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Based on a formalism introduced in our previous work, we reconstruct the phenomenological function
GeffðzÞ describing deviations from general relativity (GR) in a model-independent manner. In this alternative
approach, we model μ≡ Geff=G as a Gaussian process and use forecasted growth-rate measurements from a
stage-IV survey to reconstruct its shape for two different toy-models. We follow a two-step procedure: (i) we
first reconstruct the background expansion history from supernovae (SNe) and baryon acoustic oscillation
(BAO) measurements; (ii) we then use it to obtain the growth history fσ8, that we fit to redshift-space
distortions (RSD) measurements to reconstruct Geff . We find that upcoming surveys such as the dark energy
spectroscopic instrument (DESI) might be capable of detecting deviations fromGR, provided the dark energy
behavior is accurately determined.Wemight even be able to constrain the transition redshift fromG → Geff for
some particular models.We further assess the impact of massive neutrinos on the reconstructions ofGeff (or μ)
assuming the expansion history is given, and only the neutrino mass is free to vary. Given the tight constraints
on the neutrino mass, and for the profiles we considered in this work, we recover numerically that the effect of
such massive neutrinos do not alter our conclusions. Finally, we stress that incorrectly assuming a ΛCDM
expansionhistory leads to a degraded reconstructionofμ, and/or a non-negligible bias in the ðΩm;0; σ8;0Þ-plane.
DOI: 10.1103/PhysRevD.108.023504

I. INTRODUCTION

Addressing the late-time accelerated phase of expansion
of the Universe remains a major challenge for fundamental
physics [1,2]. Though most observations to date are in
agreement with the standard (concordance) model of
cosmology (ΛCDM), alternative explanations for dark
energy (DE)—other than a cosmological constant Λ—
are still up for debate (see e.g. [3]). In particular, modifying
the laws of gravity (beyond Einstein’s GR) at large scales
remains a tantalizing possibility [4,5]. Besides the exact
nature of the dark energy (DE) component and its (effec-
tive) equation of state, additional modifications come with
the properties of the relativistic degrees of freedom, notably

the neutrino sector. Interestingly, despite the wide class
of modified-gravity (MG) scenarios explored in the last
decades, observations seem to suggest that GR remains our
best description of gravitational interactions, where dark
energy is in the form of a cosmological constant in the
Einstein field equations. For example, the detection of GW
170817, together with its electromagnetic counterpart GRB
170817A [6], implies that gravitational waves travel at the
speed of light—ruling out a large subclass of Horndeski
models predicting a tensor speed cT ≠ c at the present
epoch [7]. Hence the detection of gravitational waves (GW)
has added stringent constraints on modified gravity models
in addition to local constraints. Note that a viable cosmic
expansion history can give additional strong constraints, for
example, on fðRÞ models [8].1 At the phenomenological
level, most modified theories of gravity predict a time*calderon@kasi.re.kr
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1Viable cosmological models of the present Universe in fðRÞ
gravity satisfying these constraints were independently con-
structed soon after that paper in [9–11].

PHYSICAL REVIEW D 108, 023504 (2023)

2470-0010=2023=108(2)=023504(12) 023504-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8215-7292
https://orcid.org/0000-0003-2934-6243
https://orcid.org/0000-0002-7049-8276
https://orcid.org/0000-0001-6815-0337
https://orcid.org/0000-0002-8946-9088
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023504&domain=pdf&date_stamp=2023-07-11
https://doi.org/10.1103/PhysRevD.108.023504
https://doi.org/10.1103/PhysRevD.108.023504
https://doi.org/10.1103/PhysRevD.108.023504
https://doi.org/10.1103/PhysRevD.108.023504


(and possibly scale) dependent effective gravitational cou-
plingGeffðzÞ [12,13] entering the equation for the growth of
perturbations. Thus, detecting a deviation from Newton’s
constant would be a smoking gun for physics beyond
ΛCDM and even beyond GR.
Let us present now the basic formalism of our approach,

starting with the background. We consider here spatially
flat Friedmann-Lemaître-Robertson-Walker universes with

h2ðzÞ≡H2=H2
0 ¼ Ωm;0ð1þ zÞ3 þ ð1 −Ωm;0ÞfDEðzÞ; ð1Þ

where fDE ¼ ρDEðzÞ=ρDEðz ¼ 0Þ. While the second term
in (1) becomes generically subdominant in the past for
viable cosmologies, this has to be enforced explicitly at
high redshifts (where no data are available) once we use
Gaussian processes in order to reconstruct hðzÞ [14]. We
stress further that the parameter Ωm;0 refers to clustered
dustlike matter only. The second term of (1) is more general
than the compact notation suggests, see the discussion
given in [14]. We turn now to the perturbations. We use
the following conventions and notations [12] (see also
e.g. [15]) in the conformal Newtonian gauge, where the
perturbed FLRW metric is described by (c ¼ 1)

ds2 ¼ −ð1þ 2ϕÞdt2 þ ð1 − 2ψÞa2dx2; ð2Þ

where ϕ and ψ are the Bardeen potentials.
Phenomenologically, on subhorizon scales, in many modi-
fied gravity models the departure from the standard
perburbations growth in GR is encoded in the modified
Poisson equation [12] (see also e.g. [15–17])

∇2ϕ ¼ 4πGeffða; kÞ ρ≡ 4πGμða; kÞρ: ð3Þ

GR corresponds obviously to μ≡ 1. The relation between
the Bardeen potentials is expressed as follows

ϕ≡ ηða; kÞψ ; ð4Þ

the two potentials are generically unequal in these models.
The subhorizon modes are essentially affected by μ as is
explicit from Eq. (5) given below, while super horizon
modes are affected by both μ and η [16]. In this work, given
the datasets considered, we restrict our attention to μ (see
e.g. [18,19] for constraints on η). In what follows, we will
use Geff and μ interchangeably, since μ is just Geff in units
of G. The growth of dustlike subhorizon matter perturba-
tions in the quasi-static approximation (QSA) is then
governed by [12]

δ̈þ 2H_δ ¼ 4πGρδμðz; kÞ; ð5Þ

where δ≡ δρ=ρ is the density contrast of dustlike matter.
For modes of cosmological interest, the k-dependence

of μ is often mild and can be neglected in a first
approach [20–22]—see e.g. [23–26] for current and future
constraints on the scale dependence of μ. Note that this is
certainly the case for the unscreened scalar-tensor model
considered in [12]. We will restrict ourselves here to
phenomenological models where μ or Geff is scale
independent.
The above equation can be rewritten in terms of the

growth factor f ≡ δ0=δ, to give

f0 þ
�
f þ 2þ h0

h

�
f −

3

2
ΩmðzÞμðzÞ ¼ 0; ð6Þ

where a prime stands for derivative with respect to
N ≡ ln a. From an observational standpoint, redshift space
distortions (RSD) provide us with growth rate measure-
ments of the quantity

fσ8 ≡ σ8;0
δ0

fδ ¼ σ8;0
δ0

δ0; with δ0 ¼ δðz ¼ 0Þ: ð7Þ

We remind that the quantities Ωi appearing in (1) and (6)
are defined in the standard way as in GR with the help of
Newton’s constant G.
In this work, we will use the synergy between geomet-

rical background probes (type Ia supernovae [SN] and
baryon acoustic oscillations [BAO]) and growth measure-
ments from RSD to constrain the phenomenological
function μðzÞ describing the departures from GR. While
current analysis pipelines rely on various assumptions
(namely, Λþ GR) when extracting the cosmological infor-
mation from large-scale structure, in particular the BAO
and RSD measurements, we expect that our results will
remain essentially unaffected when such effects are taken
into account.
The paper is organized as follows. We start by describing

in detail the methodology and the data used in Sec. II.
In Sec. III, we apply the method to simulated RSD data
generated with μ ≠ 1 in both idealistic and realistic
scenarios and further discuss the implications of the results.
We also comment on the effects of incorrectly assuming
a ΛCDM expansion history on the reconstructions in
Sec. III C. In Sec. IV, we consider separately the inclusion
of massive neutrinos.

II. METHOD AND DATA

A. Models and mock data

For the data, we generate mock fσ8 measurements for
a (stage-IV) DESI-like survey following Tables 2.3–2.7
in [27] (covering 14 Kdeg2) and for different behaviors of
Geff that we aim to reconstruct. Namely, we consider an
fðRÞ-inspired bumplike profile (which we refer to simply
as “bump”) and a smooth steplike transition (“dip” here-
after) in the recent past towards the weak gravity regime
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(Geff < G), see e.g. [28,29].2 These two profiles are treated
purely phenomenologically here,3 indeed viable fðRÞ
theories are actually screened and allow Geff;0 to deviate
from G today. Nonetheless, due to the k dependence of μ
which we do not discuss here, cosmic scales smaller than
some critical scale would experience a boost in their growth
in the recent past.
In the case of the dip, we consider it mainly to assess

whether such profiles can be accurately reconstructed using
our model-independent approach. Note in this context that
a decreasing μ is impossible in massless scalar-tensor
models [33]. To summarize, these hybrid profiles allow
us to test our reconstruction independently of any theo-
retical prior. The behaviors of the phenomenological
functions μfidðzÞ used to generate the data are depicted
by the dashed lines in the upper panel of Fig. 2, while the
corresponding growth fσ8ðzÞ evolutions are shown in the
lower panel. We also make use of stage-IV SNþ BAO data
to determine the background expansion history hðzÞ with-
out relying on a specific parametric model, as explained in
Sec. III B. The fiducial background used to generate the
data is a Chevallier-Polarski-Linder (CPL) model [34,35],
extensively discussed in [14] with

θfid ¼ fΩfid
m;0 ¼ 0.28; wfid

0 ¼ −0.95; wfid
a ¼ 0.3;

hfid ¼ 0.7; σfid8;0 ¼ 0.81g; ð8Þ

where H0 ¼ 100h km s−1Mpc−1. More details on the
background-only (SNþ BAO) mock data can also be found
in [14]. Already at this stage, let us note that modified
theories of gravity can lead to a modified Chandrasekhar
mass (with mch ∼G−3=2

eff [36]), relevant for SNeIa analyses,
which can affect the absolute magnitude [e.g. ΔM ¼
15
4
logμðzÞ in scalar-tensor theories4 [38,39]] and hence

the distance measurements obtained from such standard
candles [40–42]. This effect has even been proposed as a
possible explanation for the mismatch between early and
late-time measurements of the Hubble constant H0, see
e.g. [43–49]. However, for our purposes, we neglect these
effects and assume the hðzÞ measurements obtained from
SNe are independent of μ in the current analysis. The
inclusion of these effects for a specific model might be the
subject of future works.

B. The method

To explore possible modifications of gravity at late
times, we model GeffðzÞ as a Gaussian process5 (GP)
centered around Newton’s constant G, such that

μðz; σf;lf; zcÞ ¼
�
GPðf̄ðzÞ ¼ 1; kðσf;lfÞÞ; for z < zc
1; for z ≥ zc;

ð9Þ

so that we recover GR at large-z. We “pretrain” our GP with
the following theoretical priors:

μð0Þ ¼ 1� 0.05; ð10aÞ

μðzcÞ ¼ 1� 10−10; ð10bÞ

μ0ð0Þ ¼ μ0ðzcÞ ¼ 0� 10−10: ð10cÞ

These conditions allow us to smoothly recover Geff ¼ G
above a certain zc and at z ¼ 0, while exploring possible
departures from GR at intermediate redshifts 0.1 < z < 10
(see e.g. [19,47,51–56] for other approaches). Recovering
Geffð0Þ ¼ G is not strictly necessary (see our discussion at
the beginning of this section), but from a technical point of
view it can help guide our reconstructions at very low z
where we are volume limited and uncertainties become
quite large. Furthermore, when dealing with real data, we
do not know the true behavior of μ, and whether the
underlying model is screened or not, hence the two
representative behaviors at z ¼ 0 chosen for our profiles.
It is comforting to find that the first condition does not alter
the reconstruction of the second profile around z ¼ 0 as
illustrated by the blue curves in Fig. 2.
We use a squared exponential kernel given by

kðz; z0; σf;lfÞ ¼ σ2fe
−ðz−z0Þ2=2l2f ; ð11Þ

where σf and lf determine the amplitude and typical length
scale of the correlations, respectively [50].
In a Bayesian spirit, we give flat uninformative and wide

priors to the cosmological and (hyper)parameters, listed in
Table I. We sample the parameter space using Markov
chain Monte Carlo (MCMC) methods, as implemented in
emcee [57,58]. At each step in the MCMC, we draw a
sample of μðN ¼ ln aÞ≡Geff=G ∼ GPð1; KÞ, character-
ized by ðσf;lf; zcÞ, and solve the growth equation for a
given value of σ8;0 and expansion hðzÞ, to obtain a solution2Indeed, both such profiles can occur in viable cosmological

models in fðRÞ gravity, see Ref. [30] in particular, especially in
the case of oscillations around phantom divide [31].

3Reference [32] presented a concrete MG model with similar
profiles for μðzÞ considered in this work (or rather their
reflections along the μ ¼ 1 axis), which could simultaneously
ease the H0 and σ8 tensions.

4Note however that this theoretical correction can be even
smaller, if the stretch correction is taken into account [37].

5We do not delve into the details of Gaussian process modeling
here, instead we refer the reader to our previous work [14] and the
excellent review [50] for more. Note that in this work, unlike
common notations in the GP literature, μ refers to the phenom-
enological function appearing in (3), and the mean of the GP is
denoted by f̄.
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fσ8ðzÞ—see the diagram in Fig. 1—prior to any compari-
son with the data. Note that the parameter zc also enters
prior to any computation of the likelihood and is irrespec-
tive of the data points. In other words, this can be seen as
forward modeling, rather than training the GP with the data
in the usual sense. Thus, we rely on the maximization of the
following likelihood function

lnL ¼ −
1

2
χ2 ¼ −

1

2
r⊺ · C−1 · r; ð12Þ

where r ¼ fσGP8 − fσdata8 is the residual vector and C−1 is
the inverse of the covariance matrix. The growth history
fσGP8 is obtained by solving the Eq. (6) for each “pre-
trained” sample of μðzÞ drawn from Eq. (9). Those samples
of μðzÞ retracing a similar shape to μfid will yield a better fit
to growth data, and thus will be statistically favored in the
long run. Averaging over a large number of realizations
gives the median shape of μðzÞ and 95% ð2σÞ confidence
intervals around it. This is along the lines of what was done
in [14] to reconstruct fDE, but this time we also include
conditions on the derivatives of the GP, to smoothly recover
the form in Eq. (9), following the formalism described in
Appendix A.

III. RESULTS AND DISCUSSIONS

A. Ideal case: Background is perfectly known

We first consider the idealistic case where the back-
ground expansion history is perfectly known. In other
words, we fix Ωm;0 and σ8;0 to their fiducial values and

further assume that the dark energy evolution is known
fDEðzÞ ¼ ffidDE. Although this is far from being a realistic
scenario, it allows us to test our method and quantify the
uncertainties purely coming from the modifications of
gravity, encoded in Geff .
The posterior distributions for μðzÞ assuming perfect

knowledge of hðzÞ and σ8;0 are shown in Fig. 2. If the
background (and the amplitude of fluctuations σ8;0)
are perfectly known, the RSD data alone are enough to
perform an accurate (within 2σ) reconstruction of the
underlying theory of gravity, i.e. GeffðzÞ. In the next
subsection, we take a more realistic approach, where only
minimal assumptions on the background are made6 and
hðzÞ is purely determined from the data.

B. Realistic case: σ8;0 free—Ωm;0 and fDEðzÞ determined
by SN+BAO

In this section, instead of assuming a parametric form for
hðzÞ, we use the reconstructed expansion history as
determined by SNþ BAO data. In practice, this amounts

FIG. 1. Schematic representation of our analysis pipeline. We
sample the (log) of the hyperparameters ðσf;lf; zcÞ to obtain
samples of μðzÞ, which we use—together with a given expansion
history hðzÞ and a value of σ8—to compute the growth history
fσ8ðzÞ that we compare to DESI-like RSD measurements to
“reconstruct” μðzÞ. The expansion history is reconstructed in a
model-independent fashion, using the methodology introduced
in [14].

FIG. 2. Reconstructions of Geff in the idealistic case where the
background hðzÞ and amplitude of fluctuations σ8;0 are perfectly
known. Solid lines and shaded regions correspond to the median,
68% and 95% confidence intervals around it, respectively.
Dashed lines correspond to the fiducial cosmologies generating
the DESI-like (RSD) data. The redshift zc of the transition to GR,
as well as the hyperparameters σf and lf appearing in (9) are
nonetheless free parameters to be determined by the data. Both of
these reconstructions detect deviations from GR (μ ¼ 1) at more
than 2σ for z ∼ 1.

TABLE I. Uniform priors for the parameters used in the
MCMC analyses.

Parameter σ8;0 log10 σf log10 lf log10 zc

Prior [0.5, 1.2] ½−3; 0.5� ½−1; 0.2� ½−1; 1�

6We only assume a flat FLRW universe, and that the
Hubble rate is a sum of a matter term and an “effective” DE
component [14].
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to obtaining an expansion history hðzÞ from the samples of
fDE and calculating angular and luminosity distances
which are then fitted to the data, as explained in [14].
The degeneracies between σ8;0;Ωm;0 and Geff make it very
hard to say something about the underlying theory of
gravity, given the quality of the data and, in particular,
when all parameters are free to vary. To circumvent this
issue, we assume a single expansion history, as determined
solely by the data. More specifically, the expansion history
hðzÞ, along with the value of Ωm;0—needed for solving the
growth equation (6)—is the median of all the realizations
drawn from the Markov SNþ BAO chains,7 obtained
in [14]. Indeed, it was shown in [14] that our method is
able to capture a large class of DE models, even
those where the contribution from DE is not negligible
at high-z. Our reconstruction of hðzÞ is accurate to ≲1%
across the entire redshift range of interest—see Fig. 3.
The amplitude of the fluctuations, σ8;0, now becomes a
free parameter, and we sample the full parameter space
θ ¼ fσ8;0; log10 σf; log10 lf; log10 zcg in the range given by
Table I. In Fig. 4, we show the reconstructions when using
the median of hðzÞ and median Ωm;0 from the SNþ BAO
chains. As expected, the uncertainties in the reconstructions
increase with respect to those in Fig. 2, as σ8;0 is now a free
parameter that is somewhat degenerate with Geff , allowing
for more flexibility in the samples of Geff drawn at each
step in MCMC.

The advantage of taking this approach is that we do
not make any assumption on the evolution of DE, and we
are able to effectively reconstruct any expansion history
directly from the data, by reconstructing fDEðzÞ. Moreover,
this disentangles the uncertainties coming from the growth
evolution fσ8ðzÞ and those coming from the background
expansion hðzÞ. This also allows us to point down a value
for Ωm;0, which is of course anticorrelated with σ8;0, which
is in turn anticorrelated with Geff . Thus, allowing for more
constraining power on the quantity of interest μðzÞ from
RSD alone. The two-dimensional posteriors of the quantity
μ at two different redshifts z ¼ 0 and z ¼ 1.4 are shown in
Fig. 5. At z ¼ 1.4, where most of the constraining power of
RSD measurements lies, the bumplike posteriors in red
exclude GR (μ ¼ 1, in dashed) at> 2σ, while the posteriors
for the diplike profile in blue are marginally consistent with
GR at the 2σ level. At low redshift, because of the large
uncertainties in fσ8, the posteriors are much broader and
provide a ∼20% constraint on μðz ¼ 0Þ. We note that the
study of peculiar velocities using SNIa from ZTF and LSST
can potentially improve the measurements of the growth at
very low-z by a factor of 2 with respect to DESI [59]—see
also [60] for other interesting constraints using gravita-
tional waves and galaxies’ peculiar velocities. Interestingly,
because the redshift zc in (9) of the transition from
G → Geff is a free parameter, our method allows us to
constrain when the departures from GR start taking place

FIG. 3. Top: Reconstruction of the DE evolution fDEðzÞ.
Bottom: Relative (percentage) errors in the background recon-
structions from forecasted SNþ BAOmeasurements. The orange
line corresponds to the true fiducial background in (8), while gray
lines depict the reconstructed median, 68% and 95% confidence
levels around it. Dashed-black line correspond to ΛCDM’s best-
fit (fDE ¼ 1, Ωm;0 ¼ 0.3103) to SNþ BAO data. FIG. 4. Realistic case where σ8;0 is allowed to vary, and the

background hðzÞ is determined by SNþ BAO (gray lines in
Fig. 3). The fiducial cosmologies used to generate the fσ8ðzÞ
measurements are shown by the dashed lines. Despite having
larger error confidence intervals with respect to the idealistic case
in Fig. 2, both of these reconstructions are still able to rule out GR
at more than 2σ at z ∼ 1.

7The posterior distributions correspond to the blue contours
shown in Fig. 6 of Calderón et al. [14].
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(see Fig. 8 and the discussions in Appendix B). For the
particular profiles considered in this work, the posterior
distribution of zc is quite peaked, and we have a “detection”
of a transition from G → Geff in both cases, as seen from
Fig. 8. The corresponding constraints on zc are given in
Table II.

C. Incorrectly assuming a ΛCDM background

Cosmological observations suggest that dark energy is in
the form of a cosmological constant Λ. Because of its
simplicity and agreement with observations, it remains the
standard model of cosmology today. Thus, most cosmo-
logical analyses are done within the ΛCDM framework,
which might lead to biased reconstructions if DE is not

constant, as for the fiducial cosmology considered here.
In this section, we explore the effects of incorrectly
assuming a ΛCDM background expansion history in the
reconstructions of μðzÞ. In other words, we fit a ΛCDM
model to the SNþ BAO mock data described before and
find the corresponding best-fit value for Ωm;0 (and thus
ΩΛ;0 ¼ 1 −Ωm;0). We remind the reader that the mock data
are generated from a time-evolving CPL dark energy
model, given by Eq. (8). We then use this expansion
history to solve for the perturbations and reconstruct μðzÞ,
as explained in the previous sections. The black dashed
lines in Fig. 3 show the best-fit ΛCDM expansion history
(with ΩΛCDM;bf

m;0 ¼ 0.3103þ0.0025
−0.0024 ), compared to the fiducial

one with Ωfid
m;0 ¼ 0.28 in orange (hence, representing a

∼12σ bias in the fractional matter density). Despite having
almost identical HðzÞ, the differences in the DE evolution
fDEðzÞ and biased Ωm;0 translate into a degraded
reconstruction of Geff , shown in Fig. 6—to be compared
with Fig. 4. We also find that the inferred value of σ8;0 can
be biased σ8;0 ∼ 0.78 vs σfid8;0 ¼ 0.81 (which corresponds to
a ∼1.2σ bias in the inferred amplitude of fluctuations) for
the case of the dip (in blue)—see Table II. As understood
from our previous work [14], from the background-only
(SNþ BAO) standpoint, the lack of DE at high-z is
compensated by higher values of Ωm;0, which translates
into lower values of σ8;0 (or lower Geff < Gfid

eff ) to maintain
the agreement with growth-rate measurements of fσ8ðzÞ.
This is a perfect example of what might happen if one

FIG. 5. Marginalized posterior distributions of the relevant
cosmological parameters, when using our model-independent
reconstructions of hðzÞ, shown in gray in Fig. 3 [where the
unknown function fDEðzÞ is reconstructed in a fully model-
independent way and Ωm;0 is fixed to the median of all possible
values obtained from the SNþ BAO chains—cf. Sec. III B].

TABLE II. Marginalized constraints (median and 68% confi-
dence levels) on the relevant parameters. We compare the effects
of incorrectly assuming ΛCDM (bottom-two rows) vs the
reconstructed hðzÞ from SNþ BAO in the upper-two rows. In
the last column, we report the log-likelihood values lnL≡ − 1

2
χ2.

Model σ8;0 log10 zc lnL

Bump 0.814þ0.022
−0.032 0.524þ0.342

−0.092 −10.15þ0.78
−1.48

Dip 0.806þ0.017
−0.013 0.79þ0.15

−0.40 −10.36þ0.96
−1.46

Bump (ΛCDM) 0.812þ0.013
−0.021 0.86þ0.10

−0.42 −10.35þ0.94
−1.97

Dip (ΛCDM) 0.784þ0.023
−0.015 −0.17þ0.20

−0.34 −10.5þ1.0
−1.3

FIG. 6. Reconstructions of μðzÞ when assuming the best-fit
ΛCDM’s expansion history, with Ωm;0 ¼ 0.31. Incorrectly as-
suming a ΛCDM background leads to biased determinations of
σ8;0 and a degraded reconstruction of μðzÞ, despite being perfectly
consistent with fσ8ðzÞ, as can be seen from the lower panel.
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incorrectly assumes DE is constant, the background
expansion history might be consistent with the geometrical
probes (SNþ BAO), but a tension might appear in the
amplitude of fluctuations σ8;0 inferred from LSS observ-
ables. Despite the bias in the cosmological parameters
Ωm;0 and σ8;0—and for the specific cases of μðzÞ considered
here—the reconstructions are still able to capture the main
trends in μðzÞ.
Finally, let us note that for the steplike transition in blue,

the reason why the reconstructions deviate somehow from
the fiducial μfidðzÞ (in dashed) at very low-z is because of
our theoretical prior Geffðz ¼ 0Þ ≃G, which tends to draw
our GP samples back to 1. We stress that this prior does
not need to be imposed, as we do not necessarily have
Geffðz ¼ 0Þ ≃G in most MG theories. We have in mind
here theories without screening mechanisms that do require
Geff ≃G today to satisfy local constraints, e.g. [61].
Despite this prior, because of the large uncertainties in
RSD measurements at z ∼ 0, our reconstructions are still
able to capture (within 2σ) the true fiducial μfidDip.

IV. EFFECT OF MASSIVE NEUTRINOS

In this section, we consider universes containing massive
neutrinos. We want to investigate how well our
reconstruction of μ fares in their presence. It is well known
that free-streaming species with nonzero mass (here mas-
sive neutrinos) lead to a suppression of gravitational
clustering on scales below a characteristic scale, corre-
sponding to their free-streaming length. Hence, while
massive neutrinos contribute to the universe’s expansion
in the same way as usual dustlike matter (corresponding to
Ωm), they are absent from the driving term in the matter
perturbations growth. Hence we have in front of us a
situation where the parameter Ωm;0 does not represent all
dustlike components at low redshifts. Indeed, one cannot
distinguish massive neutrinos from dustlike matter purely
from geometric probes at low z. In this case, the splitting
in (1), while sensible theoretically, is somewhat ambiguous
regarding expansion data if we have no additional infor-
mation on Ωm;0 or Ων;0. This ambiguity however gets
broken once we consider the perturbations growth. In a first
step, we assume the presence of massive neutrinos and we
work with equation (14) below [instead of (1)]. So, while
we reconstruct μ as a Gaussian process, we assume the
background expansion is known up to the two parameters
Ωm;0 and mν. Here however, we have only one free
parameter left. Indeed, in this section we fix the present
relative energy density Ωtot

m;0 of all components which
behave like dust at low z, namely,

Ωtot
m;0 ≡Ωm;0 þ Ων;0 ¼ Ωcdm;0 þ Ωb;0 þΩν;0; ð13Þ

where Ωcdm;0, Ωb;0, and Ων;0 are the present relative
densities of cold dark matter, baryons, and massive

neutrinos respectively. Note that the couple of parameters
ðΩm;0; mνÞ and ðΩtot

m;0; mνÞ carry the same information.
We assume now that h2ðzÞ is given by

h2ðzÞ ¼ Ωm;0ð1þ zÞ3 þ ΩΛ;0 þ Ωγ;0ð1þ zÞ4

×

�
1þ 0.2271

Neff

3

X
i

fν

�
mνi

Tν

��
; ð14Þ

where fνðyÞ ≃ ð1þ ðAyÞpÞ1=p is a fit provided in Ref. [62],
with A ¼ 180ζð3Þ

7π4
and p ¼ 1.83; where ζ is Riemann’s ζ

function. This fitting function fν describes the evolution
from the relativistic behavior when mν ≪ Tν (Tν ∼ a−1) to
the nonrelativistic regime when we have eventually
mν ≫ Tν. Like in (1), the first term appearing in (14)
corresponds to the fractional amount of matter that clusters.
In order to test our reconstruction in the presence of
massive neutrinos, it is more relevant to consider universes
sharing identical Ωtot

m;0 rather than identical Ωm;0, but with
different Ωm;0, or equivalently different neutrino masses
mν. Clearly, the parameters Ωtot

m;0 andmν, completely define
the background expansion (14).
The driving term in the perturbations growth equation

depends on the combination μΩm. Hence for modified
gravity and in the presence of massive neutrinos, this
combination is modified at low redshifts as follows

GΩtot
m → GeffΩm ¼ GΩtot

m μ

�
1 −

Ων

Ωtot
m

�

≈ 0.965
mν

0.5 eV
h−270 μ GΩtot

m ; ð15Þ

where we evidently have Ωtot
m ¼ Ωm in the absence of

massive neutrinos, and h70 ¼ H0=70 km s−1Mpc−1. For
the values we take here, the change comes essentially from
modified gravity.
Here, we forecast the future surveys’ potential to

reconstruct the coupling strength μðzÞ in the presence of
massive neutrinos and purely from RSD measurements of
fσ8ðzÞ. As before, we generate mock data from a fiducial
model; this time we choose a (ΛCDMν) cosmology
containing 2 massless and 1 massive neutrinos, with
mfid

ν ¼ 0.5 eV. Although this mass is larger than what is
currently allowed by cosmological observations8 [63,64],
it is still within the allowed mass range probed by terres-
trial experiments, which constrain m2

ν ≡ ΣijUeij2m2
i ¼

0.26þ0.34
−0.34 eV2, yielding an upper bound on the electron

(anti)-neutrino mass mν < 0.8 eV at 90% C.L. [65].9 The
rest of the cosmological parameters are fixed to Planck’s

8Cosmological constraints are indirect and somewhat model
dependent, unlike ground-based experiments.

9Note that masses of usual and sterile neutrinos mν ∼ 1 eV are
well possible in viable fðRÞ cosmological models [66,67].
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best-fit values. Because of the growth suppression from
such a massive neutrino, the normalization of the matter
power spectrum Pmðk; z ¼ 0Þ, characterized by σ8;0, is now
σfid8;0 ≃ 0.73, lower than in the previous sections (where σ8;0
was fixed to σfid8;0 ¼ 0.81).
In what follows, we assume that this normalization

(σfid8;0 ¼ 0.73, as obtained for μ ¼ 1) is the same for all
profiles of Geff . Although the actual normalization of the
Pmðk; z ¼ 0Þwould indeed depend on the theory of gravity,
we generate mock data for different profiles of μ from the
same value of σ8;0. We stress that this choice is arbitrary, as
we are dealing with simulated data and we are interested in
assessing whether the theory of gravity μðzÞ and σ8;0 are
accurately recovered by our model-independent reconstruc-
tions, which do not know anything about the underlying
theory that generates the data.
We then sample the parameters θ ¼ fσ8;0; mν; log10 σf;

log10 lf; log10 zcg, with mν ∈ ½0; 1� to see the impact of a
varying neutrino mass on the reconstructions of μðzÞ. The
posterior distributions for the relevant cosmological param-
eters are shown on Fig. 7. Although we sample mν, we
show the posterior distributions for the derived parameter
Ωm;0, as it corresponds to the driving term for the growth in
the right-hand side of Eq. (6) and the actual neutrino mass
is unconstrained. The value of σ8;0 is anticorrelated with the
reconstructions of μ, mainly seen in the ðσ8;0; μðz ¼ 1.4ÞÞ-
plane. Large deviations from GR, up to μðz ¼ 1.4Þ ∼ 1.8

can be achieved, provided that the amplitude of fluctuations
σ8;0 is low (σ8;0 ∼ 0.65). A slight (negative) correlation
between Ωm;0 and σ8;0 is also obtained, as expected. The
enhanced suppression of growth (due to larger mass mν,
hence smaller Ωm;0 ¼ Ωtot

m;0 − Ων;0) needs to be compen-
sated by larger values of σ8;0, to maintain the agreement
with fσ8 measurements. Despite these correlations, the
reconstructions of μðzÞ remain accurate, and does not seem
to be affected by a varying neutrino mass (other than
increasing the uncertainties in the reconstructions, due to an
additional free parameter). The fiducial value for σ8;0,
shown as a dashed vertical line in Fig. 7, is also accurately
recovered.
Finally, let us note that we separately tested our

reconstructions in the presence of massive neutrinos with-
out assuming the functional form of hðzÞ, given by (14) but
using instead the (reconstructed) effective fDEðzÞ in Eq. (1),
which captures the effect of relativistic species [14]. Our
conclusions remain unaltered, but no information on the
neutrino mass can be obtained.

V. CONCLUSIONS

In a companion paper Calderón et al. [14], we jointly
reconstructed the growth and expansion histories inside GR
directly from the data and using minimal assumptions. We
showed that our framework is able to capture a wide variety
of behaviors in the DE component. In this work, we extend
our methodology to include possible modifications of
gravity at late times, as encoded by the function GeffðzÞ
appearing in the (modified) Poisson equation. We illustrate
the efficiency of our method in reconstructing different
theories of gravity by reconstructing two phenomenologi-
cal shapes of μðzÞ≡Geff=G. As an example, we consider a
“bump” and a smooth transition (“dip”) towards the weak
gravity regime in the recent past. We used the reconstructed
hðzÞ from background-only data, as obtained in [14] in
order to fit fσ8ðzÞ to RSD mock data, thereby constraining
μðzÞ using minimal assumptions. We also explore the
effects of incorrectly assuming a ΛCDM background. In
both cases, the fiducial μðzÞ is within the 1σ confidence
intervals of our reconstructions, if the background is
accurately determined, and within 2σ if we incorrectly
assume the ΛCDM’s best-fit hðzÞ. Finally, we explored the
impact of massive neutrinos on the reconstructions of μðzÞ.
To summarize, let us list a few important results.

(i) If the background is given (Fig. 2), or accurately
reconstructed from SNþ BAO (Fig. 3), our recon-
structions of GeffðzÞ are able to distinguish both
fiducial μ-profiles from GR at ≳2σ (see Figs. 2
and 4).

(ii) Incorrectly assuming a ΛCDM expansion (with the
best-fit Ωm;0 to background probes) can lead to
biased/degraded reconstructions (red-shaded re-
gions in Fig. 6) and/or biased estimations of the

FIG. 7. Marginalized posterior distributions for the parameters
in the presence of massive neutrinos. This figure is the same as
Fig. 5, but this time assuming the background is known hðzÞ (up
to 1 free parameter mν) given by Eq. (14), including relativistic
species and when the neutrino mass is free to vary (cf. Sec. IV).
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amplitude of fluctuations σ8;0 (see Table II). This is
despite the perfect agreement with fσ8ðzÞ measure-
ments, as shown in the lower panel of Fig. 6.

(iii) The posterior distributions for the hyperparameters
clearly show the need for a deviation from the mean
f̄ ¼ 1, i.e. GR is not a good description of the data.
This is understood because the marginalized con-
tours in Fig. 8 suggest the data are not consistent
with vanishing values of σf, i.e. the posterior does
not extend to σf → 0, and therefore require devia-
tions from the considered mean function. Interest-
ingly, the redshift of the transition zc is also not
compatible with small values of zc, and we have a
“detection” on when this transition from G → Geff
happens; seen as a clear bump in Fig. 8.

In this work, we used forecasted (stage-IV) SNþ BAO
data to reconstruct the DE evolution fDEðzÞ—which
determines the expansion history hðzÞ—and separately
reconstructed μðzÞ using DESI-like fσ8ðzÞ measurements
for two different toy models of Geff . We expect our
methodology to hold for essentially any (viable) form of
Geff . We showed that for both profiles considered in this
work, the reconstructions are able to detect the deviations
from GR at ≳2σ in the redshift range 0.5≲ z≲ 1.5 where
DESI’s (RSD) constraining power lies. The inclusion of
external data sets, such as the (modified) luminosity
distance of gravitational waves dGWL ðzÞ [68] or the
Integrated Sachs-Wolfe effect (ISW) seen in the temper-
ature anisotropies of the cosmic microwave background

(CMB) in cross-correlation with LSS surveys would
provide interesting (model-independent) constraints on
the allowed deviations from GR [69]. Moreover, we note
that the effect of massive neutrinos would be tracked more
accurately if we allow for a scale-dependent growth. We
leave such extensions for future work.
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APPENDIX A: GAUSSIAN PROCESS
WITH OBSERVATIONS ON THE

DERIVATIVES

In this section, we describe a less common use of
Gaussian process when we also observe the derivative of
the function f to be reconstructed [50,70]. We note that in
this section, f denotes a general function, not the growth
rate. In our case, f ¼ μðzÞ. In addition to observations of y,
we also “observe” y0 ¼ f0ðxÞ þ ε, where,

ε ∼N ð0; Cy0 Þ; ðA1Þ

is a Gaussian noise and Cy0 is the covariance of the
derivatives.
We further assume that y and y0 are uncorrelated.

Therefore, the vector

2
6664
y

y0

f

f0

3
7775 ðA2Þ

is jointly Gaussian, and the posterior predictive distribution
can be calculated using

�
f

f0

�
jy; y0; X; X� ∼N

��
f̄

f̄0

�
; ½A − CB−1CT �

�
; ðA3Þ

where the mean is

FIG. 8. Marginalized posterior distributions for the relevant
parameters from the RSD chains. The background expansion
history used in the analysis is fixed to the median hðzÞ obtained
from the SNþ BAO chains, shown as a gray line in Fig. 3.
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�
f̄

f̄0

�
¼ CB−1

�
y − μy

y0 − μy0

�
; ðA4Þ

and the covariance matrix is given by

A ¼
�
K�� K01��
K10�� K11��

�
∈ M2n�;2n� ; ðA5aÞ

B ¼
�
K þ Cy K01

K10 K11 þ Cy0

�
∈ Mnþn0 ; ðA5bÞ

CT ¼
�
K� K01�
K10� K11�

�
∈ Mnþn0;2n� ; ðA5cÞ

where

K ¼ kðX;XÞ; ðA6aÞ

K� ¼ kðX;X�Þ; ðA6bÞ

K�� ¼ kðX�; X�Þ; ðA6cÞ

and for any matrix X,

Xi;j ¼ ∂
iþjX

∂Xi
∂Xj : ðA7Þ

The subscript � denote the set of points X where the
observations are done.10 This formalism allows us to
impose theoretical priors on the samples of μðzÞ and its
derivative μ0ðzÞ to smoothly recover the expected GR
behavior at early times [see Eq. (9)].

APPENDIX B: DISTRIBUTION OF THE
HYPERPARAMETERS

Inspecting the posterior distributions of the hyperpara-
meters, shown in Fig. 8, can yield additional information on
the Geff reconstructions and put interesting constraints on
the departures from GR. First, let us note that the inferred
value of σ8;0 is unbiased in both cases, when the evolution
of DE fDEðzÞ is reconstructed using our model independent
approach [14]. This is not the case when one (incorrectly)
assumes a ΛCDM expansion history (see Table II). Second,
both the bump and dip reconstructions seem to require a
deviation from the mean function f̄ ¼ μ ¼ 1 (i.e. GR), as
the posteriors of log10 σf are not compatible with σf → 0.
This suggest that GR is not a good description of the growth
fσ8ðzÞ history and that the data requires extra flexibility, as
encoded by the GP kernel in Eq. (11). Lastly, the posteriors
of log10 zc seem to peak at the redshift zc ∼ 3 where the
departures from GR actually takes place (depicted by the
vertical dashed line in Fig. 8).
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