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A measurement of the neutrino mass scale will be achieved with cosmological probes in the upcoming
decade. On one hand, the inclusion of massive neutrinos in the linear perturbation theory of cosmological
structure formation is well understood and can be done accurately with state of the art Boltzmann solvers.
On the other hand, the numerical implementation of the Boltzmann equation is computationally expensive
and is a bottleneck in those codes. This has motivated the development of more efficient fluid
approximations, despite their limited accuracy over all scales of interest, k ∼ ð10−3 − 10Þ Mpc−1. In this
work we account for the dispersive nature of the neutrino fluid, i.e., the scale dependence in the sound
speed, leading to an improved fluid approximation. We show that overall ≲5% errors can be achieved for
the neutrino density and velocity transfer functions at redshift z≲ 5, which corresponds to an order of
magnitude improvement over previous approximation schemes that can be discrepant by as much as a
factor of two.
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I. INTRODUCTION

The observation of neutrino oscillations has established
that at least two of the neutrino mass eigenstates have a
nonzeromass, with an associated lower bound on the sum of
the masses of

P
νmν ≳ 0.06 and 0.1 eV for the normal and

inverted hierarchies respectively [1–3]. Complementary
information comes from beta decay experiments, which
set an upper bound to a weighted sum of the massesmν;β <
0.8 eV [4]. Additionally, massive neutrinos suppress cos-
mological structure formation at small scales [5], leading to
the most stringent upper bound on the sum of neutrino
masses to date, i.e.,

P
ν mν < 0.12 eV [6].1 It is expected

that future cosmological surveys in the upcoming decade
will be sensitive to the lower bound from oscillation
experiments and hence will allow for a detection of the
neutrino mass scale [10–12]. This is a crucial measurement
since it sets a clear target for laboratory experiments and
serves as a cross-check of the consistency between particle
physics and cosmology [13].
The inclusion of massive neutrinos in linear cosmologi-

cal perturbation theory has a long history (see [14] and
references therein). Due to the large velocity dispersion of
massive neutrinos, one must go beyond a simple fluid
treatment and solve a hierarchy of Boltzmann equations in
phase space. At each time step the neutrino distribution
function is then integrated over momenta to obtain the
neutrino stress-energy tensor, which in turn contributes to

the right hand side of Einstein’s equations and sets the
coupling of neutrinos to the other species in the universe.
This is a cumbersome procedure and a computational
bottleneck in state of the art Boltzmann solvers, such as
the cosmic linear anisotropy solving system (CLASS) [15]
and the code for anisotropies in the microwave background
(CAMB) [16].
As a consequence, the search for more efficient alter-

native approaches to the inclusion of massive neutrinos in
linear cosmological perturbation theory remains a well
motivated direction of research since modern cosmological
parameter inference techniques require these codes to be
run tens or hundreds of thousands of times. For instance,
[17] formulates the problem as an integral equation and
proposes an iterative solution, while [18] integrates out the
momentum dependence at the cost of a significant increase
in the dimensionality of the resulting system of ordinary
differential equations.
An alternative approach consists of a simple fluid

approximation for the exact neutrino dynamics. This is a
viable option whenever the neutrinos only give a small
contribution to the total matter energy density, since we can
then afford for some inaccuracies in the neutrino density
provided we are only interested in the total matter (or cold
dark matter) field. This is especially true on small scales
where the neutrino density is suppressed due to free-
streaming and the cold dark matter evolution basically
decouples from the neutrinos, the same circumstances in
which the Boltzmann hierarchy needs to be truncated at a
large multipole and becomes computationally expensive.
Indeed, a fluid approximation is used in CLASS to evolve the
neutrino component on scales that are much smaller than

1This upper bound can be relaxed with nonstandard scenarios
such as an unstable neutrino species and dynamical dark
energy [7–9].

PHYSICAL REVIEW D 108, 023505 (2023)

2470-0010=2023=108(2)=023505(15) 023505-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4119-4705
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023505&domain=pdf&date_stamp=2023-07-11
https://doi.org/10.1103/PhysRevD.108.023505
https://doi.org/10.1103/PhysRevD.108.023505
https://doi.org/10.1103/PhysRevD.108.023505
https://doi.org/10.1103/PhysRevD.108.023505


the cosmological horizon [15]. Another fluid approxima-
tion for massive neutrinos follows from the generalized
dark matter approach of [19].
What all fluid approximations have in common is that

they become inaccurate at sufficiently small scales [20],
exactly in the regime where the approximation is the most
useful since the exact dynamics is more (computationally)
expansive as we discussed above. In this work we show that
this failure of the fluid approximation at small scales is
mostly a result of not accounting for the dispersive nature
of the neutrino fluid, i.e., the sound speed is scale
dependent [21]. In previous works much of the focus
was directed toward modeling the evolution of the neutrino
shear stress implicitly presuming that the assumption of an
adiabatic sound speed does not dominate the total error
[15]. Instead, we find that the assumption of an adiabatic
sound speed leads to a significant overestimation of the
sound speed on small scales that dominates the error in the
fluid approximation.
We obtain a simple analytic expression for the sound

speed at small scales and use it to introduce a scale
dependent approximation to this quantity that interpolates
between the small and large scale regimes. This, in
combination with a scale dependent approximate expres-
sion to the anisotropic stress, leads to a resulting fluid
approximation for massive neutrinos with ≲5% errors for
the neutrino density and velocity transfer functions at
redshift z≲ 5 and over scales k ¼ ð10−3 − 10Þ Mpc−1,
which corresponds to an order of magnitude improvement
over previous approximation schemes that can be as much
as a factor of two wrong.
We consider neutrino masses in the range 0.02 eV ≤

mν ≤ 0.5 eV, for which a ≲5% error in the neutrino
component is sufficient to produce the total matter power
spectrum to subpercent level accuracy. This fluid approxi-
mation is then a powerful alternative to the full Boltzmann
hierarchy for most projects, allowing for a significant
reduction in computing time.
The paper is organized as follows: In Sec. II we introduce

the fluid equations and the approximate expressions for
the sound speed and anisotropic stress in the Newtonian
gauge. In Sec. III we compare our fluid approximation
with the results from CLASS in both high and default
precision settings, along with the fluid approximation
used in CLASS. In Sec. IV we summarize our results.
Details of calculations that motivate the approximations
employed can be found in Appendix A, and in
Appendix B we extend our fluid approximation to alter-
native gauges (other than the Newtonian gauge), showing
explicit expressions in the synchronous gauge.

II. FLUID EQUATIONS

The fluid equations satisfied by massive neutrinos are
quite generic as they follow from energy-momentum
conservation laws. In this section we first introduce the

relevant equations (referring the reader to [14] for further
details). Then we briefly motivate and write down formulas
that approximate the scale dependent sound speed and
anisotropic stress. Derivations and details can be found
in Appendix A.
We consider scalar perturbations to the Friedmann-

Lemaître-Robertson-Walker (FLRW) universe in the (con-
formal) Newtonian gauge, where the metric reads

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞdx⃗2�; ð1Þ
and where aðτÞ is the scale factor, τ is the conformal time
(related to the cosmic time t via the expression dt ¼ adτ), x⃗
are comoving spatial coordinates, ϕðτ; x⃗Þ and ψðτ; x⃗Þ are
gravitational potentials that we treat as (small) linear
perturbations. We also define the conformal Hubble rate
H ¼ a0=a, where throughout a prime denotes derivative
with respect to conformal time τ.
At the level of background the neutrinos are distributed

in phase-space with the relativistic Fermi-Dirac profile,
f0ðqÞ ¼ fFDðq=Tν;0Þ, where

fFDðxÞ ¼
gν

ex þ 1
; ð2Þ

with q the magnitude of the comoving momentum q⃗, Tν;0 ≈
1.95 K ≈ 1.7 × 10−4 eV is the neutrino temperature today,
x ¼ q=Tν;0 and gν ¼ 2 to account for both left-handed
neutrinos and right-handed antineutrinos. From the con-
dition of isotropy the only nonvanishing components of the
neutrino stress-energy tensor are its energy density and
pressure. They can be obtained from Eq. (2) as follows:

ρðaÞ ¼ a−4
Z

∞

0

dq
2π2

q2ϵðq; aÞf0ðqÞ; ð3Þ

PðaÞ ¼ 1

3
a−4

Z
∞

0

dq
2π2

q2ϵðq; aÞ
�

q
ϵðq; aÞ

�
2

f0ðqÞ: ð4Þ

Here ϵðq; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

νa2
p

is the comoving energy. Note
that these are not the total energy density and pressure of
the Universe, as they refer only to the neutrino species.
It will also prove useful to define the equation of state as:

wðaÞ ¼ PðaÞ
ρðaÞ : ð5Þ

In the presence of nonvanishing gravitational potentials
in Eq. (1), the neutrino density and pressure also acquire
perturbations, δρðτ; x⃗Þ and δPðτ; x⃗Þ, that are time and
position dependent. Additionally, there is a net bulk flow
that we parametrize by the divergence in the velocity field
θðτ; x⃗Þ, and an anisotropic (shear) stress σðτ; x⃗Þ. We follow
the standard practice of working in terms of a density
contrast δðτ; x⃗Þ ¼ δρðτ; x⃗Þ=ρðaÞ, and define the sound
speed as
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c2s ðτ; x⃗Þ ¼
δPðτ; x⃗Þ
δρðτ; x⃗Þ : ð6Þ

We now have all the ingredients to write down the fluid
equations which are exact and follow from the conservation
of the neutrino stress-energy tensor,2

δ0 ¼ −ð1þ wÞðθ − 3ϕ0Þ − 3Hðc2s − wÞδ; ð7Þ

θ0 ¼−Hð1−3wÞθ− w0

1þw
θþ c2s

1þw
k2δ−k2σþk2ψ : ð8Þ

In order to close the system of equations we need
approximate expressions for both the sound speed c2s
and the anisotropic stress k2σ (in the full Boltzmann
hierarchy they can be obtained from the distribution
function after an integration over momentum). A complete
discussion on the motivations for our approximations (with
relevant derivations) can be found in Appendix A. Here
we will just introduce the main ideas. At sufficiently large
scales c2s approaches the so-called adiabatic sound speed,

c2gðaÞ ¼
P0ðaÞ
ρ0ðaÞ : ð9Þ

This follows from separate universe arguments: At suffi-
ciently large scales the neutrino anisotropies can be
absorbed into a local shift of the neutrino temperature,
Tν → Tνð1þN νÞ, with N ν ¼ δTν=Tν a constant. It then
follows from Eq. (2) that the total distribution function
reads,

fðqÞ ¼ fFD

�
q

Tν;0ð1þN νÞ
�

¼ f0ðqÞ
�
1 −

d ln f0
d ln q

N ν

�

⇒ δf ¼ −q
df0
dq

N ν; ð10Þ

where from the second to the third line we expanded to
leading order in N ν ¼ δTν=Tν. Equation (9) can now be
obtained upon integration over the comoving momentum to
produce the neutrino density and pressure perturbations.
Similarly, at sufficiently small scales c2s approaches what
we call the asymptotic (asp) sound speed,

c2aspðaÞ ¼
1

3

1þ wðaÞ
1þ λðaÞ ; ð11Þ

where the quantity λðaÞ is defined by,

ρðaÞλðaÞ ¼ 1

3
a−4

Z
∞

0

dq
2π2

q2ϵðq;aÞ
�
ϵðq;aÞ

q

�
2

f0ðqÞ: ð12Þ

Equation (11) can be extracted from the static limit of the
Boltzmann equation leveraging on the following observa-
tion: Neutrinos have a velocity v≡ q=ϵ so that neutrino
fluctuations with a (comoving) wave number k have a
characteristic timescale, t ∼ a=kv, which is much smaller
than a Hubble time at scales k ≫ H=v. We can then
consider the static limit where the expansion of the universe
can be taken as slow and the general solution to the
Boltzmann equation is an arbitrary function of the (adia-
batic invariant) total comoving energy. At the background
level this is ϵtot ¼ ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

νa2
p

, and the distribution
function is fðqÞ ¼ f0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

νa2
p

Þ as given by Eq. (2).
However, in the presence of a gravitational potential ψ the
total comoving energy reads ϵtot ¼ ϵð1þ ψÞ. The total
distribution function then becomes,

f ¼ f0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð1þ ψÞ2 −m2

νa2
q

Þ

¼ f0ðqÞ
�
1þ d ln f0

d ln q

�
ϵ

q

�
2

ψ

�

⇒ δf ¼ q
df0
dq

�
ϵ

q

�
2

ψ ð13Þ

where we expand to leading order in ψ . Equation (11) can
then be derived by integrating over the comoving momenta
to obtain the neutrino fluid properties. More details can be
found in Appendix A, where we systematically derive the
Eqs. (9) and (13) as the large and small scale limits of the
Boltzmann equation.
Our strategy will now be to interpolate between these

two regimes in order to write an approximate expression
for the sound speed that accounts for its scale dependence.
We similarly also want to introduce a scale dependent
approximate expression to the anisotropic stress. To
accomplish these goals we first need to understand what
are the characteristic scales associated to the neutrino
thermal motion. Indeed, there are two time dependent
scales. One is the (instantaneous) free-streaming scale
kfsðaÞ defined by,

kfsðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ΩmðaÞ

r
HðaÞ
caspðaÞ

; ð14Þ

which is proportional to the (comoving) distance that
neutrinos travel over the course of one expansion time
τ ∼ 1=H, i.e., λfs ¼ 2π=kfs ∼ casp=H ∼ caspt, with ΩmðaÞ
the fractional contribution of matter (including neutrinos)
to the total energy budget. Notice from Eqs. (3)–(5), (11),
and (12) that in the nonrelativistic regime, where
ϵ ≈ma ≫ q, we have that λ ≫ 1 and w ≪ 1 such that,

2Moving forward we work in Fourier space ∇!→ ik⃗ and often
omit time and scale dependences of fluid properties for simplicity
of notation.
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caspðaÞ ≈
1ffiffiffiffiffiffiffiffiffiffiffi
3λðaÞp ≈ σνðaÞ ð15Þ

where we have used Eq. (2), and introduce the neutrino
velocity dispersion,3

σνðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3ζð3Þ
ln 4

r
Tν;0

mνa
: ð16Þ

The other scale associated to the neutrino thermal motion
is the neutrino horizon, λhorðaÞ, defined by:

λhorðaÞ ¼
Z

a

0

d ln a0λfsða0Þ; ð17Þ

or its wave number khorðaÞ ¼ 2π=λhorðaÞ, where similarly
λfsðaÞ ¼ 2π=kfsðaÞ. The neutrino horizon is proportional
to the total distance traveled by neutrinos over the entire
expansion history. In fact, at late times kfs ≫ khor and both
scales play a role in the dynamics of massive neutrinos:
khor is the scale below which (k ≤ khor) neutrino velocities
can be ignored, and hence neutrinos cluster like cold
dark matter, while kfs is the scale above which (k ≥ kfs)
the neutrino pressure dominates over the gravitational
potential leading to the suppression of neutrino structure.
This is illustrated in Fig. 1 for an individual neutrino
mass of mν ¼ 0.1 eV. While the neutrino horizon grows
with the expansion of the universe, the free-streaming
scale peaks when the neutrinos first become nonrelativ-
istic due to the subsequent decrease in the thermal

velocity. This produces a large separation of scales at
late times, which is the reason why galaxy surveys cannot
directly probe the scale dependence of the neutrino
suppression.
We are finally ready to write down the approximations

we use, after which we compare to previous approximation
schemes and explain the different terms involved. More
details can be found in Appendix A. The approximations
are:

c2s ða; kÞ ¼ c2gðaÞ þ
�
c2aspðaÞ − c2gðaÞ

�
e−

4
3

kfsðaÞ
k ; ð18Þ

k2σða; kÞ ¼ −
2

5

khorðaÞ
k

e−
khorðaÞ

k
c2s ða; kÞ
1þ wðaÞ k

2δða; kÞ

þ k
kfsðaÞ

e−5
kfsðaÞ

k w2ðaÞθða; kÞ: ð19Þ

Equation (18) is a simple interpolation between the
two regimes given by Eqs. (9) and (11).4 It improves on
previous approximation schemes in the literature that
generally assume an adiabatic sound speed, since we
account for deviations from adiabaticity on the small scales
(which can be phrased as the presence of an entropy
perturbation). This is illustrated by Fig. 2, where we
compare both the adiabatic and asymptotic expressions
[Eqs. (9) and (11) respectively] to the exact sound speed

Pressure dominates over 
gravitational field washing out 

structure

Neutrinos cluster 
like cold matter

–10 –8 –6 –4 –2 0
0.001

0.005

0.010

0.050

FIG. 1. Neutrino free-streaming (black curve) and neutrino
horizon (blue curve) scales as a function of the scale factor, for
an individual neutrino mass of mν ¼ 0.1 eV. The black dashed
region corresponds to sub free-streaming scales where pressure
dominates over the gravitational field washing out structure, and
the blue shaded region corresponds to scales above the neutrino
horizon where neutrinos cluster like cold matter.

Exact – k=0.001Mpc–1

Exact – k=0.01Mpc–1

Exact – k=0.056Mpc–1

Adiabatic
Asymptotic

–8 –6 –4 –2 0

0.00
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0.20

0.25

0.30

0.35

FIG. 2. A comparison of both adiabatic and asymptotic sound
speeds, as given by Eqs. (9) and (11), with the exact sound speed
from the Boltzmann code CLASS in high precision settings (and in
the Newtonian gauge) at three different scales and as a function of
the scale factor. Here we choose mν ¼ 0.1 eV. The green and
purple solid curves correspond to the adiabatic and asymptotic
sound speeds, respectively. The blue, red, and black dashed
curves correspond to the exact solutions for k ¼ 10−3 Mpc−1,
k ¼ 10−2 Mpc−1, and k ¼ 5.6 × 10−2 Mpc−1 respectively.

3In Appendix A we motivate our choice of Eq. (16) for the
neutrino velocity dispersion, and hence the appearance of caspðaÞ
in the definition of the free-streaming scale as in Eq. (14).

4The precise numerical factors in the exponents of Eqs. (18)
and (19) are adjusted in such a way as to optimize the fluid
approximation.
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extracted from the Boltzmann code CLASS in high precision
settings5 at three different scales and for a neutrino mass
mν ¼ 0.1 eV. As we move from larger to smaller scales the
exact sound speed shifts from the adiabatic to the asymp-
totic formulas. Note that the adiabatic sound speed over-
estimates the exact sound speed (a result that holds true in
both Newtonian and synchronous gauges).
Next we move on to the anisotropic stress. As we argue

in Appendix A, we expect it to mostly give an additional
contribution to the sound speed at scales that are around the
neutrino horizon k ∼ khor. This is accomplished by the first

term in the right-hand side of Eq. (19). However, we
generally also expect it to give a viscosity type contribution
proportional to the divergence of the velocity at small sub-
free streaming scales, that turns out to be important for the
numerical stability of the fluid equations. This leads to the
second term in the right-hand size of Eq. (19); the precise
time dependence is not important, but we choose the
equation of state squared because it produces good results.
The standard approach in the literature consists in modeling
the evolution equation for the shear stress (see [15] for a
summary) while we introduce an algebraic relation to
directly approximate the shear stress in terms of the
neutrino density and velocity fields.
It is important to point out that the approximation in

Eq. (19) is heuristic in the sense that it is only loosely
motivated and we do not expect it to accurately reproduce
the anisotropic stress. However, the approximation in

FIG. 3. Neutrino density contrast (normalized by its initial value δνðaIÞ, and in the Newtonian gauge) as a function of the scale factor
and for varying neutrino mass and scale. The plot compares the modified and CLASS fluid approximations (FA) with the exact solution
from CLASS in high precision settings. The solid green curves corresponds to CLASS in high precision settings, black dashed curves to the
CLASS FA, and red dotted curves to the modified FA.

5These are the high precision settings we employed in
CLASS: ncdm_fluid_approximation = 3 (this turns off
the CLASS fluid approximation), Quadrature strategy = 3,
Maximum q = 15, Number of momentum bins = 30,
l_max_ncdm = 30.

ACCURATE FLUID APPROXIMATION FOR MASSIVE … PHYS. REV. D 108, 023505 (2023)

023505-5



Eq. (18) is much more robust and plays a central role in
the fluid equations, while Eq. (19) at least qualitatively
accounts for the subtle effects of shear stress on the scales
where they are needed. In other words, the precise model-
ing of the shear stress is not important as long as one is only
interested in the neutrino density and velocity fields in the
nonrelativistic regime. As we will see in the next section,
the fluid approximation benefits from a dramatic increase in
accuracy when the dispersive nature of the neutrino fluid is
accounted for.
The approximations in Eqs. (18) and (19) are tailored to

the Newtonian gauge. An extension to alternative gauges is
presented in Appendix B, where we show explicit formulas
in the synchronous gauge.

III. NUMERICAL RESULTS

We consider the standard fluid equations for the evolu-
tion of cosmological perturbations in massive neutrinos

species, i.e., Eqs. (7) and (8), but now with novel scale
dependent approximate expressions for the sound speed
and shear stress, Eqs. (18) and (19) respectively. We are left
with a simple closed system of two ordinary differential
equations that we refer to as the modified fluid approxi-
mation (modified FA), and solve numerically.
We extract the Hubble expansion rate and gravitational

potentials directly from CLASS so we can just focus on
the neutrino species.6 We consider three distinct values for
the individual neutrino mass, mν ¼ 0.02 eV, mν ¼ 0.1 eV
and mν ¼ 0.5 eV, and solve the evolution equations
for 17 wave numbers ranging from kmin ¼ 10−3 Mpc−1 to
kmax ¼ 10 Mpc−1, equally spaced logarithmically. We set

FIG. 4. Percent relative differences in the neutrino density contrast between the exact solution and fluid approximations (in the
Newtonian gauge) as a function of redshift (with z ≤ 30) for varying neutrino mass and scale. The plot compares the modified and
CLASS fluid approximations (FA) with the exact solution from CLASS in high precision settings. The solid black curves corresponds to the
CLASS FA and red solid curves to the Modified FA.

6In a Boltzmann solver the neutrino species is coupled to all
the other species in the universe via the Einstein equations, and so
there are additional evolution equations for the Hubble expansion
rate (the Friedmann equation) and the gravitational potentials.
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the standard adiabatic initial conditions at superhorizon
scales, extracting the initial values of neutrino transfer
functions directly from CLASS. We similarly evolve the
neutrino transfer functions with the CLASS fluid approxi-
mation for comparison [15].
In Fig. 3 we plot the neutrino density contrast as a

function of the scale factor for varying neutrino mass and
scale. As one can see from the plot, the modified FA
produces the late-time neutrino growth at intermediate and
small scales much more accurately than the CLASS FA.
Also, the errors in both fluid approximations can be large in
the relativistic regime where the effects of shear stress are
significant. In Fig. 4 we plot the relative differences in the
neutrino density contrast, comparing the exact solution to
the fluid approximations, as a function of redshift for
z ≤ 30. At large scales the two fluid approximations have a
similar performance, but errors are much smaller in the

modified FA when compared to the CLASS FA at inter-
mediate and small scales. Note that, for the modified FA,
the errors are always below a ≲30% for redshift z≲ 30 and
≲5% for redshift z≲ 5. On the other hand, the CLASS FA
can be as much as a factor of two wrong even at z ¼ 0. We
also point out that the fluid approximations are more
accurate for larger neutrino masses, which is to be expected
since a larger mass implies neutrinos are deeper in the
nonrelativistic regime where the contributions from the
shear stress can be neglected.
In Fig. 5 we plot the divergence of the neutrino velocity

as a function of the scale factor for varying neutrino mass
and scale, and in Fig. 6 we plot the relative differences in
the divergence of the neutrino velocity, comparing the exact
solution to the fluid approximations, as a function of
redshift for z ≤ 30. The divergence of the neutrino velocity
displays fast oscillations around zero at the smallest scale

FIG. 5. Divergence of the neutrino velocity (normalized by its initial value θνðaIÞ, and in the Newtonian gauge) as a function of the
scale factor and for varying neutrino mass and scale. The plot compares the modified and CLASS fluid approximations (FA) with the
exact solution from CLASS in high precision settings. The solid green curves corresponds to CLASS in high precision settings, black
dashed curves to the CLASS FA, and red dotted curves to the modified FA.
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and at late times, as can be seen in Fig. 5, in which case
small phase shifts lead to large relative differences that are
insignificant. This is why we choose not to include the
k ¼ 10 Mpc−1 plots in Fig. 6. Once again the modified FA
is significantly more accurate than the CLASS FA at
intermediate and small scales, and overall the errors in
the divergence of the neutrino velocity are of the same size
as the errors in the neutrino density contrast.
Finally, in Fig. 7 we plot the neutrino density contrast as

a function of scale for varying neutrino mass and for two
values of redshift, z ¼ 0 and z ¼ 3. The neutrino density
contrast from the modified FA is in very good agreement
with the exact solution from CLASS in high precision
settings, with a ≲5% agreement at redshifts z≲ 5 at all

scales. We expect linear perturbation theory to break down
at sufficiently small scales, k>kNL, with kNL ≈ 0.12 Mpc−1

the scale of nonlinearities7 which is included as a vertical
dashed line in Fig. 7. One can then see from the plot that,
and specially for smaller neutrino masses, the modified FA

FIG. 6. Percent relative differences in the divergence of the neutrino velocity between the exact solution and fluid approximations (in
the Newtonian gauge) as a function of redshift (with z ≤ 30) for varying neutrino mass and scale. The plot compares the modified and
CLASS fluid approximations (FA) with the exact solution from CLASS in high precision settings. The solid black curves corresponds to the
CLASS FA and red solid curves to the modified FA.

7We adopt the definition for the scale of nonlinearities based
on the root-mean-square linear theory displacement, i.e.,
k−2NL ¼ f2

R ðdk=2π2ÞPðkÞ, with f ¼ d logDL=d log a the linear
growth rate (in terms of the linear growth factor DL) and PðkÞ the
matter power spectrum. This leads to a numerical value kNL ≈
0.12 Mpc−1 at low redshift in our reference Planck 2018
cosmology [6]. An alternative definition is given by the scale
where the dimensionless power spectrum becomes unity, which
leads to similar numerical values.
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leads to significant improvements when compared to
previous approximations schemes at scales where the linear
perturbation theory can be safely applied.
Since in high precision settings CLASS and CAMB agree to

a percent level [22], we can also conclude that the modified
FA agrees with the Boltzmann solver CAMB as well.
Additionally, in Appendix B we argue that the fluid
approximation is as accurate in the synchronous gauge
as it is in the Newtonian gauge. Furthermore, from Fig. 7
the modified FA is visibly superior to both the CLASS FA
and CLASS in default precision settings, specially at scales
comparable to, and smaller than, the neutrino free-
streaming scale.8 The modified FA is then a simple system
of two ordinary differential equations that can accurately
predict the evolution of linear cosmological neutrino
anisotropies at late times.

IV. CONCLUSION

We revisited the fluid approximation for massive neu-
trinos in linear cosmological perturbation theory, but now
accounting for the dispersive nature of the neutrino fluid.
In Sec. II we introduced the analytic expressions in

Eqs. (9) and (11) for the large and small scales limits of
the sound speed respectively (see Fig. 2), leading to the
novel approximations in Eqs. (18) and (19) that can be used
to close the fluid Eqs. (7) and (8).
In Sec. III we showed that the resulting modified fluid

approximation produces a neutrino transfer function that is
in very good agreement with the exact solution from CLASS

in high precision settings, achieving a ≲5% errors for
redshifts z≲ 5, and over scales (at least) in the range
k ¼ ð10−3 − 10Þ Mpc−1. Furthermore, Figs. 4, 6, and 7
show the superiority of the modified fluid approximation
when compared to both the Boltzmann solver CLASS in
default precision settings and the CLASS fluid approxima-
tion, which corresponds to an order of magnitude improve-
ment over previous approximation schemes that can be as
much as a factor of two wrong even at z ¼ 0.
The modified fluid approximation we propose then

offers a simple implementation of massive neutrinos in
linear cosmological perturbation theory, being much faster
and more versatile than the full Boltzmann hierarchy while
delivering accurate neutrino transfer functions at late times.
In terms of the sum of neutrino masses Mν ¼

P
νmν, the

contribution of nonrelativistic neutrinos to the energy
density in the Universe is Ωνh2 ≈Mν=93.14 eV [5]. For
Mν ≲ 1 eV and Ωmh2 ¼ 0.1424 [23], this leads to a frac-
tional contribution of neutrinos to the total matter of
fν ≲ 7%. As a consequence, ≲5% errors in the neutrino

FIG. 7. Neutrino density contrast (normalized by its value at the largest scale we consider, kmin ¼ 10−3Mpc−1, and in the Newtonian
gauge) as a function of scale and for varying neutrino mass and redshift. The plot compares the modified and CLASS fluid
approximations (FA) with the solution from CLASS in both high and default precision settings. The green solid curves corresponds to
CLASS in high precision settings, and the dashed purple curves to CLASS in default precision settings. The black round data points are
obtained with the CLASS FA and red square data points are obtained with the modified FA. The black dashed vertical line sits at the scale
of nonlinearities kNL ≈ 0.12 Mpc−1, beyond which the linear perturbation theory is expected to break down.

8In Fig. 7, the fact that the CLASS FA aligns with CLASS in
default precision settings is not a coincidence, since in default
precision settings CLASS switches from the Boltzmann hierarchy
to the CLASS FA after horizon crossing (at kτ ¼ 15).
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clustering lead to a matter power spectrum that is accurate
to the subpercent level. This estimate is conservative as the
effect of neutrino masses in the matter power spectrum
comes mostly from the absence of neutrino perturbations at
small scales, and not from the clustering of neutrinos itself.
We conclude that the modified FA is sufficient for most
applications, with the Boltzmann hierarchy being needed
only if one is interested in the neutrino anisotropies at
redshift z > 5, or if the warm dark matter component
(neutrinos) has a significant contribution to the total matter.
We tested the modified fluid approximation for neutrino
masses in the range mν ¼ ð0.02 − 0.5Þ eV, but we expect
it to remain accurate outside of this range (provided the
neutrino mass is large enough for it to become non-
relativistic at sufficiently early times and otherwise can
be treated as a radiation component).
In a future work we plan on investigating a reformulation

of howmassive neutrinos are implemented in theBoltzmann
solver CLASS, based on the generalizedBoltzmann hierarchy
[18], a novel alternative approach to the exact massive
neutrino dynamics that can reach subpercent level accuracy
at large and intermediate scales, coupled to our fluid
approximation for the small scale dynamics. We will then
perform a thorough comparison with standard methods and
approximation schemes, and we expect to achieve signifi-
cant improvements in both accuracy and computation
time. Finally, another possible direction of future research
is to investigate potential implications of this work to the
clustering of neutrinos in the nonlinear regime on the basis of
a fluid approach.
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APPENDIX A: ANALYTIC CALCULATIONS
AND APPROXIMATIONS

We investigate analytically the evolution of cosmological
linear perturbations in a massive neutrino species, with
the goal of extracting both the large and small scale limits
of the sound speed and the qualitative behavior of the
anisotropic stress. This study motivates the approximations
in Eqs. (18) and (19).
We follow [20] and write evolution equations for the

phase-space distribution of massive neutrinos. The first step
is to split it into a background and perturbation components
(working in Fourier space),

fðk; q; μ; τÞ ¼ f0ðqÞ½1þΨðk; q; μ; τÞ�; ðA1Þ

where k the magnitude of the wave vector k⃗, q the
magnitude of the comoving momentum q⃗, μ ¼ k̂ · q̂ is
the cosine of the angle between these two vectors, and τ is
the conformal time. Furthermore, the background is a
relativistic Fermi-Dirac distribution:

f0ðqÞ ¼
gν

e
q

Tν;0 þ 1
; ðA2Þ

with gν ¼ 2 to account for both left-handed neutrinos
and right-handed antineutrinos, and Tν;0 ≈ 1.95 K ≈ 1.7 ×
10−4 eV is the neutrino temperature today. We remind the
reader that we are working in the Newtonian gauge:

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞdx⃗2�: ðA3Þ

The evolution equation for the perturbation to the phase-
space distribution follows from the collisionless Boltzmann
equation, and reads,9

Ψ0 þ i
kq
ϵ
μΨ ¼ d ln f0

d ln q

�
i
kϵ
q
μψ − ϕ0

�
; ðA4Þ

where ϵðq; τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

νaðτÞ2
p

is the comoving energy. It
is convenient to perform a decomposition of Ψðk; q; μ; τÞ
into Legendre polynomials, PlðμÞ, as follows:

Ψðk; q; μ; τÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1ÞΨlðk; q; τÞPlðμÞ; ðA5Þ

where the Ψlðk; q; τÞ are called the multipoles of the
distribution function. The substitution of Eq. (A5) into
Eq. (A4) yields, after using Legendre polynomial identities,

Ψ0
0 ¼ −

q
ϵ
Ψ1 −

d ln f0
d ln q

ϕ0; ðA6Þ

Ψ0
1 ¼

q
3ϵ

ðΨ0 − 2Ψ2Þ −
ϵ

3q
d ln f0
d ln q

ψ ; ðA7Þ

Ψ0
l ¼

q
ð2lþ 1Þϵ ½lΨl−1 − ðlþ 1ÞΨlþ1� ∀ l ≥ 2: ðA8Þ

Once the solution to this set of equations is obtained, one
can integrate over momenta to get the neutrino stress-
energy tensor, and hence the fluid properties involved in the
fluid equations [see Eqs. (7) and (8)], as follows,10

9From this point forward we omit scale, momentum and time
dependences when it is convenient to do so. Also, prime denotes a
derivative with respect to conformal time.

10We remind the reader that we do not employ a ν subscript
when referring to neutrino fluid properties.
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δρðk;τÞ¼ aðτÞ−4
Z

∞

0

dq
2π2

q2ϵðq;τÞf0ðqÞΨ0ðk;q;τÞ; ðA9Þ

δPðk; τÞ ¼ 1

3
aðτÞ−4

Z
∞

0

dq
2π2

q2ϵðq; τÞ

×

�
q

ϵðq; τÞ
�
2

f0ðqÞΨ0ðk; q; τÞ; ðA10Þ

ρð1þ wÞθðk; τÞ ¼ kaðτÞ−4
Z

∞

0

dq
2π2

q3f0ðqÞΨ1ðk; q; τÞ;

ðA11Þ

ρð1þ wÞσðk; τÞ ¼ 2

3
aðτÞ−4

Z
∞

0

dq
2π2

q2ϵðq; τÞ

×

�
q

ϵðq; τÞ
�
2

f0ðqÞΨ2ðk; q; τÞ: ðA12Þ

Here ρ ¼ ρðaÞ is the neutrino background energy density
as given by Eq. (3), and w ¼ wðaÞ is the equation of
state parameter from Eq. (5). Furthermore, δρðk; τÞ is the
perturbation to the neutrino energy density, δPðk; τÞ the
perturbation to the pressure, θðk; τÞ is the divergence of
the velocity field, and σðk; τÞ is the anisotropic (shear)
stress. This sets the stage for an analytic investigation of the
sound speed and anisotropic stress.

1. The sound speed

The sound speed is defined by:

c2s ðk; τÞ ¼
δPðk; τÞ
δρðk; τÞ ; ðA13Þ

and it is both time and scale dependent. From Eqs. (A9)
and (A10), one finds that it can be determined from the
momentum dependence in the zeroth multipole Ψ0, so this
is what we investigate next.
From the structure of Eq. (A4) it is convenient to

introduce a momentum dependent time variable,11

dz ¼ q
ϵ
dτ ⇒ zðτ; qÞ ¼

Z
τ

0

q
ϵðq; τ0Þ dτ

0: ðA14Þ

Since v≡ q=ϵ is the peculiar velocity, this is just the
distance traveled by the neutrino particles over the entire
expansion history. When evaluated at around the peak of
the Fermi-Dirac distribution, q ¼ 3Tν;0, we denote it by
z̄ ¼ zðq ¼ 3Tν;0Þ. This is analogous to the neutrino horizon
scale introduced in Eq. (17). We further define y ¼ kz, in
terms of which the Eq. (A4) reads,

∂Ψ
∂y

þ iμΨ ¼ d ln f0
d ln q

�
ik

ϵ

q
μψ − ϕ0

�
; ðA15Þ

is a first-order ordinary differential equation, whose sol-
ution is straightforward to write down:

Ψ ¼ d ln f0
d ln q

Z
y

0

dy0
ϵ̂

kq

�
ik

ϵ̂

q
μψ̂ − ϕ̂0

�
e−iμðy−y0Þ; ðA16Þ

where we use the hat notation (exemplified by ϕ̂) to denote
time-dependent quantities evaluated at the intermediate
time y0 ¼ kz0 begin integrated. Additionally, we drop the
initial condition terms and send the initial time to zero, i.e.,
yi → 0, for simplicity. In the regime y ≫ 1 this is incon-
sequential as the solution is dominated by the source term
and becomes insensitive to the initial conditions. However,
this is no longer true in the regime y ≪ 1 which corre-
sponds to the largest scales. This does not pose a significant
problem for us since we expect the adiabatic sound speed to
be recovered on the largest scales (and we will see why that
is). A much more important issue is to accurately obtain the
small scale limit y ≫ 1 of the sound speed for which we
can safely drop the initial values of the multipoles.
From the multipole expansion in Eq. (A5) and the

orthogonality relations of Legendre polynomials, we can
write:

Ψl ¼
1

2ð−iÞl
Z

1

−1
dμΨPlðμÞ: ðA17Þ

This can be evaluated using Eq. (A16), the identity

e−iμðy−y0Þ ¼
X∞
l¼0

ð−iÞlð2lþ 1Þjlðy − y0ÞPlðμÞ; ðA18Þ

where jlðyÞ are the spherical Bessel functions of the first
kind, and the orthogonality relations of Legendre poly-
nomials, to yield:

Ψl ¼
d ln f0
d ln q

Z
y

0

dy0
��

ϵ̂

q

�
2

ψ̂

�
lþ 1

2lþ 1
jlþ1ðy − y0Þ

−
l

2lþ 1
jl−1ðy − y0Þ

�
−

ϵ̂

kq
ϕ̂0jlðy − y0Þ

�
: ðA19Þ

We now use the recurrence relation

lfl−1ðyÞ − ðlþ 1Þflþ1ðyÞ ¼ ð2lþ 1Þf0lðyÞ; ðA20Þ

and integrate the first term in the right-hand side of
Eq. (A19) by parts to arrive at:

11Not to be confused with redshift. Everywhere in the
Appendix A, the variable z will stand for the distance traveled
by neutrino particles over the expansion history as given
by Eq. (A14).
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Ψl ¼
d ln f0
d ln q

�
jlð0Þ

�
ϵ

q

�
2

ψ − jlðyÞψ i

−
Z

y

0

dy0
ϵ̂

kq

��
ϵ̂

q

�
2

ψ̂ þ ϕ̂

�0
jlðy − y0Þ

�
: ðA21Þ

Now the crucial observation is that this greatly simplifies
in the limit y ≫ 1 for l ¼ 0, since then j0ðy − y0Þ peaks
at Δy ¼ y − y0 ¼ 0, and goes to zero in the limit Δy ¼
kðz − z0Þ ¼ kΔz ¼ yΔz=z ≫ 1, and hence Δz=z ≫ 1=y
is a small number. As a consequence, simply evaluating
the integrand at the final time should give a very good
approximation and indeed eventually approach the exact
solution in the asymptotic regime x → ∞. Indeed, this has
been previously investigated and exploited to generate a
fluid approximation, in the special case of the massless
limit, i.e., for a radiation component [24]. Using j0ð0Þ ¼ 1
and j0ðyÞ ≈ 0 for y ≫ 1 leads to

Ψ0≈
d lnf0
dlnq

��
ϵ

q

�
2

ψ −
ϵ

kq

��
ϵ

q

�
2

ψþϕ

�0Z y

0

dy0j0ðy−y0Þ
�

≈
d lnf0
dlnq

��
ϵ

q

�
2

ψþπ

2

ϵ

kq

��
ϵ

q

�
2

ψþϕ

�0�

≈
d lnf0
dlnq

�
ϵ

q

�
2

ψ ; ðA22Þ

where we used,

Z
y

0

dy0j0ðy − y0Þ ≈ −
Z

∞

0

dyj0ðyÞ ¼ −
π

2
; ðA23Þ

and from the second to the third line in Eq. (A22) we
dropped a term that scales like 1=k and hence becomes
negligible in the limit y → ∞. Indeed, that term is the next
to leading order correction to the asymptotic formula.
The final formula in the third line of Eq. (A22) has a

straightforward interpretation. Neutrino fluctuations with
(comoving) wave number k have a characteristic timescale,
t ∼ a=kσν ∼ ðkfs=kÞH−1, which is much smaller than a
Hubble time ∼1=H, at sub-free streaming scales (k≫ kfs).
We can then consider a static limit of the Boltzmann
equation where the expansion of the universe can be taken
as slow. In fact, one can check that simply dropping the
derivative terms in Eq. (A4) immediately leads to our final
formula in the third line of Eq. (A22).
It is now straightforward to obtain the asymptotic

formula for the sound speed, using Eqs. (A9), (A10),
and (A13). We first explicitly evaluate the perturbation to
the energy density, using Eq. (A22),

δρ ≈ a−4ψ
Z

∞

0

dq
2π2

q3ϵðq; aÞ
�
ϵðq; aÞ

q

�
2 df0ðqÞ

dq

¼ −3ρðaÞ½1þ λðaÞ�ψ ⇒ δ ≈ −3½1þ λðaÞ�ψ ; ðA24Þ

where from the first to the second line we integrate by parts
and introduce the quantity λðaÞ as:

ρðaÞλðaÞ ¼ 1

3
a−4

Z
∞

0

dq
2π2

q2ϵðq; aÞ
�
ϵðq; aÞ

q

�
2

f0ðqÞ:

ðA25Þ

We can obtain the asymptotic expression for the neutrino
pressure in a way that is completely analogous to the
density and leads to a sound speed of, using the Eq. (A13),

c2aspðaÞ ¼
1

3

1þ wðaÞ
1þ λðaÞ : ðA26Þ

Before moving on to the opposite large scale regime of
the sound speed, it is instructive to investigate the non-
relativistic limit of Eq. (A24) where ϵ ≈ma and λ ≫ 1,
such that,

δ ≈ −3λðaÞψ ≈ −
1

ρ

ln 4
2π2

m3
νTν;0

a
ψ ; ðA27Þ

after using the Eq. (A2). In a universe with matter back-
ground energy density ρmðaÞ and matter density contrast
δmðaÞ, the Poisson equation reads:

k2ψ ¼ −4πGa2ρmδm; ðA28Þ

where G is Newton’s gravitational constant. Using this,
the Friedmann equation,

H2 ¼ 8πG
3

a2
ρm
Ωm

; ðA29Þ

with ΩmðaÞ the fractional contribution of matter to the total
energy density and also evaluating explicitly the Eq. (3)
for ρðaÞ in the nonrelativistic regime, we can write the
Eq. (A27) as:

δ ¼
�
kfs
k

�
2

δm; ðA30Þ

where,

kfsðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ΩmðaÞ

r
HðaÞ
σνðaÞ

; ðA31Þ

is (proportional to) the distance that neutrinos travel
over the course of one expansion time t ∼ 1=H, i.e.,
λfs ∼ 1=kfs ∼ σνt ∼ σν=H, with,

σνðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3ζð3Þ
ln 4

r
Tν;0

mνa
; ðA32Þ

the expression for the neutrino velocity dispersion, chosen
in such a way as to produce the Eq. (A30) with no
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additional coefficients. Indeed, the small scale result in
Eq. (A30) is well known in the literature [25] and the next
to leading order correction in the second line of Eq. (A22)
leads to a contribution that scales as ∼ðkfs=kÞ3.
We are now ready to obtain an expression for the sound

speed in the large scale regime k ≪ kfs. For this we go back
to the Eq. (A21) in the case of l ¼ 0, but now assume
Δy ≤ y ≪ 1 such that j0ðΔyÞ ≈ 1 and we obtain,Z

y

0

dy0
ϵ̂

kq

��
ϵ̂

q

�
2

ψ̂ þ ϕ̂

�0
j0ðy − y0Þ

≈
�
ϵ

q

�
2

ψ þ ϕ − ψ i − ϕi; ðA33Þ

upon using dτ0 ¼ dy0ðϵ̂=kqÞ and assuming the neutrinos to
be relativistic at the initial time. This yields:

Ψ0 ≈ ðϕi − ϕÞ d ln f0
d ln q

: ðA34Þ

As we argued previously, we do not necessarily expect
the Eq. (A34) to give an accurate approximation to the
zeroth multipole on the large scales, since we dropped the
initial values of the multipoles that play a role in this
regime. However, the statement that the momentum
dependence of Ψ0 is set by the log derivative of the
background distribution function (the so-called separable
ansatz), still holds true at sufficiently large scales as it
follows from separate universe arguments (see [26,27]). We
may now proceed to obtain an expression for the sound
speed as before, using Eqs. (A9), (A10), (A13), and (A34).
We get the so-called adiabatic sound speed,

c2gðaÞ ¼
P0ðaÞ
ρ0ðaÞ ; ðA35Þ

after using the Eqs. (3) and (4) for the neutrino energy
density ρðaÞ, and pressure PðaÞ, respectively. Also, the
derivatives with respect to conformal time can be obtained
via the relation ϵ0 ¼ Hϵ½1 − ðq=ϵÞ2�.
Now equippedwith both k ≫ kfs and k ≪ kfs limits of the

sound speed in theNewtonian gauge, as given by Eqs. (A26)
and (A35) respectively, we see that an interpolation such
as the one provided by the Eq. (18) should yield a good
approximation to the scale-dependent sound speed.

2. Anisotropic stress

After obtaining an expression for the sound speed in both
the k=kfs ≫ 1 and k=kfs ≪ 1 regimes, we would like to
develop a qualitative understanding on the behavior of the
anisotropic stress following the discussion in [20].
Combining the Eqs. (A6) and (A8) for l ¼ 2, we obtain,

�
Ψ2 þ

2

5
Ψ0 þ

2

5
ϕ
d ln f0
d ln q

�0
¼ −

3

5

q
ϵ
Ψ3: ðA36Þ

Since our goal is to build intuition about the anisotropic
stress we can make some simplifying approximations. The
first is to set ϕ0 ≈ 0, which is always a good approximation
on small scales, and exact in a matter dominated universe.
The second will be to drop the initial values of the
multipoles, which is the same approximation we applied
in the last subsection. This leads to,

Ψ2 ≈ −
2

5
Ψ0 −

3

5

Z
y

0

dy0
Ψ̂3

k
; ðA37Þ

where we used the Eq. (A14), y ¼ kz, and the hat notation
to denote time-dependent quantities evaluated at the inter-
mediate time y0 to be integrated. Using the Eqs. (A10)
and (A12), we conclude that the first term in the right-hand
side of Eq. (A37) generates the following contribution to
the anisotropic stress,

σ ⊃ −
4

5

c2s
1þ w

δ; ðA38Þ

which in the fluid equations looks like an additional
contribution to the sound speed. However, we expect that
setting Ψ3 ¼ 0, which is equivalent to dropping the second
term in the right-hand side of Eq. (A37), is only a
reasonable approximation when y ¼ kz≲ 3 such that the
shear acts like a contribution to the sound speed at scales
that are around the horizon k ∼ 1=z̄ ∼ khor. In the regime
y ≫ 1 we expect the second term in the right-hand side of
Eq. (A37) to dominate, generally giving a viscosity-type
contribution to the shear stress at scales that are comparable
to, or smaller than, the free-streaming scale (k≳ kfs). These
considerations motivate the heuristic approximate expres-
sion in Eq. (19).

APPENDIX B: ALTERNATIVE GAUGES

In the main text we work solely in the conformal
Newtonian gauge for simplicity. In this section we
extend our fluid approximation to a general alternative
gauge under the example of the synchronous gauge due
to its usage in Boltzmann solvers, for concreteness. We
follow [14] where more details can be found.
Small scalar perturbations to the FLRW universe are

given by, in the synchronous gauge:

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ðB1Þ
where δij is the Kronecker symbol, and hijðτ; x⃗Þ can be
decomposed (in Fourier space), in terms of two metric
perturbations hðτ; k⃗Þ and ηðτ; k⃗Þ, as follows:

hijðτ; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·x⃗

�
k̂ik̂jhðτ; k⃗Þ

þ
�
k̂ik̂j −

1

3
δij

�
6ηðτ; k⃗Þ

�
; ðB2Þ
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with k̂i ¼ k⃗i=ki normalized to unit length. In other gauges
the metric will similarly be written in terms of two other
scalar metric perturbations (such as ψ and ϕ in the
Newtonian gauge).
In the synchronous gauge the fluid equations that follow

from stress-energy conservation read,

δ̃0 ¼ −ð1þ wÞ
�
θ̃ þ h0

2

�
− 3Hðc̃2s − wÞδ̃; ðB3Þ

θ̃0 ¼ −Hð1 − 3wÞθ̃ − w0

1þ w
θ̃ þ c̃2s

1þ w
k2δ̃ − k2σ̃: ðB4Þ

Here δ̃ is the neutrino density contrast, θ̃ is the divergence
of the velocity field, σ̃ is the anisotropic stress, and the
pressure perturbation term δP̃ is parametrized by the sound
speed c̃2s as in the main text,

δP̃
ρ

¼ δP̃
δρ̃

δ̃ ¼ c̃2s δ̃; ðB5Þ

where from now on tilded quantities are in the alternative
gauge (which in our example is the synchronous gauge)
and untilded quantities are in the Newtonian gauge. These
are the neutrino fluid properties that are involved in the
fluid equations. Also ρðaÞ and PðaÞ are the background
density and pressure respectively, and w ¼ P=ρ is the
equation of state.
Starting from Newtonian gauge coordinates xμ, we can

apply a gauge transformation xμ → x̃μ ¼ xμ þ dμðxνÞ in
order to arrive at an arbitrary gauge. For scalar perturba-
tions, the dμ can be decomposed into time and spatial
components as,

d0ðx0; x⃗Þ ¼ αðτ; x⃗Þ; ðB6Þ

d⃗ðx0; x⃗Þ ¼ ∇⃗βðτ; x⃗Þ: ðB7Þ

In the example of the synchronous gauge, these are given
by (in Fourier space),

β ¼ 1

2k2
ðhþ 6ηÞ; ðB8Þ

α ¼ β0: ðB9Þ
In general, α and β will be given in terms of the two metric
perturbations in the alternative gauge. The transformation
laws for the fluid properties in the Eqs. (B3) and (B4)
(in any gauge, here illustrated in the synchronous gauge)
follow from the covariant transformation law satisfied by
the energy-momentum tensor, and read

δ̃ ¼ δ − α
ρ0

ρ
; ðB10Þ

θ̃ ¼ θ − β0k2; ðB11Þ

δP̃ ¼ δP − αP0; ðB12Þ

σ̃ ¼ σ: ðB13Þ

Our approximations in Eqs. (18) and (19), suitable to the
Newtonian gauge, can then be straightforwardly mapped
into an arbitrary alternative gauge as follows:

δP̃
ρ

¼ c2s δ̃þ αðc2s − c2gÞ
ρ0

ρ
; ðB14Þ

k2σ̃ ¼ −
2

5

khor
k

e−
khor
k

c2s
1þ w

k2
�
δ̃þ α

ρ0

ρ

�

þ k
kfs

e−5
kfs
k w2ðθ̃ þ β0k2Þ; ðB15Þ

where,

c2s ¼ c2g þ ðc2asp − c2gÞe−4
3

kfs
k ; ðB16Þ

is the approximate expression for the scale-dependent
sound speed in the Newtonian gauge. Also, the adiabatic
c2g and asymptotic c2asp sound speeds are given by Eqs. (9)
and (11) respectively, and the neutrino free-streaming kfs
and horizon khor scales are given by Eqs. (14) and (17),
respectively.
We were not able to directly test the fluid Eqs. (B3)

and (B4), with the approximations in Eqs. (B14) and (B15)
in the synchronous gauge, due to the fact that the
Boltzmann solver CLASS does not output the synchronous
gauge metric perturbations h and η as a function of the
scale factor for a given scale k. However, we were able to
extract the function α, applying the Eq. (B10) with both
the Newtonian and synchronous gauge exact solutions
(obtained from CLASS in high precision settings). This
allowed us to use the fluid equations to obtain the
approximate solution in the Newtonian gauge and then
transform that into the synchronous gauge, which is
mathematically equivalent to solving the fluid equations
in the synchronous gauge. When comparing to the exact
synchronous gauge transfer functions we obtain a level of
accuracy which is the same as observed in the Newtonian
gauge, hence verifying that the fluid approximation works
as well in the synchronous gauge as it does in the
Newtonian gauge.
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