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We propose that primordial black hole (PBH) binary systems can lead to standard timers in tracking the
evolution of the Universe. Through gravitational waves from monochromatic PBH binaries, the probability
distribution on major axis and eccentricity from the same redshift is obtained. By studying the dynamical
evolution of PBH binaries from the initial probability distribution to observed redshifted ones, the redshift-
time calibration can be extracted, which can constrain cosmological models. A general formalism of the
standard timer is further concluded based on the evolution of statistical distribution in dynamical systems.
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I. INTRODUCTION

With the development of modern cosmology, various
cosmic properties have been found in observations, e.g., the
cosmic microwave background (CMB) [1–4], large-scale
structure (LSS) [5], and cosmic accelerating expansion
[6,7]. Lambda cold dark matter (ΛCDM) model is therefore
established [8–11] as the standard model in cosmology.
For precise understanding in evolution of the Universe,

various observational technologies have been proposed
in studying the cosmological distance-redshift relation.
Type Ia supernovae (SNe) produce consistent peak lumi-
nosity. The luminosity distance can be obtained by com-
paring their absolute and apparent magnitude, which
makes sure Type Ia SNe work as the standard candle to
provide luminosity distance-redshift relation [12,13].
Baryon acoustic oscillations (BAOs) determine a fixed
sound horizon, by observing sound horizons at different
redshifts. The calibration between angular diameter dis-
tance and redshift is extracted, which serves as standard
rulers [4,14–16]. Gravitational waves (GWs) from binary
systems and their electromagnetic counterparts provide the
calibration between the luminosity distance and redshift as
standard sirens [17]. However, there still exist puzzles in
ΛCDMmodel, e.g., the Hubble tension [18–20] and the S8
tension [4,21]. Such tensions could be caused by unrecog-
nized systematic uncertainties in measurements [22,23] or
hidden new physics [24–30]. New observational methods
are needed in cross-checking the observed tensions.
Intuitively, the evolution of the Universe can be briefly

characterized by the scale factor aðtÞ in the Friedmann-
Robertson-Walker (FRW) metric, which is related to the

cosmological redshift z by 1þ zðtÞ ¼ a0=aðtÞ, where a0 is
the present scale factor. Tracking zðtÞ provides another
perspective in studying cosmological evolution (also used
in the determination of the age of the Universe, see [31–34]
for details), which could be achieved in the cosmological
dynamical systems. Following their intrinsic dynamics, the
physical evolution time of dynamical systems from the
initial state to the later state is attained. Meanwhile, redshift
is decoded from their observable. Due to the independence
of physical evolution time of dynamical systems in the
evolution of the Universe, it works as a timer in calibrating
the redshift-time relation. This approach is known as
standard timers.
In the first study on standard timers [35], we have shown

that through the Hawking radiation emitted from light
primordial black hole (PBH) clusters, PBH stellar bubbles
[36] can be a potential candidate of standard timers. Due to
the primordial origin of PBHs, the initial mass function of
PBHs in clustering should be the same. With the emission
of Hawking radiation, PBHs evaporate which deforms the
mass function of PBHs. By studying the evolution of PBH
mass function, its physical evolution time is attained.
Meanwhile, observing the gamma-ray spectrum from
PBH stellar bubbles gives the redshifted PBH mass
function where redshift is encoded. Hence, the calibration
between redshift and physical evolution time of PBH mass
function is constructed.
In this paper, we note that PBH binary systems can lead

us to standard timers. Under the assumption of random
distribution of PBHs in space [37–39], the PBH binaries
could decouple from the Hubble flow and form an identical
initial probability distribution on the major axis a and the
eccentricity e [40,41] [see Eq. (13) for example]. With the
emission of GWs, the major axis and eccentricity shrink,*qdingab@connect.ust.hk
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which changes the later probability distribution in PBH
binary systems accordingly. Through the waveform of
GWs from the same redshift PBH binaries, the probability
distribution on the major axis and eccentricity from the
same redshift is obtained. By studying the evolution of
PBH binaries from the initial probability distribution to
later ones, cosmological redshift and physical evolution
time in PBH binary systems are connected, which can
constrain cosmological models.
Although PBHs are hypothetical objects, there still exist

some GW events which may indicate the existence of
PBHs. For instance, GW190521 shows the mass of binary
components lies in the astrophysical BH mass gap [42] and
such a event could be explained in PBHs scenario [43],
GW190425 and GW190814 show a companion of BH
binary has a mass smaller than 3M⊙ [44,45] and such
events could origin from PBHs scenario [46]. Considering
the next generation of GW detectors, such as the Einstein
Telescope [47] and the Laser Interferometer Space Antenna
[48] can detect GWs from high redshift (z > 20); such a
high-redshift binary BHs event could be a smoking gun for
the existence of PBHs [49–51]. Also, PBH binaries may
dominate the high-redshift binary systems, detecting GWs
from PBH binary systems at high redshift would own a
pure GW background, which can help construct the high-
precision standard timer.
This paper is organized as follows. In Sec. II, we show

how to construct the standard timer in PBH binary systems,
including single parameter PBH binary systems in
Sec. II A, multiparameter PBH binary systems in Sec. II B
and PBH binary systems without the initial probability
distribution in Sec. II C. In Sec. III, the conclusion and
discussions about the standard timer from PBH binary
systems are given. In Appendixes A and B, a formalism on
constructing standard timers in general dynamical systems
is shown.

II. TOWARD STANDARD TIMERS IN PBH
BINARY SYSTEMS

In constructing the standard timer in PBH binary
systems, two essential requirements are needed. One is the
identical initial state of PBH binary systems, which works
as a standard reference in extracting physical evolution
time.1 The other one is that their later evolved state from the
same redshift can be obtained, which makes sure the
redshift can be decoded from their observable. The former
of requirements is achieved in the identical initial proba-
bility distribution on major axis and eccentricity [40,41]
under the assumption of random distribution of PBHs in the
space. The latter can be easily realized in local signal
sources, such as the PBH cluster [36,52,53], where the

redshift of signals from a local source should be the same.
However, redshifts of PBH binaries are hardly classified,
due to their being globally distributed in the Universe.
The potential monochromatic mass spectrum in PBH

scenarios changes the story. It introduces PBH binary
systems in the standard timer through GW channels.
After collecting many GW signals from different redshifts,
we can extract the redshifted chirp massMz and mass ratio
q from the GW waveform. Due to the unknown intrinsic
chirp mass M, which follows M ¼ Mz=ð1þ zÞ [54], the
redshift of binary systems cannot be determined. However,
if GW signals come from PBH binaries, under the
assumption that the mass of PBHs is monochromatic,
the mass ratio of PBH binaries follows q ¼ 1 (also a
number of BH binaries with q ¼ 1 are found in GWTC-2,
see [55] for details), and GW signals emitted from PBH
binaries at the same redshift can give the same redshifted
chirp mass. Then, PBH binaries can be classified into
different redshift shells based on their redshifted chirp
mass. As the result, the standard timer can be constructed
by comparing the initial probability distribution on major
axis a and eccentricity e and later ones from the same
redshift.

A. A toy model in single parameter
PBH binary systems

By assuming the mass of PBHs is monochromatic, the
state of PBH binary systems can be described by a
probability distribution on major axis a and eccentricity
e, which is dP=dade. For an intuitive understanding on
how standard timers work in PBH binary systems, we start
with circular binary systems (some discussions propose the
circularizing of PBH binaries before entering GW fre-
quency bands, see [56] for details). Then states of PBH
binary systems only depend on the single-parameter major
axis a, which is dP=da. In studying the evolution of its
probability distribution, we have

Sða; tÞ ¼ dP
dat

¼ dP
dai

dai
dat

¼ Sða; tiÞ
dai
dat

; ð1Þ

where, ai and at denote the major axis at the initial physical
time ti and later physical time t, respectively. Sða; tÞ denotes
the probability distribution onmajor axis a at physical time t
and dP=dai is the initial probability distribution Sða; tiÞ. In
connecting Sða; tÞ with Sða; tiÞ, we consider time evolution
of the major axis, following [57]

da
dt

¼ −
128

5

G3M3
PBH

c5a3
; ð2Þ

whereMPBH is the monochromatic mass of PBHs, G and c
are the Newton’s constant and the speed of light, respec-
tively. Integrating Eq. (2) from the initial physical time ti to
later physical time t, we have the evolution of themajor axis,

1The identity of PBH initial state is a key requirement, which
makes sure the physical evolution time in PBH binary systems
can be an independent measurement for cosmic time.
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a4i ¼ a4t þ δ4ðΔtÞ; ð3Þ

where δ4 is defined as δ4ðΔtÞ≡ 512G3M3
PBHΔt=5c5 andΔt

is the physical evolution timeΔt ¼ t − ti. Because the initial
probability distribution Sða; tiÞ is fixed, it makes sure the
physical evolution time Δt can be obtained from the later
probability distribution Sða; tÞ and their internal dynamic.
Due to the independence of the physical evolution time in the
evolution of the Universe, Δt can work as an independent
cosmic-time measurement between cosmic time ti and t.
Then, we differentiate Eq. (3) on both sides, the evolution of
major axis dai=dat can be obtained. The probability dis-
tribution of single-parameter PBH binary systems from an
identical redshift shell can be expressed as

Sða; tÞ ¼ dP
dai

a3t
ða4t þ δ4ðΔtÞÞ3=4 : ð4Þ

With the expansion of the Universe, the observed
major axis az is redshifted by az ¼ ð1þ zÞa, which can
be found in the Kepler’s third law az ∼ ðGMzÞ1=3f−2=3z ∼
ð1þ zÞðGMÞ1=3f−2=3, where Mz and fz are the observed
mass and GW frequency in binary systems, respectively.
Therefore, the observed probability distribution follows:

Soðaz; tÞ ¼
dP

daiðzÞ
a3z

ða4z þ δ4ðΔtzÞÞ3=4
: ð5Þ

Here, subscript o denotes the observational quantity.
As Eq. (3), we have the relation a4i ðzÞ ¼ a4z þ δ4ðΔtzÞ,
where Δtz depends on the redshift of PBHs binaries. In
order to obtain the physical evolution time Δt from Δtz, a
correct redshift should be firstly obtained from the
observed probability distribution. We consider the con-
dition a4z ≫ δ4ðΔtzÞ, which infers aiðzÞ ≃ az. In this large
major-axis limit, the evolution of major axis is negligible.
Therefore, the observed distribution of the major axis will
change only due to the cosmic expansion. The observed
probability distribution becomes

Soðaz; tÞ ≃ Soðaið1þ zÞ; tÞ ¼ dP
daiðzÞ

¼ 1

1þ z
dP
dai

: ð6Þ

If we consider a specific major axis aL in the limit of large
major axis, we obtain a equation on redshift

ð1þ zÞSoðaLð1þ zÞ; tÞ ¼ SðaL; tiÞ: ð7Þ

Here, we have already known Soðaz; tÞ in observations and
the initial probability distribution Sða; tiÞ, then redshift can
be numerically solved in Eq. (7). After obtaining the
redshift, the intrinsic probability distributions can recover
from the redshifted ones by Sða; tÞ¼ ð1þ zÞSoðað1þ zÞ; tÞ
and the mass of PBHs can be solved from the redshifted
mass by MPBH ¼ Mz=ð1þ zÞ. Then, physical evolution

time can be extracted in the condition a4t ≪ δ4ðΔtÞ, which
indicates ai ≃ δðΔtÞ. In this small major-axis limit, we have
the log probability distribution from Eq. (4) as follows:

log Sða; tÞ ≃ log
SðδðΔtÞ; tiÞ
δ3ðΔtÞ þ 3 logat: ð8Þ

Then δðΔtÞ can be extracted from SðδðΔtÞ; tiÞ=δ3ðΔtÞ in
Eq. (8). δðΔtÞ depends on the mass of PBHs MPBH and
physical evolution time Δt. In above calculation, the mass
of PBHs has been found after obtaining redshift. Then, the
physical evolution time Δt can be resolved from obtained
δðΔtÞ. After obtaining the redshift and physical evolution
time, the calibration between the redshift and time can be
constructed in single parameter PBH binary systems.
In general, the standard timer requires two properties in

the evolution of dynamical systems, we take the single-
parameter PBH binary system as an example to show that in
Fig. 1. Typical properties in dai=da are the flat-constant
part in the large major-axis tail and the rapid evolution part
in the small major-axis tail. The flat-constant part is the
region where time evolution is negligible; the redshift can
be extracted by comparing the redshifted and initial
probability distributions in this region. After obtaining
the redshift, intrinsic evolution functions (solid lines) can
be recovered from redshifted ones (dashed lines) in Fig. 1.
The rapid evolution part describes the physical time
evolution effectively changing the major axis of PBH
binaries, where physical evolution time can be extracted
through Eq. (8). In principle, the redshift-time relation can
be decoded from observed probability distributions, which
indicates that redshift and physical evolution time should
be hidden in different parts of observed distribution,

FIG. 1. The evolution of single parameter PBH binary systems
dai=da. We assume the mass of PBHs is 30M⊙ and physical
evolution time is the standard cosmological time from z ¼ 3000
to the redshift denoted in the figure. The solid curve is the
intrinsic evolution of dynamical systems and the dashed curve is
the observed evolution of dynamical systems.

TOWARD COSMOLOGICAL STANDARD TIMERS IN PRIMORDIAL … PHYS. REV. D 108, 023514 (2023)

023514-3



otherwise the redshift-time degeneracy in observed distri-
butions could cause the uncertainty in extracting the red-
shift-time relation. Therefore, the statistical distribution of a
standard timer candidate should include an inactive evo-
lution part for extracting the redshift and rapid evolution
part for extracting the physical evolution time.
In addition, an applicable standard timer should con-

strain the redshift-time relation to the precision higher than
the result from the ΛCDM model, namely, Oð0.1Þ, due to
the Hubble parameter difference between early measure-
ments [4] and late measurements [18]. The measurement
uncertainty of the standard timer is mainly from the
uncertainty of redshifted BH mass, which is around
Oð0.1Þ (see Table VI of [55]), and if we apply this
uncertainty in the Kepler’s third law, Eqs. (7) and (8),
we can obtain that the uncertainty of the redshift-time
relation from the standard timer is comparable with the
ΛCDM result. With the better sensitivity of GW detectors,
more GW waveform templates, and detailed studies and
observations on PBH properties in the future, this potential
standard timer would be improved to have higher precision
and put strong constraints on the cosmic evolution.

B. A practical model in PBH binary systems

A practical description of monochromatic PBH binary
systems needs two parameters, major axis a and eccen-
tricity e. In multiparameter probability distributions, the
evolution of probability distribution of PBH binary systems
dP=dade from an identical redshift shell can be described
as follows:

Sða; e; tÞ ¼ dP
daidei

det Jða; e;ΔtÞ;

Jða; e;ΔtÞ ¼
� ∂ai

∂at
∂ai
∂et

∂ei
∂at

∂ei
∂et

�
: ð9Þ

Here, dP=daidei is the initial probability distribution of
PBH binary systems, and Jða; e;ΔtÞ is the Jacobian of two-
parameter PBH binary systems after the evolution of
physical evolution time Δt, which connects the initial
and later probability distributions. In calculating
Jða; e;ΔtÞ, we consider the time evolution of parameters
in PBH binaries, following [57]

da
dt

¼ −
128

5

G3M3
PBH

c5a3ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
;

de
dt

¼ −
608

15

G3M3
PBH

c5a4
e

ð1 − e2Þ5=2
�
1þ 121

304
e2
�
: ð10Þ

Due to the expansion of the Universe, the cosmological
redshift is introduced in the observed probability distribu-
tion, which is

Soðaz; e; tÞ ¼
dP

daiðzÞdei
det Jðaz; e;ΔtzÞ; ð11Þ

where redshifted major axis becomes az ¼ ð1þ zÞa.
However, the redshift does not leave imprints on the
eccentricity e, it can be found the 1þ z factors coming
from the major axis, mass, and time in Eq. (10) cancel out
with each other, which results in no redshift effect appear-
ing in the observed eccentricity. In measuring eccentricity
in binary systems, the precision is not very high due to the
lack of suitable GW waveform templates [58]. Therefore,
we only consider probability distributions on the major axis
dP=da for a practical numerical solution, which can be
obtained from Eq. (11) as follows:

Soðaz; tÞ¼
dP
daz

¼
Z

emax

0

dP
daiðzÞdei

detJðaz;e;ΔtzÞde: ð12Þ

In the numerical solution of the evolution of probability
distributions, we consider two types of initial probability
distributions for the major axis and eccentricity of the PBH
binaries. One is the Gaussian distribution localized at a
specific major axis and eccentricity. After studying the
Gaussian distribution, a general initial distribution can be
decomposed into Gaussian distributions [59,60]. The other
one is the standard probability distribution in PBH binary
systems under the assumption of random spatial distribu-
tion of PBHs, which is chosen from [40,61],2

dP
dade

¼ 3

4
f3=2PBH

a1=2

x̄3=2
e

ð1 − e2Þ3=2 ; ð13Þ

where fPBH is the present energy-density fraction of PBHs
in the dark matter and x̄ is the physical mean separation of
PBHs at matter-radiation equality. Based on different
types of initial probability distributions, a numerical study
on the evolution of probability distribution of PBH
binaries on the major axis a following Eqs. (10)–(12)
is shown in Fig. 2.
As mentioned in Sec. II A, various regions of proba-

bility distributions behave differently. In the large major-
axis limit, the evolution of probability distribution is
negligible, the redshift can be obtained by comparing
the initial probability distribution (black line) and red-
shifted probability distributions (dashed lines) in Fig. 2,
which can be further numerically resolved from the
equation ð1þ zÞSoðaLð1þ zÞ; tÞ ¼ SðaL; tiÞ, where aL
is picked from the large major-axis region. However,
the large major-axis tail in observed probability distribu-
tions can hardly be obtained due to its extremely low-
gravitational wave frequency, as shown in the right panel

2Even though initial probability distribution of PBH binaries is
undetermined, the chosen distribution functions are reasonable in
analysis. The analysis with initial Gaussian distribution can be
extended to a general initial distribution case, and the analysis
with the standard probability distribution under the random
distribution of PBHs is an expected template in future GW data
analysis.
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of Fig. 2. In this case, we can use numerical solutions as
templates of probability distributions to match the obser-
vational results. After obtaining the redshift, the observed
probability distributions Soðaz; tÞ can be mapped to
the intrinsic probability distributions Sða; tÞ following
Sða; tÞ ¼ ð1þ zÞSoðað1þ zÞ; tÞ, and the mass of PBHs
can be obtained from the redshifted mass following
MPBH ¼ Mz=ð1þ zÞ. Then physical evolution time Δt
can be extracted from the numerical solution in the small
major-axis limit, where the evolution of probability
distribution dominates. Accordingly, the redshift-time
calibration is constructed in multiparameter PBH binary
systems. In addition, some extra effects could also
influence the orbital evolution of PBH binaries, such as
the accretion of PBH binaries during the inspiral phase
[62,63] and the interaction between PBH binary with
CDM particles [64]. In building a realistic standard timer,
we need to add extra contribution terms in Eq. (10) and
numerically solve the Jacobian of orbital parameter
evolution in Eq. (9), then a high-precision and optimistic
standard timer would be constructed.
Generally, the mass of PBHs is very essential in

describing the evolution of PBH binary systems, when
the mass function of PBHs is not monochromatic. The
evolution of orbital parameters follows [57]

da
dt

¼ −
64

5

G3m1m2ðm1 þm2Þ
c5a3ð1 − e2Þ7=2

�
1þ 73

24
e2 þ 37

96
e4
�
;

de
dt

¼ −
304

15

G3m1m2ðm1 þm2Þ
c5a4ð1 − e2Þ5=2 e

�
1þ 121

304
e2
�
: ð14Þ

Here, m1 and m2 are the mass of PBHs in the binary.
Therefore the probability distribution of general PBH
binary systems should be described as dP=dadedMG,
where MG ≡ ðm1m2ðm1 þm2ÞÞ1=3. The evolution of the
probability distribution can also be numerically studied as
we have discussed above. However, when considering
an extended mass function in PBH binary systems, it is
hard to determine whether collected GWs come from the
same redshift or not because the redshifted mass depends
on the mass of PBHs in binary and cosmological redshift;
due to the mass uncertainty in extended mass spectrum
of PBHs, the redshift is hardly determined. In an infla-
tionary scenario, the log-normal-type mass function is a
natural result of PBHs mass function [65–67] which is
described by characteristic mass Mc and width of mass
spectrum σ. In the small-σ limit, the mass function of PBHs
can be approximated by a monochromatic mass function,
the redshift can be determined as we have discussed in the
monochromatic case. Otherwise, the determination of
redshift needs further studies.

C. Toward standard timers without the initial
probability distribution

In constructing standard timers in PBH binary systems,
the initial probability distribution of PBH binaries plays an
important role in extracting the redshift and physical
evolution time by comparing it with observed redshifted
probability distributions. However, the initial probability
distribution on the major axis and eccentricity of PBH
binaries is indeterminate, due to the unknown mass
spectrum and space distributions of PBHs, etc. Some

FIG. 2. The probability distribution of PBH binaries on the major axis a. We assume the mass of PBHs is 30M⊙ and physical evolution
time is the standard cosmological time from z ¼ 3000 to the redshift denoted in the figure. Solid curves denote intrinsic probability
distributions and dashed curves are observed probability distributions in PBH binary systems. Left panel: The initial probability
distribution in PBH binary systems is the Gaussian distribution localized at a ¼ 3 AU and e ¼ 0.9, its standard deviations are
σa¼1AU and σe¼0.05. Right panel: The initial probability distribution follows Eq. (13), where we set fPBH¼0.1 and x̄≃1.3×105AU
in the ΛCDM model with ΩDM ¼ 0.3 and H0 ¼ 73.2 kms−1 Mpc−1. The maximal eccentricity emax in Eq. (12) is set as
min ð0.9999;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðfPBHa=x̄Þ3=2

p
Þ, where the upper bound 0.9999 is for preventing the extreme nonlinear effect in probability

distributions in the numerical calculation.
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previous works [41,61,68] have calculated the initial
probability distribution in different scenarios.
Therefore, standard timers without the initial probability

distribution should be considered. Its feasibility ensures
that the initial probability distribution of PBH binaries is
fixed after binaries form, under the assumption of random
distribution of PBHs in space. It makes sure that there is a
one-to-one correspondence between the later evolved
probability distribution and physical evolution time. We
first consider circular PBH binary systems for an intuitive
understanding. Due to lack of the initial probability dis-
tribution, we consider the PBH binaries from two different
redshifts; their observed probability distributions are
Soðaz1 ; t1Þ and Soðaz2 ; t2Þ, respectively. By studying their
dynamics, the connection between z1, z2, and Δt ¼ t2 − t1
could be obtained.
In the large major-axis limit, the evolution of

major axis is negligible, we have the relation Sða; tiÞ¼
ð1þ z1ÞSoðað1þ z1Þ; t1Þ¼ ð1þ z2ÞSoðað1þ z2Þ; t2Þ, which
gives the following equation,

SoðaL; t1Þ ¼ ηSoðηaL; t2Þ; ð15Þ

where aL is picked up from the large major-axis region
and η is the redshift ratio which is defined as
η≡ ð1þ z2Þ=ð1þ z1Þ. With the observed Soðaz1 ; t1Þ and
Soðaz2 ; t2Þ, the redshift ratio can be numerically solved
in Eq. (15).
In the small major-axis limit, the evolution of major

axis is rapid. Following Eq. (3), the relation between az1
and az2 is a

4
z2 ¼ a4z1 þ δ4ðΔtz1Þ. Then the relation between

Soðaz1 ; t1Þ and Soðaz2 ; t2Þ can be expressed as

Soðaz1 ; t1Þ ¼
dP
daz2

daz2
daz1

¼ Soðaz2 ; t2Þ
a3z1

ða4z1 þ δ4ðΔtz1ÞÞ3=4
: ð16Þ

Here, Δtz1 depends on unknown redshift z1. At the small
major-axis limit, a4z1 ≪ δ4ðΔtz1Þ, Eq. (16) can be approxi-
mated as follows:

Soðaz1 ; t1Þ ≃
SoðδðΔtz1Þ; t2Þ

δ3ðΔtz1Þ
a3z1 : ð17Þ

In Eq. (17), δðΔtz1Þ can be numerically solved. From the
observed Soðaz1 ; t1Þ and Soðaz2 ; t2Þ, we have obtained
the redshift ratio η and δðΔtz1Þ. In order to construct the
redshift-time calibration ðz1; z2;ΔtÞ, the redshift z1 and z2
need to be determined. We can assume the cosmological
evolution between two redshifts z1 and z2 follows the
standard ΛCDM cosmology. Then, we assume that the
redshift of one observed probability distribution is z̃1 and

the redshift of the other one is z̃2 ¼ ð1þ z̃1Þη − 1. Under
the assumption of z̃1 and z̃2, the PBH mass MPBH can be
first determined by MPBH ¼ Mz1=ð1þ z̃1Þ, and then physi-
cal evolution time Δt can be obtained from δðΔtz1Þ. The
cosmological time between z̃1 and z̃2 can be calculated as
tz ¼

R z̃2
z̃1
dz=HðzÞð1þ zÞ, whereHðzÞ is the Hubble param-

eter along the line of sight. Then, the correct redshift z̃1 is
chosen such that physical evolution time is the same as the
cosmological time between two redshifts as follows:

Δt ¼ tz: ð18Þ

The redshift z2 can be determined by z2 ¼ ð1þ z1Þη − 1
and Δt can be solved from δðΔtÞ, which gives us the
redshift-time calibration ðz1; z2;ΔtÞ in the circular PBH
binary systems.
In two-parameter PBH binary systems, the standard

timer can also be approached. We consider the PBH
binaries from two different redshifts with their observed
probability distribution Soðaz1 ; t1Þ and Soðaz2 ; t2Þ. In the
large major-axis limit, the redshift ratio η can be numeri-
cally solved in Eq. (15). In the small major-axis limit, we
can numerically solve δðΔtzÞ as we discussed in Sec. II B.
In order to obtain their redshifts z1 and z2, we also assume
that the cosmological time tz between two redshifts z1 and
z2 follows the standard ΛCDM cosmology. Giving a
redshift z̃1, we can numerically solve Δt from δðΔtzÞ
and the right redshifts z1 should satisfy Δt ¼ tz. Then
redshift-time calibration ðz1; z2;ΔtÞ is constructed in two-
parameter PBH binary systems.
In future GW detections, after collecting a number of

GWs from PBH binaries, we first classify them into
different redshifts by their redshifted chirp mass.
Choosing the PBH binary systems from two different
redshifts, their redshifts can be determined by comparing
their redshifted probability distribution as we discussed
above. We can set one of obtained redshifts as a standard
redshift z0, so the PBH mass can be recovered from the
observed redshifted mass by MPBH ¼ Mz=ð1þ z0Þ and
redshift of other probability distribution can be obtained
by zPBH ¼ ð1þ z0Þη − 1. Then we can numerically solve
the physical evolution time Δt between z0 and zPBH as
discussed in Sec. II B. Consequently, the redshift-time
calibration ðz0; zPBH;ΔtÞ is obtained and the standard timer
can be well-developed without an initial probability
distribution.
Furthermore, cosmological models can be tested in

standard timers. Considering the cosmological redshift-
time relation dz=dt ¼ −ð1þ zÞHðzÞ, we apply the
obtained redshift-time calibration ðz0; zPBH;ΔtÞ from stan-
dard timers, which gives

Z
zPBH

z0

dz
ð1þ zÞHðzÞ ¼

Z
t0

tPBH

dt ¼ Δt: ð19Þ
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Taking the flat-ΛCDM model as an example, HðzÞ ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγð1þ zÞ4 þΩmð1þ zÞ3 þΩΛ

q
. After constructing

the redshift-time calibration in PBH binary systems from
the primordial Universe to the present Universe, the
Markov chain Monte Carlo simulation can be applied on
the flat ΛCDMmodel in constraining the Hubble parameter
H0, energy density fraction of radiation Ωγ , matter Ωm, and
cosmological constant ΩΛ.

III. CONCLUSION AND DISCUSSIONS

To summarize, we propose that PBH binary systems can
lead to standard timers to record the evolution of the
cosmological redshift zðtÞ. Under the assumption of ran-
dom distribution of PBHs in space, PBH binary systems
have an identical initial probability distribution on major
axis and eccentricity. By studying the evolution of the
probability distribution in binary systems, the physical
evolution time between the initial and later probability
distribution can be extracted. Then the redshift-time rela-
tion can be constructed by studying the probability dis-
tribution of PBH binary systems at different redshifts. To
obtain the probability distribution on the major axis and
eccentricity from the same redshift shell, we assume that
PBH mass is monochromatic, through GWs produced from
PBH binaries, their redshifted chirp mass can be obtained in
GW waveforms, the PBH binaries from the same redshift
have the same redshifted chirp mass and the mass ratio
follows q ¼ 1, and then we extract the redshifted proba-
bility distribution on major axis and eccentricity from the
same redshift.
To demonstrate how standard timers work in PBH binary

systems, we perform an analytical study with a toy model in
single-parameter PBH binary systems where eccentricity is
set as e ¼ 0 and a numerically studied practical model in
noncircular PBH binary systems. We show that the redshift
can be determined by comparing the initial and redshifted
probability distribution at the large major-axis limit and the
physical evolution time can be obtained by comparing the
initial and recovered intrinsic probability distribution at
the small major-axis limit. Considering the initial proba-
bility distribution on the major axis and eccentricity in PBH
binary systems is indeterminate, the redshift of observed
probability distributions cannot be directly obtained. We
assume that the cosmological time between two redshifts
follows the standard cosmology, then proper redshift of
PBH binary systems should be chosen when the physical
evolution time between two redshifted probability distri-
butions equals its cosmological time, which further leads to
standard timers in PBH binary systems without initial
conditions.
In the above discussions, we mainly focus on PBH

binary systems with a monochromatic mass spectrum,
which helps classify the redshift of PBH binaries. In a
general description of PBH binary systems, an extended

mass spectrum should be taken into consideration, which is
shown at the end of Sec. II B. The standard timer can be
constructed by a numerical study in a probability distri-
bution on the major axis, eccentricity, and mass of PBHs in
binaries dP=dadedMG. However, an extended mass spec-
trum of PBHs could cause difficulties in redshift classi-
fication of PBH binaries, which needs further studies in
redshift identification, e.g., [69–71] in standard sirens.
Also, standardization of PBH binaries as standard timers

requires a detailed study on the initial conditions of PBH
binaries, including primordial distributions on PBH mass
and spin [72–74], initial spatial distribution of PBHs
[75–78], initial probability distribution on PBH binary
parameters [40,61], etc. Due to lack of observations on
PBHs, initial conditions of PBH binaries are indeterminate,
which would introduce the systematic uncertainty in the
calibration of the redshift-time relation. Such a difficulty
would be possibly overcome after future theoretical studies
on PBH physics, and observations on PBH signals in
electromagnetic and GW channels. Then, PBH binary
systems can work as standard timers in tracking cosmic
evolution.
In general, the cosmological standard timer can be

constructed based on dynamical systems in the Universe.
Due to the same formation mechanism of dynamical
systems, the statistical distribution of their initial states
can be set as the standard reference, through the evolution
mechanism of their statistical distribution, and the elapsed
time in the standard timer is evaluated. Meanwhile, the
cosmological redshift is encoded in the observable from
dynamical systems. For signals from individual sources
locally, the redshifted statistical distribution in dynamical
systems from the same redshift can be obtained, and further
gives their redshift by comparing them with the initial state
(see [35,36] for more details). For signals from sources
globally distributed in the Universe, as we have discussed
in this article (GWs from PBH binaries globally) the
redshifted statistical distribution from the same redshift
can be extracted according to their redshifted parameters,
and hence obtain their redshift. Consequently, the redshift-
time calibration is constructed in a general dynamical system
(see Appendixes A and B for the detailed formalism).
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APPENDIX A: THE STANDARD TIMER FROM
SINGLE PARAMETER DYNAMICAL SYSTEMS

In constructing standard timers in dynamical systems, we
need to set a particular condition of dynamical systems as a
standard reference. For example, the standard reference in
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standard candles is consistent peak luminosity produced by
Type Ia supernovae (SNe), and the standard reference in
standard rulers is the fixed baryon acoustic oscillation scale
that the sound wave can travel through before the recombi-
nation. Generally, initial states of dynamical systems are
uncertain under the Gaussian distribution of perturbations.
However, the statistical distribution of initial states in
dynamical systems can be unique due to the same physical
mechanism behind them, which can be set as a standard
reference. With the standard reference, the physical evo-
lution time and redshift can be extracted by studying the
evolution of observed dynamical systems, which can help
calibrate zðtÞ.
For simplicity, we start with a single parameter dyna-

mical system, whose time evolution follows dM=dt ¼
−fðMÞ. Here M is the observable physical parameter that
characterizes the dynamical system and fðMÞ is its time
derivative function. The statistical distribution of the single
parameter dynamical system SðM; tÞ can be described as

SðM; tÞ ¼ dN
dMt

; ðA1Þ

where Mt ≡MðtÞ, N is the statistic of the distribution of
dynamical systems. In order to trace the historical evolution
of dynamical systems, a standard initial distribution is
essential. Equation (A1) can be written as

SðM; tÞ ¼ dN
dMi

dMi

dMt
: ðA2Þ

Here, dN=dMi is the initial statistical distribution of
dynamical systems SðM; tiÞ. dMi=dMt describes the evo-
lution of the dynamical system, which can be further
expressed by its time evolution dM=dt ¼ −fðMÞ, which
gives Z

Mt

Mi

dM
fðMÞ ¼ gðMtÞ − gðMiÞ ¼ −Δt: ðA3Þ

Here, function gðMÞ is an antiderivative of function
1=fðMÞ. Then, the evolution of dynamical systems can
be written as

dMi

dMt
¼ g0ðMtÞ

g0ðMiÞ
¼ g0ðMtÞ

g0ðg−1ðgðMtÞ þ ΔtÞÞ : ðA4Þ

Here, g0ðMÞ≡ dgðMÞ=dM and g−1 denotes the inverse
function of gðMÞ. As a result, Eq. (A2) can be further
expressed as

SðM; tÞ ¼ dN
dMi

g0ðMtÞ
g0ðg−1ðgðMtÞ þ ΔtÞÞ : ðA5Þ

The physical evolution time Δt can be extracted by giving
an initial statistical distribution dN=dMi in Eq. (A5).

In the observational aspect, the statistical distribution
of the dynamical system is deformed, due to the
observed physical parameter M which is redshifted by
the cosmological expansion and gives the observational
distribution SoðMz; tÞ (subscript o denotes the observatio-
nal quantity) as

SoðMz; tÞ ¼
dN

dMiðzÞ
dMiðzÞ
dMz

¼ dN
dMiðzÞ

g0ðMzÞ
g0ðg−1ðgðMzÞ þ ΔtzÞÞ

: ðA6Þ

Here,Mz denotes the redshifted physical parameter, such as
redshifted photon energy Ez ¼ E=ð1þ zÞ and redshifted
chirp mass in binary black hole systems Mz ¼ ð1þ zÞM.
dN=dMiðzÞ characterizes the cosmological redshift effect
in the initial statistical distribution. Following Eq. (A3), we
have gðMiðzÞÞ ¼ gðMzÞ þ Δtz.
In order to extract the redshift-time calibration, we

consider two cases in Eq. (A6). For a fixed evolution
time, the first case is gðMzÞ ≫ Δtz, which makes sure
the time evolution is negligible and redshift can be
extracted by comparing the redshifted physical parameter
Mz with the initial physical parameter Mi in the initial
statistical distribution. The second case is gðMzÞ ≪ Δtz,
where Δtz dominates in the redshifted physical parameter,
which gives gðMiðzÞÞ ≃ Δtz. Then Δtz can be extracted in
following expression:

SoðMz; tÞ ≃
8<
:

dN
dMiðzÞ ; gðMzÞ ≫ Δtz

dN
dg−1ðΔtzÞ

g0ðMzÞ
g0ðg−1ðΔtzÞÞ ; gðMzÞ ≪ Δtz

ðA7Þ

Above all, we have discussed the formalism of a standard
timer in an observable dynamical system SðM; tÞ. However,
this formalism does not apply to the case in whichM is not
an observable of dynamical systems; meanwhile, the
signals produced from them is an observable, e.g., electro-
magnetic waves and gravitational waves. In these cases, we
consider the following integral equation,

PðE; tÞ ¼
Z

∞

0

KðE;MÞSðM; tÞdM: ðA8Þ

Here, KðE;MÞ is the kernel function which transfers an
unobservable distribution SðM; tÞ to an observable distri-
bution PðE; tÞ. SðM; tÞ can be extracted by an inverse
integral equation

SðM; tÞ ¼
Z

∞

0

K−1ðE;MÞPðE; tÞdE; ðA9Þ

where K−1ðE;MÞ is the inverse kernel function of
KðE;MÞ. Due to the cosmological expansion, the observed
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physical parameter E is redshifted to Ez. Therefore, the
observable becomes

PoðEz; tÞ ¼
Z

∞

0

KoðZ1ðEzÞ;MÞSðM; tÞdM; ðA10Þ

where Z1 function describes the redshift effect in the
observable Ez. In order to construct the redshift-time
relation, a redshift term needs to appear in SðM; tÞ, which
requires the connection between E and M in the kernel
function; for instance, the primary Hawking radiation
kernel follows HðEð1þ zÞ;MÞ ¼ HðE;Mð1þ zÞÞ [35].
Therefore, we assume the kernel function follows

KoðZ1ðEzÞ;MÞ ¼ KoðEz;Z2ðMÞÞ: ðA11Þ

Here, Z1 and Z2 function describe how the redshift term
transfers from Ez to M in kernel function. Then, Eq. (A10)
can be written as

PoðEz; tÞ ¼
Z

∞

0

KoðEz;Z2ðMÞÞSoðZ2ðMÞ; tÞdZ2ðMÞ:

ðA12Þ

As the result, SoðZ2ðMÞ; tÞ is given by

SoðZ2ðMÞ; tÞ ¼
Z

∞

0

K−1
o ðEz;Z2ðMÞÞPoðEz; tÞdEz:

ðA13Þ

As we discuss in Eq. (A7), SoðZ2ðMÞ; tÞ can be expressed
in two conditions in Eq. (A14), which further gives the
redshift-time calibration.

SoðZ2ðMÞ; tÞ ≃
8<
:

dN
dZ2ðMiÞ ; gðZ2ðMÞÞ ≫ Δtz

dN
dg−1ðΔtzÞ

g0ðZ2ðMÞÞ
g0ðg−1ðΔtzÞÞ ; gðZ2ðMÞÞ ≪ Δtz:

ðA14Þ

APPENDIX B: THE STANDARD TIMER FROM
MULTIPARAMETER DYNAMICAL SYSTEMS

In general, we consider multiparameter dynamical sys-
tems in the Universe whose statistical distribution can be
expressed as

SðM; tÞ ¼ dN
dnMt

; ðB1Þ

where M denotes the n-dimensional physical parameter
vector which characterizes the dynamical system. By
introducing the initial statistical distribution as the standard
reference, Eq. (B1) can be written as

SðM; tÞ ¼ dN
dnMi

det JðM;ΔtÞ: ðB2Þ

Here, J is the Jacobian of the dynamical system which is
defined as Jij ≡ ∂MiðtiÞ=∂MjðtÞ. With the reference of the
initial statistical distribution, the physical evolution time Δt
can be extracted from the determinant of the Jacobian
det JðM;ΔtÞ. However, due to strong coupling among
different parameter components in its time evolution
dM=dt ¼ −fðMÞ, the general analytical expression of
the Jacobian element ∂MiðtiÞ=∂MjðtÞ can hardly be found,
which indicates the numerical solution of det JðM;ΔtÞ is
essential in extracting the physical evolution time Δt.
In the observational perspective, the redshift term caused

by the cosmological expansion also appears in the stat-
istical distribution of multiparameter dynamical systems as
follows:

SoðMz; tÞ ¼
dN

dnMiðzÞ
det JðMz;ΔtzÞ; ðB3Þ

where Mz denotes the redshifted n-dimensional physical
parameter vector and dN=dnMiðzÞ characterizes the red-
shifted initial-statistical distribution.
As we have discussed in Appendix. A, we consider two

cases in extracting the redshift-time calibration. One case is
that in the parameter space where the time evolution of
parameters is negligible compared with their initial value,
which gives det JðMz;ΔtzÞ ≃ 1. Then the redshift z can be
obtained by comparing the observed statistical distribution
SoðMz; tÞ ≃ dN=dnMiðzÞ with the initial one. The other
case is that in the parameter space where the time evolution
of parameters dominates their initial value, where physical
evolution time Δt can be extracted from the numerical
solution.
In the scenario that SðM; tÞ is not observable, we

consider the observable PðE; tÞ as follows:

PðE; tÞ ¼
Z
V
KðE;MÞSðM; tÞdnM; ðB4Þ

where, KðE;MÞ is the transfer kernel which transfers an
unobservable SðM; tÞ to an observable PðE; tÞ and V is the
integral region of n-dimensional parameter M. With the
expansion of the Universe, the redshift effect appears in
the observable in the following form:

PoðEz; tÞ ¼
Z
V
KoðZ1ðEzÞ;MÞSðM; tÞdnM: ðB5Þ

As we have shown in Eq. (A11), we introduce Z1 and
Z2 function to transfer a redshift term from Ez to M,
which gives

PoðEz; tÞ ¼
Z
V
KoðEz;Z2ðMÞÞSoðZ2ðMÞ; tÞdnZ2ðMÞ:

ðB6Þ
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As the result, the unobservable statistical distribution
SoðZ2ðMÞ; tÞ can be obtained by an inverse kernel trans-
formation as Eq. (A13),

SoðZ2ðMÞ; tÞ ¼
Z

∞

0

KoðEz;Z2ðMÞÞ−1PoðEz; tÞdEz:

ðB7Þ

However, the analytical form of the inverse kernel in
multiparameter dynamical systems KoðE;MÞ−1 could
hardly be found, which needs further numerical methods,
e.g., the method for the least squares problem [79,80]. After
obtaining SoðZ2ðMÞ; tÞ, the redshift-time calibration can
be extracted as Eq. (A14).
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