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A key feature of ultralight dark matter composed by bosons is the formation of superfluid Bose-Einstein
condensate (BEC) structures on galactic scales. We study collisions of BEC solitonic and vortex structures in
the framework of the Gross-Pitaevskii-Poisson model. It is found that the superfluid nature of bosonic dark
matter leads to the formation of quantized vortex lines and vortex rings in interference patterns formed during
collisions. Calculating the gravitational wave luminosity, we demonstrate that quantum interference patterns
affect notably gravitational wave radiation. We reveal that superfluid self-gravitating BECs can form stable
localized vortex structures which remain robust even after a head-on collision.
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I. INTRODUCTION

The nature, composition, and physical properties of
dark matter (DM) are key puzzles of modern physics,
astrophysics, and cosmology. DM composed by ultralight
bosons in the state of Bose-Einstein condensate (BEC)
presents an appealing possibility because it naturally
resolves some problems of the standard ΛCDM model
on the galactic scale while maintaining the success of
the latter on larger scales (for a review, see [1]). These
conclusions are well-supported by cosmological simula-
tions [2]. The large-scale structure of the ultralight DM
simulations is indistinguishable from CDM, being consis-
tent with astrophysical observations. In cosmological
studies, it was found that the boson mass has to be ultralight
to reproduce the observed distribution of matter at large
scales [3,4]. For such extremely small mass, namely, of the
order of m ∼ 10−22 eV [2], quantum mechanical phenom-
ena manifest themselves on galactic scales. The viability
of the fuzzy DM model, a kind of ultralight DM without
self-interaction, was studied with the stellar kinematics
measurements in dwarf galaxies [5].
The evolution of a self-gravitating galactic BEC is

governed by the system of the Gross-Pitaevskii-Poisson
(GPP) equations. These equations appear in different areas
of physics and describe such seemingly distinct physical

processes as the nonlinear propagation of optical beams in
nonlocal media, atomic BECs, and the evolution of cold DM
galactic halos [6–9]. The theoretical proposal on how the
interatomic interaction potential can be engineered to mimic
gravitational interaction was first introduced in Ref. [10] and
further developed in Refs. [11–13]. The central idea of these
proposals is based on a dipole-dipole interaction between
atoms modified by high-intensity off-resonant laser beams.
This opens an intriguing possibility of modeling cosmo-
logical structures via their laboratory analogs, where the
results obtained in one area can be applied in the others.
BEC structures could play an important role in astro-

physics and cosmology. They have been predicted to form
the central cores of ultralight axion DM halos. Similar
proposals to describe DM structures as BEC were sug-
gested in many studies [14–18].
A well-established fact is that compact spherical astro-

physical objects that may be formed due to the Bose-
Einstein condensation of DM are stable, as was found
numerically [19,20]. Since BEC is a superfluid, it could
form vortices with quantized angular momentum [21,22].
Rotation in BEC halos would affect their structure and thus
could lead to observable consequences [18,23–25].
Stationary vortex states of a spinning DM cloud with

different winding numbers and typical galactic halo mass
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and radius were recently studied in [26]. It was found
that while all multicharged vortex states are unstable, a
single-charged vortex state is very robust, even being
strongly perturbed, and survives during the lifetime of the
Universe. An analysis of the stability of solutions with
different winding numbers and interaction constant val-
ues, e.g., bosonic stars, was performed in [27] where it
was found that only states with winding number s ¼ 0
and s ¼ 1 could be stable. Furthermore, fundamental
solitons form an interference pattern during a head-on
collision, but survive and revive their shapes after
collision [13,28–31]. This raises a more sophisticated
question of whether the vortex solitons also remain stable
after a head-on collision. To the best of our knowledge,
stability of colliding vortex solitons in self-gravitating
BEC has never been investigated.
An important clue to revealing DM nature is the first

indication of DM nongravitational self-interaction, which
has been recently reported for clusters collisions [32,33].
These observations could be explained by the ultralight DM
model with collisional dynamics of stable solitary solutions
of the Schrödinger-Poisson equation [34]. The nature
of BEC severely affects the collisional dynamics of DM
clumps and could explain the recent puzzling observations,
presented in [32,33].
Binary solitonic collisions were studied both analytically

and numerically [28]. These collisions are characterized by
the relative amounts of the kinetic, self-interaction, and
gravitational binding energies. Systems with “negative”
energy (when the kinetic and self-interaction energies are
smaller than the gravitational binding energy) will combine
and merge, whereas systems with “positive” energy will
behave as solitons and pass right through each other. The
3D cosmological simulations with merging multiple sol-
itons to create individual virialized objects were conducted
[33,35–37]. During the merger of two-state configurations,
the total density approaches a stationary state. The obtained
averaged profile has a core plus tail structure that could
serve to explain the results in simulations of DM structure
formation [33,36]. Similar numerical solutions were
obtained in the case of collision of two spherical BEC
cores, with [38] and without [36,39] the nonlinear self-
interaction term in the GPP equations. In collisions of
solitonic cores with opposite phases, a destructive inter-
ference occurs, which gives rise to a short-range repulsive
force between the cores [34]. As the authors of [32] pointed
out in the context of galaxy cluster observations with
indications of an offset between dark and stellar matter
[32,40], this effect can provide an alternative explanation to
self-interacting DM.
The relaxation process during BEC structures collision

suggests a rich phenomenology [41]. Mergers of two
solitons undergo relaxation in the form of gravitational
cooling [36]. The gravitational cooling process for ini-
tially quite arbitrary density profiles leads to relaxation

and virialization through the emission of bosonic particles
[42]. In addition, density oscillations take place and the
period of these oscillations could range from a fraction of
1 gigayear up to many gigayears [36].
Alternative treatment of the soliton-soliton collision

and orbiting binary boson stars is discussed in [43–45],
where instead of the standard nonrelativistic GPP system of
equations, the Einstein-Klein-Gordon system of equations
is solved. The first studies of head-on collisions of mini
bosonic stars were performed in [46] by using 3D code.
Ultrarelativistic collisions were considered in [47], and
head-on and orbital mergers of nonidentical boson stars
in [43,44].
Obviously, since only the luminous matter is directly

observable, collisions of galaxies composed of dark and
luminous matter could provide very important informa-
tion about DM [42]. Studies in this direction [42]
show that luminous matter cannot follow these extreme
dynamics and is expelled from the gravitational poten-
tial. The bullet cluster gives the famous example [48],
in which the visible matter and DM are spatially
separated after the collision. Therefore, it is interesting
to determine the characteristics of collisions of self-
gravitating BECs in states with nonzero angular
momentum too. This provides the motivation for the
study in this paper.
One of the potentially observable characteristics of the

collision process is the emission of gravitational waves
(GW). It is worth mentioning that GWs can allow us to
find unexpected astrophysical compact objects with low
brightness, known generically as exotic compact objects
(ECOs). Among the most plausible ECO candidates
are the bosonic stars, self-gravitating objects made of a
complex scalar field [49,50]. Boson stars provide a simple
and useful model to study compact bodies in different
scenarios, such as DM candidates and black hole
mimickers.
In this paper, we consider collisions of DM structures

in the BEC state for different orientations of the angular
momentum. We found that the BEC clouds after the
formation of the interference pattern during the collision
restore their topological structure even for an arbitrary
impact parameter and the initial orientation of their vortex
cores.
The paper is organized as follows. The model is

described in Sec. II. Stationary fundamental soliton and
single-charged vortex states are considered in Sec. III.
Binary collisions are studied in Sec. IV. The emission of
GWs produced by colliding superfluid DM structures is
investigated in Sec. V. Conclusions are drawn in Sec. VI.

II. MODEL

At zero temperature, the dynamics of self-gravitating
BEC of weakly interacting bosons in the mean-field
approximation is described by the system of the GPP
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equations for the BEC and gravitational potential, which in
the dimensionless units takes the following form:

i
∂Ψ
∂t

¼
�
−
1

2
∇2 þΦþ νjΨj2

�
Ψ; ð1Þ

∇2Φ ¼ jΨj2; ð2Þ

where Ψðr; tÞ is a complex wave function of the con-
densate, r ¼ ðx; y; zÞ is the vector of spatial coordinates,
and t is time. The Gross-Pitaevskii equation (1) governing
Ψ is a nonlinear Schrödinger equation with nonlinearity
sourced by gravitational potential Φðr; tÞ and nonlocal
interparticle interaction. Coefficient ν takes the value þ1
for repulsive interparticle interaction, −1 for attractive
interparticle interaction, and 0 if particles do not interact.
In this work, we consider the case of repulsive interparticle
interaction ν ¼ 1. The total energy associated with the GPP
system of equations can be written as

E ¼ ΘþU þW; ð3Þ

where, in the dimensionless units, the kinetic energy is

Θ ¼ 1

2

Z
j∇Ψj2dr; ð4Þ

the internal energy

U ¼ 1

2

Z
jΨj4dr; ð5Þ

and the gravitational potential energy of interaction is
given by

W ¼ 1

2

Z
jΨj2Φdr: ð6Þ

To obtain dimensional quantities, one can use the
following relations rph¼ rL�, tph¼ t=Ω�, Φph ¼ Φϕ�,
Ψph ¼ Ψψ�, Eph ¼ Eϵ�, where L� ¼ λCðmPl=mÞ ffiffiffiffiffiffiffiffiffiffi

λ=8π
p

,
Ω� ¼ cλC=L2�, ϕ� ¼ ðcλC=L�Þ2, ψ� ¼ mc2=ððλ=8πÞ×
ðmPl=mÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGM
p

ℏÞ, ϵ� ¼ ℏ2ð8π=λÞ3=2=ð4πmPlλ
2
CÞ,mPl ¼ffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=G
p

is the Planck mass, λ=8π ¼ as=λC is the self-
interaction constant with as being the s-wave scattering
length, m is a particle mass, λC ¼ ℏ=mc is the Compton
wavelength of bosons and M is the total BEC cloud mass.
The normalization constant Ns in dimensionless units is

as follows:

Z
jΨj2dr ¼ 1

ψ2�L3�
¼ 4π

M
mPl

ffiffiffiffiffiffi
λ

8π

r
¼ Ns: ð7Þ

Further, we fix Ns ¼ 100, unless otherwise noted.

Before proceeding to the study of BEC DM structures
collision, let us consider the properties of stationary self-
gravitating BEC solitons.

III. STATIONARY STATES

As a result of the balance between gravitational attrac-
tion, quantum pressure, and repulsive bosonic interparticle
interaction, the system of equations (1) and (2) allows the
existence of stationary solutions with the wave function

Ψðr; tÞ ¼ ψðrÞe−iμt; ð8Þ

where μ is the chemical potential and ψðrÞ is the spatial
profile of the wave function. We seek for ψðrÞ in the form

ψðr⊥; θ; zÞ ¼ χðr⊥; zÞeisθ;

where r⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and the integer number s is the

winding number.
In [26], we have analytically and numerically analyzed

the stationary states with different winding numbers and
investigated their stability. It has been found that the self-
gravitating BEC states with s ¼ 0 (the fundamental soliton)
and s ¼ 1 (the vortex soliton) can be stable even under
strong perturbations, which is also in good agreement with
the results obtained in [27]. For this work, we have
developed an efficient numerical scheme for solving the
system of equations (1), (2) in three spatial dimensions.
Stationary states were numerically obtained by evolving
the system (1), (2) in imaginary time with a normalization
constraint. We therefore can use the same numerical
methods for stationary states and for the dynamics of the
system. The Gross-Pitaevskii equation is solved using the
standard pseudo-spectral “split-step” method [51]. For
the Poisson equation, we adapt the well-known geometric
multigrid method. While the Poisson equation does not
explicitly depend on time, the values of gravitational
potential at every time step are obtained using a single
multigrid V-cycle with 19-point Jacobi smoother [52–54],
and using the result from a previous time step as an initial
condition for the next one. Additionally, in order to keep
the computational domain reasonably small, a careful
consideration of boundary conditions for the Poisson
equation is extremely important. We set the values of
the potential Φ at the boundaries using a combination of
monopole and quadrupole potentials

Φ ¼ −
Ns

4πr
−

1

8πr5
X
ij

Iijxixj;

where the quadrupole moment Iij

Iij ¼
Z

jΨj2
�
xixj −

1

3
δi;jr2

�
dr ð9Þ
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is calculated from the current mass distribution and updated
at every time step accordingly.
Figure 1 shows the density distribution jΨj2 and the

corresponding gravitational potential Φ for solutions with
s ¼ 0 and s ¼ 1. As can be seen from the isosurfaces,
the ground state solution is spherically symmetric, while
the vortex has an axial symmetry. The peak density of the
s ¼ 0 state is higher than in the case of the vortex soliton,
whose density is more spread and decreases to zero at the
origin. The gravitational potential at this point has the
global minimum in the case s ¼ 0 and a local maximum in
the case s ¼ 1.
The parameters which characterize the system size can

be defined as

R2
0 ¼

1

Ns

Z
r2jΨj2dr ð10Þ

for the s ¼ 0 state, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and

R2
1 ¼

1

Ns

Z
r2⊥jΨj2dr; ð11Þ

Z2
1 ¼

1

Ns

Z
z2jΨj2dr ð12Þ

for the s ¼ 1 state. Figure 2 represents the total energy
defined by Eq. (3), the chemical potential, determined
by Eq. (8), and the system size characteristics given by
Eqs. (10)–(12) as functions of normalization constant Ns.
As one can see, the energy and chemical potential of the

vortex state are bigger due to additional rotational energy.
The size of both systems decreases with the mass and
approaches a constant value. Due to the vortex core
structure, the mean width of the vortex state is approx-
imately two times bigger than its height. The black dots
mark the value corresponding to the normalization con-
stant Ns ¼ 100.
As it has been mentioned above, the two considered

self-gravitating BEC states with s ¼ 0 and s ¼ 1 are quite
robust, which makes it interesting to study their collision.

IV. BINARY COLLISIONS

Here, we consider the scattering of the solitons discussed
in the previous section. Initially, we place two BEC clouds of
the same mass at some distance from each other so that their
wave functions do not overlap. We set the initial velocities
along the z-axis by multiplying the wave functions by the
appropriate exponents Ψ ¼ Ψ1 · e−ivz þΨ2 · eivz. For suffi-
ciently small initial velocities, condensate structures can
merge and form a single blob. In all further cases, we
consider initial dimensionless velocity v ¼ 1.5 (in units of
L�Ω�) large enough to produce quasielastic collisions.
Let us first investigate the collision of two fundamental

solitons (s ¼ 0). During the merging, there appear such
structures as vortex rings, which can be seen in Fig. 3. The
cyan structures show the surfaces of the constant density
value. The blue and black dots mark the centers of the
vortex cores and represent oppositely rotating vortex rings.
As can be seen, when approaching, pairs of oppositely

FIG. 1. Radial distribution of the stationary density distribution
and gravitational potential in z ¼ 0 plane for the BEC states
s ¼ 0 and s ¼ 1with normalization constant Ns ¼ 100. The inset
represents the corresponding 3D isosurfaces of condensate
density.

FIG. 2. (a) Total energy E, (b) chemical potential μ, (c) ef-
fective radius R, and height Z as functions of the normalization
constant Ns for stationary states with winding numbers s ¼ 0
and s ¼ 1. Black dots show the corresponding values at
Ns ¼ 100.

Y. O. NIKOLAIEVA et al. PHYS. REV. D 108, 023503 (2023)

023503-4



rotating vortex rings (marked in blue and black on the
isosurfaces) are formed. Further, the inner rings shrink to a
point and disappear. The outer pair of rings annihilates as
they approach. The rings are again visible when the solitons
move away.
Now let us consider collisions of single-charged vortex

solitons (s ¼ 1). The patterns appearing during the dynam-
ics depend on the orientation of the vortices’ angular
momenta. Figure 4 shows the simulation of the collision
dynamics of the vortices with angular momenta parallel
to the collision axis. The upper row represents the case
of the co-rotating superflows (s1 ¼ 1, s2 ¼ 1), while the
lower row corresponds to the counter-rotating superflows
(s1 ¼ 1, s2 ¼ −1). Blue and black dots indicate the
location of the vortices’ cores and their orientation.
During merging, solitons interfere but pass through each
other and revive their forms. As one can see in the case of
oppositely oriented angular momenta, there appears a
perpendicular vortex core (marked by magenta dots)
similar to the well-known Josephson vortex (see e.g., [55])

which is responsible for the continuity of the wave
function phase.
Further, we investigate another limiting case of the vortex

cores’ orientation during the scattering: perpendicular to the
axis of collision. Figure 5 shows a collision of the corota-
tional (s1 ¼ 1, s2 ¼ 1) and counter-rotational superflows
(s1 ¼ 1, s2 ¼ −1), with angular momentum directed along
the y-axis. In this configuration, an additional vortex appears
in the case of corotational superflows collision. One can also
see the complicated dynamics with vortex lines’ recombi-
nation into the vortex rings. And as in the previous case,
vortices recover their structure after the merging.
In all previous cases of the symmetric superflows

orientation, solitons have not been destroyed despite the
density redistribution during the collision. Therefore, it is
interesting to investigate the interaction of vortices with
arbitrarily directed angular momenta. It turns out that
vortices revive after merging, even in the general case of
the arbitrary orientation and nonzero impact parameter (the
upper row in Fig. 6). We have also considered the collision

FIG. 3. A sequence of the density isosurfaces representing the dynamics of s ¼ 0 solitons collision with the formation of oppositely
rotating vortex rings (colored in blue and black). Snapshots show the density distribution in the plane (y ¼ 0). Green dots represent the
location of vortex cores, and magenta diamonds correspond to antivortex core location.

FIG. 4. Snapshots of head-on collision of BEC vortex states propagating along the vortex line direction. Shown are the condensate
density isosurfaces for colliding vortex structures with the co-rotating (upper row) and counter-rotating (lower row) superflows. The dots
represent the vortex cores’ location, and their colors correspond to the direction of the superflow rotation.

STABLE VORTEX STRUCTURES IN COLLIDING … PHYS. REV. D 108, 023503 (2023)

023503-5



of a vortex (s1 ¼ 1) and a fundamental soliton (s2 ¼ 0),
which is shown on the lower row in Fig. 6. As in all
previous cases, the solitons pass through each other without
being destroyed. In these cases, we do not show the vortex
cores, as the dynamic of collisions is complicated and
governed by initial conditions.
Figure 7 shows the comparison between the merging

dynamics of fundamental solitons (magenta line) and vor-
tices moving along the direction of the vortex line (black

line). The upper panel represents the relative kinetic energy
Θ=N, (where N ¼ 2Ns the total normalization constant of
the system), which is higher in the case of vortex collision
due to the nonzero angular momentum. Note that the final
value of the kinetic energy is lower than the initial one,
which illustrates that collision is not completely elastic.
The lower panel shows the peak density of the system as a
function of time. As can be seen, in the case of merging
s ¼ 1 vortex solitons, its variation is bigger.

FIG. 5. The same as in Fig. 4 but with the angular momentum perpendicular to the collision axis. The upper row shows the colliding of
corotating superflows, and the lower row represents the case of counter-rotating superflows.

FIG. 6. The upper row demonstrates snapshots of the collision of two vortex states with arbitrary oriented angular momentum and
nonzero impact parameter. The lower row shows the collision of the fundamental soliton and the vortex, with angular momentum
perpendicular to the direction of movement.
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In the present work, we have concentrated on collisions
of DM structures with high enough relative velocities,
which corresponds to the quasielastic interaction. We have
also investigated the system with lower initial kinetic
energy, which leads to the formation of a single localized
structure after long-term evolution. The final state of the
system is determined by the initial angular momenta. For
example, merging vortices propagating along the vortex
line with s1 ¼ 1 and s2 ¼ −1 leads to the formation of
fundamental soliton s ¼ 0, while in the case of s1 ¼ 1 and
s2 ¼ 1 we can obtain s ¼ 1 vortex structure.
In all the collisions mentioned above, especially during

the merging of two fundamental solitons/vortices, we have
seen complex redistribution of DM density. It is well
known that such matter redistribution will generate
GWs. With the fast development of GW detection tech-
niques in recent years, such GWs, once observed, could
become a new tool to investigate the properties of the
relevant BEC DM. Therefore, in the next section, we
investigate the GW radiation in the collision processes
studied above.

V. GRAVITATIONAL WAVE RADIATION

Since the velocity of the BEC matter studied here is
nonrelativistic, the energy-momentum tensor is dominated
by the rest energy, i.e., the density distribution function.
Consequently, we can directly use the density distribution
found in Sec. IV to compute the GW luminosity. We
consider quadrupole moments and related GW radiation,

and we also use the common assumption that the source-
detector distance is much larger than the source size [56].
With these considerations, then the luminosity of the

GW takes the standard form [57]

LGW ¼ C
X
i;j

j I…ijj2; ð13Þ

where C ¼ G4

80π2c5
m5

a5s
and I

…

ij is the third derivative of the

dimensionless quadrupole moment defined in (9) with
respect to the dimensionless time t.
The scaled GW luminosity LGW=C for collisions studied

in Sec. IV is shown in Fig. 8. It is seen that in all cases, the
GW emission mainly happens when the wave functions of
the colliding DM structures substantially overlap. Note that
the luminosity for the considered scattering processes is
suppressed when the condensate density reaches its maxi-
mum value (see Fig. 7) so that LGW forms a two-peak
pattern. It is remarkable that the collisions of vortices with
angular momenta along z-axis produce stronger emissions
of GW.
Direct detection of these gravitational waves poses sig-

nificant challenges due to their extremely low frequencies.
The estimate of these frequencies can be obtained by
considering the collision timescale determined by R0 (or
R1)=v, which results in timescales of millions of years. This
frequency range stands in stark contrast to the typical
frequencies observed in GWs from a binary neutron star or
black hole mergers, which are usually in the range of tens
to a few thousand Hz [58]. Comparing these low-
frequency signals to the sensitivity curves of current
and near-future direct gravitational wave detectors, as
shown in Ref. [59], reveals that unfortunately, such signals
are beyond the lower sensitivity limit of these detectors.
However, in the case of a typical dark matter halo

mass M ∼ 1012M⊙ [57] and a boson particle mass on
the order of m ∼ 10−22 ½eV�, the peak GW luminosity,
maxLGW ≈ 2.7 × 1031 ½erg=s�, obtained from colliding

FIG. 7. (a) Kinetic energy per particle, (b) peak density value
during the collision of two DM clouds. The magenta line
represents the case of colliding solitons with winding numbers
s1 ¼ s2 ¼ 0, while the black line corresponds to s1 ¼ s2 ¼ 1
vortices propagating along the direction of the angular momenta.

FIG. 8. The dimensionless luminosity of the gravity waves for
different orientations of colliding the vortex structures shown in
Figs. 4–6. Note that the luminosity of gravity waves is essentially
affected by the orientation of the superflows in the DM structures.
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superfluid dark matter structures aligns with the findings
of Refs. [57,60]. These GWs, characterized by such
luminosity and frequency, are expected to produce dis-
cernible effects on the polarization of the cosmic micro-
wave background [57]. Consequently, future experiments
hold the potential for indirectly detecting distinctive
GW-induced imprints of superfluid dark matter collisions
on the CMB.

VI. CONCLUSIONS

We have investigated the general properties and stability
of solitonic structures of self-gravitating Bose-Einstein
condensates. Previously, it was found that zero-charged
and one-charged solitons are stable with respect to strong
perturbations. In the present work, we reveal that these
solitons survive even after head-on collision. In spite of the
nonelasticity of interaction, vortex solitons demonstrate
robust evolution and restore their forms after collisions. We
have found that the quantum nature of the self-gravitating
Bose-Einstein condensates leads to the formation of
remarkable topological excitations in the form of vortex
rings and Josephson vortices during the collision of the

dark matter solitonic structures. We have investigated
gravitational waves radiated by interacting DM halos
and demonstrated the effect of the quantum interference
patterns formed by colliding BECs on GWs luminosity.
The fascinating physics of superfluid DM leads to a

number of observational signatures that might help to
elucidate the basic properties of dark matter particles.
In particular, the existence of stable DM vortex structures
can significantly affect the dynamics of luminous matter,
especially near the vortex core. Detailed consideration
of interactions between stable DM vortex structures and
the baryonic matter may be a relevant extension of the
present work.

ACKNOWLEDGMENTS

We thank Stanislav Vilchinskii and Luca Salasnich for
useful discussions. Y. N. acknowledges support by the
Austrian Science Fund (FWF) [Grant No. I6276]. A. Y.
acknowledges support from BIRD Project “Ultracold
atoms in curved geometries” of the University of
Padova. Research of E.G., J. J., and A. Y. is supported
by the China-Ukraine Project IGSCP-12.

[1] M. J. Edmonds, T. Bland, R. Doran, and N. G. Parker,
New J. Phys. 19, 023019 (2017).

[2] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nat. Phys. 10,
496 (2014).

[3] T. Matos and L. Arturo Ureña-López, Phys. Rev. D 63,
063506 (2001).

[4] V. Sahni and L. Wang, Phys. Rev. D 62, 103517
(2000).

[5] I. S. Goldstein, S. M. Koushiappas, and M. G. Walker,
Phys. Rev. D 106, 063010 (2022).

[6] A. Paredes, D. N. Olivieri, and H. Michinel, Physica
(Amsterdam) 403D, 132301 (2020).

[7] F. Maucher, S. Skupin, M. Shen, and W. Krolikowski,
Phys. Rev. A 81, 063617 (2010).

[8] J. Qin, G. Dong, and B. A. Malomed, Phys. Rev. A 94,
053611 (2016).

[9] J. Qin, Z. Liang, B. A. Malomed, and G. Dong, Phys. Rev. A
99, 023610 (2019).

[10] D. O’Dell, S. Giovanazzi, G. Kurizki, and V. M. Akulin,
Phys. Rev. Lett. 84, 5687 (2000).

[11] S. Giovanazzi, D. O’Dell, and G. Kurizki, Phys. Rev. A 63,
031603 (2001).

[12] S. Giovanazzi, G. Kurizki, I. E. Mazets, and S. Stringari,
Europhys. Lett. 56, 1 (2001).

[13] D.-I. Choi, Phys. Rev. A 66, 063609 (2002).
[14] C. G. Böhmer and T. Harko, J. Cosmol. Astropart. Phys. 06

(2007) 025.
[15] P.-H. Chavanis, Eur. Phys. J. Plus 132, 248 (2017).

[16] P.-H. Chavanis and T. Harko, Phys. Rev. D 86, 064011
(2012).

[17] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.
D 95, 043541 (2017).

[18] P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301
(2009).

[19] E. J. M. Madarassy and V. T. Toth, Phys. Rev. D 91, 044041
(2015).

[20] N. Siemonsen and W. E. East, Phys. Rev. D 103, 044022
(2021).

[21] A. I. Yakimenko, Y. A. Zaliznyak, and Y. Kivshar, Phys.
Rev. E 71, 065603 (2005).

[22] V. Lashkin, A. Yakimenko, and Y. A. Zaliznyak, Phys. Scr.
79, 035305 (2009).

[23] T. Rindler-Daller and P. R. Shapiro, Mon. Not. R. Astron.
Soc. 422, 135 (2012).

[24] N. Sanchis-Gual, F. D. Giovanni, M. Zilhão, C. Herdeiro,
P. Cerdá-Durán, J. Font, and E. Radu, Phys. Rev. Lett. 123,
221101 (2019).

[25] X. Zhang, M. H. Chan, T. Harko, S.-D. Liang, and C. S.
Leung, Eur. Phys. J. C 78, 1 (2018).

[26] Y. O. Nikolaieva, A. O. Olashyn, Y. I. Kuriatnikov, S. I.
Vilchynskii, and A. I. Yakimenko, Low Temp. Phys. 47, 684
(2021).

[27] A. S. Dmitriev, D. G. Levkov, A. G. Panin, E. K.
Pushnaya, and I. I. Tkachev, Phys. Rev. D 104, 023504
(2021).

[28] E. Cotner, Phys. Rev. D 94, 063503 (2016).

Y. O. NIKOLAIEVA et al. PHYS. REV. D 108, 023503 (2023)

023503-8

https://doi.org/10.1088/1367-2630/aa5a6b
https://doi.org/10.1038/nphys2996
https://doi.org/10.1038/nphys2996
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevD.62.103517
https://doi.org/10.1103/PhysRevD.62.103517
https://doi.org/10.1103/PhysRevD.106.063010
https://doi.org/10.1016/j.physd.2019.132301
https://doi.org/10.1016/j.physd.2019.132301
https://doi.org/10.1103/PhysRevA.81.063617
https://doi.org/10.1103/PhysRevA.94.053611
https://doi.org/10.1103/PhysRevA.94.053611
https://doi.org/10.1103/PhysRevA.99.023610
https://doi.org/10.1103/PhysRevA.99.023610
https://doi.org/10.1103/PhysRevLett.84.5687
https://doi.org/10.1103/PhysRevA.63.031603
https://doi.org/10.1103/PhysRevA.63.031603
https://doi.org/10.1209/epl/i2001-00478-8
https://doi.org/10.1103/PhysRevA.66.063609
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1140/epjp/i2017-11544-3
https://doi.org/10.1103/PhysRevD.86.064011
https://doi.org/10.1103/PhysRevD.86.064011
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevD.91.044041
https://doi.org/10.1103/PhysRevD.91.044041
https://doi.org/10.1103/PhysRevD.103.044022
https://doi.org/10.1103/PhysRevD.103.044022
https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1088/0031-8949/79/03/035305
https://doi.org/10.1088/0031-8949/79/03/035305
https://doi.org/10.1111/j.1365-2966.2012.20588.x
https://doi.org/10.1111/j.1365-2966.2012.20588.x
https://doi.org/10.1103/PhysRevLett.123.221101
https://doi.org/10.1103/PhysRevLett.123.221101
https://doi.org/10.1140/epjc/s10052-017-5488-z
https://doi.org/10.1063/10.0005557
https://doi.org/10.1063/10.0005557
https://doi.org/10.1103/PhysRevD.104.023504
https://doi.org/10.1103/PhysRevD.104.023504
https://doi.org/10.1103/PhysRevD.94.063503


[29] J. A. González and F. S. Guzmán, Phys. Rev. D 83, 103513
(2011).

[30] A. Bernal and F. S. Guzmán, Phys. Rev. D 74, 103002 (2006).
[31] D.-I. Choi, Phys. Rev. A 66, 063609 (2002).
[32] E. R. Carrasco, P. L. Gomez, T. Verdugo, H. Lee, R. Diaz,

M. Bergmann, J. E. H. Turner, B. W. Miller, and M. J. West,
Astrophys. J. Lett. 715, L160 (2010).

[33] D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley,
Science 347, 1462 (2015).

[34] A. Paredes and H. Michinel, Phys. Dark Universe 12, 50
(2016).

[35] F. S. Guzmán and A. A. Avilez, Phys. Rev. D 97, 116003
(2018).

[36] B. Schwabe, J. C. Niemeyer, and J. F. Engels, Phys. Rev. D
94, 043513 (2016).

[37] I.-K. Liu, N. P. Proukakis, G. Rigopoulos et al., Mon. Not.
R. Astron. Soc. 521, 3625 (2023).

[38] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T.
Chiueh, T. Broadhurst, and W. Y. P. Hwang, Phys. Rev.
Lett. 113, 261302 (2014).

[39] A. Maleki, S. Baghram, and S. Rahvar, Phys. Rev. D 101,
023508 (2020).

[40] R.Massey et al., Mon. Not. R. Astron. Soc. 449, 3393 (2015).
[41] A. A. Avilez and F. S. Guzmán, Phys. Rev. D 99, 043542

(2019).
[42] F. S. Guzmán, J. A. González, and J. P. Cruz-Pérez, Phys.
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