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From prolonged x-ray and optical data of the ultracompact binary HM Cancri, two groups recently
measured the second derivative of its orbital frequency. The space gravitational wave detector LISA will
detect ∼104 Galactic binaries, and their second frequency derivatives will be interesting observational
targets for LISA. Here, we forecast the gravitational wave signal analysis for HM Cancri, as an ideal
reference system for these numerous binaries. We find that, in its nominal operation period T ∼ 4 yr, LISA
is unlikely to realize a sufficient measurement precision for the reported second frequency derivative of this
binary. However, because of a strong dependence on the time baseline, the precision will be drastically
improved by extending the operation period of LISA or combining it with other missions (e.g., Taiji and
TianQin) in a sequential order.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) has the
potential to detect gravitational waves (GWs) from various
astrophysical sources such as merging massive black hole
binaries, extreme mass ratio inspirals, and Galactic stellar
mass binaries [1]. While the event rates of the systems
involving massive black holes are highly uncertain, the
Galactic binaries are solid observational targets. In fact, a
few tens of compact binaries are currently listed as LISA’s
verification sources and will be detected at sufficient signal-
to-noise ratios [1,2]. HM Cancri is an interacting white
dwarf (WD) binary and regarded as one of the loudest GW
sources in the list.
In this paper, since we focus on GW observation, we

basically use the GW frequency f of a binary, not its orbital
frequency. For a circular binary such as HM Cancri, the
GW frequency is twice the orbital frequency. Cor-
respondingly, if necessary, we will automatically make
appropriate conversions for the reported values in the
literature (often given for the orbital frequency). The
GW frequency of HM Cancri is f ¼ 6.2 mHz, which is
the highest frequency in the list [1,2].
Using electromagnetic (EM) data accumulated for HM

Cancri in the past ∼20 yr, two groups recently measured
the acceleration rate of its frequency f̈, for the first time to
our knowledge among the verification binaries [3,4]. The
second derivative f̈ is expected to contain interesting
information on the evolution of the binary (e.g., mass
transfer [3–7]; see also [8] for _f) and its environment (e.g.,
tertiary gravitational perturbation [9,10]).
Owing to its omnidirectional sensitivity, LISAwill detect

∼104 Galactic binaries, including more than ∼102 subsets

at f ≳ 6 mHz [1,11–13]. The obtained results f̈ for HM
Cancri will serve as ideal reference values when discussing
GW signal analysis for these numerous binaries. In this
paper, we study such an observational prospect, paying
special attention to HM Cancri. Relatedly, we assort useful
analytical expressions based on the Fisher matrix approach.
As one can easily expect, the measurement error for f̈

depends strongly on the time baseline of the observation.
Therefore, our study will be useful for designing the
mission lifetime of LISA or coordinating its collaboration
with other detectors such as Taiji [14] and TianQin [15].
This paper is organized as follows. In Sec. II, we briefly

summarize the recent long-term orbital analysis for HM
Cancri. We also mention some astrophysical implications
of the observed results. In Sec. III, applying the Fisher
matrix approach to a simplified phase model, we analyti-
cally evaluate the estimation errors for phase related
parameters such as _f and f̈. In Sec. IV, we examine the
validity of our analytical expressions, by comparison with
the full Fisher matrix predictions including all the fitting
parameters. In Sec. V, we discuss the observational pros-
pects of measuring f̈ for HM Cancri with LISA. We also
apply our analytical expressions to two other verification
binaries. In Sec. IV, we discuss issues related to our study.
Section VII is a short summary of this paper.

II. LONG-TERM ORBITAL
EVOLUTION OF HM CANCRI

A. Observed results

Using x-ray data accumulated in the past ∼20 yr,
Strohmayer [3] examined the long-term orbital evolution
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of HM Cancri. He fitted its phase evolution with the
following cubic function:

ΦðtÞ ¼ 2π

�
ftþ

_ft2

2!
þ f̈t3

3!

�
þ φ ð1Þ

with the time origin t ¼ 0 at a certain epoch in January
2004. The fitted parameters (after the aforementioned
conversions) are

f ¼ 0.0062 Hz; ð2Þ

_f ¼ ð7.11� 0.01Þ × 10−16 Hz s−1; ð3Þ

f̈ ¼ ð−1.79� 0.28Þ × 10−26 Hz s−2: ð4Þ

Here the error bars represent the 1σ uncertainties.
Munday et al. [4] analyzed HM Cancri’s optical data

with a baseline of ∼20 yr and found a good fit to the cubic
functional form (1). Their fitted second derivative f̈ is

f̈ ¼ ð−1.08� 0.42Þ × 10−26 Hz s−2: ð5Þ

Note that the error bars in Eqs. (4) and (5) are nearly
overlapped. Below, we mainly use Eq. (4) as a reference
value of f̈.

B. Astrophysical implications

Before studying the parameter estimation errors with
LISA, we briefly discuss some astrophysical implications
of the observed long-term orbital evolution of HM Cancri.
As mentioned in the previous subsection, it took ∼20 yr

to resolve the second frequency derivative f̈ for HM
Cancri. In contrast, shortly after the identification of this
binary, its chirp rate _f was measured at a value close to
Eq. (3) [16,17]. If the gravitational radiation reaction
dominates the observed chirp rate _f, we should have

_f ≃ _fR ¼ 96π8=3G5=3f11=3M5=3

5c5
ð6Þ

¼ 7.0 × 10−16
�

f
6.2 mHz

�
11=3

�
M

0.32M⊙

�
5=3

: ð7Þ

Given this relation and the observed rate _f, the chirp
mass of HM Cancri was roughly estimated to be
M ∼ 0.3M⊙ [3,4]. If this binary is mainly evolved by
the gravitational radiation reaction, we also have f̈ ≃ f̈R ¼
11_f2=ð3fÞ ∼ 1.5 × 10−28 Hz s−2 as predicted long before
the actual measurement of f̈ [5]. Interestingly, the observed
result (4) is totally different from the predicted one f̈R.
Using the Modules for Experiments in Stellar

Astrophysics (MESA) code [18], Munday et al. [4]

compared the observed values ð _f; f̈Þ with the simulated
frequency evolution of many WD binaries. They pointed
out that HM Cancri might be shortly (∼103 yr) before the
frequency maximum and discovered with the help of a
selection effect (see also [3]).
On another front, observations suggest that a significant

fraction of close white dwarf binaries might be in triple or
higher-order multiple systems [19] (see also [9,20] in the
context of LISA observation). In [10] the author argued the
possibility that HM Cancri has a tertiary component.
For a circular outer orbit with a period P3 (much longer
than the observation period), the tertiary perturbation gen-
erates the following shifts to the frequency derivatives (see
Refs. [21,22] for similar effects on pulsar timing analysis):

_f3 ¼ 1.0 × 10−16F cosφ3

�
f

6.2 mHz

��
MT

2M⊙

�
1=3

×

�
P3

250 yr

�
−4=3

Hz s−1; ð8Þ

f̈3 ¼ −8.0 × 10−26F sinφ3

�
f

6.2 mHz

��
MT

2M⊙

�
1=3

×

�
P3

250 yr

�
−7=3

Hz s−2: ð9Þ

HereMT is the total mass of the triple system, φ3 is the outer
orbital phase, and F ¼ m3 sin I3=MT is a projection factor
with the tertiary mass m3 and the outer inclination angle I3.
Therefore, a dark tertiary component (e.g., an old WD with
an outer orbital period of ∼250 yr) can serve as the main
cause for the observed value f̈, with a limited impact on the
observed first derivative _f [seeEqs. (3), (4). (8), and (9)] [10].
As mentioned earlier, during its operation period, LISA

is expected to detect ∼104 Galactic compact binaries [1]. In
particular, it will make a complete Galactic survey for
binaries at f ≳ 5 mHz [1]. Many of the detected binaries
might have intensified rates f̈ due to their tertiaries. If this is
the case, the probability distribution function of the
observed values f̈ would be nearly symmetric around
the origin f̈ ¼ 0.

III. SIMPLIFIED PHASE MODEL

In this section, applying the Fisher matrix approach to a
simplified GW phase model, we analytically estimate the
measurement errors for the phase related parameters such
as _f and f̈ (see also [9,23,24]).

A. Basic prescription

Here the GW phase is assumed to be well described by
the following Taylor expansion with the coefficients
ff; _f; f̈g defined at the time origin t ¼ 0,
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hðtÞ ¼ A cos½ΦðtÞ� ð10Þ

¼ A cos

�
2π

�
ftþ

_ft2

2!
þ f̈t3

3!

�
þ φ

�
: ð11Þ

We consider a signal analysis in the time interval
t ∈ ½t1; t1 þ T� with the initial time t1 and the observational
duration T. From Parceval’s theorem for a nearly mono-
chromatic waveform [25], the signal-to-noise ratio ρ is
evaluated as

ρ2 ¼ 2

SnðfÞ
Z

t1þT

t1

hðtÞhðtÞdt ð12Þ

¼ A2T
SnðfÞ

ð13Þ

with the measurement noise spectrum SnðfÞ. Note that, as
long as the GW signal is nearly monochromatic (i.e.,

j _fjT ≪ f and jf̈jT2 ≪ f), we can effectively set the true
values at _f ¼ 0 and f̈ ¼ 0 for evaluating the inner product
(12) (also for the Fisher matrix elements below).
Next we apply the Fisher matrix approach to the phase

related parameters θ ¼ fφ; f; _f; f̈g with the waveform
model (11). The amplitude parameter A has no correlation
with the target parameters θ and can be dropped from our
fitting parameters in this section.
We can formally express the Fisher matrix elements as

Fθiθj ¼
2

SnðfÞ
Z

t1þT

t1

∂θihðtÞ∂θjhðtÞdt: ð14Þ

Using Eq. (13), we can eliminate the overall factor A=SnðfÞ
and then present the matrix elements Fθiθj in terms of ρ, t1,
and T. For example, we have

Fff ¼ 4π2ρ2
�
3t21 þ 3t1T þ T2

3

�
: ð15Þ

After taking the inverse of the matrix F, we can evaluate
the covariance matrix of the parameter estimation error
δθi as

hδθiδθji ¼ ðF−1Þθiθj : ð16Þ

Below, for notational simplicity, we put the rms
errors by

Δθi ≡ hδθiδθii1=2 ð17Þ

and denote the correlation factor by

Cθiθj ≡
hδθiδθji

hδθiδθii1=2hδθjδθji1=2
ð18Þ

with the Cauchy-Schwartz inequality jCθiθj j ≤ 1.

B. Expansion at the initial epoch

Following the outline in the previous subsection, we
now evaluate the Fisher matrix F for the observational time
domain t ∈ ½0; T� with the initial epoch at t1 ¼ 0. This
means that the GW phase is Taylor expanded as in Eq. (11)
at the initial epoch t¼ t1¼0. For the four basic parameters
θ ¼ fφ; f; _f; f̈g, we can easily obtain the rms errors as

Δφ¼4

ρ
; Δf¼10

ffiffiffi
3

p

πρT
; Δ _f¼36

ffiffiffi
5

p

πρT2
; Δf̈¼60

ffiffiffi
7

p

πρT3
: ð19Þ

We provide some examples of the correlation coefficients

C _f f̈ ¼ −
ffiffiffiffiffi
35

p

6
≃ −0.986;

Cff̈ ¼ −
ffiffiffiffiffi
21

p

5
≃ −0.917: ð20Þ

Robson et al. [9] obtained essentially the same results as
Eq. (19), while their definitions for the evolutionary
parameters ð _f; f̈Þ are slightly different from ours (see their
appendix).
Next, for a comparison purpose, we drop the cubic

term ∝f̈t3 in Eq. (11) as

htrðtÞ ¼ A cos

�
2π

�
ftþ

_ft2

2!

�
þ φ

�
: ð21Þ

Using this truncated waveform model studied in [23],
we can derive the analytical results for the smaller set
θ ¼ fφ; f; _fg as follows:

Δφ ¼ 3

ρ
; Δf ¼ 4

ffiffiffi
3

p

πρT
; Δ _f ¼ 6

ffiffiffi
5

p

πρT2
; ð22Þ

which are identical to the corresponding expressions
in [23]. Compared with Eq. (19), we can see a large
reduction of the error Δ _f.

C. Expansion at the midpoint

Next we evaluate the Fisher matrix prediction for the
observational time domain t ∈ ½−T=2; T=2�, setting the
initial epoch at t1 ¼ −T=2. In this choice, the GW phase
is Taylor expanded as Eq. (11) at the midpoint (t ¼ 0) of the
observational period. The estimation errors for the para-
meters fφ0; _fg and those for ff; f̈g are statistically un-
correlated, and the matrices F and F−1 are block diagonal.
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This is because we have the symmetric cancellations at
integrating odd functions such as

Ff̈ _f ∝
Z

T=2

−T=2
t2þ3dt ¼ 0: ð23Þ

For the fitting parameters θ ¼ fφ; f; _f; f̈g, the rms errors
are estimated to be

Δφ ¼ 3

2ρ
; Δf ¼ 5

ffiffiffi
3

p

2πρT
;

Δ _f ¼ 6
ffiffiffi
5

p

πρT2
; Δf̈ ¼ 60

ffiffiffi
7

p

πρT3
ð24Þ

with some examples for the correlation coefficients as

C _f f̈ ¼ 0; Cff̈ ¼ −
ffiffiffiffiffi
21

p

5
: ð25Þ

As in the case of Eq. (22), the magnitude Δ _f is largely
reduced from Eq. (19). In contrast, the results forΔf̈ are the
same in Eqs. (19) and (24). We can understand this from the
following argument. Given the difference between the time
origins (t1 ¼ 0 or −T=2), we can relate the parameters
fφ; f; _f; f̈g in this subsection with those fφo; fo; _fo; f̈og
(temporarily attaching the subscript “o”) in the previous
subsection. For example, we have

_f ¼ _fo þ f̈oT=2; f̈ ¼ f̈o; ð26Þ

resulting in Δf̈ ¼ Δf̈o for optimal signal analyses.
We again examine the truncated model (21) and obtain

the associated measurement errors under the midpoint
expansion as

Δϕ ¼ 3

2ρ
; Δf ¼

ffiffiffi
3

p

πρT
; Δ _f ¼ 6

ffiffiffi
5

p

πρT2
: ð27Þ

Because of the block diagonalization, the magnitudes Δϕ
and Δ _f are the same as Eq. (24). Furthermore, due to the
reason similar to Eq. (26), we have the same expression Δ _f
in Eqs. (22) and (27).

IV. COMPARISON WITH FULL FISHER
MATRIX ANALYSIS

Our simplified analytical models in the previous section
lack the amplitude and Doppler phase modulations, which
are induced by the annual motion of LISA [25]. In this
subsection, we examine the validity of our simple analytical
results (19) and (24), by comparing them with the full
Fisher matrix results evaluated numerically.
For the full Fisher matrix estimation, we deal with the

following nine fitting parameters fA;φ; f; _f; f̈; θS;ϕS;
θL;ϕLg, extending the formulation in [25]. The pairwise

angular parameters fθS;ϕSg and fθL;ϕLg, respectively,
specify the source direction and orientation in the ecliptic
coordinate.
Here we comment on an earlier study related to this

section. Takahashi and Seto [26] briefly compared the
analytical results (22) [for the truncated model (21)] with
the corresponding numerical results. The latter were
obtained from the full 8 × 8 Fisher matrices (without the
parameter f̈). They found that, for T ≳ 2 yr, the analytical
and numerical results agree quite well. This is because, for
T ≳ 2 yr, the intrinsic frequency evolution in Eq. (21) is
well separable from the annual periodic phase shift induced
by LISA’s motion. Even adding the cubic term as Eq. (11),
we can expect a similar trend.
For numerically evaluating the 9 × 9 Fisher matrix, we

randomly generated 20 realizations for the combinations
fθS;ϕS; θL;ϕLg, assuming that the direction and orienta-
tion vectors are isotropically distributed. At f ¼ 1 mHz
and 10 mHz, we numerically evaluated the estimation
errors ðΔ _ffull;Δf̈fullÞ and compared them with the analyti-
cal ones ðΔ _fana;Δf̈anaÞ given in the previous section. Only
in this section, we use the subscripts “full” and “ana,”
respectively, for the full Fisher matrix estimations and the
analytical ones.
In Fig. 1, for T ¼ 1, 2, 4, 6, and 8 yr, we present the ratio

Δf̈full=Δf̈ana for the second derivative f̈ with a small
horizontal offset for the midpoint expansion. As shown
in Eqs. (19) and (24), the analytical expression Δf̈ana ¼
60

ffiffiffi
7

p
=ðπρT3Þ is identical in the two expansion methods.

Consistent with the argument around Eq. (26), Fig. 1
clearly shows that the numerical results Δf̈full are also
the same for the two expansion methods (except for tiny
numerical errors).
At T ≳ 2 yr, the mismatches between the two estima-

tions Δf̈full and Δf̈ana are less than 50%. In reality, a long-
term signal integration is essential for measuring the second
derivative f̈, and the mismatches are even less than ∼5%
at T ≳ 8 yr.
In contrast, for T ¼ 1 yr, the analytical estimation Δf̈ana

underestimates the full estimationΔf̈full, generally showing
larger mismatches at f ¼ 10 mHz. This frequency depend-
ence can be understood from the relative importance of the
amplitude modulation for estimating the source direction.
With a LISA-like detector, we can determine the source
direction from the Doppler phase modulation and the
amplitude modulation, both induced by the annual motion
of the detector [25]. If the signal-to-noise ratio is fixed, the
former is proportional to the frequency but the latter is
independent of it. Therefore, at the lower frequency regime,
the amplitude modulation can work more efficiently to
suppress the interference between the Doppler phase
modulation and the intrinsic phase evolution.
In their appendix, Robson et al. [9] derived an analytical

expression [essentially corresponding to Δf̈ana in Eq. (19)].
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They also compared it with a full Fisher matrix
prediction. For a certain set of the geometric parameters
fθS;ϕS; θL;ϕLg at f ¼ 5 mHz, they reported a mismatch
of Δf̈full=Δf̈ana ∼ 6. While they did not explicitly present
the applied integration period T, our Fig. 1 indicates that
their choice is likely to be T ∼ 1 yr.
In Fig. 2, we show the ratio Δ _ffull=Δ _fana for the first

derivative _f. Now, the analytical results Δ _fana are different
between the two expansion methods [compare Eqs. (19)
and (24)]. In any case, we can again confirm that, at
T ≳ 2 yr, the analytical results Δ _fana well reproduce the
numerical ones Δ _ffull.
The ratios in Figs. 1 and 2 are slightly less than unity for

some binary samples, even though the number of fitting
parameters are larger for the numerator. This is actually not
surprising, given the time dependence of the signal accu-
mulation. In contrast to the flat weighting for the analytic
model as in Eq. (12), the full Fisher matrix evaluation has
the annual amplitude modulation. Considering the advan-
tage of a longer baseline at estimating the variation rates _f
and f̈, the errors ðΔ _ffull;Δf̈fullÞ can be smaller for a binary

whose signal strength is relatively large around the initial
and the final epochs.
AtT≳2yr, the simple analytic expressions ðΔ _fana;Δf̈anaÞ

work well, even if we remove the source direction angles
fθS;ϕSg from our fitting parameters (e.g., after identifying
the EM counterpart). We can easily understand this from the
weak correlation between the intrinsic phase parameters and
the direction angles at T ≳ 2 yr.
We should also note that the full Fisher matrix predictions

still have some deviations from more elaborate evaluations
such as Markov chain Monte Carlo simulations [9] (see
also [27]). Nevertheless, the Fisher matrix predictions (in
particular, our analytical expressions) will be convenient
guides for discussing parameter estimation errors.

V. OBSERVATIONAL PROSPECTS WITH LISA

Now, for existing binaries such as HM Cancri, we
discuss the prospects of measuring _f and f̈ with LISA.
We apply our analytical expressions derived in Sec. III.

A. HM Cancri

The distance d to HM Cancri has large uncertain-
ties [3,4]. Below, we use the reference value d ¼ 5 kpc,

FIG. 2. Similar to Fig. 1 but for the ratio Δ _ffull=Δ _fana. Note
that, between the two expansion methods, the denominator Δ _fana
is different by a factor of 6, as presented in Eqs. (19) and (24).

FIG. 1. Ratios Δf̈full=Δf̈ana between the full Fisher matrix
predictions Δf̈full and those with the analytical estimation
Δf̈ana ¼ 60

ffiffiffi
7

p
=ðπρT3Þ given in Eqs. (19) and (24). We show

the results for 20 randomly sampled binaries with the initial and
midpoint expansions. The upper panel is for f ¼ 1 mHz and the
lower one for 10 mHz.
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following [2]. Then, including geometrical parameters,
LISA will detect its quadrupole GW at the signal-to-noise
ratio of

ρ ¼ 210

�
T

4 yr

�
1=2

�
d

5 kpc

�
−1
�

M
0.33M⊙

�
5=3

: ð28Þ

Now we discuss the parameter estimation errors for the
frequency derivatives _f and f̈. Here we solely use the
expressions in Eq. (24) for the midpoint expansion. Note
that, as mentioned earlier, for the first derivative, the
expression Δ _f ¼ 6

ffiffiffi
5

p
=ðπρT2Þ in Eq. (24) is identical to

those in Eqs. (22) and (27), which are given for the
truncated model (21). Therefore, we can apply this expres-
sion under various situations.
From Eqs. (24) and (28), at T ≳ 2 yr, we can expect the

estimation errors for HM Cancri as follows:

Δ _f ¼ 1.3 × 10−18
�

ρ

210

�
−1
�

T
4 yr

�
−2

Hz s−1; ð29Þ

Δf̈ ¼ 1.2 × 10−25
�

ρ

210

�
−1
�

T
4 yr

�
−3

Hz s−2: ð30Þ

Now let us compare these expressions with the actual
observational results (3) and (4). The nominal operation
period of LISA is planned to be T ∼ 4 yr with a possible
extension to ∼10 yr. For T ∼ 4 yr, we can realize a good
resolution Δ _f comparable to the error bar in Eq. (3).
Meanwhile, for T ∼ 4 yr, we can only set a loose bound

to the observed value f̈ (i.e.,Δf̈ > jf̈j). However, given the
strong scaling relation Δf̈ ∝ ρ−1T−3 ∝ T−7=2 (valid for
T ≳ 2 yr), we should not be too pessimistic. Indeed,
compared with T ¼ 4 yr, the resolution Δf̈ will be
improved by a factor of ∼25 and ∼100, respectively, for
T ¼ 10 and 15 yr. Therefore, with these extended time
baselines, we can reach Δf̈ ¼ 0.72 × 10−26 Hz s−2 and
0.18 × 10−26 Hz s−2, corresponding to 40% and 10% of
the reference value (4).
Note that LISA also allows us to estimate the intrinsic

GW amplitude A ≃M5=3=d with the typical accuracy of
ΔA=A ∼ 0.2ðρ=10Þ−1 [26]. If the observed chirp rate _f is
dominated by the radiation reaction as in Eq. (6), we can
estimate the chirp massM and thereby the source distance
d. However, HM Cancri is an interacting binary, and we
should be careful to apply Eq. (6) to this system. In any
case, using certain priors to its chirp mass distribution, we
will be able to constrain its distance d much better than the
current estimation.

B. V407 Vul and SDSS J0651

Here we apply Eqs. (29) and (30) to two other well-
known verification binaries (see Ref. [2] for their basic
parameters).

V407 Vul is likely to be an interacting WD binary at the
estimated distance of d ¼ 1.8 kpc. Its GW frequency is
f ¼ 3.5 mHz with the observed chirp rate _f ¼ 2.0×
10−17 Hz s−1. After a 4 yr integration, LISA is expected
to observe its GW at ρ ¼ 170. From Eq. (29), at T ¼ 4 yr,
we will have the resolution _f=Δ _f ¼ 12. If we can operate
LISA for 10 yr, the tertiary perturbation f̈3 in Eq. (9) can be
resolved at the 3σ level (i.e., jf̈3j=Δf̈ > 3) for an outer
orbital period of P3 < 280 yr. Here we put F ¼ 0.5,
MT ¼ 2.0M⊙, and sinφ3 ¼ 1 in Eq. (9). For T ¼ 15 yr,
we obtain P3 < 500 yr.
SDSS J0651 is a detached WD binary at d ¼ 0.93 kpc

with f¼2.6mHz and _f¼3.3×10−17Hzs−1. For T ¼ 4 yr,
the expected signal-to-noise ratio is ρ ¼ 90 with the
resolution _f=Δ _f ¼ 11. For T ¼ 10 yr, a tertiary perturba-
tion f̈3 can be resolved at the 3σ level for P3 < 180 yr.
Since this system is a detached binary, its distance dwill be
estimated relatively well, only from GW observation.

VI. DISCUSSIONS

A. Other detectors

So far, we have focused on observation with LISA.
Around 4–20 mHz, the Chinese proposal Taiji is planned to
have ∼1.5 better sensitivity

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
than LISA [14].

Moreover, HM Cancri is a very special target for another
Chinese project TianQin [15]. Indeed, the orbital configu-
ration of TianQin is designed to optimally detect this
binary [15]. By combining these missions with LISA,
we might effectively realize a long time baseline of
T ≳ 15 yr and finely measure f̈ for many binaries. The
Japaneses projects B-DECIGO and DECIGO are planned
to explore the 0.1 Hz band [28,29] and can also contribute
to this observational campaign.

B. Relation to EM observations

In the previous section, we made a case study for HM
Cancri, as a representative target for LISA. Now let us
suppose that LISA actually observes HM Cancri from 2035
to 2050 (T ∼ 15 yr). At the time of 2050, its EM data have
the total duration of ∼50 yr (from ∼2000) and the resultant
resolution Δf̈ would be much better than that from the GW
observation. Nevertheless, the direct comparison between
the EM and the GW results will be meaningful for HM
Cancri. In particular, GW emission in itself is robustly
related to the binary orbital motion with basically no need
for internal dissipation models.

VII. SUMMARY

Recently, for HM Cancri, Strohmayer [3] and Munday
et al. [4] measured the second frequency derivative
f̈ ∼ −10−26 Hz s−2, using x-ray and optical data accumu-
lated in the past ∼20 yr. Their results will be good
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reference values for numerous Galactic binaries to be
detected by LISA.
In this paper, based on a simplified phase model, we

present analytical expressions for the estimation errors of
the phase related parameters. Our analytical expressions
work well for an observational period T ≳ 2 yr. For HM
Cancri, LISA is unlikely to realize a sufficient resolution
Δf̈ in its nominal operation period 4 yr. However, because
of the strong scaling relation Δf̈ ∝ T−7=2, we can make a

much better resolution by extending the operation period of
LISA or combining it with other detectors in a sequen-
tial order.
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