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We generalize previously derived analytic results for the one-loop power spectrum (PS) in scale-free
models (with linear PS PðkÞ ∝ kn) to a broader class of such models in which part of the matter-like
component driving the Einstein de Sitter expansion does not cluster. These models can be conveniently
parametrized by α, the constant logarithmic linear growth rate of fluctuations (with α ¼ 1 in the usual case).
For − 3 < n < −1, where the one-loop PS is both infrared and ultraviolet convergent and thus explicitly
self-similar, it is characterized conveniently by a single numerical coefficient cðn; αÞ. We compare the
analytical predictions for cðn ¼ −2; αÞ with results from a suite of N-body simulations with α ∈ ½0.25; 1�
performed with an appropriately modified version of the GADGET code. Although the simulations are of
small (2563) boxes, the constraint of self-similarity allows the identification of the converged PS at a level
of accuracy sufficient to test the analytical predictions for the α dependence of the evolved PS. Good
agreement for the predicted dependence on α of the PS is found. To treat the UV sensitivity of results which
grows as one approaches n ¼ −1, we derive exact results incorporating a regularization kc and obtain
expressions for cðn; α; kc=kÞ. Assuming that this regularization is compatible with self-similarity allows us
to infer a predicted functional form of the PS equivalent to that derived in effective field theory (EFT). The
coefficient of the leading EFT correction at one loop has a strong dependence on α, with a change in sign at
α ≈ 0.16, providing a potentially stringent test of EFT.

DOI: 10.1103/PhysRevD.108.023509

I. INTRODUCTION

Cosmological perturbation theory (PT) is a very important
tool in the theory of cosmological structure formation (for
a review, see, e.g., [1]). It is essentially the only useful
analytical instrument currently available to provide insight
into nonlinear dynamics, and also an exact benchmark for
numerical simulations. Despite its apparent simplicity, it has
remained an active area of research over several decades, and
there are still open unresolved issues relevant to its appli-
cation to standard cosmological models. In particular much
research has been focused on the sensitivity of the functions
describing nonlinear corrections at a given (weakly non-
linear) scale to contributions from smaller scales. These
“ultraviolet” contributions are associated with apparently
unphysical divergences in the simplest formulation of PT,
and a number of different approaches have been proposed to
regulate them (see e.g. [2–23]).
Scale-free models, on the other hand, are a family of

simplified cosmological models with initial fluctuations
characterized by a power spectrum (PS) and an Einstein de

Sitter (EdS) expansion law aðtÞ ∝ t2=3. Scale-free models
are of interest in the context of perturbation theory—
and more generally—because they provide a very well-
controlled framework within which to understand and test it
against numerical results. This is the case because of the so-
called self-similar evolution characterizing these models,
which makes the temporal evolution of clustering statistics
essentially trivial as it is given by a rescaling of the spatial
coordinates. This property means that any theoretical
predictions which can be made for them will take a much
simpler form than in a realistic [e.g. Lambda cold dark
matter (LCDM)] cosmology. In perturbation theory, for
example, the correction to the PS at each order in
perturbation is given by a single number, rather than by
a function of scale as in standard models. Further, as has
been demonstrated recently [24,25], this same property of
self-similarity allows one to obtain very precise results for
statistics from numerical simulations. These models can
thus provide a potential test-bed for PT and in particular for
the question of their ultraviolet divergences and their
regulation.
Scale-free models are usually understood to correspond

to a standard EdS cosmology, with source for the expansion*azrul.pohan@lpnhe.in2p3.fr
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being the matter which clusters start from initial Gaussian
fluctuations with a PS PðkÞ ∝ kn. This means that one can
explore the properties of clustering—and the adequacy of
perturbation theory in describing them—as a function of
the initial conditions (i.e. of n), but only within the setting
of the single EdS cosmology. In this article we consider
perturbation theory in a broader class of scale-free models
first considered in [26] and which we call here generalized
scale-free models. In these models the initial fluctuations
are still defined by a power-law PS PðkÞ ∝ kn but the EdS
expansion is driven by the energy density of the clustering
matter and, additionally, of a smooth matterlike component
(with energy density scaling as 1=a3). The EdS model is
thus one of a one-parameter family of such models. This
parameter can be given by the ratio of the energy density of
the matter clustering matter to the total energy density, or
equivalently, by the linear growth rate of density fluctua-
tions. This allows us to potentially exploit the nice proper-
ties of scale-free models to test perturbation theory in a
broader setting which probes also dependence on the
expansion history, and specifically on the linear growth
rate of fluctuations. We focus here on the simplest
canonical analysis in perturbation theory, of the one-loop
PS. Building on our derivation in [27] (hereafter P1) of the
kernels in Eulerian and Lagrangian perturbation theory for
the generalized EdS cosmologies, we generalize existing
analytical results in standard perturbation theory for the one
loop PS in the usual scale-free models to these generalized
scale-free models. We analyse the interesting and nontrivial
predicted dependences on the growth rate and report some
tests of these results against analysis of data from N-body
simulations performed with an appropriately modified code
developed in [26]. We also discuss how the effective field
theory (EFT) approach to the regularization of ultraviolet
divergences is modified in this class of scale-free models
and the interesting possible numerical tests these results
suggest.

II. POWER SPECTRUM IN GENERALIZED
SCALE-FREE MODELS

We consider (as in [26]) models of pressureless matter
clustering under its self-gravity starting from density
fluctuations which are Gaussian and characterized by a
power-law PS PðkÞ ∝ kn. The expanding cosmological
background in which it evolves is given by

H2 ¼ κ2
8πG
3

ρm ð1Þ

where ρm is the density of clustering matter, H is the
Hubble expansion rate, and κ2 is a positive constant. While
the physical interpretation of this expansion law is not in
practice of any relevance to our considerations here, we
note that, as discussed in P1 (see also [26]), for κ2 > 1 one
can interpret it as arising from the contribution of an

additional matter component that does not cluster, while for
any κ2 it can be interpreted in terms of a change in the
effective Newton constant governing expansion relative to
that governing clustering. Doing the standard analysis of
linear perturbation theory using this expansion law we
obtain a growth law DðaÞ ∝ aα where the constant growth
rate α is related to κ2 by the relation

α ¼ −
1

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

κ2

r
: ð2Þ

Just as in the usual EdS model (with κ2 ¼ 1 and α ¼ 1), we
have an expansion law aðtÞ ∝ t2=3 and there is only one
characteristic length scale associated with the power-law
PS. The property of self-similarity of evolution of cluster-
ing follows if such evolution is indeed well-defined without
cutoffs in the infrared and ultraviolet. Theoretical analysis
(see e.g. [28]) suggest that this can be expected to be true
for −3 < n < 4, and many different studies using numeri-
cal simulations indicate that such self-similarity is indeed
observed in at least up to n ¼ 2 (see e.g. [26,29–35]), and
irrespective of whether cosmological EdS expansion is
supposed or not [36–38]. Indeed a hypothesis underlying
numerical simulation in cosmology is that clustering is
insensitive to the infrared or ultraviolet cutoffs necessarily
introduced by such method (box size, particle density, force
smoothing, etc.).

A. Power spectrum in generalized EdS cosmology

We define canonically (and as in P1) the PS Pðk⃗Þ≡ PðkÞ
(k ¼ jkj) of the (assumed) statistically homogeneous and
isotropic stochastic density field by

hδðk; aÞδðk0; aÞi ¼ ð2πÞ3δðDÞðkþ k0ÞPðk; aÞ; ð3Þ

where h� � �i denotes the ensemble average. We have shown
in P1 that, just as for the usual EdS model, the equations
describing the clustering of matter in the fluid limit, with
irrotational velocity, can be solved, in generalized EdS
models (gEdS), with a separable ansatz for the density
field:

δðk; aÞ ¼
X∞
i¼1

DiðaÞδðiÞðkÞ; ð4Þ

and likewise for the velocity perturbations. Assuming that
the fluctuations are Gaussian at linear order, one obtains the
PS at one loop as

P1−loopðk; aÞ ¼ PLðk; aÞ þ 2P13ðk; aÞ þ P22ðk; aÞ; ð5Þ

where PLðk; aÞ is the linear power spectrum and the one-
loop contributions are
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P13ðk; aÞ ¼ 3PLðk; aÞ
Z

d3q
ð2πÞ3 PLðq; aÞFðsÞ

3 ðk;q;−qÞ; ð6Þ

P22ðk; aÞ ¼ 2

Z
d3q
ð2πÞ3 PLðq; aÞPLðjk − qj; aÞjFðsÞ

2 ðk − q;qÞj2; ð7Þ

where the superscript “s” indicates that the kernels F2 and F3 are symmetrized with respect to their arguments. These
expressions are identical to those in the standard EdS model and the only difference in the gEdS models come through the
modification to the kernels, which (see P1 for detail) are now functions of the parameter α:

F2ðq1; q2Þ ¼
�
1þ 4α

1þ 6α

�
α̃ðq1; q2Þ þ

�
2α

1þ 6α

�
β̃ðq1; q2Þ; ð8Þ

G2ðq1; q2Þ ¼
�
1þ 2α

1þ 6α

�
α̃ðq1; q2Þ þ

�
4α

1þ 6α

�
β̃ðq1; q2Þ; ð9Þ

F3ðq1; q2; q3Þ ¼
1

2

��
1þ 6α

1þ 8α

�
α̃ðq1; q2 þ q3ÞF2ðq2; q3Þ þ

�
2α

1þ 8α

�
β̃ðq1; q2 þ q3ÞG2ðq2; q3Þ

þ
��

1þ 6α

1þ 8α

�
α̃ðq1 þ q2; q3Þ þ

�
2α

1þ 8α

�
β̃ðq1 þ q2; q3Þ

�
G2ðq1; q2Þ

�
; ð10Þ

where

α̃ðq1; q2Þ ¼
q1:ðq1 þ q2Þ

q21
; β̃ðq1; q2Þ ¼

1

2
ðq1 þ q2Þ2

q1:q2
q21q

2
2

: ð11Þ

Using these expressions (see P1) the PS at one loop is then
expressed in terms of three integrals with α dependent
coefficients:

P22 ¼ M0 þ
1þ 4α

1þ 6α
M1 þ

�
1þ 4α

1þ 6α

�
2

M2;

2P13 ¼ N0 þ
1þ 2α

1þ 8α
N1 þ

2αð1þ 2αÞ
ð1þ 6αÞð1þ 8αÞN2; ð12Þ

where the MiðkÞ are the integrals

Mi ¼
1

8π2
k3

Z
∞

0

dr
Z

1

−1
dμPLðkrÞ

×
PLðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2μr

p
Þ

ð1þ r2 − 2μrÞ2 miðr; μÞ; ð13Þ

with

m0ðr; μÞ ¼ ðμ − rÞ2; ð14Þ

m1ðr; μÞ ¼ 4rðμ − rÞð1 − μ2Þ; ð15Þ

m2ðr; μÞ ¼ 4r2ð1 − μ2Þ2; ð16Þ

and the NiðkÞ integrals are

Ni ¼
1

8π2
k3PLðkÞ

Z
∞

0

drPLðkrÞniðrÞ; ð17Þ

with

n0 ¼ −
4

3
; ð18Þ

n1 ¼ 1þ 8

3
r2 − r4 þ ðr2 − 1Þ3

2r
ln
j1þ rj
j1 − rj ; ð19Þ

n2 ¼
1

r2

�
1 −

8

3
r2 − r4

�
þ ðr2 − 1Þ3

2r3
ln
j1þ rj
j1 − rj : ð20Þ

The variables r and μ in the integrals have been defined
from the momenta in Eqs. (6) and (7) as r ¼ q=k and
μ ¼ k:q=ðkqÞ.

B. Power spectrum for scale-free initial conditions

We now consider the case that PLðkÞ is a simple power
law. In order to control carefully for infrared and ultraviolet
divergences we introduce cutoffs, taking
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PLðk; aÞ ¼
�
AD2kn; if ε ≤ k ≤ kc
0; otherwise

ð21Þ

where A is the amplitude of the power spectrum at a ¼ 1,
D≡ aα is the linear growth rate of fluctuations, and ε (kc)
are the infrared (ultraviolet) cutoffs.
We will work with the dimensionless power spectrum,

defined canonically as

Δ2ðkÞ ¼ k3PðkÞ
2π2

: ð22Þ

The one-loop result in Eq. (5) can then conveniently be
rewritten as

Δ2
1−loopðkÞ ¼ Δ2

L

�
1þ c

�
n; α;

ε

k
;
kc
k

�
Δ2

L

�
; ð23Þ

for ε ≤ k ≤ kc, and where Δ2
LðkÞ ¼ k3PLðkÞ

2π2
.

The dimensionless constant c in Eq. (23) is then given by

c

�
n; α;

ε

k
;
kc
k

�
¼ M̂0 þ

1þ 4α

1þ 6α

�
M̂1 þ

1þ 4α

1þ 6α
M̂2

�

þ N̂0 þ
1þ 2α

1þ 8α

�
N̂1 þ

2α

1þ 6α
N̂2

�
ð24Þ

where the M̂i and N̂i are dimensionless integrals:

M̂i ¼
1

4

Z
kc=k

ε=k
drrn

Z
μmax

μmin

dμð1þ r2 − 2μrÞn2−2miðr; μÞ

ð25Þ

N̂i ¼
1

4

Z
kc=k

ε=k
drrnniðrÞ ð26Þ

where mi and ni are the same functions defined above, and

μminðrÞ ¼ Max

�
−1;

1þ r2 − ðkc=kÞ2
2r

�
;

μmaxðrÞ ¼ Min

�
1;
1þ r2 − ðε=kÞ2

2r

�
; ð27Þ

are the angular integration limits.
Defining the characteristic scale kNL by Δ2

LðkNLÞ≡ 1,
we have

kNLðaÞ ∝ a−
2α
3þn; ð28Þ

and, given the assumed power-law form,

Δ2
L ¼

�
k

kNL

�ðnþ3Þ
: ð29Þ

If c remains finite when we take the limits ε → 0 and
kc → ∞, c becomes a function of n and α only, with

Δ2
1−loopðkÞ ¼ Δ2

L½1þ cðn; αÞΔ2
L�: ð30Þ

The evolution is then explicitly self-similar in a sense that

Δ2ðk; aÞ ¼ Δ2

�
k

kNLðaÞ
; 1

�
ð31Þ

i.e. the temporal evolution of clustering corresponds to a
rescaling of the spatial coordinates in proportion to the sole
characteristic scale, the nonlinearity scale ∝ k−1NL, defined
by the power-law PS.

C. Convergence analysis

By studying the behavior of the integrals M̂i and N̂i in
the limit ε=k → 0 and kc=k → ∞ we can determine their
infrared and ultraviolet convergence properties. Following
standard analysis, and as discussed also in P1, the two
dimensional integrals M̂i have divergences for certain cases
in the limit ε=k → 0 at r ¼ 0 and r ¼ 1. As noted e.g.
by [39] the contribution of each is in fact identical because
of the symmetry of the integrals (the r ¼ 1 divergence
corresponds to jq − kj → 0, which is identical to the
r ¼ 0 contribution after a change in variable). This means
that the infra-red behavior can be determined simply by
doubling the r ¼ 0 contribution, which can easily be
inferred from a Taylor expansion.
Explicitly the leading behavior as r → 0 of the inte-

grands of M̂0 and N̂0 is ∼rn, leading to divergence for
n ≤ −1, but when summed (and taking into account the
factor of two mentioned above) these leading divergences
cancel and give a “safe” leading behavior ∼rnþ2 i.e.
convergence for n ≥ −3. The integrands of the four
integrals M̂1; M̂2; N̂1; N̂2, which contribute to the PS via
an α-dependent pre-factor, all have this same safe behavior.
As noted in P1 the overall infrared convergence for any
n > −3 thus holds for any α, exactly as in the standard EdS
model. This result is expected since such convergence is a
consequence of Galilean invariance [40,41], a property that
is respected by the generalized EdS cosmologies just as in
the canonical case.
For r → ∞, on the other hand, the integrands in N̂0, N̂1,

N̂2 all have the same leading behavior ∼rn, and all those in
M̂0, M̂1, M̂2 the leading behavior ∼r2n−2. For the canonical
α ¼ 1 case, the one loop PS therefore diverges for n > −1
with a leading divergence coming from the term ∼rn for
n < 2, and from the term ∼r2n−2 for n > 2. As noted in P1,
the same result holds in the gEdS models, except for
one important difference: the coefficient of the leading
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divergence vanishes at a specific value of α. This can be
seen by using the results in Table I to infer the linear
combination of these integrands which is used to obtain
the one loop PS as in Eq. (24). The expansion around
ð1=rÞ ¼ 0 of the resultant integrand is then

f−1ðαÞrn þ f1=2ðαÞr2n−2 þO½rn−2; r2n−4� ð32Þ

with the former giving the leading term for n < 2 and the
latter for n > 2, and where

f−1ðαÞ ¼
7 − 14α − 176α2

15ð1þ 6αÞð1þ 8αÞ ; ð33Þ

f1=2ðαÞ ¼
7þ 36αþ 92α2

30ð1þ 6αÞ2 : ð34Þ

The indices of the functions f have been chosen to indicate
the value of n at which the corresponding terms lead to
ultraviolet divergence of c. As noted in P1 the function f−1
crosses zero at α ¼ αc, where

αc ¼ 0.1635 � � � ð35Þ

while f1=2 is always nonzero and of the same sign as in the
case α ¼ 1 (see Fig. 1). Thus the leading divergence
actually vanishes at this specific value αc, and one loop
PT gives in this case a well-defined (i.e. finite) prediction
up to n ¼ 1=2. The two leading terms in the expansion of
the integrand in c about ð1=rÞ ¼ 0 are then given by

f1ðαcÞrn−2 þ f1=2ðαcÞr2n−2 þO½rn−4; r2n−4� ð36Þ

where

f1ðαÞ ¼
4ð1þ 2αÞð8α − 1Þ
35ð1þ 6αÞð1þ 8αÞ ð37Þ

For n < 0 the first term is the leading one while for n > 0 it
is the latter.
We will return to discuss these behaviors in more detail

in Sec. IV below, in which we consider the regularization of
ultraviolet divergences in these models. Until then we lay
aside the consideration of these divergences, deriving exact
one loop results for the ultraviolet convergent regime (for
any α i.e. for n < −1). We report our numerical tests of
these results, in the still more restricted regime where they
appear to be very insensitive to (finite) contributions from
ultraviolet scales.

D. Exact results for PS ( − 3 < n < − 1)
To obtain an analytical expression for the one-loop

corrections in the range where there are the infrared
divergences cancel out and there are no ultraviolet diver-
gences, i.e. for −3 < n < −1, it is convenient to use
dimensional regularization to treat the infrared divergences
in the individual contributing terms (as in [5,40]). To do so,
it is convenient to work directly with the initial unsimplified
expressions for P13 and P22 as in Eqs. (6) and (7) where PL
is a simple power-law (without cutoffs). Replacing the
integrations

R
d3q by

R
ddq we obtain

P22ðk; aÞ ¼ A2a4α
Z

ddq
ð2πÞ3 q

n2jk − qjnjFðsÞ
2 ðk − q;qÞj2;

ð38Þ

P13ðk; aÞ ¼ A2a4α
Z

ddq
ð2πÞ3 3q

nknFðsÞ
3 ðk;q;−qÞ: ð39Þ

FIG. 1. The prefactors in Eqs. (32) and (36) for j ¼ −1; 1=2, 1
as a function of α. The associated leading UV contribution, which
diverges for n ≥ −1, is proportional to f−1 and thus vanishes
at α ¼ αc ≈ 0.16.

TABLE I. Expansion around ð1=rÞ ¼ 0 of the integrands of M̂i

and N̂i. As in the standard EdS model (α ¼ 1) these imply that the
one loop PS is divergent for n > −1. As discussed in the text, the
coefficients of these divergences depend on α and at a specific
value (α ≈ 0.16) the leading divergence vanishes and the one-
loop result remains ultraviolet convergent for n < 1=2.

Expansion of integrand

M̂0 r2n−2½1
2
þ n2−3n−2

12r2 þOð1rÞ4�
M̂1 r2n−2½− 4

3
− 2ðn2−3n−4Þ

15r2 þOð1rÞ4�
M̂2 r2n−2½16

15
þ 8ðn2−3n−4Þ

105r2 þOð1rÞ4�
N̂0 − 1

3
rn

N̂1 rn½4
5
− 4

35r2 þOð1rÞ4�
N̂2 rn½− 4

3
þ 4

5r2 þOð1rÞ4�
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To integrate Eqs. (38) and (39) we use the formula (see the
Appendix in [40]) as below

Z
ddq

ðq2Þν1 ½ðk − qÞ2�ν2

¼ Γðd=2 − ν1ÞΓðd=2 − ν2ÞΓðν1 þ ν2 − d=2Þ
Γðν1ÞΓðν2ÞΓðd − ν1 − ν2Þ

× πd=2kd−2ν1−2ν2 ð40Þ

together with relation

k · q ¼ � 1

2
ðk2 þ q2 − jk ∓ qj2Þ: ð41Þ

This leads directly to the following expressions:

ðM̂0 þ N̂0Þ ¼
2−ðnþ5Þπðn2 þ 2ÞΓð1

2
− nÞΓðnþ1

2
Þ

Γð2 − n
2
Þ2Γðnþ2

2
Þ ;

M̂1 ¼ −
2−ðnþ2ÞπΓð1

2
− nÞΓðnþ3

2
Þ

Γð2 − n
2
Þ2Γðnþ2

2
Þ ;

M̂2 ¼
2−ðnþ2ÞπΓð1

2
− nÞΓðnþ3

2
Þ

Γð2 − n
2
Þ2Γðnþ4

2
Þ ;

N̂1 ¼
3π2 cscððnþ3Þπ

2
Þ

8Γð1 − n
2
ÞΓðn

2
þ 4Þ ;

N̂2 ¼ −
3π2 cscððnþ3Þπ

2
Þ

16Γð2 − n
2
ÞΓðn

2
þ 3Þ ; ð42Þ

from which it follows that

cðn; αÞ ¼ 2−ðnþ2ÞπΓð1
2
− nÞΓðnþ3

2
Þ

Γð2 − n
2
Þ2Γðnþ2

2
Þ

�ðn2 þ 2Þ
4ðnþ 1Þ þ

�
1þ 4α

1þ 6α

��
1þ

�
1þ 4α

1þ 6α

�
1

nþ 2

��

þ
�
1þ 2α

1þ 8α

�
3π

8

�
Γðnþ3

2
ÞΓð− nþ1

2
Þ

Γð1 − n
2
ÞΓðn

2
þ 3Þ

��
2

nþ 6
−
�

2α

1þ 6α

�
1

2 − n

�
: ð43Þ

Setting α ¼ 1 in the individual expressions for P13 and
P22 used to derive Eq. (43), we have checked that we
recover identical expressions to those in [5,40].1

A further check on the correctness of the expression
Eq. (43) is obtained by comparing with the exact result for
the case n ¼ −2which, as detailed further below in Sec. IV,
can be obtained directly using the expressions in Eq. (26) as

cðn ¼ −2; αÞ ¼ 3π2ð4αþ 1Þð22α2 þ 10αþ 1Þ
8ð6αþ 1Þ2ð8αþ 1Þ : ð44Þ

The left panel of Fig. 2 shows cðn; αÞ as a function of n
for different chosen values of α, including the canonical
α ¼ 1 case. Compared to the latter, the most evident
qualitative change as α varies is that the zero crossing of
c, which is at n ¼ nc ≈ −1.38 for α ¼ 1, not only increases
toward n ¼ −1 as α decreases but actually ceases to exist at
a certain critical value of α. The right panel of Fig. 2 shows
the quantitative behavior of nc as a function of α. This
critical value is none other than αc, the positive root of the
function f−1 discussed above, at which the leading diver-
gence changes sign. Indeed we can see this also by
expanding our expression Eq. (43) around n → −1, where
it has a simple pole, which gives

cðn ¼ −1þ ξ; αÞ ¼ −
ð7 − 14α − 176α2Þ

15ð6αþ 1Þð8αþ 1Þξ

þ 4ð2αþ 1Þð4αþ 1Þ
9ð6αþ 1Þ2 þ � � � ð45Þ

We note also that, other than very close to the
divergence, c is a very slowly varying function of α in
the range of α which is relevant to current standard type
models, for which the logarithmic linear growth rate varies
between α ¼ 1 (and high redshift) and α ∼ 0.5. As dis-
cussed in P1, the correction to the one loop PS relative to
the EdS value in these models can be well approximated
(to about 20–25%) by calculating in a gEdS model with an
effective value at z ¼ 0 of α ∼ 0.9 (which represents an
appropriately averaged growth rate over the cosmological
evolution).

III. NUMERICAL TESTS OF PREDICTED
α-DEPENDENCE (FOR n= − 2)

In this section we compare the results of numerical
simulations with the analytical result given by Eq. (43).
While it is potentially of interest to consider a wide range of
different n and α, we limit ourselves here to probing the
α-dependence (which is the novelty of our analysis) of the
result for n in the regime where we expect that this result
may actually provide a good approximation i.e. where the
ultraviolet sensitivity of the result is weak, for n well below
−1. To quantify this a little more we show, in Fig. 3, the
results of a determination of cðn; α; kc=kÞ by direct

1As noted in [5], there is a sign error in one term in the
expression for the fourth term of P22 given in [40]. The latter
reference also defines a coefficient labeled αδ analogous to our c,
but differing by a factor, with αδ ¼ 2

Γðnþ3
2
Þ c.
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numerical integration for the different indicated values of
the cutoff kc=k. The ultraviolet sensitivity as expected
diminishes markedly as n decreases. In the left panel of
Fig. 2 we see, on the other hand, that the α-dependence
remains quite uniform for n < −1.5. If n decreases too
close to n ¼ −3, however, the dynamical range of a
simulation due to the finite simulation box size will become
very limited. We thus consider the value n ¼ −2. Figure 4
shows, for this value of n, the predicted difference as a
function of α between the coefficient c and its value for
α ¼ 1. Given that the modification of the PS is proportional

to c multiplied by Δ2
LðkÞ, and that the one-loop calculation

is expected to be valid only for small values of the latter, it
is evidently of interest to simulate smaller values of α for
which the difference in power is amplified. We consider
here simulations with N ¼ 2563 particles, and the values
α ¼ 1.00, 0.7, 0.5, 0.33, 0.25. The lower limit α ¼ 0.25 is

FIG. 2. Left panel: coefficient c characterizing the one-loop correction to the PS in standard perturbation theory, as a function of n in
the range n < −1 where the result is finite, for different values of α. Right panel: the critical value n ¼ nc at which the one-loop
correction to the PS changes sign, as a function of α. The black dash-dotted horizontal line corresponds to standard EdS for which
n ≈ −1.38, and the black dashed vertical lines indicate the critical value αc ≈ 0.16 below which c is always positive.

FIG. 3. Numerically evaluated cðn; α ¼ 1; kc=kÞ for differ-
ent indicated values of the cutoff kc, as a function of n. Also
shown is the exact result (solid line) obtained using dimensional
regularization.

FIG. 4. Difference between the coefficient cðn ¼ −2; αÞ and its
value in the standard EdS model cEdS ¼ cðn ¼ −2; α ¼ 1Þ, for α
in the range explored by our suite of simulations. Note that it is
this quantity multiplied by Δ2

L which gives the fractional change
in the predicted PS, and one loop PT is expected only to apply for
Δ2

L ≪ 1. At Δ2
L ∼ 0.1 the predicted maximal change in power, for

α ¼ 0.25, is thus of order of 5%. This can be compared with the
much smaller changes in standard (LCDM-like) models, of order
0.5% at z ¼ 0 (see P1 and [42–44]).
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imposed, as we will explain further below, because
the numerical cost of the simulations increases strongly
as α decreases. Nevertheless this value is sufficient to give
predicted changes in the power of order 5% for Δ2

L ¼ 0.1,
much greater (and therefore much easier to measure
numerically) than the predicted changes of ∼0.5% in
standard (LCDM-like) models (see [42–44]). As discussed
in P1, the latter can be well approximated by using a gEdS
model with α ≈ 0.9.

A. Simulation method

Our numerical results here have been obtained using
N-body simulations performed with an appropriately modi-
fied version of the GADGET2 code [45] as described in detail
in [46], and further in [47]. Indeed the class of scale-free
models we are considering cannot be simulated by the
standard version of GADGET2 code, which allows only
expanding backgrounds specified by the standard cosmo-
logical parameters. The gEdS cosmology has been imple-
mented instead by modifying the module of the GADGET2

codewhich allows simulation also of a static universe (i.e. of
an infinite periodic system without expansion). The usual
equations solved in N-body simulations for particles in
an expanding background are given in comoving coordi-
nates x as

d2xi

dt2
þ 2H

dxi

dt
¼ 1

a3
Fi ð46Þ

where the gravitational force is

Fi ¼ −Gm
XP
j≠i

xi − xj

jxi − xjj3
Wεðjxi − xjjÞ ð47Þ

with Wε a function that smooths the singularity of the
Newtonian force at zero separation, at a characteristic scale
ε, and the “P” in the sum indicates that there is a sumover the
copies of the periodic system. As discussed in further detail
in [46], these equations can be recast, by the simple change
of time coordinate τ ¼ R

dta−3=2, as

d2xi

dτ2
þ Γ

dxi

dτ
¼ Fi; ð48Þ

where

Γ ¼ 1

2
a3=2H ¼ 1

2
a−1

da
dτ

: ð49Þ

Thus the equations of motion are just those of self-
gravitating particles in a nonexpanding system subject to
a simple fluid damping. The family of gEdS cosmologies
corresponds to models given by a constant value of Γ, with

Γ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρ0=3

p
ð50Þ

where ρ0 is the mean mass density at some chosen reference
time. The static universe module of GADGET2 has thus been
modified to include this constant fluid-damping term, keep-
ing the original “kick-drift-kick” structure of its leap-frog
algorithm and modifying appropriately the “kick” and
“drift” operations. The structure of the code is otherwise
unchanged. Further details and various tests of the modified
code have been described in [46], in particular tests of energy
conservation (using the so-called Layzer-Irvine equations)
as well as a direct comparison showing excellent agreement
between simulations of the standard EdS (i.e. α ¼ 1) model
using the existing GADGET2 expanding universe module and
the new modified static universe module.
To generate initial conditions we use the canonical

method, applying displacements to the simulation particles
initially placed on a perfect lattice, and ascribing corre-
sponding initial velocities, as prescribed by the Zeldovich
approximation, for a random realization of a Gaussian
fluctuation field with the chosen input PS (for more details
see e.g. [48,49]). At the starting time, a0, the initial
amplitude of the PS has been set using the specific choice
(following the criteria of [33,50])

Δ2
LðkN; a0Þ ¼ 0.03 ð51Þ

where kN is the Nyquist frequency of the initial particle
grid. We use the same realization of the initial density
field in all five simulations. The initial displacements are
thus identical in the five simulations, and the initial
velocities simply rescaled appropriately for each α (since
the Zeldovich displacement is proportional to D).
Outputs of the simulations have been saved, starting

from the initial time, at times defined by

ts ¼ logDðaÞ ¼ 0.1 s ð52Þ

where DðaÞ is the linear growth factor, defined so that
Dða0Þ ¼ 1, and s ¼ 0; 1; 2…33. Thus the predicted linear
power spectrum in each simulation is identical at each
output, and the final output, at a ¼ af, corresponds to an
amplitude Δ2

Lðkb; a0Þ ¼ e6.60.03=256 ≈ 0.17 at the funda-
mental mode kb ¼ 2π=L of the periodic box. As wewill see
below by this time the finite box size corrections are very
dominant over the very small effects we are seeking to
measure (at the few percent levels).
To calculate the power spectrum based on data from

N-body simulations, we have used the publicly available
POWMES code [51] with the size of FFT grid equal to 5123

(compared to the 2563 initial particle grid) and without any
“foldings.” This is quite sufficient resolution for the
analysis here, focusing on smaller k.

B. Results

Figure 5 shows the dimensionless PS measured in the
five simulations, at the starting time and at three subsequent
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times. Also shown (solid black line) is the linearly evolved
theoretical input PS (which, by construction, is the same at
each time for all the simulations). Likewise we see that
the initial PS of the IC is identical at the starting time.
Inspecting the α dependence of the evolving PS, we
observe a qualitative behavior in line with Fig. 4: as α
decreases the nonlinear power increases. However this
trend with α is in fact clearly visible in these plots only
starting fromΔ2 approaching unity, where we do not expect
perturbation theory to apply. Indeed as we have discussed,
Fig. 4 implies changes to the nonlinear power of at most
about ten percent. The origin of the amplification of the
highly nonlinear power we observe in this plot—and more
particularly the steepening of its slope as a function of α has

been discussed at length in [26]. Here we focus instead on
the perturbative regime.
We also see in Fig. 5 the visible effects of finite mode

sampling on the small k modes (i.e. small Δ2
L) which are

relevant for the regime we are interested in: indeed for
smaller k there are clearly, at the initial time, visible
fluctuations of the measured PS Δ2

simðkÞ relative to the
theoretical linear PS power spectrum Δ2

LðkÞ.2 Thus we
expect that a comparison of the observed power with the
theoretical prediction can be accurate at best up to a
systematic error of order δ ¼ ðΔ2ðkÞ=Δ2

simðkÞÞ − 1, while

FIG. 5. Dimensionless PS measured in our suite of five simulations, with the indicated values of α, as a function of k (in units in which
the box size L ¼ 1). The solid black line is the dimensionless linear PS Δ2

LðkÞ. The first panel is the initial configuration (with identical
power in each simulation) and the other three progressively more evolved snapshots.

2Note that the fundamental mode in our units is 2π. The visible
“dip” at small k arises from just the first sparsely populated bin.
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if we consider the measured ratio of the power between
two simulations we can expect accuracy instead of
δ × ½cðn; αÞ − cðn; α ¼ 1Þ�. In order to measure the very
small effects predicted, we therefore consider this relative
measurement, using (arbitrarily) α ¼ 1 as our reference.
Figure 6 shows results for the ratio of the PS measured in

the four simulations with α < 1 to that in the standard EdS
case. Following the analysis method developed in [24,25],
each panel is for a different bin of Δ2

L (corresponding to a
fixed bin of rescaled wave number k=kNL), and shows

the ratios measured in the different snapshots. The indi-
cated values of Δ2

L correspond to those calculated for the
theoretical input PS spectrum at the geometric center (in k)
of the bins, which are equally spaced in log space with
Δ log10 k ¼ 0.1. We underline that, because the points are
plotted as a function of logD, the differences measured in
these plots arise purely from the nonlinear evolution.
Further the measured power spectrum is self-similar if
and only if it is a function of Δ2

LðkÞ only i.e. if it is constant
in each plot. The ratios of the measured (self-similar) power

FIG. 6. Ratios of PS measured in the four simulations with α < 1 to that measured in the standard EdS (α ¼ 1) simulation, as a
function of time parametrized as logD. Each plot corresponds to the indicated chosen value of the theoretical input dimensionless PS
Δ2

L. Self-similar behavior (i.e. a result independent of the scales introduced by the N-body simulation) corresponds to a constant value.
The different horizontal lines correspond to the (self-similar) ratios predicted by one loop standard perturbation theory. The vertical line
on each plot indicates the time at which k ¼ kN , the Nyquist wave number of the particle grid.
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predicted by Eq. (43) for each value of α, is indicated by a
horizontal line.3

The behavior we observe in the plots in Fig. 6 is
qualitatively similar to that in analogous plots from the
(much larger, but standard EdS) simulations analyzed and
discussed in [25]. The points from any given simulation,
at the chosen rescaled wave number k=kNL in each plot,
display approximately, in differing degrees and ranges of
time, the flat behavior corresponding to self-similarity. The
strong temporal evolution at early times arises from the
ultraviolet cutoffs (grid spacing, force smoothing), while
the strong suppression at later times arises from the finite box
size. Indeed the latter sets in at later times in the successive
plots, as Δ2

L, and therefore the associated k at a given time,
increases. The vertical line in each plot indicates the time at
which k corresponds to the Nyquist wave number of the
initial grid, which likewise increases as Δ2

L does so. In the
upper two plots the results are also, because they correspond
to smaller k at any time, significantly more noisy. The
plateaus can just about be discerned within a large approxi-
mate error bar given by the amplitude of the scatter in the
flattest five or six points. Comparing these plateau values
with the predicted ones (given by the dotted lines) we see that
the overall agreement is very good, and most particularly in
the cases where the plateau is very well defined, notably in
the lower two plots. It appears that the theoretical value is
systematically a little high in the first two plots. This can be
attributed to the fact that this theoretical prediction is
calculated with the theoretical input Δ2

L, which fluctuates
more at these smaller k relative to the actual initial conditions.
The apparently slightly low theoretical values for the smallest
α simulation in the last plot probably reflect the increasing
contribution of higher order corrections expected as the
amplitude of the deviations grow (in these cases above about
ten percent). We conclude thus that the α-dependence of
the PS observed in our simulations are apparently in good
agreement with the one-loop PT predictions.

IV. α DEPENDENCE OF UV DIVERGENCES
AND THEIR REGULATION

General considerations (see e.g. [28]) lead one to expect
that nonlinear cosmological clustering should be ultraviolet
insensitive for power-law initial conditions PðkÞ ∝ kn

provided n < 4. For scale-free models, with an EdS
expansion law, such cutoff independence implies self-
similarity. Numerous numerical studies confirm that such
self-similarity is indeed observed, with different authors
exploring different ranges of n, up to n ¼ 2 (see e.g.
[26,29–38,52]). The ultra-violet divergences which render
the predictions of standard perturbation theory (SPT)
undefined as n approaches −1 from below are a priori
therefore unphysical. The PS of standard cosmologies,

however, at large k has a behavior (typically ∼k−3 log k)
which leads to finite SPT predictions. Nevertheless there is
also a region where the effective logarithmic slope of the
PS corresponds to that of the ultraviolet divergent region,
and one expects then that the associated unphysical diver-
gences lead to inaccuracies of the predictions of SPT. In
the last number of years there has been much interest and
work on the so-called effective field theory (EFT) approach
to the regulation of this ultraviolet divergences (see e.g.
[2,3,5,7–18,20,21]). This theory provides a systematic
approach to the problem directly inspired from that used
in high energy physics.
Without employing the full machinery of EFT, we can

recover very simply its results for the class of model we are
considering. To do so we impose a finite ultraviolet cutoff
in the PS (i.e. we take kc to be finite) above, and then
consider how kc can scale with k in a manner compatible
with self-similarity.
For n ≥ −1, an analytical expression for cðn; α; kc=kÞ

(with kc=k finite) can be found for integer values of n. To
do so, as shown e.g. by [39], one can conveniently rewrite
the M̂i double integrals by breaking up the integration
range as

Z
1=ω

ϵ
dr

Z
μmax

μmin

dμ ¼
Z

1−ϵ

ϵ
dr

Z
1

−1
dμ

þ
Z ð1=ωÞ−1

1þϵ
dr

Z
1

−1
dμþ

Z
1þϵ

1−ϵ
dr

Z ð1þr2−ϵ2Þ=2r

−1
dμ

þ
Z

1=ω

ð1=ωÞ−1
dr

Z
1

ð1þr2−ω−2Þ=2r
dμ;

where ϵ ¼ ðε=kÞ and ω ¼ ðk=kcÞ. For the N̂i integrals we
simply divide the integration range over r into ϵ to 1 and
from 1 to 1=ω. For each of the resulting integrals an explicit
analytic expression can be obtained (using Mathematica
[53]), and written as a series expansion about ϵ ¼ 0 or
ω ¼ 0, with poles associated with the divergences we have
analyzed. As previously discussed the divergences as ϵ → 0

in M̂0 and N̂0 cancel for n > −3. The results for the
individual integrals, M̂i and N̂i, are shown in Table II and
the resulting expressions for cðn; α; kc=kÞ in Table III. In
each case we have included terms in the expansion around
ω ¼ 0 and ϵ ¼ 0 which do not vanish when the latter goes
to zero. We note that the terms which diverge as kc=k are in
agreement with the results for the leading ultraviolet
divergences given in Sec. II, with the leading divergence
∼knþ1

c and the following one at ∼k2n−1c . Further in the
expressions for c we recover exactly the factors propor-
tional to the α-dependent coefficients f−1, f1=2, and f1
given in Eqs. (33), (34), and (37).
In order to respect self-similarity it is sufficient to choose

a regularization kc=k which is assumed to be some function
of Δ2

LðkÞ. The simplest and natural choice is to take
3The finite size of the bins has also been taken into account in

this latter calculation but only very marginally modifies the result.
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kc ∝ kNL ð53Þ

i.e. to assume that the effective cutoff in the one-loop
integrals is set by the nonlinearity scale. Using this
prescription we write the regularized result first as

c̃reg

�
n; α;

kNL

k

�
¼ c

�
n; α;

kc
k
¼ γ

kNL

k

�

¼ lim
λ→∞

�
c
�
n; α;

kc
k
¼ λ

�
þ Δcðn; α; γ; λÞ

�

where

Δc ¼ c

�
n; α; γ

kNL

k

�
− cðn; α; λÞ: ð54Þ

Assuming that γ kNL
k and λ are large, we can use the results of

our analysis of the ultraviolet divergences in Sec. II C to
obtain the expansion of Δc:

Δc ¼ f−1
nþ 1

ðαÞ
�
γnþ1

�
kNL

k

�
nþ1

− λnþ1

�

þ f1=2
2n − 1

ðαÞ
�
γ2n−1

�
kNL

k

�
2n−1

− λ2n−1
�

þ f1
n − 1

ðαÞ
�
γn−1

�
kNL

k

�
n−1

− λn−1
�
þ � � � ð55Þ

for any n other than the specific values n ¼ −1; 1=2; 1…,
where the power-law functions are replaced by logarithms.
For the sake of brevity, we will not give results for these
special cases explicitly here. Using these expressions the
regularized one-loop result can now be written as

Δ2
1−loop;regðkÞ ¼ Δ2

LðkÞ
�
1þ cregðn; αÞΔ2

LðkÞ

þ f−1ðαÞ
γnþ1

nþ 1
ðΔ2

LðkÞÞ
2

3þn

þ f1=2ðαÞ
γ2n−1

2n − 1
ðΔ2

LðkÞÞ
4−n
3þn

þ f1ðαÞ
γn−1

n − 1
ðΔ2

LðkÞÞ
4

3þn

�
ð56Þ

where

creg ¼ lim
λ→∞

�
cðn; α; λÞ − f−1ðαÞ

λnþ1

nþ 1
− f1=2ðαÞ

λ2n−1

2n − 1

− f1ðαÞ
λn−1

n − 1
þ � � �

�
ð57Þ

This result is almost exactly equivalent to that obtained in
EFT, corresponding to the addition of the counterterms

c1k2PLðkÞ þ c2k4 þ c3k4PLðkÞ ð58Þ

TABLE III. Analytical expressions for the one-loop coefficients cðn; α; kc=kÞ for n ¼ 1, n ¼ 0, n ¼ −1 and
n ¼ −2 up to linear order in k=kc and in the limit ϵ ¼ 0.

n cðn; α; kc=kÞ
1 ð7−14α−176α2Þ

30ð6αþ1Þð8αþ1Þ ðkck Þ2 þ ð7þ36αþ92α2Þ
30ð1þ6αÞ2

kc
k þ 4ð2αþ1Þð8α−1Þ logðkc

4kÞ
35ð6αþ1Þð8αþ1Þ − 4αðαð168072αþ133249Þþ59990Þþ26667

29400ð6αþ1Þ2ð8αþ1Þ
0 ð7−14α−176α2Þ

15ð6αþ1Þð8αþ1Þ
kc
k þ π2αð4αþ1Þð5αþ1Þ

2ð6αþ1Þ2ð8αþ1Þ
−1 ð7−14α−176α2Þ

15ð6αþ1Þð8αþ1Þ ln
kc
k þ 4ð2αþ1Þð32αþ7Þð52αþ7Þ

225ð6αþ1Þ2ð8αþ1Þ
−2 3π2ð4αþ1Þð2αð11αþ5Þþ1Þ

8ð6αþ1Þ2ð8αþ1Þ

TABLE II. Analytical expressions for the six integrals, M̂i and N̂i (for i ¼ 0, 1, 2), for n ¼ 1, n ¼ 0, n ¼ −1 and
n ¼ −2, up to linear order in k=kc and in the limit ϵ ¼ 0.

M̂i, N̂i n ¼ 1 n ¼ 0 n ¼ −1 n ¼ −2
M̂0

1
2
ðkck Þ − 7

8
π2

16
1
3
logðkεÞ k

3ε

M̂1 − 4
3
ðkck Þ þ 9

4
− π2

8
− 4

9
0

M̂2
16
15
ðkck Þ − 3

2
π2

8
8
9

3π2

16

N̂0 − 1
6
ðk2c
k2
Þ − 1

3
ðkck Þ 1

3
logð εkcÞ − k

3ε

N̂1
2
5
ðk2ck2Þ þ 4

35
logð4kkcÞ − 958

1225
4
5
ðkck Þ − π2

16
− 4

5
logð kkcÞ þ 32

75
3π2

16

N̂2 − 2
3
ðk2c
k2
Þ − 4

5
logð4kkcÞ þ 142

75
− 4

3
ðkck Þ þ 3π2

16
4
3
logð kkcÞ − 3π2

16

POHAN, JOYCE, BENHAIEM, and LABINI PHYS. REV. D 108, 023509 (2023)

023509-12



where we have, additionally, that

c1 ¼ ð2π2Þ 2
3þnf−1ðαÞ

γnþ1

nþ 1

c2 ¼ ð2π2Þ4−nnþ3f1=2ðαÞ
γ2n−1

2n − 1

c3 ¼ ð2π2Þ 4
nþ3f1ðαÞ

γn−1

n − 1
ð59Þ

where γ ¼ kNL=kc, a positive constant which may also
depend also on n and α. We note that these coefficients
are predicted to be related as they are becausewe have used a
“UVinspired” strategy like that of [15,21]. If we used instead
a symmetry-based approach, the coefficients would not be
related as given, but would instead be free parameters.
Usually only the first two terms in Eq. (58) are included,

as they represent the leading corrections (the first term for
n < 2 and the second for n > 2). As we have discussed,
this is sufficient here also other than when α ¼ αc. In this
case we have c1 ¼ 0, which makes the third term the
leading EFT correction for n < 0. Correspondingly the
expression for creg is just the unregularized result c∞ðn; αÞ
for n < −1, and then regularized appropriately for n ≥ −1,
except again for αc where the unregularized result remains
valid up to n ¼ 1=2.
The ultraviolet regularized one loop result for the family

of generalized scale-free models thus gives a very specific
prediction that can be used in principle to test this
regularization framework: the sign of the correction to
the raw (unregularized) one loop result should depend on α
as given by f−1ðαÞ, and in particular at α ¼ αc it vanishes
so that, in this case, the raw (unregularized) one-loop result
gives a well-defined finite prediction up to n ¼ 1=2. A suite
of simulations for n around−1 like those reported above for
the case n ¼ −2, but extending to smaller α, would allow us
to probe this regime. Two or higher loop corrections could
also potentially be probed. At two loops SPT corrections
diverge (in the “double hard” limit, see [18]) for n > −2.
The coefficients of these divergences will generically be
α-dependent, but we do not expect that their coefficients
will vanish at α ¼ αc. The regularization of these diver-
gences in EFT will lead again to additional terms with
predicted functional dependences on Δ2

L.
Simulating small values of α is however more challeng-

ing numerically. This is true because we have kNL ∝ a
2α
3þn,

and therefore the ratio of the final to the initial scale factors
of a simulation is given by

af
ai

¼
�
kNLðaiÞ
kNLðafÞ

�3þn
2α

: ð60Þ

In order to make use of self-similarity in order to establish
accurately converged values of the PS, we need the factor
kNLðaiÞ
kNLðafÞ to be reasonably large (at least a decade). For n ¼ −1
and α ≈ 0.16 the exponent is three times larger than it was

for the smallest value α we reported above for n ¼ −2.
This means that, for a given kNLðaiÞ

kNLðafÞ, the nonlinear structures
formed will become relatively much denser as n increases
and/or α decreases. This can in principle be remedied by
using a sufficiently large gravitational smoothing ϵ, but in
this case one must control carefully that its effects do not
propagate to the intermediate (weakly nonlinear) scales we
are interested in for comparison with perturbation theory.

V. DISCUSSION AND CONCLUSIONS

We have studied the PS calculated at one loop in standard
Eulerian perturbation theory for the family of generalized
scale-free cosmologies, characterized by initial Gaussian
fluctuations with a pure power law PS and an EdS
expansion driven by clustering pressureless matter as well
as a smooth pressureless component. We have thus gen-
eralized existing analytic results for the standard EdS case
[39,40] to this one-parameter family, with the correspond-
ing analytic expressions now becoming functions not just
of the power law exponent n but also of the logarithmic
growth rate α in the model. While in the standard case
α ¼ 1, the parameter α can vary in the range 0 < α ≤ ∞,
with the lower limit corresponding to an infinite Hubble
rate and the upper limit to a static universe.
While these models are idealized and very different from

typical standard cosmological models, they provide a
simple framework in which to test cosmological perturba-
tion theory. Specifically they are evidently designed to
probe the cosmology dependence, and indeed we have seen
here that, by exploiting self-similarity, it is possible with
even quite small N-body simulations to test and validate its
predictions to a high degree of accuracy. To our knowledge,
this is the first time that the predictions of perturbation
theory for dependence on the growth rate of fluctuations
have been tested numerically.
Further we have argued that these models are an

interesting tool to probe the regularization of PT, and
specifically the EFT approach to this problem. This is the
case because the associated divergences, and thus their
regularization, have nontrivial dependences on the param-
eter α. In particular this leads to the vanishing of the leading
correction in EFT at a specific value of α. As we have
discussed the regime of n and small α of relevance to test
these predictions poses some numerical challenges beyond
that which was needed for the simulations we have reported
here. This is the subject of ongoing study.
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