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Neutrino oscillations are genuine quantum phenomena in which coherent oscillations are maintained
over a long distance. As a result, in principle, the phenomena can be studied efficiently using quantum
simulations. In today’s noisy quantum hardware, encoding neutrinos in a multiqubit system requires a
redundant basis and tricky entangling gates. We encode a three-flavor neutrino in a superconducting qutrit
and study its oscillations using Pontecorvo-Maki-Nakagawa-Sakata theory with time evolution expressed
in terms of single qutrit gates. The qutrit is engineered from the multilevel structure of IBM transmon
devices. High-fidelity gate control and readout are fine-tuned using programming microwave pulses using a
high-level language. Our quantum simulations on real hardware match the analytical calculations well in
three oscillation cases: vacuum, interaction with matter, and CP violation.
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I. INTRODUCTION

The discovery of neutrino oscillations [1,2] introduces at
least seven parameters to particle physics models, including
three masses and four lepton mixing parameters. It also
implies lepton mixing, meaning a neutrino flavor is not
one but a superposition of mass eigenstates. Experimental
results for these parameters are mainly interpreted in the
framework of the 3 × 3 unitary mixing matrix called the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) theory [3–5], in
which the three active massive neutrinos νi (i ¼ 1, 2, 3) are
related to the three known flavors να (α ¼ e, μ, τ) as
jναi ¼ UPMNSjνii. In the standard three-flavormixing scheme
[6], due to the rephasing invariance, the PMNSmatrix of Dirac
neutrinos is fully described by threemixing angles θ12, θ23, θ13
and a complex phase δ related to the charge-conjugation and
parity-reversal (CP) symmetry violations as

UPMNS ¼

2
64

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

3
75; ð1Þ

with cij ¼ cos θij and sij ¼ sin θij. In essence, neutrino
flavors’ spontaneous transformation is a quantum interfer-
ence phenomenon due to the wave nature of neutrinos with
their mass eigenstates time dependently acquiring different
phases. The dynamic of neutrino oscillations is governed
by a unitary Hamiltonian, which separates into the kinetic
and potential parts H ¼ H0 þH1 [5,7] as

H0 ¼
1

2E
UPMNS

2
64
0 0 0

0 Δm2
21 0

0 0 Δm2
31

3
75U†

PMNS ð2Þ

and

H1 ¼
1

2E

2
64
Vm 0 0

0 0 0

0 0 0

3
75: ð3Þ

Here, Δm2
ij ¼ m2

i −m2
j are the neutrino mass-squared

differences, and Vm is the Wolfenstein matter potential
[8]. This potential stems from the coherent forward elastic
scatteringwith thematter electrons and is written in unit eV2.
The matter interaction can be considered a perturbation

problem. To maintain a similar form compared to the
vacuum case, the Hamiltonian is diagonalized [7,9] as*hungngq@hus.edu.vn
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H ¼ 1

2E
UPMNSðθ̂12; θ̂23; θ̂13Þ

2
64
0 0 0

0 Δm̂2
21 0

0 0 Δm̂2
31

3
75U†

PMNSðθ̂12; θ̂23; θ̂13Þ; ð4Þ

with the hat denoting parameters related to the matter interaction case. Here,

Δm̂2
21 ¼ Δm2

21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − a12=Δm2

21Þ2 þ cos2ðθ13 − θ̂13Þsin22θ12
q

ð5Þ

and

Δm̂2
31 ¼ Δm2

31 þ
1

4
Vm þ 1

2
ðΔm̂2

21 − Δm2
21Þ þ

3

4
ðΔm̂2

ee − Δm2
eeÞ ð6Þ

are associated with the energy levels in matter. a12 ¼
1
2
ðVm þ Δm2

ee − Δm̂2
eeÞ, where Δm2

ee ¼ c212Δm2
31 þ

s212Δm2
32 is the effective mass-squared difference, and

its corresponding quantity in matter is Δm̂2
ee ¼

Δm2
ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ13 − Vm=Δm2

eeÞ2 þ sin2 2θ13
p

[10]. The
original θij is modified into [7]

sin θ̂12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− ðΔm2

21 cos 2θ12 − a12Þ=2Δm̂2
21

r
; ð7Þ

sin θ̂13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− ðΔm2

ee cos 2θ13 − VmÞ=2Δm̂2
ee

r
; ð8Þ

θ̂23 ¼ θ23: ð9Þ

Similar to the case of vacuum or CP-violation oscillations,
the Hamiltonian in these scenarios has a diagonal form.
From an arbitrary initial state jνð0Þi≡ jναi ¼

P
i U

�
αijνii,

the neutrino evolves in time t in the matrix form as

jνðtÞi ¼ e−iHtjνð0Þi
¼ UPMNSΛðtÞU†

PMNSjνð0Þi

¼ UPMNS

2
64
1 0 0

0 e−iΔm
2
21

t
2E 0

0 0 e−iΔm
2
31

t
2E

3
75U†

PMNSjνð0Þi;

ð10Þ

withE as the neutrino energy. Equation (10) is equivalent to

jνðtÞi ¼
X
i

U�
αie

−im2
i

t
2Ejνii ¼

X
i

U�
αie

−im2
i

t
2E

X
β

Uβijνβi:

ð11Þ

Here, U�
αi denotes the corresponding terms in the PMNS

matrix. The probability of detecting neutrino oscillations
from flavor α to β is

Pα→β ¼ jhνβjνðtÞij2 ¼
����
X
i

U�
αiUβie−im

2
i

t
2E

����
2

: ð12Þ

The PMNS theory has been verified experimentally via
different sources of neutrino fluxes [11]. The parameters
that are reasonably well measured are the solar mixing
angle θ12 ≈ 34° [12], the reactor mixing angle θ13 ≈ 8.5°
[13–15], and the solar mass splitting Δm2

21 ≈ 7.5 ×
10−5 eV2 [12]. The two parameters with well-determined
partial information are the atmospheric mixing angle θ23 ≈
45° and the atmospheric mass splitting Δm2

31 ≈�2.5 ×
10−3 eV2 [11]. However, the phase δ in CP violation still
needs to be discovered with better precision [16]. Excellent
control and more data from further accelerator experiments
such as HK [17] and DUNE [18] are required to suppress
systematic experimental errors. Additional constraints on
the value of the complex phase would establish or deny the
CP violation in the lepton sector that might explain
the matter-antimatter disparity through leptogenesis [16].
The matter effects from natural or artificial sources are
crucial when the interactions between neutrinos and elec-
trons, protons, and neutrons are large. This is the case in
accelerator experiments where the matter effects of Earth
give rise to spurious CP asymmetry [19].
On the other hand, the PMNS framework can be studied

by tools from quantum simulation. Recent progress in
quantum engineering has realized noisy intermediate-scale
quantum (NISQ) computers, devices that perform key
proof-of-concept quantum algorithms and showcase enor-
mous potential [20,21]. Designed as a universal computing
platform and programmed using high-level language
through cloud access, a range of remarkable works are
performed on real devices using a small number of qubits.
They include demonstrating critical quantum algorithms
[22,23], simulation of quantum phenomena [24–29], and
reproducing foundation quantum experiences [30–33].
In specific problems, multilevel structures of qudits

utilizing larger computational spaces are promising archi-
tectures for quantum computations and simulations [34,35].
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While the higher energy level is more prone to noise,
qutrits have been realized successfully on various hardware
architectures, such as trapped ion [36,37], integrated pho-
tonics [38], high-spin nucleus in silicon [39], molecular spin
[40], and especially superconducting circuits [41–45]. A
range of physics phenomena have been simulated on its most
popular platform, the transmon [46], including efficient
quantum gates [47], quantum information scrambling [48],
topological phase transition [49], sensors for microwave
fields [50], quantum number generators [51], contextuality
without nonlocality [52], and quantum metrology [53].
The quantum coherence of oscillating neutrinos over

long distances provides a natural system for quantum
simulations, with the first attempt being on trapped ion
systems [54,55]. The exponential overhead of classical
simulations of dynamical phase transition and many-body
effects of collective neutrinos necessitates quantum com-
puters in the presence of large entanglement [56–64]. The
PMNS matrix has been solved for multiqubit systems
[65–67] that set the basis to simulate neutrino time
evolution. Initially demonstrated on superconducting hard-
ware [65], a PMNS matrix is parametrized for the case of
vacuum oscillations using two qubits. The PMNS qubit
parametrization is then improved to include CP violation
[66], but its circuit is too complicated for current NISQ
hardware. Furthermore, encoding three neutrino flavors on
a two-qubit system requires a redundant basis state and
suffers from large errors in entangling gates. This mismatch
is unavoidable in many high-energy physics problems
where the local degrees of freedom are not an even number
[68]. The inefficiency of qubit mapping hinders current
attempts to simulate more complex phenomena. Indeed,
quantum simulations are only presented in the two-flavor
picture of collective neutrino oscillations in core-collapse
supernovae [69–72]. These issues necessitate a more
NISQ-efficient encoding for high-energy physics simula-
tions using three-level systems, such as qutrits.
In this work, we simulate neutrino oscillations by

harnessing the computational power of high-dimensional
Hilbert space while maintaining a low circuit depth. The
three neutrino flavors are encoded in a transmon qutrit, and
their quantum oscillations are simulated following the
PMNS theory. The original PMNS matrix is decomposed
into native qutrit gates in three cases: bare vacuum
oscillations, oscillations with matter interaction Vm ≠ 0,
and oscillations with CP violation δ ≠ 0. Using the PULSE

package in IBM’s Qiskit, low-level microwave pulses are
engineered to access the qubit’s third level, thus construct-
ing a transmon qutrit. Distinctly discriminated between
their levels, the qutrit has high-quality gates. By carefully
tracking phase advances between the two subspaces f01g
and f12g, the oscillations simulated on the transmon
qutrit match the analytical results obtained from PMNS
theory well in all three scenarios. In all calculations, values
from experiments are used according to the normal mass
hierarchy in NuFIT 5.1 data [73]: θ12 ¼ 33.45°, θ23 ¼ 42.1°,

θ13 ¼ 8.62°, Δm2
21 ¼ 7.42 × 10−5 eV2, and Δm2

31 ¼
2.510 × 10−3 eV2.

II. METHOD

A. The PMNS theory as qutrit gate decompositions

The three neutrino flavor eigenstates are directly mapped
to orthogonal states of a three-level qutrit as

jνei ¼ j0i≡
0
B@

1

0

0

1
CA; jνμi ¼ j1i≡

0
B@

0

1

0

1
CA;

jντi ¼ j2i≡
0
B@

0

0

1

1
CA: ð13Þ

Hence, an arbitrary neutrino state is written as a super-
position of these eigenstates jναi ¼ c0j0i þ c1j1i þ c2j2i,
where c0, c1, c2 are complex numbers satisfying the
normalization condition jc0j2 þ jc1j2 þ jc2j2 ¼ 1. As
shown in Fig. 1, the transformation to and from the mass
basis is done by a rotation under the PMNS-like action
jναi ¼ UPMNSjνii, which can be decomposed into rotations
within subspaces f01g, f02g, and f12g.
To execute the PMNS action on a qutrit, it needs to be

decomposed into pulsable gates that can be implemented
with the PULSE package in Qiskit. The PMNS matrix Eq. (1)
can be rewritten in the form

UPMNS ¼

2
64
1 0 0

0 c23 s23
0 −s23 c23

3
75
2
64

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

3
75

×

2
64

c12 s12 0

−s12 c12 0

0 0 1

3
75; ð14Þ

where the last matrix represents a rotation with θ12. In our
qutrit representation, this last term is equivalent to a
rotation of an angle 2θ12 in subspace f01g.
In general, an arbitrary unitary 3 × 3 qutrit gate R3 can

be decomposed into rotations in their f01g or f12g sub-
space [74] as

R3 ¼ X0R01
ϕ1
ðθ1ÞR12

ϕ2
ðθ2ÞR01

ϕ3
ðθ3Þ; ð15Þ

where X0 is diagonal in the computational basis and

Rmn
ϕ ðθÞ ¼ exp

�
−i

θ

2
ðσmn

x cosϕþ σmn
y sinϕÞ

�
: ð16Þ

The superscripts denote subspaces of the gate, σmn
x ¼

jmihnj þ jnihmj, σmn
y ¼ iðjnihmj − jmihnjÞ, θ is the angle,

and ϕ is the axis of the rotation. Clearly, there is no unique
decomposition of a general qutrit gate. In practice, we
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decompose only the first two matrices in Eq. (14) and
require that it takes the form R01R12R01. This way, the
number of gates is minimal to avoid systematic errors on
NISQ hardware.
In the simplest scenario when there is no CP violation

δ ¼ 0 and no matter interaction Vm ¼ 0, the original
PMNS matrix UPMNS in Eq. (14) is decomposed as
combinations of qutrit gates in their f01g and f12g
subspaces as

RPMNS ¼ R01
π
2
ðα1ÞR12

3π
2

ðα2ÞR01
π
2
ðα3ÞR01

π
2
ð−2θ12Þ: ð17Þ

Its conjugate writes

R†
PMNS ¼ R01

π
2
ð2θ12ÞR01

π
2
ð−α3ÞR12

3π
2

ð−α2ÞR01
π
2
ð−α1Þ: ð18Þ

Here, αi relates to θij as

cos
α1
2
¼ cos θ13 sin θ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2 θ13 cos2 θ23
p ; ð19Þ

cos
α2
2
¼ cos θ13 cos θ23; ð20Þ

cos
α3
2
¼ sin θ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2 θ13 cos2 θ23
p : ð21Þ

In our quantum circuits, the time operator ΛðtÞ is
constructed by modifying the phases of the following
pulses by the argument difference between their two entries
[74]. In particular, after the diagonal gate, a phase of

Φ01 ¼ Δm2
21

t
2E

ð22Þ

is added to gates in subspace f01g, and a phase of

Φ12 ¼ −Δm2
21

t
2E

þ Δm2
31

t
2E

¼ Δm2
32

t
2E

ð23Þ

is added to gates in subspace f12g. In the relativistic scale,
t ¼ L the traveling distance. The time operator ΛðtÞ can be
written as ΛðL=EÞ, which is more prevalent in the neutrino
community. These two phases are linearly related with
constant neutrino mass-squared differences measured from
experiments. At the end of the circuit, we perform a change
back to the flavor eigenstates basis and measure the
probability of neutrino flavors. All in all, the combined
gate that drives the qutrit is

R3
δ¼0;Vm¼0 ¼ RPMNSΛðL=EÞR†

PMNS: ð24Þ
As shown inEq. (10),ΛðL=EÞ is a diagonalmatrix and can

be decomposed into a series of rotation gates diagðexpðiϕ0Þ;
exp ðiϕ1Þ; expðiϕ2ÞÞ ¼ expðiϕ1Þ Z01 ð−Φ01Þ Z12 ð−Φ12Þ,
where Φmn ¼ ϕm − ϕn and Zmn are phase gates in the
corresponding subspaces [75]. Using the identity

ZmnðΦÞRmn
X ðθÞZmnð−ΦÞ ¼ Rmn

Φ ðθÞ; ð25Þ
whereRmn

Φ ðθÞ is a rotation gatewith angle θ around axisΦ in
subspace mn, and multiplying both sides of this equation
with Zmnð−ΦÞ to the left, we have

Rmn
X ðθÞZmnð−ΦÞ ¼ Zmnð−ΦÞRmn

Φ ðθÞ: ð26Þ
Equation (24) becomes

R3
δ¼0;Vm¼0 ¼ RPMNSΛðL=EÞR†

PMNS

¼ R01
π
2
R12

3π
2

R01
π
2
expðiϕ1ÞZ01ð−Φ01ÞZ12ð−Φ12Þ

× R01
π
2
R12

3π
2

R01
π
2

¼ expðiϕ1ÞZ01ð−Φ01ÞZ12ð−Φ12ÞR01
π
2
þΦ01R12

3π
2
þΦ12

× R01
π
2
þΦ01R01

π
2
R12

3π
2

R01
π
2

¼ ΛðL=EÞR01
π
2
þΦ01ðα1ÞR12

3π
2
þΦ12ðα2Þ

× R01
π
2
þΦ01ðα3 − 2θ12ÞR01

π
2
ð−α3 þ 2θ12Þ

× R12
3π
2

ð−α2ÞR01
π
2
ð−α1Þ: ð27Þ

Note that theΛðL=EÞmatrix at the leftmost ofEq. (27) can be
ignored because it is a global phase and does not affect the
final probabilities Pνa→νb . Measuring this state yields the
probability distribution of an oscillating neutrino in vacuum,
as the PMNS mechanism dictates.
A similar decomposition is applied to the diagonalized

PMNS Hamiltonian Eq. (4) for the case of oscillations with
matter interaction. Without CP violation δ ¼ 0, the decom-
position writes

RPMNSðθ̂12; θ̂23; θ̂13Þ ¼ R01
π
2
ðα̂1ÞR12

3π
2

ðα̂2ÞR01
π
2
ðα̂3 − 2θ̂12Þ:

ð28Þ

Here, α̂i depends on θ̂ij in a manner similar to how αi
depends on θij following Eqs. (19)–(21). The matter-
related term θ̂ij relates to θij according to Eqs. (7)–(9).
Using the same decomposition as in Eqs. (17) and (18), the
quantum circuit is identical to the vacuum case with matter
equivalents replacing vacuum mixing parameters

R̂3
δ¼0;Vm≠0 ¼ ΛðL=EÞR01

π
2
þΦ̂01ðα̂1ÞR12

3π
2
þΦ̂12ðα̂2Þ

× R01
π
2
þΦ̂01ðα̂3 − 2θ̂12ÞR01

π
2
ð−α̂3 þ 2θ̂12Þ

× R12
3π
2

ð−α̂2ÞR01
π
2
ð−α̂1Þ: ð29Þ

It is straightforward to generalize this formula to the case
of oscillations with matter interaction with CP violation
δ ≠ 0 and other similar scenarios with a diagonalized
Hamiltonian.
In the present of CP broken symmetry δ ≠ 0, the PMNS

matrix UPMNS contains a complex phase δ associated with
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the sinðθ13Þ term. Following the strategy used to derive
Eqs. (17) and (18), the decomposition of the PMNS and its
conjugate in the case of nonzero δ are

RPMNS ¼ R01
π
2
þδðα1ÞR12

3π
2

ðα2ÞR01
π
2
þδðα3ÞR01

π
2
ð−2θ12Þ; ð30Þ

R†
PMNS ¼ R01

π
2
ð2θ12ÞR01

π
2
þδð−α3ÞR12

3π
2

ð−α2ÞR01
π
2
þδð−α1Þ: ð31Þ

Here, α1, α2, α3 are determined from Eqs. (19)–(21). We
note that this decomposition contains four qubit gates and is
not minimal. It can be further reduced to three rotations by
combining the two adjacent gates in f01g subspace.
Nevertheless, it reduces to Eqs. (17) and (18) when
δ ¼ 0. The evolution of the qutrit follows

R3
δ≠0;Vm¼0 ¼ΛðL=EÞR01

π
2
þδþΦ01ðα1ÞR12

3π
2
þΦ12ðα2ÞR01

π
2
þδþΦ01ðα3Þ

×R01
π
2
þΦ01ð−2θ12ÞR01

π
2
ð2θ12ÞR01

π
2
þδð−α3Þ

×R12
3π
2

ð−α2ÞR01
π
2
þδð−α1Þ; ð32Þ

with Φij defined in Eqs. (22) and (23). This action
simulates the evolution of neutrinos in the presence of
CP violation δ ≠ 0.

B. Control and readout of the transmon qutrit

Wemodify IBM’s transmonqubit into a qutrit usingQiskit’s
PULSE package to implement the above decompositions on
real hardware. Changing the amplitude, phase, and duration
of a time-dependent pulse using high-level scripts written in
PYTHON, an arbitrary waveform can be constructed to access
and control the transmon’s third level.We focus on qubit 0 of
the Jakarta device, a seven-qubit machine with the detailed
information provided in Table I. Further tests on other
devices, such as Armonk, yield similar results. This machine
has higher systematic errors than Jakarta, and its results are
only reported in our GitHub repository [76]. In most cases,
IBM’s default values for f01g subspace are used, and we
focus on engineering pulses in the f12g subspace.
To define the qutrit, an algorithm that follows the

Rabi spectroscopy protocol is implemented, as shown in
Figs. 2(a) and 2(d) and Algorithm 1. While using IBM’s
default frequency f01 for subspace f01g, we find f12 by
sweeping the frequency anharmonicity to spot the peak of
excitation from state j1i to j2i. The qubit is first set to
the j1i state using a π pulse R01

X ðπÞ. The subspace f12g is
then allocated by searching for the resonant frequency f12

using set_frequency in PULSE and a Lorentzian fit. A
sinusoidal sideband at anharmonicity f12 − f01 is applied to
amplitude-modulatedmicrowave pulses to effectively imple-
ment transitions j1i ↔ j2i [77]. This Rabi experiment will
then return the amplitude of the π pulse in subspace f12g.
To classify output from IBM, we build qutrit discrim-

inators from three-state preparation experiments in which
the durations and the amplitudes of the measurement pulses

TABLE I. Properties of qubit 0 on the IBM Jakarta device
obtained in March 2022. This seven-qubit device has a standard
transmon architecture with I-shaped connectivity.

Properties Symbol Value

Qutrit frequency j0i ↔ j1i f01 5.237 GHz
Qutrit frequency j1i ↔ j2i f12 4.897 GHz
PULSE resolution dt 0.222 ns
Lifetime ðj0i ↔ j1i) T1 184.5 μs
Coherence time (j0i ↔ j1i) T2 40.39 μs
Readout pulse length 4 μs
Transmon regime EJ=EC 33.65

FIG. 1. The PMNS theory for neutrino oscillations: with nondegenerate masses and flavor mixings, a neutrino unitarily transforms
between its mass and flavor bases. This PMNS transformation is graphically represented by Euler angles between the two bases, or
equivalently, a nondiagonal matrix. The measurement outcome depends on time evolution, which is proportional to the traveling
distances. The second row sketches this process using quantum circuit language. First, a unitary qutrit gateR3ðθÞ as in Eq. (15) initiates
the quantum state from j0i, then a gate combination R†

PMNS as in Eq. (18) rotates it to the mass basis. This state jνðtÞi evolves in time,
equivalent to the action of phase gates in the two subspaces. Before measurement, jνðtÞi is rotated back to the flavor basis using RPMNS
as in Eq. (17).
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are tuned. In this experiment, the transmon is repeatedly
initialized at states j0i; j1i, or j2i and then measured, as
outlined in Algorithm 2. The output signals rendered from
Qiskit level-1 kerneled data are complex numbers I þ iQ in
the in-phase-quadrature plane. As shown in Fig. 2(c), the
discriminator is a graph of three clusters corresponding to
these prepared states with quality depending on the dis-
tance between separate clusters. We use the silhouette-score
metric from the SCIKIT-LEARN library in PYTHON to
quantify these interdistances. A heat map of the silhouette
score as a function of pulse amplitudes and durations is
generated to find the sweet spot for the qutrit performance.

In Fig. 2(b), the amplitude ranges from 0.4 to 1 in a
normalized unit, and the duration sweeps from 2 to 5 μs.
The optimal measurement spot is defined in association
with a (amplitude, duration) pair that produces the highest
score. We find an optimal measurement pulse with duration
4 μs and amplitude 0.91 in the normalized unit at the
marked location on Fig. 2(b). From these data, a support
vector classification (SVC) is applied to train and define the
boundaries of these three regions [79]. Subsequently, the
data are classified as j0i; j1i, or j2i based on their location
in the I-Q plane. Associated with the discriminator shown
in Fig. 2(c), a typical readout accuracy for state preparation
for states j0i, j1i, and j2i is 98.5%, 94.3%, and 94.5%,
respectively. To minimize the state preparation and measure-
ment (SPAM) error, these probabilities are further adjustedAlgorithm 1. Accessing the third level of the qutrit.

Result: Resonance frequency to the third state and R12
X ðπÞ gate

Step 1: Transition from j0i to j1i:
set_frequency = f01

play Gaussian(dur = Td, ampl = A01
π )

Step 2: Find f12g transitional frequency f12

for f12 in frequency_guess do
set_frequency = f12
play Gaussian(dur = Td, ampl = ampl12 )

end
Lorentzian fit → resonance peak → f12

Step 3: Perform Rabi experiment in subspace f12g to find R12
X ðπÞ

for amp12 in amplitudes_12 do
set_frequency = f12

play Gaussian(dur = Td, ampl = ampl12)
end
Cosine function fit → A12

π

(a) (b) (c)

(d)
(e)

FIG. 2. Engineering the qutrit. (a) Spectroscopy results of qubit 0 on IBM’s Jakarta device with the resonance peak between state
j1i ↔ j2if12 ¼ 4.897 GHz. (b) The silhouette score heat map as a function of the durations and amplitudes of the measurement pulses.
The marker highlights the qutrit readout sweet spot with the highest score. (c) Qutrit discriminator trained by the SVC algorithm from
the data of state preparation of the three lowest energy levels. (d) Rabi oscillations in subspace f12g. Amplitude for the π pulse R12

X ðπÞ is
defined as half the period marked by the two dashed lines. (e) Error amplifying of an R12

X ðπÞ pulse using protocol ½R12
X ðπÞ�nR01

X ðπÞ. The
R12
X ðπÞ pulse is applied n times on a prepared state j1i [78]. The black line shows the fit function to the probability of state j1i that

indicates calibration errors.

Algorithm 2. Measurement and readout optimization.

Result: Improved qutrit discriminator using support vector
classification
for ampl in amplitudes do

for dur in durations do
for shot in shots do

Initialize jNi= � N ¼ 0; 1; 2 � =
end
play measurement_pulse ([dur,ampl])
distance = silhouette_score( ðj0i; j1i; j2iÞ,
[dur,ampl] )

end
end
max(distance) → [dur,ampl]
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using the inverse confusion matrix following the error
mitigation protocol [28]. To tackle the instability and drifting
of the transmons, we build a specific discriminator associated
with each job. Each run is corrected with a designated
mitigation matrix obtained before any operations.
The building block for a universal single qutrit gate is the

Given rotation Rmn
ϕ ðθÞ in subspace fmng as defined in

Eq. (16) and implemented in Algorithm 3, whose angle θ
and axis of rotation ϕ are generated by a pulse with
corresponding values of phase and envelope area at
resonant frequency fmn. Since the default rotation gates
in IBM’s Qiskit are built from two square root gates, it is
hard to track phases with this protocol. We rebuild rotation
gates in both f01g and f12g with matrix form

R01
ϕ ðθÞ ¼

2
64

cos θ=2 −i sin θ=2e−iϕ 0

−i sin θ=2eiϕ cos θ=2 0

0 0 1

3
75

¼

2
64

0 −i 0

−i 0 0

0 0 1

3
75; ð33Þ

R12
ϕ ðθÞ ¼

2
64
1 0 0

0 cos θ=2 −i sin θ=2e−iϕ

0 −i sin θ=2eiϕ cos θ=2

3
75

¼

2
64
1 0 0

0 0 −i
0 −i 0

3
75: ð34Þ

Here, the second equal signs denote the θ ¼ π rotation.
To physically execute this π rotation, a Gaussian pulse of
the form σ ¼ 40 dt ¼ 8.89 ns is applied to the transmon

ΩðtÞ ¼ Ω0 exp

�
−
ðt − Td=2Þ2

2σ2

�
; ð35Þ

with mean duration Td ¼ 160, dt ¼ 35.56 ns, and deviation
σ ¼ 40 dt ¼ 8.89 ns. The pulse amplitude Ω0 is varied by
small increments with fixed duration at the resonance

frequency of the corresponding subspace. The obtained
Rabi oscillation has a sinusoidal form in which its amplitude
represents the fraction of the shots driving the qutrit between
the two states. The amplitude for π pulse Aπ equals half the
period, asmarked by two dashed lines in Fig. 2(d). The angle
of an arbitrary rotation θ is obtained by linearly scaling the
envelope area of the π pulse by its amplitude AðθÞ ¼ θ

π AðπÞ
[80]. To modify the rotation axis, we adjust the phase of the
pulse. Shifting a phaseϕ to theRXðθÞ pulse in advance yields
anRϕðθÞ gate. In light of virtual Z gates [81], thisRϕðθÞ gate
is equivalent to ZðϕÞRXðθÞZð−ϕÞ. This microwave pulse is
the physical realization of Rmn

ϕ ðθÞ.
In practice, this method brings two significant sources for

errors: coherent and incoherent errors. The former error
stems from amplitude miscalibration and has a quadratic
impact on algorithmic accuracy. The latter error arises from
stochastic noise with linear impact. Those errors can be
extracted from the error amplification protocol [78,82]. IBM
already provides this protocol to fine-tune the amplitude of π
pulse in subspace f01g. To fine-tune the amplitude of the
R12
X ðπÞ pulse, the pulse is repeatedly applied to reveal errors

as shown in Fig. 2(e), where the x axis is the number of pulse
R12
X ðπÞ. The gate sequence is ½R12

X ðπÞ�nR01
X ðπÞ so that the

qutrit oscillates between states j1i and j2i. As seen in
Fig. 2(e), we find an underrotation of 0.008 radians and a
decay rate of 73.125 kHz over the number of pulse gates for
qubit 0 of the Jakarta device [78,82].
Thus far, it all workswellwithin one subspace, either f01g

or f12g. However, maneuvering the state in one subspace
introduces phase advances in the other. A possible source is
the phase accumulation of the idle state when a subspace
change occurs. For example, a rotation in subspacef01gwith
duration t imprints on the state j2i a phase proportional to
2πðf12 − f01Þt [83]. Hence, the rotation axis of every gate is
modified according to the phase accumulation from previous
gates. Since the qutrit starts with state j0i, every gate in
subspace f12g needs a phase correction. Similarly, every
gate in subspace f01g needs a correction if oneR12 is applied
earlier. These phase advances depend on unknown param-
eters, including the detailed design of the qutrit.Wemanually
track and correct them for each qutrit decomposition depend-
ing on the number of gates in the circuit. In our analysis, there
are two gate decompositions. The vacuum oscillations as in
Eq. (27) and the oscillations with matter interaction as in
Eq. (29) require six qutrit gates, and the CP-violation
oscillations as in Eq. (32) require eight qutrit gates.
Correspondingly, the gate sequences are modified as

R0
6 ¼ R01

π
2
þΦ01þφ5

R12
3π
2
þΦ12þφ4

R01
π
2
þΦ01þφ3

R01
π
2
þφ2

R12
3π
2
þφ1

R01
π
2

ð36Þ

or

R0
8 ¼ R01

π
2
þδþΦ01þφ7

R12
3π
2
þΦ12þφ6

R01
π
2
þδþΦ01þφ5

R01
π
2
þΦ01þφ4

× R01
π
2
þφ3

R01
π
2
þδþφ2

R12
3π
2
þφ1

R01
π
2
þδ; ð37Þ

Algorithm 3. Single qutrit gates.

Result: An arbitrary single qutrit gate using Eq. (15)
Def R01ðϕ; θÞ:

set_frequency = f01

phase_offset = ϕ
play Gaussian(dur=Td, ampl ¼ θ

π A
01
π )

return R01

Def R12ðϕ; θÞ:
set_frequency = f12

phase_offset = ϕ
play Gaussian(dur=Td, ampl ¼ θ

π A
12
π )

return R12

R3 ¼ X0R01
ϕ1
ðθ1ÞR12

ϕ2
ðθ2ÞR01

ϕ3
ðθ3Þ
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with φi being phase advances to each gate due to their
previous pulses of the sequence. Since amplitudes are
assumed independent of phases, rotation angles are not
written explicitly in the above formula. We reconstruct these
phases from measurement data. They are estimated
to maximize the likelihood that R0 yields the observed
probability distribution. These phases are shown in Table II,
which are fairly stable anddonot fluctuate or drift throughout
our analysis. We emphasize that the phase advances for
vacuum oscillations and oscillations with matter interaction
are identical since their gate decompositions differ only in
rotation angles, which are constant numbers.
To correct for random drifting in IBM’s hardware, the

first three circuits of any run are designed for calibration.
Their results constitute an inverse matrix for the mitigation
protocol [28]. Since IBM allows 300 circuits per job, the
remaining 297 circuits are used for neutrino simulations.

Typically, each job contains 8192 shots and is repeated
four times for statistical errors. In all runs, we use real data
as much as possible. Their values are θ12 ¼ 33.45°,
θ23 ¼ 42.1°, θ13 ¼ 8.62°, Δm2

21 ¼ 7.42 × 10−5 eV2,
Δm2

31 ¼ 2.510 × 10−3 eV2. Following famous experiments
in the field, we use E ¼ 1 GeV for neutrino energy when
calculating oscillations as a function of distance and L ¼
295 km when calculating oscillations as a function of
energy.

III. RESULTS AND DISCUSSION

With calibrated qutrit pulses, we implement the PMNS
actions by gating a qutrit, thus simulating neutrino oscil-
lations on IBM quantum hardware. Specifically, neutrino
oscillations in vacuum are simulated as a chain of six
qutrit gates on Jakarta qubit 0 per Eq. (27). In Fig. 3,

TABLE II. Phase advances between subspaces f01g and f12g: phase advances in radians are tracked using protocols in Eqs. (36) and
(37). These constants are then applied to simulate neutrino oscillations for the vacuum case Eq. (27), the matter interaction case Eq. (29),
and the CP-violation case Eq. (32). The column marked “Figure” lists the corresponding figure that uses these numbers to calculate their
results.

Event Figure φ1 φ2 φ3 φ4 φ5 φ6 φ7

νe 3(a), 3(b) −1.5312 −0.4341 5.9253, 6.5312 −0.4005 NA NA
νμ 3(c), 3(d), 4(a)–4(c) 1.7018 −6.2831 −0.0497 3.2981 −6.4306 NA NA
ντ 3(e), 3(f) 1.7409 −0.6074 −0.6796 3.2591 −0.7130 NA NA
νμ 5 −1.9599 0.0299 0.0299 0.0299 0.0299 −5.8599 0.0611

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2 0 0.02 0.04 0.06 0.08 0.10

0 5 10 15 20 25 30 0 0.5 1 1.5 2
0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00

L/E (km/MeV) L/E (km/MeV)

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Vacuum oscillations: survival probabilities when the initial states are (a),(b) electron neutrinos, (c),(d) muon neutrinos, and (e),
(f) tauon neutrinos with energy E ¼ 1 GeV as a function of L=E in an entire period of Φ01. The solid lines are theoretical calculations
from classical computers using Eq. (12), while the dots are quantum simulation results on a real quantum computer following Eq. (27).
Panels (b),(d),(f) are enlargements of a small regime of the corresponding graphs on their left. Each dot is averaged from four runs with
8192 shots each. Error bars are smaller than their symbols and are barely visible.
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the probability of detecting different neutrino flavors is
presented. From the top to bottom panels, the initial states
of the neutrino are chosen as electron neutrinos j0i,
muon neutrinos j1i, and tauon neutrinos j2i in Figs. 3(a)
and 3(b),3(c) and 3(d), and 3(e) and 3(f), respectively.
The left column shows a full period, and the right column
shows an enlargement of the same data. The probabilities
for final states νe, νμ, and ντ are in red, green, and blue,
respectively. In all graphs, simulated data are dots with
error bars barely visible, and analytical calculations using
the PMNS matrix are solid lines. The bottom x axes
show the standard scale in neutrino studies in length per
energy L=E with E ¼ 1 GeV and L ¼ t in the relativistic
scale. The top x axes show the rotation axes Φ01=2π
used for the qutrit according to Eq. (22). All curves are
executed four times independently with 8192 shots
each. Dots from Figs. 3(a),3(c), and 3(e) are averaged
from these runs with relative errors mostly in the range of
1% to 10%.
Similarly, neutrino oscillations when interacting with

matter are simulated, as shown in Fig. 4. Assuming only
interactions with electrons via the potential Eq. (3), the
Hamiltonian contains a correction term Vm as a perturba-
tion. Following the diagonalization as in Eq. (4), the PMNS
matrix is decomposed similarly to the vacuum case into a
sequence of three qutrit rotation gates. This decomposition
Eq. (29) has the same form as the decomposition for
vacuum oscillations Eq. (27). All calculations here, there-
fore, resemble the case of vacuum oscillations, with some
modifications to all constants. Without CP violation δ ¼ 0,
four different values for Vm ¼ 0; 10−5; 10−4, and 10−3 eV2

are chosen to simulate the oscillations with muon neutrino
j1i as the initial state. In Fig. 4, the oscillation probabilities
in three channels νμ → νe, νμ → νμ, and νμ → ντ are
presented. In each channel, the probability of detecting a
flavor is shown with four values of matter potentials, Vm ¼
0 eV2 in purple, 10−5 eV2 in cyan, 10−4 eV2 in green, and
10−3 eV2 in red. Each curve is averaged from 8192 shots.
Following Eq. (36) and Table II, the same phase correc-
tions between qutrit gates in Eq. (29) as in vacuum
oscillations are used. In all cases, data from real hardware
match the analytical calculations well. The relative errors
are mostly around 1% to 10%, similar to the case of vacuum
oscillations.
To demonstrate the power of our approach to the

PMNS theory, neutrino oscillations are further simulated
in the presence of CP violation δ ≠ 0 to the sinðθ13Þ term
in Eq. (14). Unlike the case of vacuum oscillations where
δ ¼ 0 in the decomposition Eq. (17), the term θ12 does not
share a common rotation axis with the term α3. The PMNS
matrix is decomposed into four rotations of different axes,
as shown in Eq. (30). There are seven phase advances φi
corresponding to eight axes of gate sequence as in protocol
Eq. (37), which is given in Table II. In Fig. 5, we calcu-
late the probability for the oscillation channel from νμ to νe

in four cases: maximum neutrino enhancement with
δ ¼ −π=2, maximal antineutrino enhancement δ ¼ π=2,
δ ¼ 0, and δ ¼ π. The oscillation is now plotted as a
function of the energy at distance L ¼ 295 km corres-
ponding to the configuration of the T2K experiment [84].
Each curve is averaged from four datasets with 4096
shots. Data for the other two cases νμ → νμ and νμ → ντ
can be found on our GitHub repository [76]. The proba-
bility in the νμ → νe channel is smaller than that of the other
two cases, thus leading to larger relative errors. Still, the
relative errors for all data are mostly in the range of 1% to
10%. Extending these simulations for other flavors, differ-
ent distances, or values for δ is straightforward.
To compare our quantum simulation approach with

traditional analytical calculations, we calculate the R2 score
and the relative error following their definitions

L/E (km/MeV)
18171615141312

0.00
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0.75

1.00

0.00

0.25

0.50

0.75

1.00
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0.25

0.50

0.75

1.00
Vm = 0 Vm = 10-5

Vm = 10-4 Vm = 10-3

(a)

(b)

(c)

FIG. 4. Oscillations with matter interactions: oscillations of a
muon neutrino with E ¼ 1 GeV traveling a distance L in matter
with potential in unit eV2: Vm ¼ 0 in purple, 10−5 in cyan, 10−4

in green, and 10−3 in red. Comparison of matter effect for four
potentials is shown in three channels where an initial muon
neutrino oscillates to electron neutrino (a), muon neutrino (b),
and tauon neutrino (c). Solid lines are PMNS analytical calcu-
lations. Dots indicate data from the IBM quantum computer.

SIMULATING NEUTRINO OSCILLATIONS ON A … PHYS. REV. D 108, 023013 (2023)

023013-9



R2 ¼ 1 −
P

N−1
i¼0 ðyi − y0Þ2P
N−1
i¼0 ðyi − ȳÞ2 ð38Þ

and

Δy ¼ jyi − y0j
jy0j

: ð39Þ

Here, y0 are the theoretical probabilities, yi are the
experimental data, and ȳ are their means. As seen in
Table III, R2 are mostly bigger than 99%, indicating a
great fit between the analytical approach and the quantum
simulation on real qutrit. The value for relative errors Δy is
shown in all figures. With a typical range of 1% to 10%,
these error bars are barely visible.
Apparently, encoding three neutrino flavors into qutrit

eigenstates has certain advantages over the qubit approach
[66]. Instead of using two entangled qubits, utilizing the
qutrit does not involve a redundant basis. The PMNS

matrix is expressed only with single qubit gates in the two
subspaces without complicated entanglement gates. In
previous simulations using qubits [66], the PMNS matrix
Eq. (14) is decomposed as a product of qubit rotations
RPMNS ¼ R23ðθ23; 0ÞR13ðθ13; δÞR12ðθ12; 0Þ. On the two-
qubit Hilbert space, R12 rotation is constructed from the
native controlled-U3 gate. The other rotations R23 and R13

are constructed from this base by adding permutation
matrices such as SWAP gates. In total, the qubit decom-
position comprises three controlled-U3 gates, two CNOT

gates, and four SWAP gates. Even after simplification, the
PMNS decomposition on a two-qubit system requires three
controlled-U3 and two CNOT gates, which is quite a burden
for current quantum hardware. Compiling this circuit to
pulse schedules, the execution time to implement qubit-
based PMNS on IBM devices is 12224 dt, in comparison to
our execution time using qutrit is 640 dt per Eq. (27). The
qutrit-based approach is 19.6 times faster compared to the
qubit-based calculation.
The main challenge in our work relates to engineering

the qutrit. Different from the popularity of qubits, qutrits
get little attention, and there is much work to be done. To
reduce SPAM errors, we have to scan a wide range of
amplitudes and durations, which constructs a silhouette
score heat map that navigates us to the best pulse
parameters. To prevent drifting, every job has its mitigation
matrix. Errors of a single pulse gate in f01g and f12g
subspace is maintained in the range of 10−3 to 10−4 and
10−3 to 10−2, respectively. However, the most challenging
issue is the unknown nature of the correlation between the
two subspaces f01g and 12 of the qutrit. It not only
depends on the anharmonicity between the two subspaces
but the phase advances of the idle state are also influenced
by the ac Stark shift or the detailed architecture of the qubit.
We obtain constant phase advances between subspaces by
testing identical gate sequences to the oscillation quantum
circuits. These numbers remain unchanged, as shown
in Table II. In any case, we foresee a challenge when
expanding our work to multiqudit systems, for example, to
simulate collective neutrino physics. With sophisticated
two qutrit gates, it might require more fundamental
approaches to track phase advances across a multiple
entangled qutrits system. A more systematic investigation
is currently going on within our group, with results lying

δ = -π/2
δ = 0
δ = π/2
δ = π

E (GeV)
0.1 0.2 0.3 10.5 0.7

FIG. 5. Oscillations with CP violation: calculations of the
appearance probability of electron flavor from an initial muon
neutrino as functions of energy E in four notable cases of CP-
violating phases, δ ¼ π=2; π; 0;−π=2. The baseline is L ¼
295 km representing T2K configuration; matter effects are not
considered with Vm ¼ 0. The solid lines are analytical calcu-
lations using Eq. (12), while the dots are quantum simulation
outputs from the IBM quantum computer.

TABLE III. R2 scores calculated using Eq. (38) to compare theoretical calculation from PMNS theory and simulation data from
quantum computers for all data presented in this work: vacuum oscillations shown in Fig. 3, oscillations when interacting with matter
shown in Fig. 4, and oscillations in the present of CP violation shown in Fig. 5.

Vacuum (Fig. 3) Vm (eV2) (Fig. 4) δ (Fig. 5)

νeð0Þ νμð0Þ ντð0Þ 0 10−5 10−4 10−3 − π
2

0 π
2

π

νe 0.998 0.998 0.997 0.998 0.999 0.985 0.917 0.967 0.980 0.924 0.998
νμ 0.998 0.995 0.999 0.994 0.996 0.996 0.989 0.955 0.964 0.963 0.971
ντ 0.995 0.995 0.999 0.993 0.995 0.996 0.989 0.947 0.959 0.966 0.974
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outside the scope of this work. In the near future, optimal
and robust control techniques [85–88] may improve qutrit
gate fidelity, especially for δ ≠ 0 circuits.
Our simulations demonstrate the complex interplay

among neutrino parameters in terms of well-controlled
pulse parameters on real quantum hardware. With a
diagonal Hamiltonian, neutrino evolutions can be decom-
posed into sequences of rotations in the qutrit space. The
oscillations can be reproduced with precision both without
and with matter interactions. Moreover, CP-violation
physics δ ≠ 0 can be incorporated into the qutrit circuit
as a modification in microwave phases. Different inter-
pretations of CP-violation physics can be achieved by
extending Eq. (14) to include different parameters, for
example, the case when δ associates with other terms,
say, sin θ12 or sin θ23. While this work deals with a single
system, it demonstrates an important role as a hardware-
efficient building block to construct sophisticated quantum
simulations of more phenomenologically rich neutrino
systems involving three neutrino flavor effects. It is
straightforward to extend our results to an arbitrary dimen-
sional system of many neutrinos with a multiqutrit system
[75]. The genuine qutrit high-dimensional entanglement
may benefit classically intractable problems such as

out-of-equilibrium dynamics of collective neutrinos, in
which recent qubit-based simulations are only presented
with the two-flavor approximations [69–72].
In summary, our replication of the PMNS theory on a

generic qutrit demonstrates that quantum computers are
valuable tools for studying neutrino physics. We engineer
a qutrit with high-quality control and measurement from
a transmon device available on the cloud. Reliable single
qutrit operations are achieved using low-level microwave
engineering. With error mitigation and careful calibrations,
the processes are stable and accurate for every run. Our
circuit is short and precise with efficient encoding, resulting
in improved leakage error and lesser system drifting. Three
scenarios for the neutrino oscillations are simulated: vacuum
oscillations, interaction-with-matter oscillations, and CP-
violation oscillations. Our simulations match well with the
PMNS theory and state-of-the-art experiments in all cases.
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