÞmend

ϕ Hend

h
ð a
aend

Þ−3þ3wϕ
2 − ð a

aend
Þ−4

i
:

ð3:10Þ

Here, ðHend; mend
ϕ Þ are the Hubble constant, inflaton mass

calculated at the end of the inflation. With this solutions, we
can identify important physical quantities, namely, reheat-
ing temperature Tre, defined at the end of reheating at
ρϕ ¼ ρR ∝ T4

re. At the reheating point, the energy density of
radiation will be

Tre ≃
�
30ρendϕ

π2gre�

	1
4

e−
3
4
Nreð1þwϕÞ ð3:11Þ

¼ 6 × 1015e−
3Nre
4
ð1þwϕÞ

�
ρendϕ

4.1 × 1064

�1
4

; ð3:12Þ

where, gre� is the effective number of relativistic degrees of
freedom at the end of reheating, and we take gre� ¼ 100
though out the paper. From the above equation, it is clear
that we have an upper limit on the reheating temperature
Tmax
re ∼ 1015 GeV, for Nre ¼ 0, dubbed as instantaneous

reheating, and as expected that does not depend on the wϕ.
As mentioned earlier in the introduction, there exists a
naive lower limit on the temperature Tmin

re ¼ TBBN ¼
4 MeV [34,35], which can immediately give us the relation
between the maximum reheating e-folding number asso-
ciated with BBN constraint as,

Nmax
re ≃

4

3ð1þ wϕÞ
ln

�
2.5 × 1018

�
ρendϕ

4.1 × 1064

�1
4
�
: ð3:13Þ

This clearly suggests that the maximum reheating e-folding
number decreases with the equation of state. Now as an
example, for ρendϕ ∼ 4.1 × 1064 GeV4, Nmax

re simply turns
out as ∼56.5=ð1þ wϕÞ. Nmax

re ∼ 56.5 for a matter like
inflaton equation of state (wϕ ¼ 0) and it reduces to half
Nmax

re ∼ 28.2 for kination like state (wϕ ¼ 1).
Post-reheating history is also important in order to put

constrain on the inflationary e-folding number. The generic
assumption after the reheating phase is that the comoving
entropy density remains conserved, and such conservation
law starting from reheating end to the present day imposes
an additional relation among the parameters (Nk, Nre, Tre)
as follows [36,37],

FIG. 1. Feynman diagrams for two different inflaton decay
channel: (i) ϕ → f̄f, (ii) ϕ → bb.

TABLE I. Numerical values of the Fourier sums in the effective
couplings.

nðwϕÞ
P

νjPνj2
P

ν3jPνj2 geff
g

heff
h

2 (0.0) 1
4

1
4

1 1
4 (1/3) 0.229 0.241 1.42 0.71
10 (0.67) 0.205 0.256 2.13 0.49
20 (0.82) 0.191 0.286 2.92 0.38
400 (0.99) 0.174 0.358 12.5 0.10
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Tre ¼
�

43

11gre�

	
1=3

�
a0Hk

k

	
e−ðNkþNreÞT0; ð3:14Þ

where the present CMB temperature is T0 ¼ 2.725 K.
Considering Hk ∼Hend [which may not true for higher
values of αðϕ�Þ], expression for Nre can be expressed in
more simplified manner,

Nk ¼ ln

�
1.2 × 1040

�
ρendϕ

4.1 × 1064

�1
2 1

Tre

�
− Nre: ð3:15Þ

Here Tre is measured in GeV unit. From the above relation,
if we consider ρendϕ ∼ 4.1 × 1064 GeV4 and Nre ∼ 0 (instant
reheating) that immediately sets the maximum probable
reheating temperature Tmax

re ∼ 1015GeV and the inflation-
ary e-folding number for the CMB pivot scale as
Nk ∼ 57.8. The most important point of the relation
Eq. (3.14) probably is that for a given model, it offers
an interesting relation between inflaton-radiation coupling
following the relation Tre ∝

ffiffiffiffiffiffi
Γϕ

p
with the inflationary

observable ns through the e-folding number Nk, which is
apparent from the Figs. 5–8. For the special case,
wϕ ¼ 1=3, Nk turns out to be independent of the reheating
temperature Tre (see Fig. 8). For a fixed inflation model Nk
solely depends on inflation parameter as follows, [21,37]

Nk ¼ 40.26 − ln

�
Hend

1=2

Hk

	
: ð3:16Þ

The above equation implies that Nk is only sensitive to the
Hk and Hend value, which is regulated by the potential
parameter αðϕ�Þ. The limiting value of αðϕ�Þ, Hend and Nk
are shown in Table IV.
So far, our discussions are on two main points, the nature

of large-scale inflationary fluctuations imprinted into
(ns; rÞ and the background reheating dynamics con-
straining the reheating parameters. However, the dynamics
of high-frequency modes, particularly of PGWs, turn out to
offer stronger bound on lower reheating temperatures than
TBBN, particularly for a stiff equation of state wϕ > 0.6.

IV. PGWs AND CONSTRAINTS

Because of its naturally weak coupling, GWs prove to be
an outstanding probe to look into the early universe, which
can be as early as inflation and reheating. We wish to probe
the reheating phase particularly and see how PGWs play
out, yielding stronger constraints on the inflaton-radiation
coupling by raising the lower limit of reheating temper-
ature. However, to probe the reheating phase’s typical
frequency range, one requires a wide span of 1011 > f >
10−10 Hz, which is way outside the window of the CMB
spectrum. Here, the frequency, f associated with a par-
ticular mode k is related by f ¼ 2π=k. Therefore, along
with the constraints on the large-scale fluctuation by
PLANCK, BICEP=Keck, we consider high-frequency

PGWs to obtain further constraints on the inflaton model.
Interesting to note that a large number of proposed/ongoing
GW detectors are designed within this wide range of
frequencies [38–43], and there is a growing anticipation
that the stochastic GW background may provide us hints
about the physics operating in the early universe, including
reheating. PGWs generated from the quantum vacuum
during inflation evolve through the different phases of the
universe, including the epoch of reheating, until we observe
them today [44–47]. The amplitude and the evolution of the
PGWs spectrum are sensitive to the energy scale of the
inflation and the postinflationary reheating equation of state
wϕ. For those modes between kre < k < kf which become
sub-Hubble at some time during reheating, the PGW
spectrum at the present time assumes the following form,
(see [45] for detailed calculation)

Ωk
GWh

2 ≃Ωinf
GWh

2
μðwϕÞ
π

�
k
kre

	
−
ð2−6wϕÞ
ð1þ3wϕÞ; ð4:1Þ

where, μðwϕÞ ¼ ð1þ 3ωϕÞ
4

1þ3wϕΓ2ð5þ3wϕ

2þ6wϕ
Þ, which is typi-

cally anOð1Þ value. Therefore, the above equation contains
two main components. The scale-invariant part, controlled
by the inflationary energy scale,

Ωinf
GWh

2 ¼ ΩRh2H2
end

12π2M2
p

¼ 3.5 × 10−17
�

Hend

10−5Mp

	
2

; ð4:2Þ

where we used the present radiation abundance ΩRh2 ¼
4.16 × 10−5, the second part is the scale-dependent one,
which encodes crucial information about reheating. kre is
the mode that enters the horizon at the end of reheating, and
its value naturally depends on Tre. On the other hand, kf
enters the reheating phase at the beginning and is fixed by
Hend. We can clearly see from Eq. (4.1) that modes entering
during reheating becomes red tilted for wϕ < 1=3, and blue
tilted for wϕ > 1=3. Thus, amplitude of the GW energy
Ωk

GWh
2 is an increasing function of k for wϕ > 1=3. In the

next part, we will discuss the calculation part of the BBN
constraints in the context of PGWs.
The effective number of additional relativistic degrees of

freedom quantified byΔNeff at the time of BBNplace tighter
constraints on the reheating temperature. High-frequency
GWs can be thought of as an effective relativistic degree of
freedomduring reheating. Therefore, if the reheating phase is
long enough to correspond to low reheating temperature,
kf ≫ kre, the GW energy puts a tighter constraint. The
constraint equation is expressed as,

ΔNeff ≥
1

ΩRh2
8

7

�
11

4

	
4=3

Z
kf

k0

dk
k
Ωk

GWh
2ðkÞ ð4:3Þ

The combination of the latest Planck 2018þ BAO data
provides ΔNeff ≤ 0.284 (within 2-σ) [48]. The straightfor-
ward calculationwith the above equation yields the following
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bound on the total GWenergy densityΩGWh2 < 1.7 × 10−6,
and that is depicted by the solid red line inFig. 2.However,we
wish to translate this bound into the associated reheating
temperature. In the above expression, it is the maximum
k ∼ kf which contributes themost to the total GWenergy, and
one obtains the following constraint relation,

2.1 × 10−11
μðwϕÞð1þ 3wϕÞ
πð6wϕ − 2Þ

�
Hend

10−5Mp

�
2

≤
�
kf
kre

	ð2−6wϕÞ
ð1þ3wϕÞ

ð4:4Þ
The relation between the two scales (kf ; kre) can be further
expressed in terms of reheating temperature as follows:

�
kf
kre

	
¼

�
15ρendϕ

π2gre�

	 1þ3wϕ
6ð1þwϕÞ

T
−2ð1þ3wϕÞ
3ð1þwϕÞ
re : ð4:5Þ

Finally, using the above relations into Eq. (4.4), we obtain a
lower limit on the reheating temperature, particularly when
the inflaton equation of state wϕ > 1=3,

Tre > 0.35

�
45.6M4

p

μðϕÞ
	 3ð1þwϕÞ

4ð1−3wϕÞðρendϕ Þ−
1
2

ð1þ3wϕÞ
ð1−3wϕÞ

¼ TGW
re : ð4:6Þ

Setting the above temperature with BBN energy scale
TGW
re ∼ TBBNð4Þ MeV, we can see that the BBN bound of

PGWs only important when wϕ ≥ 0.60. We symbolize this
new lower limit on reheating temperature from PGWas TGW

re .
As an example for wϕ ¼ 0.82 (n ¼ 20) the expression for
TGW
re can be expressed as

TGW
re ∼ 2.1 × 106

�
ρendϕ

4.1 × 1064

	19
16

: ð4:7Þ

Now for Hend ¼ 1013 GeV, TGW
re simply turns out as

5 × 104 GeV, and thatwill set the lower limit on the reheating

temperature. In Fig. 2, we showed blue tilted behavior for
wϕ ¼ 0.82, for two different sample reheating temperature
ð104; 103Þ GeV. For Tre ¼ 103 GeV, Ωk

GWh
2 ∼ 10−4 at

k ¼ kf , and it clearly violates the BBN constraints discussed
just above. However, for Tre ∼ 2.7 × 104 GeV, we see
Ωkf

GWh
2 marginally satisfies the BBN constraints, and that

is consistent with our above estimation of TGW
re .

Fixing the same Hend, the numerical values of TGW
re for

different EoS shown in Table II. Since TGW
re is a function of

both Hend and wϕ, for a fixed value of wϕ it can restrict
inflationary energy scale, which in turn puts a constraint on
the potential parameter such as α and ϕ� for the attractor
and minimal model respectively. Another interesting point
is that this TGW

re also set bounds on the inflaton coupling to
other fields, which we will discuss in more detail in the
subsequent sections for ϕ → f̄f=bb decay processes.

V. ONE-LOOP EFFECTIVE POTENTIAL
AND PERTURBATIVE CONSTRAINTS

DURING INFLATION

In the previous section, we discuss about the possible
lower bound on Tre though PGWs. Purely from the pertur-
bative reheating point of view, the existence of maximum
Tre is typically attributed to the instant reheating process
with Nre → 0. In this regard, one should remember that the
upper limit on Tre is directly related to the upper limit on
inflaton-radiation coupling. During inflation, such coupling
can naturally modify the effective inflaton potential through
loop correction, which may modify the aforesaid upper
bound so that inflation is not disturbed. In this section, we
investigate the upper bound of the coupling parameters,
below which the inflationary scenario is not affected by
the inflaton-radiation coupling. We follow Coleman and
Weinberg’s (CW) 1-loop radiative correction formalism
to determine the bound. The 1-loop corrected inflaton-
potential is given by [49,50]

VCWðϕÞ ¼
X
i

ni
64π2

ð−1Þ2sim4
i ðϕÞ

�
ln

�
m2

i ðϕÞ
μ2

	
− 3=2

�
;

ð5:1Þ

FIG. 2. Variation of the dimensionless energy density of PGWs
observed today, viz Ωk

GW as a function of frequency over a wide
range for α-attractor E model (α ¼ 1).

TABLE II. Numerical values of the TGW
re for a fixed value of

Hend ¼ 1013 GeV.

nðwϕÞ TGW
re (GeV)

8 (0.60) 1.8 × 10−2

10 (0.67) 13.4
12 (0.71) 3.6 × 102

20 (0.82) 5.0 × 104

50 (0.92) 1.2 × 106

100 (0.98) 4.7 × 106

400 (0.99) 5.7 × 106
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where summation, i runs over the radiation fields (f, b).
ðni; siÞ represents the total internal degrees of freedom and
spin. μ is the renormalization scale which we have taken ϕk.
mi corresponds to inflaton field induced mass. The field-
dependent mass of the fermionic (f) and the bosonic
(b) fields can be written as

m2
i ðϕÞ ¼

�
h2ϕ2 for ϕf̄f

2gϕ for ϕbb
ð5:2Þ

For the stability of the inflation potential, the coupling
parameter (g, h) should be such that the following inequal-
ity must hold,

jV treeðϕÞj > jVCWðϕÞj; ð5:3Þ

where, V tree is the tree level potential defined in Eq. (2.1).
Utilizing the above condition [Eq. (5.3)], one can find the
following analytical expressions for the upper bound of the
coupling parameters are

g <
8i

ffiffiffi
2

p
πjV treeðϕÞj1=2

ϕ2W−1½− 128π2ϕ2

e3μ4 jV treeðϕÞj�1=2

h <
ð−2Þ1=4 ffiffiffi

π
p jV treeðϕÞj1=4

ϕW−1½− 32π2

e3μ4 jV treeðϕÞj�1=4
; ð5:4Þ

where W−1 is the Lambert function of branch −1 and the
above expressions are only for the E and T models, so Vtree
is different for different models. For the minimal model,
we could not obtain such an analytical expression. The
Eq. (5.5) seems to suggest a complicated dependence of
the couplings on the inflaton parameters. However, Fig. 3
indicates that the lower limit on the couplings is indeed
insensitive to α or wϕ, and approximately we, therefore,
estimate,

g < 8 × 1013
�

Λ
1.4 × 1016

�
2
�
Mp

ϕ

�
;

h < 5.8 × 10−3
�

Λ
1.4 × 1016

��
Mp

ϕ

�
; ð5:5Þ

We have checked numerically that this bound is also the
same for the E, T, and minimal models. We define all
the inflationary observable at the pivot scale with a field
value, ϕk. In Fig. 4, we have shown how a strong coupling
parameter modifies the original potential through CW one
loop radiative correction, and violation of the above
condition Eq. (5.5) always leads to a deviation from the
original potential. Therefore, any coupling violating
Eq. (5.5) will not be allowed. In all the plots, we shaded
it in blue color and mentioned it as not allowed. For
example, the upper bound of the dimensionless bosonic
coupling parameter g̃ ¼ g=mend

ϕ assumes Oð10−1Þ value,
and this bound is nearly model-independent. Corresponding
Tmax
re value appears to be the same as that of the instantaneous

reheating temperature (∼1015 GeV). Hence, for bosonic
reheating no-parameters space is ruled out by the radiative
CW correction. On the other hand, for fermionic reheating,
the upper bound on the Yukawa coupling parameter (h)
assumes nearly model-independent value ∼10−4, and that
can be observed from all the Figs. 9–11 (shaded in blue
color). For the sake of brevity, we call these as Coleman-
Weinberg constraints (CWc).
As discussed above, the CWc are about the perturbative

correction to the inflaton potential, particularly during
inflation. This limit should be assumed as the strict upper
limit of the inflaton coupling constant with the radiation.
However, during reheating, the process through which
inflaton decays into radiation may be nonperturbative in
nature. We now turn to discuss another bound on the
coupling parameters coming from the nonperturbative
effect during reheating.

VI. NONPERTURBATIVE CONSTRAINTS
DURING REHEATING

Radiation can be produced resonantly during reheating if
the inflaton-radiation coupling is strong enough. However,

FIG. 3. Here we plot the variation of the upper limit of the
coupling parameter [from Eq. (5.5)] as a function α for wϕ ¼ 0.0
(solid) and wϕ ¼ 0.99 (dashed) for α-attractor E model.

FIG. 4. Sum of the tree level potential and CW 1 loop corrected
potential, V tot ¼ V tree þ VCW as a function of filed value ϕ for
α-attractor E-model (α ¼ 1, n ¼ 2) with two different inter-
actions hϕf̄f (left panel) and gϕbb (right panel).
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our present analysis is perturbative. Therefore, it is imper-
ative to identify the nonperturbative constraints (NPc) on
the coupling for which our conclusion may not be strictly
valid. For this, one usually solves the radiation field
equation in the oscillating inflaton background and iden-
tifies the coupling region where broad parametric reso-
nance occurs. The mode equation for the radiation field
assumes a general Hill-type equation as follows,

1

ðmend
ϕ Þ2

d2Xk

dt2
þQðtÞ2Xk ¼ 0; ð6:1Þ

where, Xk is a particular field mode for fermion (f), or
boson (b), and the associated time-dependent frequencies
are [51–55];

QðtÞ2 ¼
8<
:

k2

ðmend
ϕ Þ2a2 þ q2ðtÞP2ðtÞ − i qðtÞ

_PðtÞ
mend

ϕ
for ϕf̄f

k2

ðmend
ϕ Þ2a2 þ q2ðtÞPðtÞ for ϕbb

ð6:2Þ

Given the inflaton-radiation coupling of our interest
Eq. (3.6), the resonance parameter q is identified as

qðtÞ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffi
h2ϕ2

0
ðtÞ

ðmend
ϕ Þ2

r
for ϕf̄f

ffiffiffiffiffiffiffiffiffiffiffi
gϕ0ðtÞ
ðmend

ϕ Þ2
r

for ϕbb

ð6:3Þ

In the literature, conditions of resonance is usually derived
in Minkowski background [51,54,56], and the resonance
is broadly classified into q > 1 called broad resonance
regime and q ≲ 1 called narrow or no resonance regime.
However, in reality, the resonance parameter q depends
nontrivially on time through inflaton oscillation amplitude
ϕ0ðtÞ, and hence naive Minkowski approximation has been
observed to be insufficient. Particularly, with increasing
reheating equation of state, the inflaton amplitude dilutes
very fast, ϕ0ðtÞ ∝ ϕendðaðtÞ=aendÞ−6=ðnþ2Þ depending on
different n values. Using decaying inflaton amplitude in
H2 ≃ Vðϕ0Þ=3M2

p, weget the leadingorder behavior of post-
inflationary scale factor as

aðtÞ ¼ aend

�
t

tend

	nþ2
3n

: ð6:4Þ

Using above equation and Eq. (6.3) the resonance parameter
qðtÞ evolves as,

qðtÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffi
h2ϕ2

end
ðmend

ϕ Þ2

r
ð t
tend
Þ−2

n for ϕf̄f

ffiffiffiffiffiffiffiffiffiffiffi
gϕend
ðmend

ϕ Þ2
q

ð t
tend
Þ−1

n for ϕbb:
ð6:5Þ

In this dynamical scenario, we propose resonance condition
as follows:Resonant particle production is strongly related to
the violation of adiabaticity condition, and that occurs when
the background crosses zero during oscillation. To have
significant resonant production within a certain period, one
needs to satisfy two essential conditions. The first one is to
have the oscillatory background, executing few oscillations
within the period of interest. The second condition is that
within that period, the resonance q-parameter should remain
greater than unity. Combining these aforesaid conditions,
we state that for broad resonance to take place while the
resonance parameter q evolves from its initial value to unity,
it must complete at least one oscillation. Having this
dynamical condition of broad resonance, we derive the
lower bound of the inflaton-radiation couplings for general
background EoS.
To compute the number of oscillations required for

q-parameter to change from its large initial value qin at
the end of inflation to unity, we measure the dimensionless
time-period of the oscillating inflaton as TðΩÞ ¼ 2πmend

ϕ =Ω0,
whereΩ0 is the background oscillation frequency calculated
at ϕ0 ¼ Mp [see Eqs. (3.1) and (3.2)]. On the basis of these,
the number of oscillations Nosc becomes,

Nosc ¼
t − tend
TðΩÞ ¼

8>><
>>:

tend
TðΩÞ

��
hϕend
mend

ϕ

�n
2 − 1

�

tend
TðΩÞ

�� ffiffiffiffiffiffiffiffi
gϕend

p
mend

ϕ

	
n
− 1

	
;

ð6:6Þ

where

tend
TðΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp ðnþ 2ÞMpΩ0

2π
ffiffiffi
3

p
nmend

ϕ ϕend

:

Therefore, the minimum criterion that has to be met to
achieve efficient resonance isNosc > 1. This yields the lower
bound of coupling strength for two decay channels as

h >
mend

ϕ

ϕend

�
1þ 2π

ffiffiffi
3

p
nϕendmend

ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp ðnþ 2ÞMpΩ0

�2
n

g >
ðmend

ϕ Þ2
ϕend

�
1þ 2π

ffiffiffi
3

p
nϕendmend

ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp ðnþ 2ÞMpΩ0

�2
n ð6:7Þ

The first term on the right-hand side of the above expressions
is the one that comes from the standard analysis in
Minkowski space. The new bracketed correction term
originates from our dynamical definition. Considering the
attractor model, the typical upper limit on the dimensionless
coupling parameter g̃; h ∼ ð10−4; 10−3Þ with the allowed
range of wϕ ¼ ð0; 1Þ. To this end, we would like to stress
that unlike CWc discussed before, NPc only suggests that
above this coupling, the reheating dynamics will bemodified
by the nonperturbative effect.
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VII. RESULTS AND DISCUSSIONS

So far, we have analyzed different sources of constraints
from observation and theory and their possible direct and
indirect impacts on inflation. We considered three plateau
types of inflation models, namely α-attractor E, T, and
minimal models, and two possible reheating scenarios
depending on the inflaton-radiation coupling. Before we
embark on discussing the results, let us summarize the main
inputs we are considering:

(i) The combined observation data of the latest
PLANCK 2018 and BICEP=Keck put stringent
constraints on inflationary large-scale observable,
namely, scalar spectral index ns and tensor to scalar
ratio r. Such constraints directly impact the possible
range of inflationary parameters, such as effective
mass, the potential height (Λ), and the potential’s
nature at the end of the inflation.

(ii) Subsequent reheating causes inflaton to decay
into radiation through different decay channels are
under consideration. Nontrivial reheating dynamics

supplemented with the post-reheating entropy
conservation relates different observable and the
reheating parameters though Eq. (3.14), and that
immediately gives us additional constraints on
the inflaton model through the maximum
(Tre ∼ 1015 GeV) and minimum (Tre ∼ 4 MeV) re-
heating temperature in the ðns; rÞ plane. The bound on
reheating temperature will lead to bound on the
inflaton-radiation couplings ðh; g̃ ¼ g=mend

ϕ Þ.
(iii) PLANCK, BICEP=Keck usually measures large-

scale inflationary fluctuations. Interestingly the
small-scale inflationary tensor fluctuations (PGWs)
have been observed to play an interesting role in
further constraining the possible range of reheating
temperature. If the reheating period is prolonged,
and reheating equation of state wϕ > 1=3, the high-
frequency gravitational waves acquire blue tilted
spectrum Ωk

GW ∼ knwϕ , where nwϕ
is the index of the

spectrum and that may lead to larger lower bound on
reheating temperature TGW

re > TBBN. Such lower

FIG. 5. Prediction of α-attractor E-model for different ðα; wϕÞ projected on the recent PLANCKþ BICEP=Keck constrained on
ðns; rÞ plane Ref. [57]. Deep orange and light orange shaded regions correspond to 1σ region at 68% CL and 2σ region at 95% CL,
respectively. Reheating temperature varies from TBBN → Tmax

re , showing in solid and dashed black lines. Another important temperature
scale, TGW

re , is shown in a dot-dashed black line.
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bounds naturally lead to tighter bounds on the
inflaton-radiation couplings.

(iv) In the perturbative framework, instantaneous reheat-
ing gives a natural upper bound on the inflaton-
radiation coupling. However, generically such
coupling modifies the inflaton potential at the loop
level during inflation [CW constraints (CWc)]. The
loop-corrected inflaton potential should not disturb
the inflation (see Fig. 4), which may modify the
maximum reheating temperature and, consequently,
the inflaton-radiation coupling parameter. We con-
sider those bound throughout our analysis.

(v) We further identify the nonperturbative constraints
(NPc) on the inflaton-radiation coupling by employ-
ing broad parametric resonance condition taking into
account the dynamical nature of resonance param-
eter qðtÞ [see Eq. (6.3)]. In the final results, we will
take into account those as well.

PLANCKþ BICEP=Keckþ BBNþ PGWsþ CWcþ
NPc constraints on inflation: First, we display our results in
ðns − rÞ plane and compare it with the latest observa-
tional data (see Figs. 5–8) for the different inflationary
models with five reheating equation of states wϕ ¼
ð0; 1=3; 0.67; 0.82; 0.99Þ. In those plots, the color code
for 1σ (deep orange) and 2σ (light orange) regions are given
by the combined data of Planck and BICEP=Keck. We use
the same color code in subsequent plots to estimate the
model parameters’ 1σ and 2σ bounds. To make our
representation clear, in Figs. 5–8, we did not include
CW-perturbative and nonperturbative constraints but incor-
porated them in all the subsequent plots. Lower limits on
the Tre are set by either TBBN or TGW

re depending on the
model and wϕ. The Tmax

re value differs depending on the
decay channel for both perturbative and nonperturbative
considerations. For example, if we ignore both CW-
perturbative bound and nonperturbative effect, for ϕ →
f̄f reheating instantaneous reheating sets the maximum

reheating temperature Tmax
re ∼ 1015 GeV. Otherwise, it gets

modified. However, ignoring the nonperturbative effect,
CW-perturbative bound does not give additional constraint
for bosonic reheating, and for that instantaneous reheating
(Nre → 0) sets the value of Tmax

re ∼ 1015 GeV. It can be
further observed that for stiff EoS wϕ > 1=3, Tmin

re set the
maximum bound on the inflaton potential parameters α;ϕ�,
and for wϕ < 1=3, it is Tmax

re which sets the bound.
As an example, wϕ ¼ 0, the upper limit of the potential

parameters α;ϕ� are (13.0, 9.0, 5.3) (1σ bound) and (27.5,
15.0, 9.4) (2σ bound) for attractor E, T, and minimal
model respectively (see Table IV). For higher EoS
wϕ ¼ ð0.67; 0.82; 0.99Þ, the restriction of αðϕ�Þ are given
in Tables III and V.
Once the maximum values of ðα;ϕ�Þ are fixed, the

associated prediction of inflationary energy scale and the e-
folding number Nk can be computed. For the attractor
models with stiff inflaton equation of state wϕ > 1=3, the
predicted value of ðHmin

end ∼ 1012 GeV; Nmax
k ∼ 65Þ (both E

and T-model) turned out to be nearly independent of wϕ and
the minimum possible e-folding number correspond to
instantaneous reheating Nmin

k ∼ 55 which is also indepen-
dent of wϕ. On the other hand, for the minimal plateau
model, however, Hmin

end varies within the range ð1011 −
105Þ GeV (1σ bound) and ð1011 − 103Þg GeV (2σ bound)
for wϕ varying from 0.67 → 0.99. For the same range of
wϕ, Nmax

k value varies from 66 → 77. On the other hand if,
wϕ ¼ 0, Hmin

end ∼ 1013 GeV, and Nmax
k ∼ 56 irrespective of

the models under consideration. We summarize all the
bounds of inflationary parameters in Tables III–V.
In the above, we discussed mainly the constraints on

inflation parameters and associated prediction. However,
for a complete understanding of the nature of inflation, we
now consider the impact of the above constraints on the
reheating history, which can directly constrain the inflaton-
radiation coupling parameters ðh; g̃Þ. Along with those, we

TABLE III. Limiting values of (Nk; Hend; α): attractor model.

E-model

1σ þ PGWs 2σ þ PGWs

wϕ αmax Hmin
end (GeV) Nk αmax Hmin

end (GeV) Nk

0.99 10.2 2.6 × 1012 64.7,55.6 16.0 1.6 × 1012 65.4,55.1
0.82 10.4 3.5 × 1012 64.5,55.6 17.5 2.1 × 1012 65.1,55.1
0.67 10.6 4.4 × 1012 64.2,55.7 19.5 3.1 × 1012 64.8,55.1

T-model

1σþ PGWs 2σþ PGWs

wϕ αmax Hmin
end (GeV) Nk αmax Hmin

end (GeV) Nk

0.99 10.2 2.9 × 1012 64.7,55.7 16.0 1.9 × 1012 65.3,55.1
0.82 10.2 3.0 × 1012 64.6,55.6 16.0 2.0 × 1012 65.2,55.1
0.67 10.2 3.3 × 1012 64.5,55.6 16.5 2.3 × 1012 65.1,55.1
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include all the theoretical bounds obtained from both CWc
and NPc discussed before. Let us briefly describe the color
codes we used in our subsequent plots: (1) Deep green
region is for Tre < TBBN, (2) Light green region is asso-
ciated with BBN constraints from PGWs, Tre < TGW

re ,
(3) Gray region depicts Nre < 0, (4) Blue region termed
as theCWc regimewhich indicates the restriction fromCWc,
(5) Magenta regime is associated with NPc, (6) Deep orange
region indicates allowed coupling parameter space satisfying
1σ bound of latest ðns − rÞ data, and (7) Light orange region
indicates allowed coupling parameter space satisfying 2σ
bound of latest ðns − rÞ data.

A. α-attractor E& T models and constraints

Constraints on the entire parameter space for attractor
models can be summarized from Figs. 5, 6, 8, 9, 10 and
Tables III, IV, VI, and VII. As stated earlier, we have
discussed reheating scenarios described by two types of
decay channels ϕ → f̄f and ϕ → bb. As argued before,
the upper limit of the inflaton-radiation coupling should
always be constrained by the fact that its quantum effect
will not disturb the inflationary dynamics. If the bosonic
channel dominates reheating, one loop-effective potential
sets the upper bound on coupling g ∼Oð10−1Þ and that
fixes the Tmax

re value close to that of instantaneous reheating
1015 GeV. On the other hand, for the fermionic channel,
such perturbative correction sets the upper bound on the

coupling hmax ∼Oð10−4Þ and that leads to an upper limit
on the reheating temperature, which depends on wϕ. For
instance, if wϕ ¼ 0, Tmax

re ∼ 1011 GeV for both the attractor
models (see, for instance, the fourth plot of Figs. 9 and 10).
For stiff inflaton EoS wϕ > 1=3, Tmax

re turns out to be nearly
independent of α with the following values Tmax

re ¼
ð106; 107; 109; 1011Þ GeV for wϕ¼ð0.33;0.67;0.82;0.99Þ
respectively.
Unlike the upper limit, the lower limit on the inflaton-

radiation coupling arises indirectly from the lower bound of
the reheating temperature. If wϕ > 0.60, TGW

re always set
the lowest reheating temperature, and the value of TGW

re ∼
ð10−1; 103; 105Þ GeV for EoS wϕ ¼ ð0.67; 0.82; 0.99Þ
respectively. Corresponding limiting values of couplings
are tabulated in Tables VI and VII. When there is no
restriction from PGWs (wϕ < 1=3), we expect Tmin

re ∼ TBBN

but that may not be true once we incorporate the PLACNK
+BICEP/Keck constraints. For two sample value, wϕ ¼ 0

and wϕ ¼ 1=3, all numerical estimation of Tmin
re as well as

g̃min=hmin shown in Tables VI and VII.
As stated earlier, Tmax

re generally can be obtained by
CWc [Eq. (5.5)]; however, that may restrict from NPc
[Eq. (6.7)] depending upon the model under considera-
tion. As an example, for bosonic reheating (ϕ → bb
process) considering NPc the dimensionless coupling
must be 10−4 < g̃ < 10−3, with the allowed range of

TABLE IV. Limiting values of (Nk; Hend; α;ϕ�).

For wϕ ¼ 0.0

1σ 2σ

Model α;ϕ� (max) Hmin
end (GeV) Nk α;ϕ� (max) Hmin

end (GeV) Nk

E 13.0 1.1 × 1013 56.2,41.8 27.5 1.1 × 1013 56.4,41.5
T 9.0 8.6 × 1012 56.4,41.5 15 8.7 × 1012 56.6,41.5
Minimal 5.3 1.0 × 1013 56.1,41.5 9.4 9.5 × 1012 56.5,41.5

For wϕ ¼ 1=3

1σ 2σ

Model α;ϕ� (max) Hmin
end (GeV) Nk α;ϕ� (max) Hmin

end (GeV) Nk

E 10.8 7.6 × 1012 56.7,55.3 18.9 6.7 × 1012 56.9,54.9
T 9.0 5.7 × 1012 56.8,55.4 12.5 5.1 × 1012 57.0,54.9
Minimal 9.9 4.0 × 1012 57,55.6 11.7 4 × 1012 57.0,54.2

TABLE V. Limiting values of (Nk; Hend;ϕ�) for minimal model.

1σ þ Tmax
re 1σ þ BBNþ PGWs 2σ þ BBNþ PGWs

wϕ ϕmin
⋆ Hmax

end (GeV) Nk ϕmax
⋆ Hmin

end (GeV) Nmax
k ϕmax

⋆ Hmin
end (GeV) Nk

0.99 132.0 2.4 × 1012 74.5,57.4 168.0 4.0 × 105 74.5,57.4 179.0 8.6 × 102 76.7,51.0
0.82 12.0 1.4 × 1012 67.5,56.8 31.5 5.8 × 1010 67.5,56.8 34.0 5.2 × 1010 67.7,52.6
0.67 5.5 5.1 × 1012 66.2,55.6 20.2 1.9 × 1011 66.2,55.6 22.0 1.4 × 1011 66.4,53.3
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FIG. 6. Prediction of α-attractor T-model for different ðα; wϕÞ. Detailed descriptions are the same as illustrated in Fig. 5.

TABLE VI. Bounds on ðTre; g̃; hÞ from PGWsþ BBNþ CWcþ NPc with recent BICEP=Keck data for α-attractor E-model.

(I) Fermionic reheating (ϕ → f̄f)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþ NPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþNPc

wϕ Tre (GeV) h Tre (GeV) h Tre (GeV) h Tre (GeV) h

0.99 1011; 105 3 × 10−4; 10−6 1012; 105 10−3; 10−6 1011; 7 × 104 3 × 10−4; 7 × 10−7 1012; 7 × 104 10−3; 8 × 10−7

0.82 109; 103 3 × 10−4; 10−6 108; 103 7 × 10−5; 10−6 109; 7 × 102 3 × 10−4; 10−6 108; 7 × 102 7 × 10−5; 10−6

0.67 107; 0.3 3 × 10−4; 5 × 10−7 5 × 105; 0.3 6 × 10−5; 5 × 10−7 107; 0.1 5 × 10−4; 4 × 10−7 5 × 105; 0.1 6 × 10−5; 4 × 10−7

1/3 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9

0.0 1011; 10 5 × 10−4; 10−14 1010; 10 6 × 10−5; 10−14 1011; 0.004 5 × 10−4; 10−17 1010; 0.004 6 × 10−5; 10−17

(II) Bosonic reheating (ϕ → bb)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþNPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþ NPc

wϕ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃

0.99 1015; 105 10−2; 10−21 1014; 105 10−3; 10−21 1015; 7 × 104 10−2; 10−22 1014; 7 × 104 10−3; 10−22

0.82 1015; 103 0.3; 10−23 1013; 103 7 × 10−5; 10−23 1015; 7 × 102 0.3; 3 × 10−24 1013; 7 × 102 7 × 10−5; 3 × 10−24

0.67 1015; 0.3 0.4; 10−29 4 × 1012; 0.3 6 × 10−5; 10−29 1015; 0.1 0.5; 3 × 10−29 4 × 1012; 0.1 6 × 10−5; 3 × 10−29

1/3 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27

0.0 1015; 10 0.5; 10−14 1010; 10 6 × 10−5; 10−14 1015; 0.004 0.5; 10−17 1010; 0.004 6 × 10−5; 10−17
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TABLE VII. Bounds on (Tre; g̃; h) for α-attractor T-model.

(I) Fermionic reheating (ϕ → f̄f)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþ NPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþNPc

wϕ Tre (GeV) h Tre (GeV) h Tre (GeV) h Tre (GeV) h

0.99 1011; 105 3 × 10−4; 10−6 1012; 105 10−3; 10−6 1011; 7 × 104 3 × 10−4; 7 × 10−7 1012; 7 × 104 10−3; 8 × 10−7

0.82 109; 103 3 × 10−4; 10−6 108; 103 7 × 10−4; 10−6 109; 7 × 102 3 × 10−4; 10−6 108; 7 × 102 7 × 10−5; 10−6

0.67 107; 0.3 3 × 10−4; 5 × 10−7 5 × 105; 0.3 6 × 10−5; 5 × 10−7 107; 0.1 5 × 10−4; 4 × 10−7 5 × 105; 0.1 6 × 10−5; 4 × 10−7

1/3 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9

0.0 1011; 105 5 × 10−4; 10−10 1010; 105 6 × 10−5; 10−10 1011; 0.6 5 × 10−4; 10−15 1010; 0.6 6 × 10−5; 10−15

(II) Bosonic reheating (ϕ → bb)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþNPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþ NPc

wϕ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃

0.99 1015; 105 10−2; 10−21 1014; 105 10−3; 10−21 1015; 105 0.02; 10−21 1014; 105 10−3; 10−22

0.82 1015; 103 0.3; 10−23 2 × 1013; 103 5 × 10−5; 10−23 1015; 4 × 102 0.3; 3 × 10−24 1013; 4 × 102 7 × 10−5; 10−24

0.67 1015; 0.1 0.4; 10−29 4 × 1012; 0.1 6 × 10−5; 10−29 1015; 0.05 0.5; 10−29 4 × 1012; 0.05 6 × 10−5; 10−29

1/3 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27

0.0 1015; 105 0.5; 10−10 1010; 105 6 × 10−5; 10−10 1015; 0.6 0.5; 2 × 10−15 4 × 1010; 0.6 6 × 10−5; 10−15

FIG. 7. Prediction of minimal model for different values of ðϕ�; wϕÞ. Detailed descriptions are the same as illustrated in Fig. 5.
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wϕ ¼ ð0; 1Þ, and for ϕ → f̄f we have more or less same
range, ð10−4 < h < 10−3Þ. As an example for wϕ ¼ 0, all
reheating temperature above Tre > 1010 GeV lies in the
nonperturbative regime. This nonperturbative bound is

sensitive to both ðα; wϕÞ; for better visualization, see,

Figs. 9 and 10 and details numerical values given in

Tables VI and VII.
For a complete understanding of the reheating parameter

space, finally, in Fig. 12, we plotted the parametric
dependence of inflaton-radiation coupling with respect
to reheating equation of state. The left two column plots
are for E and T-models corresponding to α ¼ 10.
Interestingly, if one confines within the 1σ region of
PLANCK, for T-model inflaton-radiation couplings are
tightly bounded. As an example, for wϕ ¼ 0.82, one
obtains 10−7>h>10−6, and 10−23 > g̃ > 10−22.

B. Minimal model and constraints

Detailed phenomenological constraints of the minimal
inflation can be observed from Figs. 7, 8, and 11, and are
summarized in Tables IV, V, and VIII. CWc sets the upper
limit on inflaton-radiation coupling as g̃max ∼Oð10−1Þ and
hmax ∼Oð10−4Þ. These available bounds on couplings
thereafter set restrict Tmax

re ∼ 1015 GeV for bosonic reheat-
ing, which is close to instantaneous reheating. However, for
inflaton-fermion coupling, Tmax

re is noticeably sensitive to
the inflaton parameter ðϕ�; wϕÞ value and detailed numeri-
cal values are provided Table VIII and Fig. 11.
Unlike attractor models, the lower bound on Tre for this

model has nontrivial dependence on the potential parameter
ϕ�. For a given equation of state, one observes that there
exists a critical value of ϕ� above which value lower bound
decreases from TGW

re to TBBN. For instance in the first

FIG. 8. Illustrations of the restriction on the different inflationary models from recent BICEP=Keck data for a specific value of
wϕ ¼ 1=3.

TABLE VIII. Bounds on (Tre; g̃; h) for minimal model.

(I) Fermionic reheating (ϕ → f̄f)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþNPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþ NPc

wϕ Tre (GeV) h Tre (GeV) h Tre (GeV) h Tre (GeV) h

0.99 109; 0.004 7 × 10−4; 10−10 108; 0.004 3 × 10−5; 10−10 109; 0.004 7 × 10−5; 10−10 108; 0.004 3 × 10−5; 10−10

0.82 109; 0.004 3 × 10−4; 10−9 106; 0.004 2 × 10−5; 10−9 109; 0.004 3 × 10−4; 10−9 106; 0.004 2 × 10−5; 10−9

0.67 105; 0.004 3 × 10−4; 10−9 20,0.004 2 × 10−6; 10−9 106; 0.004 3 × 10−4; 10−9 104; 0.004 2 × 10−5; 10−9

1/3 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9 106; 0.004 3 × 10−4; 10−9 105; 0.004 6 × 10−5; 10−9

0.0 1011; 0.004 4 × 10−4; 10−17 1010; 0.004 4 × 10−5; 10−17 1011; 0.004 4 × 10−4; 10−17 1010; 0.004 4 × 10−5; 10−17

(II) Bosonic reheating (ϕ → bb)

1σ þ BBNþ PGWsþ CWc 1σ þ BBNþ PGWsþ CWcþNPc 2σ þ BBNþ PGWsþ CWc 2σ þ BBNþ PGWsþ CWcþ NPc

wϕ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃ Tre (GeV) g̃

0.99 1014; 0.004 10−3; 10−32 1012; 0.004 4 × 10−5; 10−32 1015; 0.004 2 × 103; 10−32 1012; 0.004 4 × 10−5; 10−32

0.82 1015; 0.004 30; 10−31 1012; 0.004 2 × 10−5; 10−31 1015; 0.004 102; 10−31 1012; 0.004 2 × 10−5; 10−31

0.67 1015; 0.004 0.1; 10−31 1012; 0.004 2 × 10−5; 10−31 1015; 0.004 0.1; 10−31 1012; 0.004 2 × 10−5; 10−31

1/3 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27 1015; 0.004 0.5; 10−27 1011; 0.004 6 × 10−5; 10−27

0.0 1015; 0.004 0.5; 10−17 1010; 0.004 4 × 10−5; 10−17 1015; 0.004 0.5; 10−17 1010; 0.004 4 × 10−5; 10−17
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plot of Fig. 11, one clearly see that for ϕ� > 155,
Tmin
re ∼ 104 GeV drops to TBBN. This essentially suggests

that as on increase ϕ�, the lower possible inflation-fermion
coupling decreases from hmin ∼ 10−6 to 10−10. In
Table VIII, we provide maximum and minimum values
of coupling parameters and reheating temperature for
different EoS wϕ ¼ ð0; 1=3; 0.67; 0.82; 0.99Þ. For specific
model parameters, bounds on the reheating parameters will
always be within the bounds provided in Table VIII.
If one considers the nonperturbative bound, the upper

limit on the coupling parameter is further modified (see
Fig. 11). Additionally, it depicts the fact that compared
to the bosonic coupling g̃ nonperturbative bounds on the
fermionic coupling h is much more sensitive to ϕ� when
wϕ > 1=3. Finally, in Fig. 12, the right column figures
depict the parametric variation of inflaton-radiation
coupling with respect to the wϕ for the minimal model

with ϕ� ¼ 10. Interestingly, the minimal model is non-
viable for the lower equation of state dictated by
PLANCK together with BICEP=Keck data, which cor-
responds to white regions. This can also be observed
from Fig. 11. As an example, 2σ (ns − r) bound ruled
out ϕ� ≳ 9.4, whereas if we consider 1σ bound ruled
out ϕ� ≳ 5.5.

VIII. CONCLUSIONS

In this paper, we have analyzed in detail the phenom-
enological implications of the latest PLANCK 2018 and
BICEP/Keck data on the physics of inflaton. We analyzed
three different plateau inflation models along with two
different reheating scenarios. We particularly discussed two
different channels of inflaton decaying into fermions
through ϕ → f̄f and bosons through ϕ → bb. Along with

FIG. 9. The impact of PLANCK 2018þ BICEP=Keckþ PGWþ BBNþ CWcþ NPc on Tre and dimensionless inflaton-radiation
coupling (h; g̃) with respect to α for α-attractor E-model. We take wϕ ¼ ð0; 0.67; 0.82; 0.99Þ. Deep orange shaded regions correspond to
1σ and light orange shaded regions correspond to 2σ bound imported from (ns − r) plane. The deep and light green region indicates
Tre < TBBN and Tre < TGW

re , respectively. Blue and magenta-shaded regions depict CWc and NPc. Gray-shaded region implies no
reheating.
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the observations, we further employ bound from PGWs and
both perturbative and nonperturbative constraints on the
inflaton-radiation coupling.
At the first step, considering the allowed range of

reheating temperature (TBBNðTGW
re Þ; 1015 GeV), we project

our result in the (ns − r) plane to fix the upper limit on
the potential parameter αðϕ�Þ at 1σ and 2σ CL. Once we
fixed αðϕ�Þ for five different sets of inflaton equation of
state wϕ ¼ ð0; 1=3; 0.67; 0.82; 0.99Þ, that in turn fixes
inflationary parameters such as the range of Nk and
Hend. The limiting values of inflationary parameters for
different models are shown in Tables III–V.
In the second step, considering those bounds on infla-

tionary parameters, we analyze the restriction on the
reheating parameters such as Tre and couplings h; g̃. The
upper bound on inflaton-radiation coupling h; g̃ ∼ 0.1, is
derived from the Tmax

re ∼ 1015 GeV value corresponding to

instantaneous reheating though a simple relation
Tre ∝

ffiffiffiffiffiffi
Γϕ

p
. However, once CWc and NPc are employed,

the upper bound of coupling significantly drifted from the
aforementioned value. The detailed quantitative values of
different bounds arising from the theory constraints are
displayed in Tables VI–VIII for three different plateau type
inflationary model attractor E, T, and minimal model
respectively. The lower bound on reheating temperature
is conventionally fixed by TBBN (deep green shaded region
in all the plots). However, if we incorporate PLANCKþ
BICEP=Keckþ PGWs constraints, such a possibility is no
longer generic. If wϕ < 1=3, in most of the parameter

region for the E and T model, TBBN lies outside the 1σ

region (see fourth column of Figs. 9 and 10). However, for
those models PGWs bound on Tmin

re ¼ TGW
re is large by

several decade above TBBN for wϕ > 0.6. As an example for

FIG. 10. The impact of PLANCK 2018þ BICEP=Keckþ PGWþ BBNþ CWcþ NPc on Tre and dimensionless inflaton-radiation
coupling (h; g̃) with respect to α for α-attractor T-model. We take wϕ ¼ ð0; 0.67; 0.82; 0.99Þ. Deep orange shaded regions correspond to
1σ and light orange shaded regions correspond to 2σ bound imported from (ns − r) plane. The deep and light green regions indicate
Tre < TBBN and Tre < TGW

re , respectively. Blue and magenta-shaded regions depict CWc and NPc. Gray-shaded region implies no
reheating.
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wϕ ¼ 0.99, Tmin
re ¼ TGW

re ∼ 105 GeV. For the minimal
model, however, the lower bound on reheating temperature
is noticeably dependent on ϕ� specifically for the higher
equation of state.
Apart from direct and indirect observational bounds, we

further utilized the theoretical bounds coming from CWc
and NPc. CWc strictly restricts the maximum allowed value
of ðh; gÞ, above which inflation will be jeopardized.
However, if we assume the fact that reheating process
itself is perturbative in nature, it is NPc that plays a wider
role in setting the upper limit on both the reheating

temperature and inflaton-radiation couplings for all the
models under consideration. If nature chooses the coupling
to be within the nonperturbative regime, some of the
present conclusions may be affected, which we defer for
our future study.
To the end, we wish to note that future experiments such

as CMB-S4 [58] and LiteBIRD [59] will be able to put
stronger bound in ðns; rÞ plane which will certainly
improve our understanding the precise nature of beyond
standard model physics such as inflaton (see, for instance,
the recent works [27,28]).

FIG. 11. The impact of PLANCK 2018þ BICEP=Keckþ PGWþ BBNþ CWcþ NPc on Tre and dimensionless inflaton-radiation
coupling (h; g̃) with respect to ϕ⋆ for the minimal model. We take wϕ ¼ ð0; 0.67; 0.82; 0.99Þ. Deep orange shaded regions correspond to
1σ, and the light orange shaded regions correspond to 2σ bound imported from (ns − r) plane. The deep and light green regions indicate
Tre < TBBN and Tre < TGW

re , respectively. Blue and magenta-shaded regions depict CWc and NPc. Gray-shaded region implies no
reheating.
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